Research Résumé

Logic is an integral part of theoretical computer science. Its contributions range from the work
of Godel and Church, which had a major influence on the development of computability theory,
to more recent activities in such diverse fields as verification, database theory, complexity theory,
artificial intelligence, computer security, and computer linguistics.

My own research interest within logic is model theory for monadic second-order logic, a logic
with strong connections to automata theory. More specifically, my work falls into the following
related areas:

(i) algorithmic model theory;

(i) model constructions and decompositions;
(iii) the expressive power of monadic second-order logic;
(iv) automata theory and algebraic language theory;

(v) algorithmic issues.

(i) Algorithmic model theory

The topic of algorithmic model theory is the study of algorithmic properties of infinite struc-
tures. This theory developed out of several, quite diverse fields of computer science. In finite
model theory, where one studies the connections between logic and algorithmic properties of
finite structures, there was a desire to extend the scope of the theory to include infinite struc-
tures. An early example is the article [9] on least fixed-point logic on infinite structures. In veri-
fication, infinite state spaces have received more and more attention during the last two decades
(see, e.g., [4] for a survey). Finally, in computer algebra researchers sought ways to represent,
and compute with, infinite groups and fields. For the fundamental groups of certain spaces, they
invented a representation by finite automata which lead to the study of the so-called automatic
groups [6].

In order for an algorithm to process infinite structures, a finite encoding of such structures is
required. For instance, when representing the state space of a program one can encode the stack
contents as finite words and the transitions between them by rewriting rules. Consequently,
finite encodings of structures play an important part in algorithmic model theory. The central
questions regarding a given encoding are:

(a) Which properties are decidable when the input is encoded in this way?

(b) Which structures have a representation of this kind?

Most of the time, the algorithmic properties of a given type of representation can be determined
easily. But characterising those structures that possess such a representation is usually highly
non-trivial.

Previous work. My own contributions to this field concentrate on characterisation results. The
following classes of finitely presented structures were investigated:

(a) automatic structures [T3,C8,C5,J16],



(b) tree-interpretable structures [c6,717],

(c) the Caucal hierarchy [j12].

The graphs of the Caucal hierarchy, for instance, correspond to the configuration graphs of
higher-order pushdown automata and can, thus, be used to encode the state spaces of functional
programs. The focus of my papers was on methods to show that a given structure does not
belong to the class under consideration. The formal framework proposed in this work consists
of using logical operations to represent infinite structures. In the meantime this approach has
become a standard technique in the field.

(ii) Model constructions and decompositions

An invaluable tool in algorithmic model theory are operations that are compatible with a given
logic in the sense that, when applying the operation, one can decide whether a formula holds in
the result by checking certain other formulae on the arguments. In particular, such an operation
can be used to transfer decidability from the given structures to the new one. Classical examples
of compatible operations are interpretations, the products of Feferman and Vaught [8] (for first-
order logic) and the generalised sums of Shelah [13] (for monadic second-order logic). A more
recent example is the Muchnik iteration [14] which generalises the unravelling of a graph and
which can be used to generate the state space of programs with a stack. I have contributed to
a survey [H1] which gives an overview with emphasis on operations that are compatible with
first-order logic or with monadic second-order logic. Such operations have many applications.

(i) In algorithmic model theory one can use them to represent (infinite) structures by finite
terms: each structure that can be obtained by a finite sequence of operations can be represented
by this sequence. Furthermore, if all operations used preserve decidability, all structures with
such a representation will have a decidable theory. For instance, each structure in the Caucal
hierarchy can be obtained by a finite number of Muchnik iterations followed by a monadic
second-order interpretation. Since these two operations preserve decidability of the monadic
second-order theory, we can evaluate monadic second-order formulae on each structure from
the Caucal hierarchy. This approach unifies the definition of most classes considered in the
literature, which originally were based on ad-hoc methods based on automata, term rewriting
systems, grammars, etc.

(ii) Such operations yield a notion of reduction between classes of structures. For instance,
every structure that one can interpret in a structure with decidable theory also has a decidable
theory. Hence, such operations are a tool to provide both decidability and undecidability results.

(iii) Besides algorithmic applications of term representations one can also use terms to obtain
decompositions of representable structures. For example, the operations used to define the so-
called HR-equational graphs lead to the notion of tree decomposition and tree width. In that
way, depending on the choice of operations, it is possible to develop a structure theory for the
given class. In particular, such a theory provides tools to prove that certain structures can not
be represented by a given way of encoding. For instance, no graph of infinite tree width is HR-
equational.

Previous work. I have mainly worked on three sets of operations:



(a) the operations associated with the notion of partition width;
(b) the operations associated with the notion of tree width;
(c) the Muchnik iteration.

In addition I would like to mention a handbook chapter [H1] that I have co-authored and that
contains a survey on common operations that are compatible with first-order logic or monadic
second-order logic and some of their applications.

The operations (a) are studied in [714,T2]. The topic of these articles is the class of structures
that can be interpreted in a tree. These structures can be characterised in several ways:

(1) They can be interpreted by monadic second-order logic in a tree.

(2) They have a hierarchical decomposition where a certain complexity measure (the parti-
tion width) is bounded.

(3) They can be built up from finite structures using (i) disjoint unions and (ii) quantifier-free
interpretations.

Such a characterisation helps us to understand this class better. From (1) we can immediately
deduce several decidability results, while (2) provides a tool to prove that certain structures do
not belong to the class.

The operation (c) is the topic of [H2,715]. The first paper is a survey on known results, while
the second article extends these results by showing that the Muchnik iteration is also compatible
with several extensions of monadic second-order logic.

The article [j13] uses operation (a) and (b) to define various algebras of finite structures and
to study the corresponding notions of recognisable and equational classes.

(iii) Expressive power

Studying the expressive power of formalisms is an established area of computer science. It has
received recent attention in, for instance, the work on database query languages like XML, the
semantic web, verification, or computer linguistics. The reason is that, for applications, it is
important to find the right balance between expressive power and algorithmic managability: a
formalism needs to be powerful enough to express everything needed for the given application,
but it should not be that expressive that it does not admit efficient algorithms. In short one can
say that a formalism should be as expressive as necessary, but as efficient as possible.

I am mostly interested in the expressive power of monadic second-order logic and its vari-
ants, which encompass most of the logics used in applications. While decision procedures for
monadic second-order logic are usually of prohibitive complexity, they frequently serve as tem-
plates from which one can derive specialised, much more efficient algorithms for fragments of
monadic second-order logic, like the temporal logics used in verification.

During the last decades great advances have been made concerning the expressivity of mon-
adic second-order logic. Of particular interest in this context are questions of definability and
interpretability in given structures. For example, I have shown in [j14] that a structure can be
interpreted in some tree if, and only if, its partition width is finite.

At the current time the situation concerning the model theory of monadic second-order logic
looks as follows. On the one hand, there are structures whose monadic theory is simple enough



such that we can develop a theory for them. All known examples of such structures have the
property of being interpretable in a tree. On the other hand, there are structures whose monadic
theory is extremely complicated. A prominent example are structures containing large definable
grids. According to a conjecture of Seese [12] these two extremes form a dichotomy: either a
structure can be interpreted in a tree, or it contains a large grid.

Previous work. My work on expressivity questions concerns

(a) interpretations;
(b) guarded second-order logic;
(c) the Muchnik iteration.

(a) One emphasis of my work is on different kinds of interpretations. For transductions —
a strong form of interpretation — and classes of finite structures we obtained a complete de-
scription of the resulting hierarchy in [y10]. In particular, we developed concrete combinatorial
criteria for the existence of a transduction between two given classes of finite structures.

When considering the conjecture of Seese, interpretations in trees are of particular import-
ance. These are the subject of [114,T2], where structures interpretable in trees are characterised
in various ways. In particular, it is shown that these are exactly those structures whose partition
width is bounded.

At the other extreme there are structures containing definable grids or pairing functions.
Such structures were studied in [79,78]. The main result is a proof of a weak variant of Seese’s
conjecture.

(b) A further topic of my work concerns variants of monadic second-order logic. An import-
ant extension of this logic is the so-called guarded second-order logic. In general, it is strictly
more expressive than monadic second-order logic. But, according to a result of Courcelle [5],
on countable sparse structures the expressive power of guarded second-order logic collapses
to that of monadic second-order logic. The article [j11] contains, among other results on the
expressive power of guarded second-order logic, a generalisation of Courcelle’s result to sparse
structures of arbitrary cardinality.

(c) A large class of structures with a decidable monadic second-order theory is the Caucal
hierarchy. Each of these structures has a finite partition width. In [y12] we study methods to
prove that certain structures do not belong to a given level of the hierarchy.

(iv) Automata theory and algebraic language theory

Automata theory is one of the oldest parts of computer science with a wide range of applications,
for instance, in compiler design, verification, and computer linguistics. There is a tight connec-
tion between automata and the monadic second-order theories of certain structures, like the
order of the natural numbers or the infinite binary tree. In particular, Biichi [3] and Rabin [11]
have shown that one can obtain decision procedures for these logics by translating formulae
into automata. Automata theory has therefore become an essential tool in the investigation of
monadic second-order logic.

Besides using monadic second-order logic one can also characterise regular languages algeb-
raically via homomorphisms into finite algebras. While automata based algorithms are usually



more efficient than those based on algebraic techniques, the algebraic point of view is particu-
larly suited to classify fragments of monadic second-order logic and to develop corresponding
decision procedures. For instance, one can decide the question of whether a given formula of
monadic second-order logic is equivalent to a first-order formula over the class of finite words
by constructing the syntactic monoid of the formula. Although this result is already quite old,
no automaton-based decision procedure for this question could be devised so far.

There are well-developed algebraic theories for languages of finite and infinite words [10].
For languages of finite trees a preliminary theory has also been developed [2, 7], but for infinite
trees only partial results exists [1, J7,74]. The main obstacle in the development of an algebraic
language theory in this context are missing combinatorial tools, like Ramseyan factorisation
theorems for trees.

Previous work. My work so far deals with

(a) algebraic language theory;
(b) boundedness questions for automata and logics;
(c) higher-order pushdown automata.

(a) In algebraic language theory I have studied two settings: (1) finite graphs and (2) infinite
trees.

Concerning (1), the paper [713] investigated certain graph algebras motivated by the theory of
graph grammars. We study the corresponding algebraic notions of recognisable and equational
classes, and we relate them to the notion of definability in monadic second-order logic.

Concerning (2), I have made a first contribution [j7, 74] to the development of an algebraic
language theory for languages of infinite trees. In particular, I have obtained a characterisation
of the regular languages via homomorphisms in certain algebras.

(b) In [c4] we study fixed-point inductions of an monadic second-order formulae on finite
words. [72] extends these results to infinite trees. The main result is an automaton-based proof
that it is decidable whether the length of these inductions is uniformly bounded.

(c) Besides considering automata as recognisers of languages, we can also use them to present
infinite structures. For instance, the graphs in the Caucal hierarchy coincide with the configur-
ation graphs of higher-order pushdown automata. In [y12] I use higher-order pushdown auto-
mata to study the classes in the Caucal hierarchy. In particular, I develop methods to prove that
certain structures do not belong to a given level of the hierarchy.

(v) Finite model theory, descriptive complexity theory, and algorithmic issues

For many applications, one needs logics with the right balance of expressive power and al-
gorithmic manageability. In many cases, in particular in verification and database theory, one
can obtain such logics by extending some weak logic by fixed-point operators. This has led to a
wide range of fixed-point logics.

Previous work. In this area I have worked on

(a) fixed-point logics;
(b) descriptive complexity theory;



(c) Ehrenfeucht-Fraissé games.

(a) My work on fixed-point logics includes a survey [H3] on guarded fixed-point logic. We
present automata-based algorithms for model checking and satisfiability testing for this logic,
and we study the complexity of these problems.

I have also studied [c 4,7 2] fixed-point inductions of an monadic second-order formulae. The
main result is a proof that it is decidable whether the length of such inductions is uniformly
bounded.

(b) Descriptive complexity theory studies the correspondence between the computational
complexity of classes of finite structures and the logics these classes can be axiomatised in. In
[c7] I introduce a different setting where one considers the complexity and definability of sets
definable in a fixed structure. Several complexity classes are characterised in this way.

(c) Ehrenfeucht-Fraissé Games are one of the main model-theoretic tools in finite model the-
ory. Unfortunately, on nontrivial structures the combinatorics involved in playing these games
quickly become unmanageable. In [76] I study several ways to simplify games and to decom-
pose them into simpler subgames. While in the literature one mostly considers games on sparse
structures, in this article we place the emphasis on structures that are not sparse.
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