Dynamic Scheduling

Hana Rudová

Fakulty of Informatics, Masaryk University Brno, Czech Republic

http://www.fi.muni.cz/~hanka

Dynamic Scheduling

Dynamic scheduling

Problem description Static problem Oynamic problem Minimal perturbation problem 2 Solving methods Dispatching rules Iterative forward search I ocal search Branch & Bound 3 Applications University course timetabling Scheduling in Grid environment

Basic terminology: Scheduling and CSP

Scheduling

• optimal resource allocation of activities over the time

Visopt ShopFloor System

Constraint Satisfaction Problem

- domain variables, domains, constraints = relations
- solution: variable assignment satisfying all constraints
- objective function + optimization

Dynamic Scheduling

Scheduling problem as a CSP

Domain variables

- allocation of activity A in time and space
- time assignment: start(A), p(A), end(A)
- space allocation: resource(A)

Domains

- release time and due date for time variables
- alternative resources for space variables

Constraints: resource constraints, temporal constraints, ... Objective function

• resource usage, preferences over time and resources, ...

Dynamic scheduling

- Problem change during the solving process
- Examples:
 - unscheduled resource breakdown
 - new jobs appear during solving phase
 - shorter/longer processing time than expected

Dynamic scheduling

- Problem change during the solving process
- Examples:
 - unscheduled resource breakdown
 - new jobs appear during solving phase
 - shorter/longer processing time than expected

Dynamic CSP

- Dynamic constraint satisfaction problem:
 - sequence $\{P_0, P_1, \dots, P_n\}$ where
 - each P_i is a CSP given by the set of constraints C_i
 - C_i^+ set of new constraints
 - C_i^- set of removed constraints

and it holds

•
$$C_i^- \subseteq C_{i-1}$$

• $C_i = C_i^+ \cup C_{i-1} \setminus C_i^-$

Note:

• domain changes can be encoded into constraints

Minimal perturbation problem

- New solution with minimal changes/perturbation from original solution
 - solution published
 - changes undesirable wrt. user
 - try to avoid avalanche effect
- Example
 - school timetable
 - flight assignment
 - •

Minimal perturbation problem

- New solution with minimal changes/perturbation from original solution
 - solution published
 - changes undesirable wrt. user
 - try to avoid avalanche effect
- Example
 - school timetable
 - flight assignment
 - ٩
- Minimal perturbation problem: $(P, \alpha, C^+, C^-, \delta)$
 - P is a CSP with the set of constraints C
 - α solution of P
 - C^+, C^- sets of new and removed constraints
 - δ distance function over two CSP solutions
- Solution of minimal perturbation problem
 - CSP solution β of the problem with $C \setminus C^- \cup C^+$ with minimal $\delta(\beta, \alpha)$

Problem description

- Static problem
- Dynamic problem
- Minimal perturbation problem

2 Solving methods

- Dispatching rules
- Iterative forward search
- Local search
- Branch & Bound

3 Applications

- University course timetabling
- Scheduling in Grid environment

Dispatching rules

Dispatching rules

- new job assigned to the resource wrt. rule
- rule = longest job/job with smallest due date/... earlier
- combination of several rules

Good for problems with

- high dynamics
 - subsequently appearing jobs
 - uncertain processing time
 - resource breakdowns
- the need for a prompt response

Not helpful for (complex) optimization

- minimal perturbation problem
- Quality of Servise (QoS) requirements

Search in the solution space

• Trivial enumeration

- CSP solving: search + constraint propagation
 - propagation = removal of inconsistent values from variable domains

Problem description

Iterative forward search (IFS) for CSP

- Constraint propagation
- Constructive method
- Partial consistent assignment
- Standard forward step
 - selection of variables and their values if possible
- "Backward step"
 - if impossible to assign selected variables without constraint violation
 - Inding conflicting variables and removal of their assignment

Solving methods

000000000

- assignment of selected variables
- Consequence
 - IFS is not a tree search method
 - principles of the local search
- Important principle
 - value selection
- Dynamic Scheduling conflict statistics (memory for the number of conflicts)

Timetable

PHYS 112 (268)	7:30a	8:00a	8:30a	9:00a
Mon			ENGR 12 4, 54	6R Lec 1 4, 0
Tue	OLS 252 15, 1	2 Lec 1 I, 3	PHYS 27 0, 1	2 Lec 1 7, 0
Wed			ENGR 12 4, 54	6R Lec 1 4, 0

Conflict statistics

• Suppose: selection of value *a* of variable *A* we must remove assignment of *b* for variable *B*, i.e.

$$[A = a \rightarrow \neg B = b]$$

• We can remember during computation

$$\begin{array}{rcl} A=a & \Rightarrow & 3\times \neg \ B=b, & 4\times \neg \ B=c\\ & 2\times \neg \ C=a, & 120\times \neg \ D=d \end{array}$$

Conflict statistics

 Suppose: selection of value a of variable A we must remove assignment of b for variable B, i.e.

$$[A = a \rightarrow \neg B = b]$$

• We can remember during computation

$$\begin{array}{ll} A=a & \Rightarrow & 3\times \neg \ B=b, & 4\times \neg \ B=c \\ & 2\times \neg \ C=a, & 120\times \neg \ D=d \end{array}$$

- Value selection
 - selection of values with smallest conflicts
- Aging
 - values remebered for some last iterations
 - older conflicts with smaller weight

IFS for dynamic CSP

CSP: search goals

- search for assignment of all values
- optimization of the objective function
 - preferred time assignment, preferred resource allocation,

Minimal perturbation problem: extension

- Image of the number of different values
- original values preferred
 - during value selection supported minimal difference in the number of differently assigned values

Solving methods

Applications

IFS: experiments

Problem description

Local search LS

- Local changes/repairs of complete inconsistent assignment
- Initial assignment (trivially: random)
- Local changes
 - exchange of two jobs, job moved to different resource, ...

Problem description

Local search LS

- Local changes/repairs of complete inconsistent assignment
- Initial assignment (trivially: random)
- Local changes
 - exchange of two jobs, job moved to different resource, ...

- CSP: search goals
 - improvements in objective function
 - earch for consistent assignment
- Dynamic CSP: extension
 - Solution of original problem as initial assignment
 - natural extension
 - good time complexity
- Minimal perturbation problem: extension
 - o minimization of the different values
 - 🗿 no optimality guarantees

Branch & Bound (BB)

Branch & Bound search

- tree search method
- search for optimal solution
- maintained lower bound
- space with quality worse than lower bound pruned

Branch & Bound (BB)

Branch & Bound search

- tree search method
- search for optimal solution
- maintained lower bound
- space with quality worse than lower bound pruned

Iterative forward search, local search

- large scale problems
- no guarantee of solution quality

Branch & Bound

- not applicable for large scale problems
- can be used for local optimization

BB: dynamic CSP

We have: solution of original problem + new changes and want "improve it"

Selection of variable x with improper assingment Application of BB with at most n changes

- reasonable *n* is rather small
- reasonable search space size
- optimality guarantee within this search space
- solution out of this space not reasonable wrt. x anyway

Problem description

- Static problem
- Oynamic problem
- Minimal perturbation problem

2 Solving methods

- Dispatching rules
- Iterative forward search
- Local search
- Branch & Bound

3 Applications

- University course timetabling
- Scheduling in Grid environment

University course timetabling

- Timetabling at Purdue University
- Large scale decentralized problem
 - 2 central problems: large lecture rooms, computer laboratories
 - about 70 problems for particular administrative domains

• State of the project

- 2001-2005: 3 projects between Masaryk and Purdue University
- spring 2005: first used large lecture room timetabling
- autumn 2007: first used system for the whole university

• Timetabling steps

- centralized solving of large lecture rooms
- 2 solving of particular departmental problems
- 3 centralized solving of computer laboratories problem
- o centralized changes in the timetable

Static timetabling problems

- Large lecture room problem
 - 800 courses x 2 meetings, 55 classrooms
 - individual course enrollment for about 28.000 students
 - preferences on time and space, distances between classrooms,...
 - many exception handled
- Other problems: both automated solving and data input
- Algorithm: Iterative forward search

0.16	0 2	(B) ha	рс/имка	nasporda	radu'tine	obinghole	(Prinary®	9K.80								-	G			
																		Tin	notable	ę
8.0	Rer																			
																ţ.	port POP	Entroh		
Tes																		and		
112	TOBA	8.004	8.304	8.000	8 3 3 4	10.004	18.304	11.00#	11.084	12.009	12.009	1.80p	1.009	2.009	2.309	3.809	2.009	4.009	4309	83
Mon			ENCR 1	HRLICT 4	0.52	steen s	MA 15	4Lec 2	0.82	1.0	initz C	in Lac 1	0.52	4UK2	4.3	Lec 1	ENCR 1	201 Lac 1	EPCS 1	10
7,0	01525	Lec 1	11052	T2 Lec 1		21 Lec 1	PHY5 2	AT Lec 1	14952	41 Lec 2	11052	H Lec 3	P	67 335 L	e f	5	OC 100 L	ec 18	HIST 15	2 Le
Vied		,	ENCR 1	HRUK 1	0.82	YLK 1	MAIN	ater 2	0.82	нцка 1.0	P103.2	19 Lec 1	0.82	ALK 2	COT 963 4.5		ENCR 1	204 Lac 1		
TN	01525	Lec 1	PHOT5 2	T2 Lec 1		21 Lec 1	PHYS 2	41 Lec 1	PHYS 2	HI Lec 2	F1052	H Lec 3		57 335 L	ic f	5	OC 100 L	ec 18	HIST IS	210
F 5	- 12	2	1903.2		- 4	.0	MATE	4 Loc 2		.0	1103.2		11075.2	19 Piec 1	1103.23	Tec 1	1103	15 1901 2		
Pecies 114 (272)	Tülle	8.054	8,264	8.004	0.00w	10-00a	10.304	11.004	11.084	12.009	12.009	1.60y	1009	2.009	2.30p	2.00p	3.50p	4.00p	4309	54
800	007.15	Let 2	1103.2	14 Lec 1	ANTH2	IS Let 1	199512	2HLet 1	164.90	SLec 5	1105.2	B Lec 1	19752	8 Let 2	ACEC 21	T Let 2	ADDG	Stiller 3	PSY 20	ILec
3,0			Pris 2	20 Lec 1	F1403.2	20 Lec 2 7, 0	9032	201.003	PHYS 1	72 LeC 1 3.0	PHONE S	12 Loc 2	PHYS 1	72 Let: 3	CRIT 141 40 7 CGT 141	Lec 1 Lec 1	MSMT	801LIK 1	IKM12	nte
Vie2	COT 162	4	FH15.2	14 Lec 1 0.1	ANTH 2 10.1	IS Let 1	1040R 10 4 114	OffLec 1e ok 1	MA 10	öLecö IS.0		lä Lec 1	PHYS2 0.7		ACEC 21	TLec 2	Addig:	217 Lec 3 16, 0	PSY 20 24 3	i Lec
			0,5		10		4 114 114 110 110	ek 1 OffLec 15		15,0									24 3	

Minimal perturbation problem

Solving methods

- Iterative forward search to react on user requests
- Branch and Bound for local schedule optimization

Sugge	estions				
Score	Class	Date	Time	Room	Students
+15.2	POL 101 Lec 3	Full Term	TTh 12:00p \rightarrow TTh 7:30a	BRNG 2280	+11
+31.7	POL 101 Lec 3	Full Term	TTh 12:00p → TTh 10:30a	BRNG 2280	+36 (h+3)
	HIST 342 Lec 1	Full Term	TTh 10:30a \rightarrow TTh 1:30p	$BRNG\ 2280 \to BRNG\ 2290$	
+36.6	POL 101 Lec 3	Full Term	TTh 12:00p \rightarrow TTh 10:30a	BRNG 2280	+36 (h+4)
	HIST 342 Lec 1	Full Term	TTh 10:30a \rightarrow TTh 7:30a	BRNG 2280	
+44.1	POL 101 Lec 3	Full Term	TTh 12:00p → TTh 10:30a	BRNG 2280	+34 (h+2)
	HIST 342 Lec 1	Full Term	TTh 10:30a \rightarrow TTh 3:00p	BRNG 2280 → BRNG 2290	
	OBHR 330 Lec 4	Full Term	TTh 3:00p	BRNG 2290 → LWSN B155	

(all 1571 possibilities up to 3 changes were considered, top 4 of 17 suggestions displayed)

Search Deeper

Job Scheduling in Grid environment

- Distributed heterogeneous resources
 - clusters, supercomputers, desktops, special instruments
 - autonomy, robustness
- Type of jobs
 - high-throughput (parameter studies), paralell, distributed
- Scheduling on Grids
 - scheduling of computational jobs to resources
 - scheduling of data transfers and data processing
- Examples
 - several clusters over Czech Republic (*META Center*) hundreds clusters over Europe (EGEE)
 - several supercomputers(Deisa)
 - SETI@Home

Grid scheduling with Alea simulator

Problems with QoS requirements

- synthetic problems proposed by the group at ISTI CNR (Italy)
- heterogenous resources (frequency, number of processors)
- dynamic problems
 - jobs arriving over the time
 - known job processing time
 - no resource changes
- due dates, sw licences
- resource usage, job slowdown

Grid simulator Alea

- extension of simulation tool GridSim (Java)
- centralized scheduler
- modular system: different problems and algorithms
- static and dynamic scheduling

• http://www.fi.muni.cz/~klusacek/alea

Dynamic Scheduling

Local search for dynamic grid scheduling

- Dispatching rules
 - common use in the theory and practice
 - used for generation of the initial solution
- Local search
 - applied to static grid scheduling problems very slow grid community very sceptical to the effective use of local search!
 - local search still not applied to dynamic grid scheduling
- Goal
 - application of local search to dynamic grid scheduling problems
 - generally
 - parallel jobs, QoS, interactive jobs, advance reservation, ...
 - application of advanced AI/OR algorithms
- Current results
 - synthetic problems with QoS requirements
 - improvements in optimization results
 - very good running time

Solving methods

Applications

Local search: experiments

Comparison of grid scheduling algorithms

Algorithms in Grid simulators

- SimGrid, GridSim, GSSIM , Alea
- development and testing of new algorithms
- comparison of algorithms
- Algorithms in production systems
 - PBSPro, SGE, Maui, Moab
 - in simulators: approximated with FIFO (with backfilling)
 - hard to reimplement
 - many rules, features, bugs
 - closed source, algorithms not published

Goal: comparing our and production algorithms

Simulator with Production Scheduling Algorithms

PBSPro production system

Magrathea tool

- for management of virtual machines
- developed at CESNET and Masaryk University

Simulator with virtual machines (VMs)

- running on 16 core AMD machine
- several VMs running on a single computer
- VMs representing 300 nodes
- jobs submitted directly to PBS in VMs
- sleep jobs with no cpu/memory consumption
- real workloads from Czech Grid *META Center* ... 2005-2007

 \bullet run time reduction: 1 month \rightarrow 1.5 hours, 1 year \rightarrow \leq 1 day $_{\text{amic Scheduling}}$

Problem description

Solving methods

Applications

Motivation for future work

Now:

48 countries 243 clusters 44.000 CPU daily over 100.000 jobs

Next year: expected 10x job increase