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AbstratWe generalise the onept of lique width to strutures of arbitrary signature andardinality. We present haraterisations of lique width in terms of deompositionsof a struture and via interpretations in trees. Several model-theoreti propertiesof lique width are investigated inluding VC-dimension and preservation of �nitelique width under elementary extensions and ompatness.
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1 Introdution
In the last deades several measures for the omplexity of graphs have beende�ned and investigated. The most prominent one is the tree width whihappears in the work of Robertson and Seymour [1℄ on graph minors andwhih also plays an important role in reent developments of graph algorithms.When studying non-sparse graphs and their monadi seond-order propertiesthe measure of hoie seems to be the lique width de�ned by Courelle andOlariu [2℄.Although no hard evidene ould be obtained so far, various partial resultssuggest that the property of having a �nite lique width onstitutes the divid-ing line between simple and ompliated monadi theories. On the one handevery struture of �nite lique width an be interpreted in the binary treeand, therefore, has a simple monadi theory. On the other hand, every stru-ture with an MSO-de�nable pairing funtion is of in�nite lique width. For
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graphs, the onverse also holds. Answering a onjeture of Seese [3℄, Courelleand Oum [4℄ have shown that every lass of �nite undireted graphs with un-bounded lique width has an undeidable (MSO+C2)-theory, where MSO+C2denotes the extension of monadi seond-order logi by ounting quanti�ersmodulo 2. Unfortunately, the ase of arbitrary strutures remains open.
The aim of this artile is to show that lique width is a meaningful and naturalonept not only in graph theory but also from a model-theoreti point ofview. We generalise the de�nition of lique width to strutures of arbitrarysignature and ardinality and show that the resulting measure whih we allpartition width has natural model-theoreti properties suh as preservation of�nite partition width under elementary extensions and ompatness.
The outline of the artile is as follows: The next setion is meant to �x notationand reall basi results.
In Setion 3 we introdue in�nite terms denoting relational strutures of arbi-trary ardinality. The main problem we will be dealing with is to equip theseterms with a well-de�ned semantis. We prove that every struture denotedby suh a term an be interpreted in some tree.
In the following setion we de�ne a ertain kind of deomposition of a stru-ture. The important parameter of suh a deomposition is the number ofatomi types realised in a omponent. This number, alled partition width,will be our generalisation of the lique width of a graph. We onlude thesetion by proving a tight relationship between these deompositions and theterms de�ned in the previous setion.
Setion 5 ontains tehnial results about the number of atomi types whihare needed in Setion 6 to prove that a struture has �nite partition width ifand only if it an be interpreted in some tree.
In the two �nal setions we turn to model-theoreti questions. In Setion 7we prove that the partition width of a struture is �nite i� the width ofits �nite substrutures is bounded; we give a kind of ompatness theoremfor strutures of a given partition width; and we show that �niteness of thepartition width is preserved under elementary extensions.
In Setion 8 it is shown that strutures with �nite partition width do notontain an MSO-de�nable pairing funtion. In partiular, they do not havethe independene property.
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2 Preliminaries
Logi. Let us reall some basi de�nitions and �x our notation. Let [n] :=
{0, . . . , n − 1}. We taitly identify tuples ā = a0 . . . an−1 ∈ An with funtions
[n] → A and frequently we write ā for the set {a0, . . . , an−1}. This allows usto write ā ⊆ b̄ or ā = b̄|I for I ⊆ [n]. The omplement of a set X is denotedby X. Reall that the α-fold iterated exponentiation iα(κ) is de�ned by

i0(κ) = κ and iα(κ) = sup
{

2iβ(κ)
∣

∣

∣ β < α
}

.We will use this notation also for �nite κ.W.l.o.g. we will only onsider relational strutures A = (A,R0, R1, . . . ) inthis artile. The set of relation symbols {R0, R1, . . . } is alled the signatureof A. When speaking of the arity of a struture or a signature we mean thesupremum of the arities of its relations.
MSO, monadi seond-order logi, extends �rst-order logi FO by quanti�a-tion over sets. In plaes where the exat de�nition matters � say when onsid-ering the quanti�er rank of a formula � we will use a variant of MSO without�rst-order variables where the atomi formulae are of the form Y = Z, Y ⊆ Z,and RX0 . . . Xn−1, for set variables Xi, Y , Z and relations R. Using slightlynonstandard semantis we say that an atom of the form RX̄ holds if there areelements ai ∈ Xi suh that ā ∈ R. Note that we do not require the Xi to besingletons. Obviously, eah MSO-formula an be brought into this form.By FOk and MSOk we denote the fragments of the respetive logi that onsistsof those formulae with quanti�er rank at most k.A formula ϕ(x̄) where eah free variable is �rst-order de�nes on a given stru-ture A the relation ϕA := { ā | A |= ϕ(ā) }.De�nition 1 Let A = (A,R0, R1, . . . ) and B be relational strutures. A (one-dimensional) MSO-interpretation of A in B is a sequene

I =
〈

δ(x), ε(x, y), ϕR0(x̄), ϕR1(x̄), . . .
〉

of MSO-formulae suh that
A ∼= I(B) :=

(

δB, ϕB

R0
, ϕB

R1
, . . .

)/

εB.To make this expression well-de�ned we require that εB is a ongruene of thestruture (δB, ϕB

R0
, ϕB

R1
, . . . ). We denote the fat that I is an MSO-interpre-tation of A in B by I : A ≤MSO B.The epimorphism (δB, ϕB

R0
, ϕB

R1
, . . . ) → A is also denoted by I.
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If I : A ≤MSO B then every formula ϕ over the signature of A an be translatedto a formula ϕI over the signature of B by replaing every relation symbol Rby its de�nition ϕR, replaing every = by ε, and by relativising every quanti�erto δ where set quanti�ers are further relativised to sets losed under ε.Lemma 2 If I : A ≤MSO B then
A |= ϕ(I(b̄)) iff B |= ϕI(b̄) for all ϕ ∈ MSO and b̄ ⊆ δB.

We will make use of Ramsey's theorem. Reall that n → (m)dp asserts thatevery olouring of [n]d with p olours ontains a homogeneous subset of sizem.In order to avoid lumsy desriptions we de�ne
R(m)dp := min

{

n
∣

∣

∣ n→ (m)dp
}

.

Trees. Let κ be a ardinal and α an ordinal. By κ<α we denote the set ofall funtions β → κ for β < α. We write x � y for x, y ∈ κ<α if x is a pre�xof y. The longest ommon pre�x of x and y is denoted by x ⊓ y.A tree is a partial order (T,�) where the universe T ⊆ κ<α is losed underpre�xes. Sometimes, we also add the suessor funtions suci(x) := xi for
i < κ. Labelled trees are either represented as strutures (T,�, (Pi)i∈Λ) withadditional unary prediates Pi for eah label i ∈ Λ, or as funtions t : T → Λ.
Graph grammars. The notion of lique width arose in the study of graphgrammars. We present two kinds of suh grammars: VR-grammars as onsid-ered by Courelle [5℄ and NLC-grammars studied by Wanke [6℄.Let C be a set of olours. Consider the following operations on C-olouredundireted graphs:
• a denotes the trivial graph whose single vertex is oloured a;
• G0 + G1 is the disjoint union of G0 and G1 ;
• the reolouring ̺β(G) with β : C → C hanges eah olour a to β(a);
• αa,b(G) adds edges from all a-oloured verties to every vertex of olour b;
• G0 ⊕S G1 with S ⊆ C × C denotes the disjoint union of G0 and G1 where
a-oloured verties of G0 are onneted by an edge to b-oloured vertiesof G1 i� (a, b) ∈ S.A VR-term is a term onsisting of the operations a, +, ̺β, and αa,b, whileNLC-terms are built up from a, ̺β, and ⊕S.
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De�nition 3 The lique width of a graph G is the minimal size of a set Cof olours suh that there is a VR-term denoting G whih uses only oloursfrom C. The NLC-width is de�ned analogously using NLC-terms.The following observation by Johansson [7℄ shows that these two measures arenearly the same.Lemma 4 Let k be the lique width of a graph G and m its NLC-width. Then
m ≤ k ≤ 2m.The haraterisation we aim to generalise is the following result of Courelle [5℄relating lique width with interpretations in the binary tree.Theorem 5 A ountable graph G = (V,E) has �nite lique width if and onlyif G ≤MSO (2<ω,�, P ) for some unary prediate P ⊆ 2<ω.
3 In�nite terms
We start by generalising NLC-terms to in�nite terms desribing relationalstrutures of arbitrary ardinality. One approah, hosen by Grohe and Tu-ran [8℄, onsists in olouring the elements of the struture as for VR-termsabove and generalising the operation αa,b to tuples of length more than two.We hoose a di�erent route by olouring all tuples of elements instead of justsingletons (see also [9,10℄). That way we obtain a larger lass of strutures thatstill shares most properties of the lass of graphs denoted by VR-terms. In par-tiular, we are able to derive an analog of Theorem 5. An example of a stru-ture whih an be desribed by the terms de�ned below, but not by the termsintrodued by Grohe and Turan, is (Q, R) where R := { (a, b, c) | a < b < c }.De�nition 6 A graded set of olours is a set C that is partitioned into �nitenonempty sets Cn, n < ω. Colours c ∈ Cn are said to be of arity n.A C-olouring of a struture M is a funtion χ mapping every n-tuple ā ∈Mnto some olour χ(ā) ∈ Cn. The empty tuple is also oloured. We all the pair
(M, χ) a C-oloured struture.Analogously to the NLC-omposition ⊕S we de�ne two operators ∑Θ and ⋃Θto ompose a family of C-oloured strutures (Mi, χi), i < α, one for orderedfamilies and one for unordered ones. In both ases the resulting struture willonsist of the union of the Mi. Additionally, we will update the olouring andadd new tuples to the relations of M. If ā is a tuple of M then the olours ofits parts ā ∩Mi, for i < α, will determine both, its new olour and whetherwe add ā to a relation R. We reord this information in an update instrution
(n, α, Ī, c̄, d, S) where Ii := { k | ak ∈Mi } is the partition of ā indued by the
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union, ci := χi(ā|Ii) is the olour of the tuple ā∩Mi, d is the new olour of ā,and S ontains all relation symbols to whih ā is added.De�nition 7 Let τ be a signature and C a graded set of olours.(a) An update instrution is a tuple (n, α, Ī, c̄, d, S) where
• n < ω is a natural number and α is an ordinal;
• Ī is a partition ·

⋃

i<αIi = [n] of [n] into α lasses (of whih all but �nitelymany are empty);
• c̄ ∈ Cα is a sequene of α olours suh that the arity of ci is |Ii| (whihimplies that the sum of their arities is n);
• d ∈ Cn is a olour of arity n; and
• S ⊆ τ is a set of n-ary relation symbols.The number n is alled the arity of the instrution.(b) An ordered α-update is a set Θ of update instrutions that ontains exatlyone instrution (n, α, Ī , c̄, d, S), for all values of n, Ī, and c̄. Eah suh set Θindues a family of funtions

Θn(Ī; c̄) = (d, S) : iff (n, α, Ī, c̄, d, S) ∈ Θ .

() A symmetri update is a set Θ of update instrutions with the followingproperties:
• Θ ontains exatly one instrution (n, s, Ī , c̄, d, S) for all n < ω, every s ≤ n,all partitions Ī = I0 ·∪ · · · ·∪ Is−1 where eah of the Ii is nonempty, and allappropriate c̄ ∈ Cs.
• For all permutations σ ∈ Ss we have

(

n, s, 〈Iσ0, . . . , Iσ(s−1)〉, 〈cσ0, . . . , cσ(s−1)〉, d, S
)

∈ Θi� (

n, s, 〈I0, . . . , Is−1〉, 〈c0, . . . , cs−1〉, d, S
)

∈ Θ .The family of funtions indued by Θ is
Θs
n(Ī; c̄) = (d, S) : iff (n, s, Ī , c̄, d, S) ∈ Θ .

We use ordered updates to de�ne a sum operation ∑Θ where the orderingof the strutures matters, whereas symmetri updates are used to de�ne anoperation ⋃Θ that is invariant under permutations of its arguments. For everysymmetri sum there exists an equivalent ordered one, while the onverse onlyholds if we are allowed to use more olours. (Basially, we need to olour eahstruture with a di�erent opy of the olours.) Below we will use ordered sumsonly for �nitely many arguments.
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De�nition 8 Let (Mi, χi), i < κ, be a sequene of C-oloured strutures.(a) Let Θ be an ordered κ-update. The ordered sum
Θ
∑

i<κ

(Mi, χi)

of (Mi, χi), i < κ, with respet to Θ is the struture (N, η) obtained from thedisjoint union of the Mi by the following operation:For every n-tuple ā ∈ Nn, n < ω, if
Θn(Ī; c̄) = (d, S)where
Ii := { k < n | ak ∈Mi } and ci := χi(ā|Ii) for i < κ ,then we add ā to all relations R ∈ S and set the new olour to η(ā) := d.(b) Let Θ be a symmetri update. The symmetri sum
Θ
⋃

i<κ

(Mi, χi)

of (Mi, χi), i < κ, with respet to Θ is the struture (N, η) obtained from thedisjoint union of the Mi by the following operation:For every n-tuple ā ∈ Nn, n < ω, ontaining elements from Mj0 , . . . ,Mjs−1, if
Θs
n(Ī; c̄) = (d, S)where

Ii := { k < n | ak ∈Mji } and ci := χi(ā|Ii) for i < s ,then we add ā to all relations R ∈ S and set the new olour to η(ā) := d.Note that this de�nition does not depend on the ordering of j0, . . . , js−1 sine
Θ is invariant under permutations.() For every sequene of olours cn ∈ Cn, n < ω, let c̄ denote the C-olouredstruture (D, ζ) with universe D := [1] and empty relations R := ∅ where theonly n-tuple is oloured with cn.Example 9 Consider three strutures with universes {x, x′}, {y, y′}, and {z, z′},
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and olouring
χ(〈〉) = e ,

χ(x) = a , χ(y) = b , χ(z) = c ,

χ(x′) = b , χ(y′) = c , χ(z′) = a ,

χ(x, x′) = d , χ(y, y′) = d , χ(z, z′) = f ,

χ(x′, x) = d , χ(y′, y) = f , χ(z′, z) = f .

(a) Let Θ be a symmetri update. The following examples show how the newolour and relations of a tuple are determined.
(x, y) : Θ2

2

(

{0}, {1}; a, b
)

(y, x) : Θ2
2

(

{0}, {1}; b, a
)

= Θ2
2

(

{1}, {0}; a, b
)

(y′, y) : Θ1
2

(

{0, 1}; f
)

(y, x, y′) : Θ2
3

(

{1}, {0, 2}; a, d
)

(y, z, x) : Θ3
3

(

{1}, {2}, {0}; c, a, b
)

(b) For an ordered 3-update Θ we have:
(x, y) : Θ2

(

{0}, {1}, ∅; a, b, e
)

(y, x) : Θ2

(

{1}, {0}, ∅; a, b, e
)

(y′, y) : Θ2

(

∅, {0, 1}, ∅; e, f, e
)

(y, x, y′) : Θ3

(

{1}, {0, 2}, ∅; a, d, e
)

(y, z, x) : Θ3

(

{2}, {0}, {1}; a, b, c
)

Having deided on the operations we an start building terms. Sine we wantto support unountable strutures we onsider terms as in�nitely branhingtrees of ordinal height.De�nition 10 (a) For a graded set of olours C and a signature τ , let Υ<
C,τbe the signature onsisting of all operations of the form c̄ and ∑Θ with oloursfrom C and relation symbols from τ . Similarly, ΥC,τ onsists of c̄ and ⋃Θ.(b) Let Υ be a signature. A Υ-term is a tree T ⊆ κ<α labelled with symbolsfrom Υ suh that the number of suessors of a node equals the arity of thesymbol labelling it.
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8Θ

8Θ

8Θ

8Φ

8Θ

c

c

c

c

cFigure 1. The term Tω+2Example 11 Let C1 = {a, b, c}, Cn = {1}, for n 6= 1, and
Θ :=

{

(1, 1, 〈{0}〉, 〈a〉, b, ∅) ,

(1, 1, 〈{0}〉, 〈b〉, b, ∅) ,

(1, 1, 〈{0}〉, 〈c〉, a, ∅) ,

(2, 2, 〈{0}, {1}〉, 〈c, a〉, 1, {suc,≤}) ,

(2, 2, 〈{1}, {0}〉, 〈a, c〉, 1, {suc,≤}) ,

(2, 2, 〈{0}, {1}〉, 〈c, b〉, 1, {≤}) ,

(2, 2, 〈{1}, {0}〉, 〈b, c〉, 1, {≤}) ,

. . .
}

(where we left out the irrelevant entries). Let Φ be the update obtained from Θby replaing the instrution (1, 1, 〈{0}〉, 〈c〉, a, ∅) by (1, 1, 〈{0}〉, 〈c〉, b, ∅).For eah ordinal α, we an de�ne a term Tα denoting the struture (α, suc,≤)where the olour of the �rst element is a and the other elements are olouredby b. (A formal de�nition of the value of a term an be found below.) For
β < α, we set

Tα(0
β) :=







∪Θ if β is a suessor ,
∪Φ if β is a limit , and Tα(0

β1) := c .

For instane,
T4 = c ∪Θ (c ∪Θ (c ∪Θ

⋃Θ
{c})) .

When trying to evaluate an in�nite term T ⊆ κ<α for α > ω in a bottom-up fashion, we fae the di�ulty that, after having obtained the value of asubterm whose root is at a limit depth, we have to propagate this value to its
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predeessors. To do so, we start at the predeessor in question and trae thevalue bak until we reah the already evaluated subterm.De�nition 12 Fix a relation ≤ well-ordering eah olour set Cn suh thatolours of di�erent arities are inomparable.(1) For sequenes of olours (ci)i<α and (di)i<α we de�ne the ordering ompo-nentwise.
(ci)i ≤ (di)i : iff ci ≤ di for all i < α ,and (ci)i < (di)i : iff (ci)i ≤ (di)i and (di)i � (ci)i .

(2) Let T be a term, v ∈ T a node, and α := |v|. A olour trae to v is asequene (ci)i<α+1 of olours of the same arity whih satis�es the followingonditions:(a) If α = β+1 is a suessor then (ci)i<β+1 is a olour trae to the predees-sor u of v and the operation at u hanges the olour of tuples from cβ+1to cβ.(b) If α is a limit then eah subsequene (ci)i<β+1 for β < α is a olour traeto the orresponding pre�x of v, and cα is the minimal olour c suh thatthe set { β < α | cβ = c } is unbounded below α.Example 13 For the terms Tα in the previous example, the olour traes areof the form bb . . . bbac, bb . . . bba, or bb . . . bb.With these notions we an de�ne a sublass of terms to whih we an assigna value. Basially, we all a term T well-formed if its value val(T ) (whih weintrodue below) is well-de�ned.De�nition 14 A term T is well-formed if the following onditions are satis-�ed:(1) For eah v ∈ T , the set of olour traes to v is linearly ordered by ≤.(2) For every leaf v labelled c̄ and all arities n there exists a olour trae
(di)i<α+1 to v with dα = cn.(3) For all �nite sequenes of verties vk, k < m, and all olour traes (cki )ito vk, there exists a olour trae (di)i<α+1 to u := v0 ⊓ · · · ⊓ vm−1 suhthat dα is the result of the operation at u applied to the olours ckα+1.Lemma 15 Let T be a well-formed term. For every v ∈ T and all olours c ∈

C there is at most one olour trae (cβ)β<α+1 to v with cα = c.
PROOF. Let (cβ)β<α+1 and (dβ)β<α+1 be olour traes to v with cα = dα.We prove by indution on α that (cβ)β = (dβ)β. The ase α = 0 is trivial.
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If α = β + 1 is a suessor ordinal then the operation at v maps cα = dαto cβ = dβ and the laim follows by indution hypothesis.Suppose that α is a limit and that (cβ)β 6= (dβ)β. By symmetry, we mayassume that (cβ)β < (dβ)β. By de�nition, the set
S := { β < α | dβ = dα }is unbounded below α. Let e be the minimal olour suh that the subset

S ′ := { β ∈ S | cβ = e } is also unbounded. Suh a olour exists sine thereare only �nitely many olours of the given arity.By de�nition of a olour trae we have e ≥ cα. Sine cβ ≤ dβ for all β < α itfollows that e = cβ ≤ dβ = dα = cα for β ∈ S ′. Consequently, cβ = dβ for all
β ∈ S ′. Sine S ′ is unbounded the indution hypothesis implies that cβ = dβfor all β < α. Contradition. 2

De�nition 16 Let T ⊆ κ<α be a well-formed term and L ⊆ T the set of itsleaves.(a) To every tuple ā ∈ Ln we assoiate a olour trae χ(ā) by indution on n.If a0 = · · · = an−1 and the node a0 is labelled by d̄ then χ(ā) := (cβ)β<α+1 isthe (unique) olour trae to a0 that ends in cα = dn.Otherwise, let v := ⊓ ā. There is a partition I0 ·∪ · · · ·∪Is−1 = [n] of the indiessuh that
• v ≺ ai ⊓ ak if i and k belong to the same lass Il, and
• v = ai ⊓ ak for i and k belonging to di�erent lasses.The node v is labelled by either ∑Θ or ⋃Θ for some update Θ. Let (ciβ)β :=
χ(ā|Ii), for i < s, and let α := |v|. We either have

(d, S) = Θn

(

Ī ′; (ĉiα)i<κ
) or (d, S) = Θs

n

(

Ī; c0α, . . . , c
s−1
α

)

,

where (ĉiα)i<κ is the sequene of length κ obtained from c0α, . . . , c
s−1
α by insert-ing the olour of the empty tuple at the appropriate plaes. We let χ(ā) :=

(cβ)β<α+1 be the (unique) olour trae to v with cα = d.(b) The value val(T ) of T is the struture whose universe M := L onsists ofall leaves of T . A tuple ā ∈Mn with assoiated olour trae χ(ā) = (cβ)β<α+1belongs to a relation R i� there is some node v �⊓ ā labelled by an operation
∑Θ or ⋃Θ that adds tuples oloured c|v| to R.In the following we will taitly assume that all terms are well-formed.
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What strutures an be the value of a ΥC,τ -term? If M is a �nite struturewith |Mn| ≤ |Cn|, for all n < ω, then, by assigning di�erent olours to eahtuple ā ⊆M , we an easily onstrut a term denoting M.But, if M is in�nite, this does not need to be the ase. In the next lemma weprove that every struture denoted by an ΥC,τ -term T an be interpreted insome tree, namely, the term T itself. The onverse is shown in Setion 6.One remaining tehniality we have to deal with is to �x an enoding ofterms as strutures. In order to allow in�nite signatures we enode a Υ-term
T ⊆ κ<α as a struture (T,�, P̄ ) with universe T , pre�x ordering �, andunary prediates P̄ oding the funtions in Υ. Eah operator is enoded byseveral prediates:

Pd := { v ∈ T | v is labelled by some c̄ with d ∈ c̄ } ,

P(n,α,Ī,c̄,d,R) := { v ∈ T | v is labelled by ∑Θ or ⋃Θ for some Θontaining (n, α, Ī, c̄, d, S) with R ∈ S } .Proposition 17 For all signatures τ and every set C of olours there are
MSO-interpretations V and V<k , k < ℵ0, suh that

V<k : val(T ) ≤MSO (T,�, P̄ , (suci)i<k) for all Υ<
C,τ -terms T ⊆ k<α,and V : val(T ) ≤MSO (T,�, P̄ ) for all ΥC,τ -terms T ⊆ κ<α.If the arity of τ is bounded then there even exist MSOm-interpretations forsome m.

PROOF. The universe of val(T ) onsists of the set of leaves of T , whih isde�nable. The above de�nition of the relations of val(T ) an be translatedimmediately into MSO one we have shown how to enode olour traes. Ifolour traes (ci)i<α ∈ Cα
n to some node v ∈ T are represented by sets (Xd)d∈Cnsuh that u � v belongs to Xd i� c|u| = d, then there is an MSO-formula whihexpresses that the sequene of olours enoded in some tuple X̄ is indeed aolour trae.The quanti�er rank of these formulae depends only on |Cn| and the arity ofthe relations involved. 2

4 Partition re�nements
Our goal is to obtain a haraterisation of the lass of strutures denoted bysome term similar to Theorem 5. As an intermediate step before proving theonverse of Proposition 17 we show that the struture denoted by a term an
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be deomposed in a ertain way, and that, vie versa, every suh deompositionyields a term.If we ignore the olours, ΥC,τ -terms onsist purely of disjoint unions. Thus,when traversing a term T from the root to its leaves we observe a progressionof deompositions of the struture denoted by T . This proess is aptured bythe following de�nition.De�nition 18 (a) A partial κ<α-partition re�nement of a struture M is afamily (Uv)v∈T of nonempty subsets Uv ⊆ M indexed by a tree T ⊆ κ<α suhthat the following onditions are satis�ed:(1) Uε = M and for every a ∈M there is some leaf v ∈ T with a ∈ Uv.(2) Eah Uv is the disjoint union of its suessors Uvβ, vβ ∈ T , β < κ.(3) If |v| is a limit ordinal then Uv =
⋂

u≺v Uu.The granularity of a partial partition re�nement (Uv)v is the supremum of theardinalities |Uv| of its leaves v.(b) A κ<α-partition re�nement is a partial κ<α-partition re�nement of gran-ularity 1.It turns out that it is not neessary to expliitly add information about theolouring to a partition re�nement. Instead, the olours an diretly be reado� from a given partition re�nement sine the olour of a tuple orrespondsto its type as explained below. As the olours are only needed to onnettuples ā ⊆ Uv in some omponent Uv with tuples b̄ ⊆ Uv in the omplementwe de�ne a notion of type onsisting only of formulae ontaining both, a freevariable and some parameter.De�nition 19 Let M be a struture, ā ∈ Mn, and U ⊆ M . Let ∆ ⊆ FO.The ∆-type of ā over U is the set
tp∆(ā/U) := {ϕ(x̄; c̄) | M |= ϕ(ā; c̄), ϕ ∈ ∆, c̄ ⊆ U } .The external ∆-type of ā over U is de�ned by
etp∆(ā/U) := {ϕ(x̄; c̄) ∈ tp∆(ā/U) | every atom of ϕ ontains a variableand some parameter c ∈ U }.

We denote the set of all ∆-types over U with n free variables by Sn∆(U) andits subset of external types by ESn∆(U). In ase ∆ = FOk we simply write
tpk(ā/U) and Snk (U).For sets Ā ⊆ P(M) and monadi formulae ∆ ⊆ MSO we also de�ne the
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monadi ∆-type of Ā over U and its external variant by
mtp∆(Ā/U) := {ϕ(X̄; C̄) | M |= ϕ(Ā, C̄), ϕ ∈ ∆, C̄ ⊆ P(U) }

emtp∆(Ā/U) := { ϕ(X̄; C̄) ∈ mtp∆(Ā/U) | every atom of ϕ ontainsa variable and some parameter C ⊆ U }.The set of all monadi ∆-types over U with n free variables is denoted by MSn∆(U).De�nition 20 Let M be a struture and U ⊆ M . For tuples ā, b̄ ⊆ M wede�ne
ā ≈∆

U b̄ : iff tp∆(ā/U) = tp∆(b̄/U) ,

ā ≃∆
U b̄ : iff etp∆(ā/U) = etp∆(b̄/U) .For sets Ā, B̄ ⊆ P(M) we reuse the these symbols and write

Ā ≈∆
U B̄ : iff mtp∆(Ā/U) = mtp∆(B̄/U) ,

Ā ≃∆
U B̄ : iff emtp∆(Ā/U) = emtp∆(B̄/U) .

The [external℄ [monadi℄ ∆-type index of a set X over U is
tin∆(X/U) := |Xn/≈∆

U | , mtin∆(X/U) := |P(X)n/≈∆
U | ,

etin∆(X/U) := |Xn/≃∆
U | , emtin∆(X/U) := |P(X)n/≃∆

U | .Again, in ase ∆ = FOk we simply write ≈k
U , tink(X/U), and so on.Remark 21 Note that, for undireted graphs, the relations ≃0

U oinides withthe relation ∼U de�ned by Courelle in [11℄.For the most part we will onentrate on atomi external types etp0(ā/U) andthe orresponding index etin0 (X/U).Example 22 Consider the binary tree T = (2≤ω,�) and �x a vertex w ∈ 2≤ω.If v ∈ ↑w := { v ∈ 2≤ω | w � v } then
u � v for all u ∈ ↓w := { v ∈ 2≤ω | v ≺ w } ,and u � v for all u ∈ 2≤ω \ (↑w ∪ ↓w) .Hene eti10(↑w/↑w) = 1 sine only one external atomi type over 2≤ω \ ↑wis realised in ↑w. On the other hand, eti10(↑w/↑w) = 2 beause there are twoexternal atomi types over ↑w realised in 2≤ω \ ↑w.Below it will be shown that, when olouring a omponent Uv of a partitionre�nement, we an take as olours the lasses of the relation ≃0

Uv
, i.e., theatomi external types over the omplement of Uv. Therefore, the number of

n-ary olours we need equals etin0 (Uv/Uv).
14



De�nition 23 (1) The n-ary partition width of a partition re�nement (Uv)v∈Tis the number
pwdn(Uv)v∈T := sup

{

etin0 (Uv/Uv)
∣

∣

∣ v ∈ T
}

,and the n-ary symmetri partition width is
spwdn(Uv)v∈T := sup

{

etin0
(

⋃

i∈I Uvi
/

⋃

i∈I Uvi
)
∣

∣

∣ v ∈ T, I ⊆ κ
}

.

(2) The n-ary partition width pwdn(M, κ<α) of a struture M is de�ned in-dutively as follows: pwdn(M, κ<α) is the minimal ardinal λ suh that thereexists a κ<α-partition re�nement (Uv)v with
pwdn(Uv)v = λ and pwdi(Uv)v = pwdi(M, κ<α) for i < n.If κ<α = 2<|M |+ we omit the seond parameter and simply write pwdn M. M issaid to be of �nite partition width if pwdn M is �nite for all n < ω.The n-ary symmetri partition width spwdn(M, κ<α) of M is de�ned analo-gously. We set spwdn M := spwdn

(

M, |M |<|M |+
).(3) The monadi [symmetri℄ partition widths mpwdn and smpwdn of a parti-tion re�nement or a struture are de�ned similarly by replaing etin0 by emtin0 .Remark 24 (1) Obviously, we have pwdn(M, κ<α) ≤ spwdn(M, κ<α).(2) In eah partition re�nement (Uv)v∈T we an remove all nodes v ∈ T withexatly one suessor. In that way we an transform any κ<α-partition re�ne-ment of a struture of ardinality λ into a κ<λ+-partition re�nement.(3) It is not lear whether there always exists a partition re�nement (Uv)v suhthat pwdn M = pwdn(Uv)v for all n.Lemma 25 Every linear order M = (M,≤) has a 2<|M |+-partition re�nement

(Uv)v∈T of monadi partition width mpwdn(Uv)v = 1 where every Uv forms aninterval of M.
PROOF. We de�ne Uv by indution on |v|. Let Uε := M . Given an interval Uvontaining at least two di�erent elements, we pik some a ∈ Uv that is not theleast element of Uv and set

Uv0 := { b ∈ Uv | b < a } and Uv1 := { b ∈ Uv | b ≥ a } .Finally, if |v| is a limit ordinal, we set Uv :=
⋂

u�v Uu. 2
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Lemma 26 For the tree T := (β<α,�) we have
smpwdn(T, β

<2α) = 1 and smpwdn(T, 2
<(β+2)α) = 1.

PROOF. We de�ne a β<2α-partition re�nement (Uv)v by indution on v. Set
Uε := β<α. Suppose that Uv is already de�ned and of the form ↑w := { x ∈
β<α | w � x } for some w. We de�ne

Uv0 := {w} , Uv1 = Uv \ {w} , Uv1i := ↑wi for i < β .Then we have emtin0 (Uv/Uv) = 1 for all v, as desired.The seond laim is proved analogously. If Uv = ↑w is already de�ned, we set
Uv0 := {w} , Uv11γ :=

⋃

i≥γ

↑wi , Uv11γ0 := ↑wγ for γ < β .

2

We promised above that we will show how one an use types to de�ne aanonial olouring. For the symmetri ase we �rst need a tehnial lemmawhih relates in�nite symmetri sums and symmetri partition width.We say that a disjoint union ⋃iXi indues the equivalene relation
a ∼ b : iff there is some i with a, b ∈ Xi .When onsidering an n-tuple ā, this relation indues a partition I0 ·∪ · · · ·∪ Is =

[n] of the indies suh that ai ∼ akiffi, k ∈ Il for some l.We all a tuple ā ⊆
⋃

iXi ∪ U fragmented if the indued partition onsists ofat least two lasses. Further, we say that a olouring χ of a set X is ompatiblewith the equivalene relation ≃0
U if

χ(ā) = χ(b̄) iff ā ≃0
U b̄ for all ā, b̄ ⊆ X .Proposition 27 Let M be a struture of arity r < ω, Y :=

⋃

i<κXi ⊆ M adisjoint union, and U ⊆ M disjoint from Y . For I ⊆ κ, de�ne XI :=
⋃

i∈I Xiand UI := U ∪ (Y \ XI). Let ∼ be the equivalene relation indued by theunion ⋃iXi. Consider the following statements:(1) There is a bound w̄ ∈ ωω with wn ≤ wn+1 suh that
etin0 (XI/UI) ≤ wn for all n < ω and I ⊆ κ .
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(2) There exists a set of olours C and C-olourings η of Y and χi of Xiompatible with, respetively, ≃0
U and ≃0

U{i}
suh that

(M|Y , η) =
Θ
⋃

i<κ

(M|Xi
, χi) for suitable Θ .

The following impliations hold:
(2) ⇒ (1) with wn ≤ nn+1(cn)

n where cn := maxi≤n|Ci| .
(1) ⇒ (2) with |Cn| < (wn(r − n) + 1)R(Kn)

2
r3r+1 where

Kn := wn(rwr)
r +R(wn + 2(r − n) + 2)3

8 .

PROOF. (2) ⇒ (1) De�ne χ(ā) := χi(ā) for ā ⊆ Xi, i < κ. Let I ⊆ κ and ā,
ā′ ∈ (XI)

n. We laim that, if ∼ indues the same partition J0 ·∪ · · · ·∪ Js = [n]of the indies of ā and ā′ and if χ(ā|Ji
) = χ(ā′|Ji

) for all i ≤ s, then ā ≃0
UI
ā′.First suppose that M |= ϕ(ā; b̄) for some atomi formula ϕ and parameters b̄ ⊆

Y \XI . Then ⋃Θ adds all tuples of olour η(āb̄) = η(ā′b̄) to the orrespondingrelation. Hene, M |= ϕ(ā′; b̄).It remains to onsider the ase M |= ϕ(ā; b̄, c̄) where b̄ ⊆ Y \XI and c̄ ⊆ U .
η(āb̄) = η(ā′b̄) implies āb̄ ≃0

U ā
′b̄. Thus, M |= ϕ(ā′; b̄, c̄).Setting cn := maxi≤n|Ci| it follows that

wn ≤
∑

{

|C|J0|| · · · · · |C|Js−1||
∣

∣

∣ J0 ·∪ · · · ·∪ Js−1 = [n], s ≤ n
}

≤
∑

s≤n

sn(cn)
s ≤ nn+1(cn)

n .

(1) ⇒ (2) We all a sequene (fn)n≤r of funtions
fn :

⋃

α<κ

Xn
α → Cn

a valid olouring i�
(M|Y , η) =

Θ
⋃

α<κ

(M|Xα
, χα)

for some Θ where χα is the olouring of Xα indued by (fn)n. This onditionis equivalent to the following one: (fn)n is valid if and only if, for all tuples
ā, b̄ ∈ Y n suh that ∼ indues the same partition J0 ∪ · · · ∪ Js of their in-dies, f|Ji|(ā|Ji

) = f|Ji|(b̄|Ji
), i ≤ s, and for every atomi formula ϕ(x̄; d̄) with
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parameters d̄ ⊆ U suh that ād̄ and b̄d̄ are fragmented, we have
M |= ϕ(ā; d̄) ↔ ϕ(b̄; d̄) .

Fix (fn)n. For ā0 ∈ Xn
α and b̄0 ∈ Xn

β , we write ā0 ↽⇀ b̄0 if there are tuples
ā1 ⊆ Y \Xα and b̄1 ⊆ Y \Xβ suh that
• ∼ indues the same partition J0 ∪ · · · ∪ Js of their indies,
• f|Ji|(ā1|Ji

) = f|Ji|(b̄1|Ji
), for i ≤ s, and

• for some atomi formula ϕ(x̄, ȳ; d̄) with parameters d̄ ⊆ U suh that ā0ā1d̄ and b̄0b̄1d̄are fragmented, we have
M |= ϕ(ā0, ā1; d̄) ↔ ¬ϕ(b̄0, b̄1; d̄) .We will all suh tuples ā1 and b̄1 witnesses of the fat that ā0 ↽⇀ b̄0.By the above remark, it follows that (fn)n is a valid olouring if and only if

ā ↽⇀ b̄ implies fn(ā) 6= fn(b̄) for all ā and b̄.Let (fn)n be a valid olouring suh that Cn := rng fn is of minimal size.Suppose that
m := |Cn| ≥ (wn(r − n) + 1)R(Kn)

2
r3r+1 .We �x an arbitrary ordering of eah Cn and we order olourings pointwise:

(fn)n ≤ (gn)n : iff fn(ā) ≤ gn(ā) for all n ≤ r, ā ∈
⋃

α

Xn
α .

W.l.o.g. we may assume that (fn)n is minimal w.r.t. this ordering. It followsthat, for all ā ∈
⋃

αX
n
α and every olour c ∈ Cn with c < fn(ā), there existssome tuple b̄ ∈ f−1

n (c) with ā ↽⇀ b̄ sine, otherwise, the sequene (gn)n de�nedby
gn(x̄) :=







c if x̄ = ā ,

fn(x̄) otherwise ,and gi := fi for i 6= n, would be a stritly smaller valid olouring.Further, it follows that |rng fn|Xn
α
| ≤ wn for all α < κ sine, if ā ≃0

U{α}
b̄ and

fn(ā) < fn(b̄), then we ould hange the olour of b̄ to fn(ā) and the olouringwould still be valid.
(a) Fix a dereasing enumeration c0 > · · · > cm−1 of Cn. We onstrut asequene (āi)i suh that āi ↽⇀ āk for i 6= k. By indution on i, we de�ne
• an inreasing sequene of indies si ∈ [m];
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• a dereasing sequene of sets Hi ⊆ [m];
• sets Iit ⊆ κ, for si < t < m; and
• tuples āi ∈ f−1

n (csi
) ∩Xn

Ii−1,sisuh that
• b̄ ↽⇀ āi for all b̄ ∈ f−1

n (ct) ∩X
n
Iit
, si < t < m, and

• f−1
n (ct) ∩X

n
Iit

6= ∅ for all t ∈ Hi.Let H−1 := [m] and I−1,t := κ. For every i, we perform the following steps.If Hi−1 = ∅ we stop. Otherwise, let si := minHi−1 and hoose an arbitrarytuple āi ∈ f−1
n (csi

)∩Xn
Ii−1,si

, say āi ∈ Xn
α . Sine Ii−1,si

⊆ Iksi
for k < i and byindution hypothesis, we have āi ↽⇀ āk, for every k < i, as desired.To de�ne Iit, si < t < m, �x some b̄0 ∈ f−1

n (ct) suh that b̄0 ↽⇀ āi, say, b̄0 ∈ Xn
β .By de�nition, there exist an atomi formula ϕ(x̄, ȳ; d̄) with parameters d̄ ⊆ Uand tuples ā1 and b̄1 suh that āiā1d̄ and b̄0b̄1d̄ are fragmented, ∼ indues thesame partition J0 ∪ · · · ∪Js of the indies of ā1 and b̄1, f|Jl|(ā1|Jl

) = f|Jl|(b̄1|Jl
),for l ≤ s, and we have

M |= ϕ(āi, ā1; d̄) ↔ ¬ϕ(b̄0, b̄1; d̄) .Let J ⊆ κ be the minimal set suh that b̄1 ⊆ XJ . If b̄′ ∈ f−1
n (ct) ∩X

n
κ\J then

M |= ϕ(b̄′, b̄1; d̄) ↔ ϕ(b̄0, b̄1; d̄)sine (fn)n is a valid olouring. This implies b̄′ ↽⇀ āi. Therefore, we an set
Iit := Ii−1,t \ J . We onlude the onstrution by setting

Hi := { t ∈ Hi−1 \ {si} | f−1
n (ct) ∩X

n
Iit

6= ∅ } .

The sequene (āi)i<m1 obtained this way satis�es āi ↽⇀ āk for i 6= k. It remainsto determine its length m1. We have
|Hi| ≥ |Hi−1| − wn|J | − 1

≥ |H−1| − (i+ 1)(wn(r − n) + 1)

= m− (i+ 1)(wn(r − n) + 1) .We an de�ne āi provided Hi−1 6= ∅. This is the ase if
i <

m

wn(r − n) + 1
.

Consequently,
m1 ≥

m

wn(r − n) + 1
≥ R(Kn)

2
r3r+1 .

19



(b) Denote the index α suh that āi ∈ Xn
α by αi. For all i < k, we �x tuples

b̄ik ⊆ Xκ\{αi} and b̄ki ⊆ Xκ\{αk} witnessing the fat that āi ↽⇀ āk, that is,
M |= ϕ(āi, b̄ik; d̄) ↔ ¬ϕ(āk, b̄ki; d̄)for some atomi formula ϕ(x̄, ȳ; d̄). Let J0 ·∪ · · · ·∪ Js be the partition of theindies of b̄ik (or of b̄ki) indued by ∼. Set
b̄ikl := b̄ik|Jl

, b̄kil := b̄ki|Jl
,and let βikl , βkil < κ be the indies suh that b̄ikl ⊆ Xβik

l
and b̄kil ⊆ Xβki

l
. Assumethat we have hosen b̄ik and b̄ki suh that the set

N := { l | b̄ikl = b̄kil }is maximal.It follows that, for eah l /∈ N , we either have βikl = αk or there exists someindex σ(l) 6= l suh that βikl = βkiσ(l). Otherwise, we ould replae b̄kil by b̄ikl andthe resulting pair of tuples would still witness āi ↽⇀ āk in ontradition to themaximality of N .Let σik : [s+ 1] \N → ([s+ 1] \N) ·∪ {∗} be the funtion suh that
βikl =







αk if σik(l) = ∗ ,

βkiσik(l) otherwise ,and de�ne σki analogously. The maximality of N further implies that thereexists no sequene l0, . . . , lt of indies suh that σik(lj) = lj+1, for j < t, and
σik(lt) = l0 sine, otherwise, we ould simultaneously replae eah b̄kilj by b̄ikljand again obtain witnesses for āi ↽⇀ āk with stritly larger N .It follows that βikl ∈ {αk, β

ki
0 , . . . , β

ki
s }, for every l /∈ N , and there is somenumber j suh that σjik(l) = ∗, i.e., βik
σj−1

ik
(l)

= αk.For eah pair i < k of indies we reord
• the partition J0 ·∪ · · · ·∪ Js of the indies of b̄ik indued by ∼,
• the size |N | of the set N de�ned above, and
• the funtions σik and σki.There exists a subset I ⊆ κ of size

|I| ≥ m2 := max { k | m1 → (k)2
r3r+1 }

≥ Kn = wn(rwr)
r +R(wn + 2(r − n) + 2)3

8
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suh that all pairs i, k ∈ I with i < k are oloured in the same way. W.l.o.g.we may assume that I = [m2].
() First, onsider the ase that N = [s + 1] for all i, k ∈ I. Let Bik ⊆ κbe the smallest set of indies suh that b̄ik = b̄ki ⊆ XBik

. Clearly, Bik = Bki.Also note that, by de�nition of b̄ik and b̄ki, we have αi, αk /∈ Bik. For eah set
{i, k, l} of indies i < k < l, we reord whih of the following onditions hold:

αi ∈ Bkl , αk ∈ Bil , αl ∈ Bik .There exists a subset I ′ ⊆ [m2] of size
|I ′| ≥ m3 := max { k | m2 → (k)3

23 } ≥ wn + 2(r − n) + 2suh that all triples i, k, l ∈ I ′ are oloured in the same way. W.l.o.g. we mayassume that I ′ = [m3].First we onsider the ase that αl ∈ Bik for all i < k < l < m3. Then
αi ∈ B01, for 1 < i < m3. Furthermore, for 0 < i < k, we have αi /∈ B0i and
αk ∈ B0i \B0k whih implies that αi 6= αk. Hene,

m3 ≤ |B01| + 2 ≤ r − n+ 2 .Contradition. Analogously, if αi ∈ Bkl or αk ∈ Bil, for i < k < l, then weobtain, respetively,
m3 ≤ |Bm3−2,m3−1| + 2 and m3 ≤ |B0,m3−1| + 2 ,whih lead to similar ontraditions.The only remaining ase is that none of the above onditions holds, that is,we have αi /∈ Bkl for all pairwise distint sets of indies i, k, l. Let H := {αi |

i < m3 }. b̄ik ⊆ UH implies āi 6≃0
UH

āk, for all i 6= k. Consequently, we have
etin0 (XH/UH) ≥ m3 > wn.Contradition.

(d) It remains to onsider the ase that [s + 1] \ N 6= ∅. Let l0 ∈ σ−1
10 (∗),i.e., βkil0 = αi, for all i < k, and de�ne lj+1 := σ01(lj). Let l0, . . . , lt be thesequene of indies obtained in this way where lt = ∗. Note that, for i < kand j < t − 1, we have βiklj = βkiσ01(lj)

= βkilj+1
. For notational onveniene, wealso set βki∗ := βiklt−1

= αk.By indution on j ≤ t, we onstrut a dereasing sequene of subsets Ij ⊆ I
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of size
|Ij| ≥ (|I| − 1)/(rwr)

j

suh that
βi0lj = βk0lj and f|Jlj−1

|(b̄
0i
lj−1

) = f|Jlj−1
|(b̄

0k
lj−1

) for all i, k ∈ Ij .

For all indies i, k ∈ It it follows that αi = βi0∗ = βk0∗ = αk. Sine eah tuple āihas a di�erent olour it further follows that |It| ≤ wn whih implies that
wn ≥ |It| ≥ (|I| − 1)/(rwr)

t > wn .Contradition.
(e)We still have to onstrut the sets Ij. Let I0 := I\{0}. Sine βi0l0 = α0 = βk0l0our laim holds for j = 0. Suppose that I0, . . . , Ij−1 are already de�ned. Sine
βi0lj−1

= βk0lj−1
, for i, k ∈ Ij−1, there exists a subset I ′j ⊆ Ij−1 of size

|I ′j| ≥ |Ij−1|/w|Jlj−1
| ≥ |Ij−1|/wrsuh that f|Jlj−1

|(b̄
i0
lj−1

) = f|Jlj−1
|(b̄

k0
lj−1

) for all i, k ∈ I ′j. It follows that
c := f|Jlj−1

|(b̄
0i
lj−1

) = f|Jlj−1
|(b̄

i0
lj−1

) = f|Jlj−1
|(b̄

k0
lj−1

) = f|Jlj−1
|(b̄

0k
lj−1

) ,and, by the remarks in (b), we have f−1
|Jlj−1

|(c) ⊆ X{α0,β0i
0 ,...,β

0i
s }. Therefore,there exists a subset Ij ⊆ I ′j of size

|Ij| ≥ |I ′j |/(s+ 2) ≥ |Ij−1|/(rwr) ≥ (|I| − 1)/(rwr)
j

suh that β0i
lj−1

= β0k
lj−1

for all i, k ∈ Ij. It follows that
βi0lj = β0i

lj−1
= β0k

lj−1
= βk0ljas desired. 2

After these somewhat lengthy preparations we are �nally able to prove thatevery struture denoted by a term has �nite partition width and, onversely,every struture with �nite partition width is denoted by a term.Proposition 28 Let C be a graded set of olours, τ a signature, and n < ω.(1) pwdn(val(T ), κ<α) < ℵ0 for all Υ<
C,τ -terms T ⊆ κ<α.(2) spwdn(val(T ), κ<α) < ℵ0 for every ΥC,τ -term T ⊆ κ<α.
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PROOF. (1) Consider the subterm Tv of T with root v ∈ T and let Uv be theuniverse of val(Tv). We laim that (Uv)v∈T is the desired partition re�nement.Suppose that ā, b̄ ∈ Un
v are tuples suh that, for all I ⊆ [n], the subtuples

ā|I and b̄|I have the same olour at node v. Let ϕ(x̄, c̄) be an atomi formulawith parameters c̄ ⊆ Uv. If val(T ) |= ϕ(ā, c̄) then there exists a node u ≺ vsuh that ā, c̄ ⊆ Uu and the operation ∑Θ at u adds all tuples with theolour of (āc̄)|I to the relation in ϕ where I is the set of those indies thatatually appear in ϕ. Sine (b̄c̄)|I has the same olour it follows that also
val(T ) |= ϕ(b̄, c̄). Consequently, we have ā ≃0

Uv
b̄.(2) De�ne (Uv)v as above. By the preeding proposition, we have

etin0
(

⋃

i∈I
Uvi

/

⋃

i∈I
Uvi
)

≤ nn+1
(

max
i≤n

|Cn|
)n
.

2

Remark 29 Note that, for n = 1, the proof above implies pwd1(val(T ), κ<α) ≤
|C1|.Proposition 30 Let M be a τ -struture.(1) Let k < ℵ0. For every k<α-partition re�nement (Uv)v∈S of M of �nitepartition width, there exists a Υ<

C,τ -term T ⊆ k<α denoting M where C is aset of olours with |Cn| ≤ pwdn(Uv)v for n < ω.(2) If the arity of M is �nite and there exists a κ<α-partition re�nement (Uv)v∈Sof M suh that spwdn(Uv)v < ℵ0 for all n, then there is a ΥC,τ -term T ⊆ κ<αdenoting M for some set of olours C.
PROOF. (1) Let wn := pwdn(Uv)v. Let T := S ∪ {w0 | w leaf of S } be thetree obtained from S by adding to every leaf of S a new vertex as suessor.We onstrut a Υ<

C,τ -term with domain T suh that, for every v ∈ S, thesubterm Tv := {w ∈ T | w � v } will evaluate to the substruture M|Uv
of Mindued by Uv.In a �rst step, eah suh omponent Uv will be oloured by a di�erent set Cvof olours with |Cv

n| ≤ wn. To obtain a single set of olours C we then de�neinjetive funtions µvn : Cv
n → [wn] and identify olours c ∈ Cu

n and d ∈ Cv
n i�

µun(c) = µvn(d).Colour eah tuple ā ⊆ Uv by its external type etp0(ā/Uv). If āi ⊆ Uvi, for i < k,then the type etp0(ā0 . . . āk−1/Uv) is uniquely determined by etp0(āi/Uvi) for
i < k. Hene, these olourings χv enable us to express Uv as the ordered sum
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of the Uvi
(M|Uv

, χv) =
Θv
∑

i<k

(M|Uvi
, χvi)

for a suitable set Θv.For non-leaves v ∈ S, we de�ne the labelling of T by T (v) :=
∑Θv . Then wehave Tv =

∑Θv

i<k Tvi.For leaves v ∈ S with Uv = {a} we set T (v) :=
∑Θ and T (v0) := c̄, i.e.,

Tv =
∑Θ c̄, where cn := etp0(a

n/M \ {a}) and
Θ := { (n, 1, [n], cn, cn, Sn) | n < ω }with Sn := {R | an ∈ R }.It remains to de�ne the funtions µvn : Cv

n → [wn] suh that the resultingterm T := Tε is well-formed. For v ∈ T , we denote by vβ � v the pre�x of vof length |vβ| = β and, for eah type p ∈ Cv
n over Uv, we denote by pβ itsrestrition to Uvβ

.For T to be well-formed it is su�ient to de�ne µvn suh that
• for eah p ∈ Cv

n, the sequene (µ
vβ
n (pβ))β<|v|+1 forms a olour trae to v ;

• the olour traes to v are linearly ordered.We de�ne µvn by indution on |v|. Let µεn be an arbitrary injetive fun-tion Cε
n → [wn]. (Note that |Cε

n| = 1 sine there is only one external typeover the empty set.) Suppose that µun is already de�ned for all |u| < α and let
|v| = α.First, onsider the ase that α = β+1 is a suessor. Set u := vβ and let < bethe ordering on Cu

n indued by the funtion µun. We order Cv
n in the followingway. If pβ < p′β, for p, p′ ∈ Cv

n, then we set p < p′ and, if pβ = p′β, then wehoose an arbitrary ordering between them. Finally, let µvn be some injetiveorder preserving funtion Cv
n → [wn].It remains to onsider limit ordinals α. Let p ∈ Cv

n and let c be the minimalnumber suh that the set { β < α | µ
vβ
n (pβ) = c } is unbounded. We set

µvn(p) := c.With these de�nitions, (µvβ
n pβ)β satis�es both onditions on a olour trae, andwe have ensured that all olour traes to some node v are linearly ordered.(2) In the symmetri ase the proof is analogous exept that, aording to theabove proposition, we have to use a suitable re�nement of the olouring given
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by the external types. This poses no problem sine the number of additional
n-ary olours only depends on the arity of M and spwdi(Uv)v, for i < ω, sothe bound sup { |Cv

i | | v ∈ S } remains �nite. 2

We laimed above that partition width generalises the notion of lique-widthor NLC-width. This is justi�ed by the following lemma.Lemma 31 Let G = (V,E) be a ountable undireted graph of NLC-width k.
pwd1(G, 2

<ω) ≤ k ≤ cwd G ≤ 2 · pwd1(G, 2
<ω) .

PROOF. The �rst inequality follows sine VR- and NLC-operations an beexpressed by suitable Υ<
C,τ -terms using the same set of olours. For the lastinequality, �x a Υ<

C,τ -term T denoting G with n := |C1| olours of arity 1. Weonstrut a VR-term using olours [2n].For w ∈ 2<ω, let Tw be the subterm of T with root w and let Uw be theuniverse of val(Tw). For every injetive mapping ϕ of the atomi external 1-types over Uw realised in Uw into the set [2n], we will onstrut a VR-term tϕwthat denotes val(Tw) suh that the olouring of elements a ∈ Uw is the oneindued by ϕ.If w is a leaf with Uw = {a} then we set
tϕw := ϕ

(

etp0(a/V \ {a})
)

.Otherwise, Tw = Tw0 +Θ Tw1, and we set
tϕw := ̺βadd(tψ0

w0 + tψ1
w1)where ψ0 and ψ1 are mappings with disjoint ranges, β maps the olours induedby ψ0 and ψ1 to the ones required by ϕ, and add is a sequene of operations αa,badding all the neessary edges. 2

5 The type equivalene
Before proeeding we need to ollet some basi properties of type indies. Inthe following lemmas let M be a �xed relational struture.Reall that, when speaking of the quanti�er rank of monadi seond-orderformulae, we onsider the variant of MSO without �rst-order variables wherethe atomi formulae are of the form X ⊆ Y and RX̄, where the latter meansthat there exist some elements ai ∈ Xi suh that ā ∈ R.
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The �rst lemma summarises some immediate relations between the variouskinds of type indies.Lemma 32 Let X,U ⊆M and ā, b̄ ∈Mn.(1) If m ≤ n and Γ ⊆ ∆ then timΓ (X/U) ≤ tin∆(X/U) and analogously for theexternal and monadi ase.(2) etin0 (X/U) ≤ tin0 (X/U) ≤ |Sn0 (∅)| · etin0 (X/U) ,

emtin0 (X/U) ≤ mtin0 (X/U) ≤ |MSn0 (∅)| · emtin0(X/U) .(3) a0 . . . an−1 ≈
0
U b0 . . . bn−1iff{a0} . . . {an−1} ≈0

U {b0} . . . {bn−1}.(4) If the arity of M is bounded by r then
etin0 (X/U) ≤

(

etir−1
0 (X/U)

)2n

.

PROOF. (1) ā ≈∆
U b̄ implies ā|I ≈Γ

U b̄|I for all sets of indies I.(2) ā ≈0
U b̄ i� ā ≃0

U b̄ and tp0(ā) = tp0(b̄).(3) For singletons Xi = {ai} we have RX̄ i� Rā.(4) Let ā, b̄ ∈ Xn suh that ā|I ≃0
U b̄|I for all I ⊆ [n] of size |I| < r. If ā 6≃0

U b̄then there is some atomi formula ϕ(x̄; c̄) with c̄ ⊆ U suh that
M |= ϕ(ā; c̄) ↔ ¬ϕ(b̄; c̄) .Let I ⊆ [n] be the set of those indies i suh that the variable xi appears in ϕ.Then |I| < r and ā|I 6≃0

U b̄|I . Contradition.Sine there are
r−1
∑

i=0

(

n

i

)

≤
∑

i<n

(

n

i

)

= 2n

subsets of [n] of size less than r the laim follows. 2

Frequently, one would like to ompute the type index of a boolean ombinationof sets from their respetive type indies. For arbitrary strutures this is onlypossible in speial ases and even then quite ompliated. For instane, we anonstrut a struture M suh that pwdn M ≥ ℵ0, for all n, but there exists asingle element v ∈M suh that pwdn M|M\v = 1 for all n < ω :Let (Z × Z, E) be the in�nite grid, and let v be a new vertex. We an set
M := (M,R) where

M := Z × Z ∪ {v}
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and R := { (a, b, v) | (a, b) ∈ E } .

Nevertheless, some results an be obtained.Lemma 33 Let X, Y ⊆M and n < ω.
tin∆(X ∪ Y/X ∪ Y ) ≤

∑

i≤n

(

n

i

)

tii∆(X/X) tin−i∆ (Y \X/Y \X)

≤ 2n tin∆(X/X) tin∆(Y \X/Y \X) .The same holds for etin∆.
PROOF. The seond inequality holds by Lemma 32 (1). To prove the �rstone, let i < n, ā, ā′ ∈ X i, and b̄, b̄′ ∈ (Y \X)n−i. Set U := X ∪ Y . We laimthat

ā ≈∆
U∪b̄′ ā

′ and b̄ ≈∆
U∪ā b̄

′ implies āb̄ ≈∆
U āb̄

′ ≈∆
U ā

′b̄′ .Suppose for a ontradition that āb̄ 6≃0
U ā

′b̄′. There exists some formula ϕ(x̄, ȳ; c̄) ∈
∆ with parameters c̄ ⊆ U suh that

M |= ϕ(ā, b̄; c̄) ↔ ¬ϕ(ā′, b̄′; c̄) .But b̄ ≈∆
U∪ā b̄

′ implies that
M |= ϕ(ā, b̄; c̄) ↔ ϕ(ā, b̄′; c̄) ,and ā ≈∆

U∪b̄′ ā
′ implies that

M |= ϕ(ā, b̄′; c̄) ↔ ϕ(ā′, b̄′; c̄) .

Contradition. The result follows sine there are (n
i

) possible ways to shu�ean i-tuple and an (n− i)-tuple. 2

Lemma 34 Let M be a relational struture, X,U ⊆M . Let m be the numberof relations of arity greater than 1 and let r be the supremum of their arities.
etin0 (U/X) ≤ 2m(n+1)retir−1

0 (X/U) .

PROOF. Let ā, ā′ ∈ Un. We have ā ≃0
X ā′ i�

M |= ϕ(ā, b̄) ↔ ϕ(ā′, b̄)
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for all b̄ ⊆ X and for all atomi formulae ϕ(x̄, ȳ) ontaining at least one xi andone yj. Obviously, we only need to onsider tuples b̄ of less than r elements.Also note that, if b̄ ≃0
U b̄′, then M |= ϕ(ā, b̄) i� M |= ϕ(ā, b̄′). Hene, itis su�ient to take one representative of eah ≃0

U -lass. Finally, if ϕ′(x̄, ȳ)is obtained from ϕ(x̄, ȳ) by a permutation of ȳ, then M |= ϕ(ā, b̄) i� M |=
ϕ′(ā, b̄′) where b̄′ is the orresponding permutation of b̄. Thus, we an ignorethe ordering of the variables ȳ. The laim follows sine there are at most
m(n + 1)r atomi formulae with variables x̄ȳ and the number ≃0

U -lasses is
etir−1

0 (X/U). 2

In the de�nition of partition width we only onsidered atomi formulae. Thisis no restrition as the type indies of formulae of higher quanti�er rank arebounded by the quanti�er-free ones.Lemma 35 Let M be a struture, X ⊆M , and n, k < ω.(1) etink(X/X) ≤ ik(eti
n+k
0 (X/X)).(2) tink(X/X) ≤ ik(ti

n+k
0 (X/X)).(3) mtink(X/X) ≤ ik(mtin+k

0 (X/X)).(4) emtink(X/X) ≤ ik(emtin+k
0 (X/X)).

PROOF. Sine the proofs are very similar we only show a strong versionof (3). Let ∆(k) be the fragment of in�nitary monadi seond-order logi on-sisting of all formulae of quanti�er rank at most k. We prove that mtin∆(k+1)(X/X) ≤

2
mtin+1

∆(k)
(X/X).For Ā, Ā′ ∈ P(X)n we have

Ā ≈
∆(k+1)

X
Ā′ iff for all B there is some B′ with ĀB ≈

∆(k)

X
Ā′B′and vie versa .

Sine ĀB ≈
∆(k)

X
Ā′B′ i� Ā(B ∩X) ≈

∆(k)

X
Ā′(B′ ∩X) and B \X = B′ \X, weonly need to onsider sets B ⊆ X. De�ning

e(Ā) :=
{

[ĀB] ∈ P(X)n+1/≈
∆(k)

X

∣

∣

∣ B ⊆ X
}

we obtain Ā ≈
∆(k+1)

X
Ā′ i� e(Ā) = e(Ā′). It follows that

mtin∆(k+1)(X/X) =
∣

∣

∣P(X)n
/

≈
∆(k+1)

X

∣

∣

∣

≤
∣

∣

∣P
(

P(X)n+1
/

≈
∆(k)

X

)
∣

∣

∣ = 2
mtin+1

∆(k)
(X/X)

.

2
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The next result shows that having �nite partition width is a �nitary ondition.This is the reason for the various ompatness properties of Setion 7.Lemma 36 Let X,U ⊆M , ∆ ⊆ FO, and n < ω.(1) Let ā, b̄ ⊆M . If ā 6≈∆
U b̄ then there is a �nite subset U0 ⊆ U and a singleformula ϕ ∈ ∆ suh that ā 6≈ϕ

U0
b̄. The same holds for ≃∆

U .(2) If tin∆(X/U) is �nite then there are �nite subsets U0 ⊆ U and ∆0 ⊆ ∆suh that Xn/≈∆
U = Xn/≈∆0

U0
. The same holds for etin∆ and ≃∆

U .(3) If etin∆(X/U) is �nite then
etin∆(X/U) = sup { etin∆0

(X/U) | ∆0 ⊆ ∆ �nite } .(4) If tin∆(X/U) is �nite then the relation ≈∆
U is B(∆)-de�nable on Xn.(B(∆) is the boolean losure of ∆.)

PROOF. (1) If ā 6≈∆
U b̄ then there is some formula ϕ(x̄, c̄) ∈ ∆ with c̄ ⊆ Usuh that M |= ϕ(ā, c̄) ↔ ¬ϕ(b̄, c̄). Setting U0 := c̄ we obtain ā 6≈ϕ

U0
b̄.(2) Aording to (1) there are �nite sets U[ā][b̄] and formulae ϕ[ā][b̄], for eahpair of distint lasses [ā], [b̄] ∈ Xn/≈∆

U , suh that ā 6≈
ϕ[ā][b̄]

U[ā][b̄]
b̄. Setting U0 :=

⋃

[ā]6=[b̄] U[ā][b̄] and ∆0 := {ϕ[ā][b̄] | [ā] 6= [b̄] } we obtain
ā ≈∆

U b̄ iff ā ≈∆0
U0
b̄ for all ā, b̄ ∈ Xn .

(3) immediately follows from (2).(4) For eah pair [ā], [b̄] ∈ Xn/≈∆
U of distint lasses we �x a ∆-formula

ϕ[ā][b̄](x̄, ȳ) and parameters c̄[ā][b̄] suh that
M |= ϕ[ā][b̄](ā, c̄[ā][b̄]) ↔ ¬ϕ[ā][b̄](b̄, c̄[ā][b̄]) .Then we have ā ≈∆

U ā
′ i�

M |=
∧

[b̄]6=[b̄′]

(

ϕ[b̄][b̄′](ā, c[b̄][b̄′]) ↔ ϕ[b̄][b̄′](ā
′, c[b̄][b̄′])

)

.

2Lemma 37 Let w̄ ∈ ωω. Let (Xv)v∈I be an inreasing hain of sets Xv (i.e.,
u ≤ v implies Xu ⊆ Xv) indexed by an arbitrary linear order (I,≤) suh that
etin0 (Xv/Xv) ≤ wn for all n < ω.

etin0
(

⋃

v∈I

Xv

/

⋃

v∈I

Xv

)

≤ wn and etin0
(

⋂

v∈I

Xv

/

⋂

v∈I

Xv

)

≤ wn .
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PROOF. For the �rst laim, let W :=
⋃

v∈I Xv. Suppose there are wn + 1tuples āi ∈W n, i ≤ wn, suh that āi 6≃0
W
āk for i 6= k. There exists some v ∈ Iwith āi ⊆ Xv for all i ≤ wn. Hene,

etin0 (Xv/Xv) ≥ etin0 (Xv/W ) ≥ wn + 1 .Contradition.To prove the seond bound, setW :=
⋂

v∈I Xv. Suppose there are wn+1 tuples
āi ∈ W n, i ≤ wn, suh that āi 6≃0

W
āk for i 6= k. By the preeding lemma,there exist �nite sets Uik ⊆ W , i 6= k, suh that āi 6≃0

Uik
āk for i 6= k. Sine

U :=
⋃

i6=k Uik is �nite there is some v ∈ I with U ⊆ Xv. As āi ⊆ Xv for all
i ≤ wn it follows that

etin0 (Xv/Xv) ≥ etin0 (Xv/U) ≥ wn + 1 .Contradition. 2

Finally, we note that adding unary prediates does not hange the parti-tion width sine etp∆(ā/U) does not ontain formulae of the form Pxi, and
emtp∆(Ā/U) no formulae PXi.Lemma 38 Let X,U ⊆M . etiα∆(X/U) and emtiα∆(X/U) do not hange if weadd arbitrarily many unary prediates to M.
6 Interpretations
Now we are ready to give a haraterisation of the lass of strutures of �nitepartition width in terms of interpretations in trees. One diretion was alreadypresented in Proposition 17. For the other one, we show that �niteness ofpartition width is preserved by interpretations.Proposition 39 Let M and N be strutures of �nite signature and I : M ≤MSOk

N. If mpwdn(N, κ
<α) is �nite for all n < ω then so is mpwdn(M, κ<α). Thesame holds for smpwdn(N, κ

<α).
PROOF. Let (Uv)v be a partition re�nement of N of �nite width. We laimthat the partition re�nement (I(Uv))v of M also has a �nite width. By Lemmas32 (2) and 35 it is su�ient to prove that, for all Ā, B̄ ⊆ P(N), U ⊆ N , and
n < ω,̄

A ≈n+k
U B̄ implies I(Ā) ≈n

I(U) I(B̄) .
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Suppose I(Ā) 6≈n
I(U) I(B̄). There exists an MSOn-formula ϕ(x̄, C̄) with pa-rameters C̄ ⊆ P(I(U)) suh that

M |= ϕ(I(Ā), C̄) ∧ ¬ϕ(I(B̄), C̄) .Choose D̄ ⊆ P(U) suh that C̄ = I(D̄). Then
N |= ϕI(Ā, D̄) ∧ ¬ϕI(B̄, D̄) .Sine ϕI ∈ MSOn+k we have Ā 6≈n+k

U B̄. 2

Proposition 40 If M ≤MSOk
(κ<α,�, P̄ ) for �nitely many unary predi-ates P̄ and some k < ω, then smpwdn(M, κ<α) is �nite for all n < ω.The following theorem summarises the various haraterisations we have ob-tained so far.Theorem 41 Let M be a struture of �nite signature.(a) For eah tree κ<α the following statements are equivalent:(1) spwdn(M, κ<α) is �nite for all n < ω.(2) smpwdn(M, κ<α) is �nite for all n < ω.(3) M = val(T ) for some ΥC,τ -term T ⊆ κ<α.(4) M ≤MSOn

(κ<α,�, P̄ ) for �nitely many unary prediates P̄ and some
n < ω.(b) If κ < ℵ0 is �nite then the following statements are equivalent to thoseabove:(5) pwdn(M, κ<α) is �nite for all n < ω.(6) mpwdn(M, κ<α) is �nite for all n < ω.(7) M = val(T ) for some Υ<

C,τ -term T ⊆ κ<α.(8) M ≤MSOn
(κ<α,�, (suci)i<κ, P̄ ) for �nitely many unary prediates P̄and some n < ω.

PROOF. (1) ⇒ (3) Sine the arity of M is bounded Lemma 32 (4) impliesthat there exists a partition re�nement (Uv)v of M suh that spwdn(Uv)v is�nite for all n < ω. Consequently, the laim follows from Proposition 30.
(3) ⇒ (4) ⇒ (2) follows by Propositions 17 and 40.
(2) ⇒ (1) spwdn(M, κ<α) ≤ smpwdn(M, κ<α).Analogously, (5) ⇒ (7) ⇒ (8) ⇒ (6) follows from, respetively, Proposi-tions 30, 17, and 40, together with the fat that pwdn(M, κ<α) ≤ spwdn(M, κ<α).
(6) ⇒ (5) is trivial.
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(1) ⇒ (5) also follows from pwdn(M, κ<α) ≤ spwdn(M, κ<α).
(8) ⇒ (4) If κ is �nite then (κ<α,�, (suci)i<κ, P̄ ) ≤MSO1 (κ<α,�, P̄ , Q̄) where
Qi := rng suci sine we an de�ne

suci(x, y) : iff x ≺ y ∧Qiy ∧ ¬∃z(x ≺ z ≺ y).

2

7 Coding and ompatness
In the �nal two setions we are going to show that the onept of partitionwidth is a natural one from a model-theoreti point of view. We prove thatelementary extensions preserve �niteness of partition width and present aompatness theorem for strutures of �nite partition width. In Setion 8 it isshown that strutures of �nite partition width do not have the independeneproperty.We will restrit our attention to binary trees 2<α. This an be done without lossof generality sine (α<β,�) ≤FO (2<αβ,�, P ) for a suitable unary prediate P .We start with a simple observation.Lemma 42 If M ⊆ N then pwdn(M, κ<α) ≤ pwdn(N, κ

<α) for all n < ω.
PROOF. Eah partition re�nement (Uv)v∈T of N indues the partition re�ne-ment (Uv∩M)v∈T of M whih has the width pwdn(Uv∩M)v ≤ pwdn(Uv)v. 2

In order to ompute the partition width of strutures onstruted by model-theoreti means we need to ode partition re�nements by relations.De�nition 43 (a) Let (Uv)v∈T be a family of sets Uv ⊆M indexed by a partialorder (T,�). A pair (U,⊑) of relations U ⊆M 1+n and ⊑ ⊆M 2n ode (Uv)v∈Tif there exists an isomorphism
f : (D,⊑) ∼= (T,�) ,where D := { ā ∈Mn | ā ⊑ ā }, suh that
U := { (a, b̄) ∈M ×D | a ∈ Uf(b̄) } ,and ā ⊑ b̄ implies ā, b̄ ∈ D .
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(b) We all a partition re�nement (Uv)v∈T of M redued if all non-leaves of Thave at least two immediate suessors. If (Uv)v∈T is redued we an de�ne aanonial oding of (Uv)v in the following way. For eah v ∈ T hoose leaves
u0, u1 ∈ T with v = u0 ⊓ u1 and set h(v) := (a0, a1) where Uui

= {ai}, i < 2.Let D := rng h. We de�ne
ā ⊑ b̄ : iff ā, b̄ ∈ D and h−1(ā) � h−1(b̄) ,

U := { (c, ā) | ā ∈ D, c ∈ Uh−1(ā) } .Remark 44 Note that not every partition re�nement (Uv)v∈T of a stru-ture M an be oded, sine we might have |T | > |Mn| for all n < ω. But wean always obtain a odable partition re�nement by removing some verties
v ∈ T with exatly one immediate suessor. The same holds for non-standardpartition re�nements whih will be de�ned below.The fat that a relation U odes some partition re�nement an be expressedin �rst-order logi, with the sole exeption that it is not possible to statethat the omponents are arranged in a tree. Therefore, we onsider partitionre�nements indexed by non-standard trees.De�nition 45 Let T κtree be the theory of all trees (S,�) where S ⊆ κ<ω ispre�x-losed.De�nition 46 A non-standard κ<ω-partition re�nement of a struture M isa family (Uv)v∈T of subsets Uv ⊆ M indexed by a model T of T κtree satisfyingthe following onditions:(1) For all a ∈M there exists some v ∈ T with Uv = {a}.(2) If u � v, for u, v ∈ T , then Uu ⊇ Uv.(3) If u, v ∈ T are inomparable then Uu ∩ Uv = ∅.Note that we do not require the Uv to be nonempty.The widths pwdn(Uv)v and spwdn(Uv)v of (Uv)v are de�ned in the same wayas for standard partition re�nements.For a struture M we de�ne the non-standard [symmetri℄ partition width
pwdns

n M [spwdns
n M℄ of M as the minimal partition width of a non-standard

2<ω-[ℵ<ω0 -℄partition re�nement of M.Lemma 47 If (Uv)v∈T is a non-standard κ<ω-partition re�nement of M and
C ⊆ M then (Uv ∩ C)v∈T is a non-standard κ<ω-partition re�nement of M|Cof width

pwdn(Uv ∩ C)v∈T ≤ pwdn(Uv)v for all n < ω.Corollary 48 If M ⊆ N then pwdns
n (M, κ<α) ≤ pwdns

n (N, κ<α) for all n < ω.
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Lemma 49 Let M be a τ -struture and (U,⊑) a pair of additional relationsymbols. For eah κ ≤ ℵ0, there exists an FO-theory T κpr suh that (M, U,⊑) |=
T κpr if and only if (U,⊑) odes a non-standard κ<ω-partition re�nement of M.
PROOF. Let Ψ be the theory obtained from T κtree by replaing every our-rene of � by ⊑ and relativising every formula to the set D := { ā | ā ⊑ ā }.Further, let Φ onsist of the following formulae whih express the propertiesof a non-standard partition re�nement:

∀x∃ȳ∀z(Uzȳ ↔ z = x)

∀ȳ∀z̄(ȳ ⊑ z̄ → ∀x(Uxz̄ → Uxȳ))

∀ȳ∀z̄(ȳ 6⊑ z̄ ∧ z̄ 6⊑ ȳ → ¬∃x(Uxȳ ∧ Uxz̄))

∀x̄∀ȳ(x̄ ⊑ ȳ → x̄ ⊑ x̄ ∧ ȳ ⊑ ȳ)

∀x∀y(Uxȳ → ȳ ⊑ ȳ)

Let T κpr := Φ ∪ Ψ. We laim that (M, U,⊑) |= T κpr i� (U,⊑) odes a non-standard κ<ω-partition re�nement of M.
(⇐) is obvious. For (⇒), suppose that (M, U,⊑) |= T κpr. We de�ne

T := { ā ∈Mn | ā ⊑ ā } ,and Uā := { b ∈M | (b, ā) ∈ U } , for ā ∈ T .Then (T,⊑) |= T κtree, ā ⊑ b̄ implies ā, b̄ ∈ D, and (Uā)ā∈T forms the desirednon-standard κ<ω-partition re�nement oded by (U,⊑). 2Lemma 50 Let M be a τ -struture and (U,⊑) a pair of additional relationsymbols.(1) For every sequene w̄ ∈ ωω there is a set of sentenes Π2
w̄ ⊆ FO suhthat (M, U,⊑) |= Π2

w̄ if and only if (U,⊑) odes a non-standard 2<ω-partitionre�nement (Uv)v of M with pwdn(Uv)v ≤ wn for all n < ω.(2) For every sequene w̄ ∈ ωω there is a set of sentenes Πω
w̄ ⊆ FO suhthat (M, U,⊑) |= Πω

w̄ if and only if (U,⊑) odes a non-standard ℵ<ω0 -partitionre�nement (Uv)v of M with spwdn(Uv)v ≤ wn for all n < ω.
PROOF. (1) Sine (M, U,⊑) |= T 2

pr i� (U,⊑) odes a non-standard 2<ω-partition re�nement of M, it remains to express that the partition width isbounded.Aording to Lemma 36 (3) it is su�ient to do so for all �nite subsets τ0 ⊆ τ .We onstrut formulae ϕτ0n,m expressing that the n-ary partition width of the
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τ0-redut is at most m. Then we an set
Π2
w̄ := T 2

pr ∪ {ϕτ0n,wn
| n < ω, τ0 ⊆ τ �nite } .

Let r be the maximal arity of relations in τ0. For ā, b̄ ∈ X, we have
ā ≃0

X
b̄ iff ā ≃0

c̄ b̄ for all c̄ ∈ X
r
.

Consequently, we an express that x̄ ≃0
X
ȳ by the formula

ψ(x̄, ȳ;X) := (∀z̄.
∧

i<r

¬Xzi
)[

etpτ0(x̄/z̄) = etpτ0(ȳ/z̄)
]

where z̄ is an r-tuple. Finally, we set
ϕτ0n,m :=

(

∀ȳ.ȳ ⊑ ȳ
)(

∃x̄0 . . . x̄m−1.
∧

i<n,j<m

Uxji ȳ
)

(

∀x̄′.
∧

i<n

Ux′iȳ
)

∨

j<m

ψ(x̄′, x̄j;U_ȳ)
where the x̄j, x̄′, and ȳ are n-tuples, and U_ȳ indiates that every atom
Xz in ψ should be replaed by Uzȳ.(2) As above we onstrut formulae ϕτ0n,m expressing that the n-ary symmetripartition width of the τ0-redut is at most m, and set

Πω
w̄ := T ℵ0

pr ∪ {ϕτ0n,wn
| n < ω, τ0 ⊆ τ �nite } .

Let r be the maximal arity of relations in τ0. The formula
η(ȳ0, ȳ1) := ȳ0 ⊏ ȳ1 ∧ ¬∃z̄(ȳ0 ⊏ z̄ ⊏ ȳ1)de�nes the suessor relation of the partial order ⊑. For tuples x̄0, . . . , x̄montained in U_ȳ the formula
ϑ(z; ȳ, x̄0, . . . , x̄m) := ∀ȳ′

(

(

η(ȳ, ȳ′) ∧ Uzȳ′
)

→ ¬
∧

i<n,j≤m

Uxji ȳ
′
)

states that the element z is not a member of any omponent U_ȳ′ ontainingsome of the x̄j.We have to express that there is no sequene ā0, . . . , ām of m + 1 tuples ofpairwise distint types over all omponents that do not ontain any of the āi.
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This an be done by de�ning
ϕτ0n,m := ∀ȳ¬

(

∃x̄0. . . x̄m.
∧

i<n,j<m

Uxji ȳ
)

∧

j 6=k

(

∃z̄.
∧

i<r

ϑ(zi; ȳ, x̄
0, . . . , x̄m)

)

[

etp0(x̄
j/z̄) 6= etp0(x̄

k/z̄)
]

.

2

Having established our main tool we �rst apply it to show that the non-standard partition width of a struture is determined by the non-standardpartition widths of its �nite substrutures. This generalises the analogous re-sult for the lique width of ountable graphs by Courelle [11℄.Proposition 51 Let M be a relational struture and w̄ ∈ ωω.(1) pwdns
n M ≤ wn, for all n < ω, if and only if all �nite substrutures of Mhave a non-standard 2<ω-partition re�nement of width at most w̄.(2) spwdns
n M ≤ wn, for all n < ω, if and only if all �nite substrutures of Mhave a non-standard ℵ<ω0 -partition re�nement of width at most w̄.

PROOF. One diretion immediately follows from Corollary 48. For the otherone, set Φ := ∆ ∪ Π where ∆ is the atomi diagram of M and Π is either
Π2
w̄ or Πω

w̄.If Φ has a model (N, U,⊑) then there is a non-standard partition re�ne-ment (Uv)v of N of width w̄. The restrition (Uv ∩M)v of (Uv)v to M yieldsthe desired re�nement of M.To prove that Φ is onsistent let Φ0 ⊆ Φ be �nite. Then there is a �nite set
A ⊆ M suh that Φ0 ⊆ ∆0 ∪ Π where ∆0 is the atomi diagram of M|A. Let
(Uv)v be a redued partition re�nement of M|A of width w̄, and let (U,⊑) berelations oding it. Then (M|A, U,⊑) |= Φ0. 2

Of ourse, we are interested in a standard partition re�nement. Unfortunately,the width of a non-standard partition re�nement may inrease when we trans-form it into a standard one.Example 52 (Courelle [11℄) Let G be the graph with universe V := [2]×ωand edge relation
E := { (〈b, k〉, 〈1, n〉) | k < n, b < 2 } .
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Then pwd1 G0 = pwdns
1 G0 = pwdns

1 G = 1 for every �nite indued subgraph
G0 ⊆ G but pwd1 G = 2.To ompute pwd1 G0 and pwdns

1 G0 it is su�ient to onsider the ase that
G0 = G|[2]×[n]. A partition re�nement of width 1 is given by (Uv)v∈T where
T := 0<2n1<2 and

U02k := [2] × [n− k] ,

U02k1 := {〈0, n− k − 1〉} ,

U02k0 := [2] × [n− k − 1] ∪ {〈1, n− k − 1〉} ,

U02k01 := {〈1, n− k − 1〉} .

For pwdns
1 G we use as index struture the tree T of all sequenes w : I → [2]where I is a pre�x of ω + ζ. Then we an de�ne analogously

U0n := [2] × ω , for n < ω ,

U0ω+ω∗−2k := [2] × [k] ,

U0ω+ω∗−2k1 := {〈0, k − 1〉} ,

U0ω+ω∗−2k0 := [2] × [k − 1] ∪ {〈1, k − 1〉} ,

U0ω+ω∗−2k01 := {〈1, k − 1〉} ,and Uv := ∅ , for all other indies v .
Suppose that there exists a partition re�nement (Uv)v of G of width 1. Bysymmetry, we may assume that U0 ∩ [b] × ω is in�nite for some b < 2.If 〈b, n〉 ∈ U0 and k > n then 〈1 − b, k〉 /∈ U1 sine there exists some n′ > kwith 〈b, n′〉 ∈ U0 and 〈b, n〉 6≃0

〈1−b,k〉 〈b, n′〉. Similarly, 〈b, k〉 /∈ U1 for k > nsine 〈b, n〉 6≃0
〈b,k〉 〈b, n

′〉 for all n′ > k. Hene, U1 ⊆ [2]× [m] for some m < ω.Fix some element 〈c, k〉 ∈ U1. There are elements 〈0, n0〉, 〈1, n1〉 ∈ U0 with
n0, n1 > k. But 〈0, n0〉 6≃

0
〈c,k〉 〈1, n1〉 ontradits our assumption that eti10(U0/U1) =

1.Proposition 53 Let M be a struture with m relations of arity greater than 1and let r be the maximum of their arities.(1) If (Uv)v is a non-standard 2<ω-partition re�nement (Uv)v of M of width
wn := pwdn(Uv)v then

pwdn M ≤ 2m(n+1)rwr−12mrrwr−1+r−1

.(2) If (Uv)v is a non-standard ℵ<ω0 -partition re�nement (Uv)v of M of width
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wn := spwdn(Uv)v then
spwdn M ≤ 2m(n+1)rwr−12mrrwr−1+r−1

.

PROOF. Sine both ases are similar we only prove (1). Let (Uv)v∈T be anon-standard 2<ω-partition re�nement of M. By indution on α, we de�ne
• a stritly dereasing sequene Tα ⊆ T of subsets of T ;
• an inreasing sequene of trees Sα ; and
• a partial partition re�nement (Vv)v∈Sαsuh that u ∈ Tα and u � v imply v ∈ Tα and we an partition Tα into sets
T βα satisfying the following onditions:
• u, v ∈ Tα belong to the same omponent T βα i� u ⊓ v ∈ Tα.
• For every maximal path C ⊆ Sα suh that W :=

⋂

v∈C Vv ontains at least
2 elements, there exists some β with ⋃

v∈Tβ
α
Uv = W and, vie versa, forevery omponent T βα there exists suh a hain C ⊆ Sα.Intuitively, Sα is the part of T we have already onverted and Tα is the partthat still has to be transformed into a standard re�nement.Let S0 be the standard part of T , set T0 := T \S0, and let Vv := Uv for v ∈ S0.If α is a limit we set Sα :=

⋃

β<α Sβ and Tα :=
⋂

β<α Tβ.Suppose that α = β+1. Fix a maximal hain C ⊆ Sβ suh thatW :=
⋂

v∈C Vvontains at least 2 elements. If suh a hain does not exist then (Vv)v∈Sβ
isalready a partition re�nement of M (after adding some singletons as leaves ifneessary) and we are done.If there is some v0 ∈ Tβ suh that Uv = W then let T ′ onsists of all u ∈ Tβwith v0 � u. We add the standard part of T ′ to Sβ above C and removefrom Tβ this part and all other elements v with v ⊓ v0 ∈ Tβ (the elementsbelow v0). Set Vu := Uu for the new elements u ∈ Sβ+1 \ Sβ.If suh a vertex v0 does not exist, let T ′ ⊆ Tβ be the set of all v ∈ Tβ suh that

Uv ⊆ W . Then, by assumption, ⋃v∈T ′ Uv = W . Fix a maximal hain I ⊆ T ′.Note that, for every v ∈ T ′ and all u ∈ I we have u⊓ v ∈ I. Sine I is a linearorder there exists a partition re�nement (Hv)v∈F of (I,�) of width 1 whereeah omponent is some interval Hv ⊆ I. We add the tree F to Sβ above C,de�ne
Vv :=

⋃

w∈Hv

Uw \
⋃

{Uw | w ∈ I, w > u for all u ∈ Hv } ,

for v ∈ F , and set Tβ+1 := Tβ \ I.
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Sine Tα ⊃ Tβ for α < β, the onstrution must stop after at most |T |+ stepswith some partition re�nement (Vv)v∈S.The omponents Vv are of the form X or X \ Y where X and Y are eitheromponents Uw, for some w ∈ T , or of the form ⋃

w∈C Uw, for some hain
C ⊆ T . By Lemma 37, we have etin0 (X/X) ≤ wn in both ases. It follows, byLemmas 33 and 34, that

etin0 (Y ∪X/X \ Y ) ≤ 2netin0 (Y/Y )2m(n+1)retir−1
0 (X/X)

≤ 2nwn2
m(n+1)rwr−1 ,where m is the number of relations of arity greater than 1, and r is the maxi-mum of their arities. Therefore,

etin0 (X \ Y/Y ∪X) ≤ 2m(n+1)rwr−12mrrwr−1+r−1

.

2

Corollary 54 (1) If there exists a sequene w̄ ∈ ωω suh that pwdn A ≤ wn,
n < ω, for every �nite substruture A ⊆ M then pwdn M ≤ ℵ0 for n < ω.(2) If there exists a sequene w̄ ∈ ωω suh that spwdn A ≤ wn, n < ω, forevery �nite substruture A ⊆ M then spwdn M ≤ ℵ0 for n < ω.A diret onsequene of Proposition 51 is the fat that having a �nite partitionwidth is a property of �rst-order theories.Theorem 55 If M is of �nite non-standard partition width and M ≡FO Nthen

pwdns
n M = pwdns

n N and spwdns
n M = spwdns

n Nfor all n < ω.
PROOF. Let wi := pwdi M, for i < ω. W.l.o.g. assume that the signatureis �nite. Sine there are only �nitely many strutures of size n there existsan FO-formula ψni,k(x0, . . . , xn−1) stating that pwdi M|x̄ ≤ k. M |= ∀x̄ψni,wi

(x̄)implies N |= ∀x̄ψni,wi
(x̄). By Proposition 51 it follows that pwdns

n N ≤ pwdns
n Mfor n < ω. The laim follows by symmetry.In the same way we an show that the non-standard symmetri partitionwidths are equal. 2

Corollary 56 If M ≡FO N and M is of �nite [symmetri℄ partition widththen so is N.
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For the non-standard partition width we are able to prove that for everystruture M suh that pwdns
n M is �nite there exists a non-standard partitionre�nement of exatly this width.Proposition 57 Let M be a struture.(1) There exists a non-standard 2<ω-partition re�nement (Uv)v of partitionwidth pwdn(Uv)v = pwdns
n M for all n < ω.(2) There exists a non-standard ℵ<ω0 -partition re�nement (Uv)v of partitionwidth spwdn(Uv)v = spwdns
n M for all n < ω.

PROOF. Sine the proofs are nearly idential, we prove only (1). Let wn :=
pwdns

n M, and let ∆ be the atomi diagram of M. If (N, U,⊑) |= Φ := ∆∪Π2
w̄then M ⊆ N and (U,⊑) odes a non-standard partition re�nement of N ofwidth w̄ whih indues one of M of the same width.To show that Φ is onsistent let Φ0 ⊆ Φ be �nite. There exists some k < ωsuh that Φ0 does not ontain any formula of the form ϕτ0n,m for n ≥ k. Let

(U,⊑) ode a non-standard partition re�nement (Uv)v of M suh that
pwdn(Uv)v = pwdns

n M for all n < k .Then (M, U,⊑) |= Φ0. 2

Consider an elementary extension N � M of M. Every non-standard partitionre�nement (Uv)v∈T of N indues a orresponding re�nement (Uv∩M)v∈T of M,that is, eah partition re�nement of N an be obtained by extending one of M.The following proposition states the onverse: every non-standard partitionre�nement of M an be extended to one of N.Proposition 58 Let (Uv)v∈T be a non-standard 2<ω-partition re�nement of M.For every N � M there exists an elementary extension S � T and a non-standard 2<ω-partition re�nement (Vv)v∈S of N of the same width suh that
Vh(v) ⊇ Uv for all v ∈ T where h : T → S is the orresponding elementaryembedding.
PROOF. W.l.o.g. we may assume that |M | ≥ ℵ0. Set wn := pwdn(Uv)v. Let
(U,⊑) be relations oding (Uv)v. Let ∆N be the elementary diagram of N,
Ξ the elementary diagram of (M,U,⊑), and set

Γ := {Pa | a ∈ N } .
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By a straightforward modi�ation of Π2
w̄ we obtain a set of formulae expressingthat (U ∩ (P ×Mn),⊑) odes a non-standard partition re�nement of P . Let

ΠP be this set.We have to show that Ψ := Ξ∪Γ∪ΠP ∪∆N has a model (N′, P, V,⊑′). Thenthere exists an elementary embedding h : (T,⊑) � (S,⊑′) where
S := { ā ∈ (N ′)n | ā ⊑ ā } ,and (Vā)ā∈S with Vā := { b ∈ N | (b, ā) ∈ V } is a non-standard partitionre�nement of N with Uv ⊆ Vh(v).Let Ψ0 ⊆ Ψ be a �nite subset. Then Ψ0 ⊆ Ξ0 ∪ Γ0 ∪ ΠP ∪ ∆0 for some �nitesets Ξ0 ⊆ Ξ, Γ0 ⊆ Γ, and ∆0 ⊆ ∆N. Let A ⊆ N be the �nite set of elementsmentioned in Ξ0 ∪ Γ0 ∪ ∆0, and set M0 := A ∩M , N0 := A \M . Let ā bean enumeration of N0. There exists a tuple b̄ ⊆ M suh that tp(b̄/M0) =

tp(ā/M0). Then (M,M0 ∪ b̄, U,⊑) |= Ψ0. 2

We onlude this setion with the proof of a ompatness theorem for stru-tures of �nite non-standard partition width.Theorem 59 (Compatness) Let w̄ ∈ ωω. A set Φ ⊆ FO of sentenes hasa model M with pwdns
n M ≤ wn for n < ω if and only if every �nite subset

Φ0 ⊆ Φ has suh a model. The same holds for spwdns
n M.

PROOF. Φ has a model M of width pwdns
n M ≤ wn if and only if Φ ∪ Π2

w̄is onsistent. Sine all �nite subsets of Φ ∪ Π2
w̄ are onsistent, so is the wholeset. 2

Corollary 60 A set Φ ⊆ FO of sentenes has a model of �nite partitionwidth if and only if there exists a sequene w̄ ∈ ωω suh that every �nitesubset Φ0 ⊆ Φ has a model M with pwdn M ≤ wn for n < ω. The same holdsfor the symmetri partition width.
8 Pairing funtions and the independene property
Baldwin and Shelah argue in [12℄ that monadi seond-order theories in whiha pairing funtion an be de�ned are hopelessly ompliated and then proeedto lassify the other ones. They show that the models of every stable theorywithout de�nable pairing funtion an be deomposed in a tree-like fashionand that these theories an be interpreted in the theory of a suitable lass
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of trees. Extended to inlude unstable theories a �nitary version of their re-sults would answer the analogue of the onjeture of Seese [3℄ for partitionwidth. It is quite easy to show that the existene of a pairing funtion impliesan in�nite partition width while a proof of the onverse seems to be quiteinvolved requiring an adaptation of the exluded grid theorem of Robertsonand Seymour [13℄.Reently, a slightly weaker form of the onjeture of Seese has been proved byCourelle and Oum [4℄. Let us denote by MSO + C2 the extension of monadiseond-order logi by quanti�ers �The number of elements x suh that . . . is�nite and even.� The m × n grid is the undireted graph (V,E) with V =
[m] × [n] and

E := { ((i, k), (j, l)) ∈ V × V | |i− j| + |k − l| = 1 } .Theorem 61 (Courelle and Oum) Let K be a lass of �nite undiretedgraphs. If the lique width of the graphs in K is unbounded then there existsan (MSO + C2)-interpretation I suh that I(K) is the lass of all �nite grids.Note that this result only applies to graphs. Furthermore, it seems that forthe ase of arbitrary strutures a fundamentaly di�erent proof is required.De�nition 62 A struture M admits MSO-oding if there exists an MSO-formula ϕ(x, y, z; X̄) suh that, for eah natural number n < ω, there aresets A, B, C ⊆ M of size |A| = |B| = n suh that, for suitable monadiparameters P̄ , ϕ(x, y, z; P̄ ) de�nes a bijetion A×B → C.Lemma 63 Let M be a struture and n < ℵ0. The following statements areequivalent:(1) There exists an MSO-formula χ(x, y, z) with monadi parameters thatde�nes a bijetion A×B → C for sets of size |A| = |B| = n.(2) There exists an MSO-formula ϑ(x, y) with monadi parameters that de-�nes an n× n grid.(3) There exist MSO-formulae ϕ(x, y) and ψ(x, y) eah of whih de�nes anequivalene relation with n lasses suh that every lass of the �rst oneintersets eah lass of the other one.
PROOF. (1) ⇒ (3) Let f : A×B → C be the given bijetion. We an de�netwo equivalene relations on C by setting

ϕ(x, y) := ∃u∃v∃z(f(u, z) = x ∧ f(v, z) = y) ,and ψ(x, y) := ∃u∃v∃z(f(z, u) = x ∧ f(z, v) = y) .

(2) ⇒ (1) Fix n < ℵ0 and C ∼= n × n as above. Let A := n × {0} ⊆ C and
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B := {0} × n ⊆ C. We laim that the funtion f : A × B → C de�ned by
f((i, 0), (0, k)) := (i, k) is MSO-de�nable.With the help of the parameters

Hm := { (i, k) | i ∼= m (mod 3) } ⊆ Cand Vm := { (i, k) | k ∼= m (mod 3) } ⊆ C ,for m < 3, we an de�ne the suessor relations
S0 := { ((i, k), (i+ 1, k)) | i < n− 1, k < n }and S1 := { ((i, k), (i, k + 1)) | i < n, k < n− 1 } .Then the desired oding funtion an be de�ned by
f(x, y) = z iff (x, z) ∈ (S1)

∗ and (y, z) ∈ (S0)
∗ .

(3) ⇒ (2) Let ∼0 and ∼1 be the two equivalenes. Fix elements aik, i, k < n,suh that
aik ∼0 aml iff i = m and aik ∼1 aml iff k = l .With the help of the parameters
P := { aii | i < n } and Q := { ai(i+1) | i+ 1 < n } ,we de�ne the relations
S0 := { (aik, a(i+1)k) | i, k < n } ,

S1 := { (aik, ai(k+1)) | i, k < n } ,by setting
S0xy := x ∼1 y ∧ ∃u∃v(Qu ∧ Pv ∧ x ∼0 u ∧ y ∼0 v ∧ u ∼1 v) ,and S1xy := x ∼0 y ∧ ∃u∃v(Pu ∧Qv ∧ x ∼1 u ∧ y ∼1 v ∧ u ∼0 v) .

2Remark 64 Note that the translation in the preeding lemma is uniform, thatis, given χ(x, y, z; Z̄) we an onstrut a formula ϑ(x, y; Z̄) suh that, whenever
P̄ are parameters suh that χ(x, y, z; P̄ ) de�nes a bijetion A × B → C with
|A| = |B| = n, then we an �nd parameters Q̄ suh that ϑ(x, y; Q̄) de�nes an
n× n grid. Analogous statements hold for the other diretions.It follows that strutures admitting MSO-oding are ompliated. In partiu-lar, it follows from the following theorem that their MSO-theory is undeid-able.

43



Theorem 65 (Seese [14℄) The MSO-theory of the lass of all �nite grids isundeidable.An easy proof onsists in oding domino problems (see [15℄). Together withLemma 63 this theorem implies the following result.Theorem 66 If M is a struture that admits MSO-oding then the MSO-theory of M is undeidable.We onjeture that the property of admitting MSO-oding is equivalent to anin�nite partition width.Conjeture 67 A struture M with �nite signature has �nite partition widthif and only if it does not admit MSO-oding.Note that this onjeture fails if we allow in�nite signatures. Consider M =
(ω × ω, (En)n<ω) where

En :=
{

(〈i, k〉, 〈j, l〉)
∣

∣

∣ |i− j| + |k − l| = 1, i, j, k, l < n
}

.Then, pwd1 M = ℵ0. On the other hand, the MSO-theory of M is deidablesine eah formula ontains only �nitely many relation symbols and every�nite redut of M is the disjoint union of a �nite struture and an in�nite set.Sine all strutures admitting MSO-oding have an undeidable MSO-theory aproof of this onjeture would settle the onjeture of Seese that every lass of�nite graphs with deidable MSO-theory has �nite lique width. The followinglemma deals with the easy diretion.We all a funtion f : A × B → C anellative if f(a, b) = f(a′, b) implies
a = a′ and f(a, b) = f(a, b′) implies b = b′.Proposition 68 Let M be a τ -struture. If there are unary prediates P̄ andan MSOk-formula ϕ(x, y, z; P̄ ) de�ning a anellative funtion f : A×B → Cthen |A| ≤ K or |B| ≤ K where

K := 3 · ik(Nk+2 mpwdk+2 M) and Nk := |MSk0(∅)|where MSk0 is taken with respet to the signature τ ∪ P̄ .
PROOF. Let f : A×B → C be the given funtion. Fix a partition re�nement
(Uv)v∈T of M suh that mpwdk+2(Uv)v is minimal and de�ne

wn := sup {mtink(Uv/Uv) | v ∈ T } .
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By Lemmas 32 (2) and 35 we have
w2 ≤ ik(N2+k mpwd2+k M) = K/3 .Suppose, for a ontradition, that m := |A| = |B| > 3w2.We laim that there exists some vertex v ∈ T suh that
1
3
m ≤ |Uv ∩ A| ≤

2
3
m and |B \ Uv| > w2 ,or 1

3
m ≤ |Uv ∩B| ≤ 2

3
m and |A \ Uv| > w2 .Let v0 be some vertex with 1

3
m ≤ |Uv0 ∩B| ≤ 2

3
m. If |A\Uv0| ≤ w2 then thereexists some v � v0 suh that

1
3
m ≤ |Uv ∩ A| ≤

2
3
mand |B \ Uv| ≥ |B \ Uv0| ≥ m/3 > w2 .

Thus, by symmetry we may assume that there exists some v ∈ T satisfyingthe �rst ondition.There are at most w2 elements b ∈ B \ Uv suh that f(a, b) = c for some
a ∈ Uv ∩ A, c ∈ Uv ∩ C. Otherwise, there would be tuples f(a, b) = c and
f(a′, b′) = c′ with b 6= b′ and {a}{c} ≈k

Uu
{a′}{c′}. Then, f(a′, b′) = c′ wouldimply

f(a, b′) = c = f(a, b) ,and by anellation, we would have b = b′ in ontradition to our assumption.Sine |B \ Uv| > w2 it follows that there exists some b ∈ B \ Uv suh that
f(a, b) ∈ Uv for all a ∈ Uv ∩ A.Furthermore, sine |Uv ∩ A| ≥ m/3 > w2 there are two di�erent elements
a, a′ ∈ Uv ∩ A suh that a ≈k

Uv
a′. This implies f(a, b) = c i� f(a′, b) = c forall c ∈ Uv. Contradition. 2Corollary 69 If M admits MSO-oding then pwdn M ≥ ℵ0 for some n.Corollary 70 A group has �nite partition width if and only if it is �nite.Proposition 68 an be used to link the onept of partition width with themodel theoreti notion of VC-dimension or, equivalently, the independeneproperty.De�nition 71 Let T be a �rst-order theory. An FO-formula ϕ(x̄, ȳ) has theindependene property (w.r.t. T ) if there exists a model M of T ontaining

45



sequenes (āI)I⊆ω and (b̄i)i<ω suh that
M |= ϕ(āI , b̄i) iff i ∈ I .

We say that a struture M has the independene property if there exists aformula ϕ that has the independene property w.r.t. Th(M). If āI and b̄i aresingletons we say that M has the independene property on singletons.In [12℄ it is shown that these two notions oinide if we allow monadi param-eters.Lemma 72 Let M have the independene property. There exists an elemen-tary extension N � M and unary prediates P̄ suh that (N, P̄ ) has the inde-pendene property on singletons.It immediately follows that the independene property implies MSO-oding.Lemma 73 Let M have the independene property on singletons. There existsan elementary extension N � M that admits FO-oding.
PROOF. Choose an elementary extension N that ontains sequenes (aI)I⊆ωand (bi)i∈ω suh that, for some formula ϕ(x, y), we have

N |= ϕ(aI , bi) iff i ∈ I .Fix disjoint in�nite sets X, Y ⊆ B := { bi | i < ω }, and de�ne a funtion
f : X×Y →M by f(bi, bj) := a{i,j}. For x ∈ X, y ∈ Y , and z ∈ Z := f(X,Y )we have

f(x, y) = z iff M |= ϕ(z, x) ∧ ϕ(z, y) .Hene, f is an FO-de�nable bijetion X × Y → Z. 2

Together with the results above it follows that no struture with the inde-pendene property has �nite partition width. This slightly extends a result ofParigot [16℄ who showed that trees do not have the independene property.Proposition 74 If M is a struture with the independene property then
pwdn M ≥ ℵ0 for some n.
PROOF. If M has the independene property then there exists an elemen-tary extension N � M and unary prediates P̄ suh that (N, P̄ ) has the inde-pendene property on singletons. Hene, there exists an elementary extension
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(N′, P̄ ′) whih admits FO-oding. If M where of �nite partition width, thenso would be N, (N, P̄ ), and (N′, P̄ ′). The latter ontradits Corollary 69. 2

Referenes
[1℄ N. Robertson, P. D. Seymour, Graph Minors. III. Planar Tree-Width, Journalof Combinatorial Theory B 36 (1984) 49�64.[2℄ B. Courelle, S. Olariu, Upper bounds to the lique width of graphs, DisreteApplied Mathematis 101 (2000) 77�114.[3℄ D. Seese, The struture of the models of deidable monadi theories of graphs,Annals of Pure and Applied Logi 53 (1991) 169�195.[4℄ B. Courelle, S.-I. Oum, Vertex-Minors, Monadi Seond-Order Logi, and aConjeture by Seese, unpublished (2004).[5℄ B. Courelle, The monadi seond-order logi of graphs VII: Graphs as relationalstrutures, Theoretial Computer Siene 101 (1992) 3�33.[6℄ E. Wanke, k-NLC graphs and polynomial algorithms, Disrete AppliedMathematis 54 (1994) 251�266.[7℄ Ö. Johansson, Clique-deomposition, NLC-deomposition, and modulardeomposition � relationsships and results for random graphs, CongressusNumerantium 132 (1998) 39�60.[8℄ M. Grohe, G. Turan, Learnability and De�nability in Trees and SimilarStrutures, in: Pro. 19th Annual Symp. on Theoretial Aspets of ComputerSiene, STACS, LNCS, 2285, 2002, pp. 645�658.[9℄ A. Blumensath, Strutures of Bounded Partition Width, Ph.D. Thesis, RWTHAahen, Aahen (2003).[10℄ A. Blumensath, B. Courelle, Reognizability, Hypergraph Operations, andLogial Types, Information and Computation.[11℄ B. Courelle, Clique-Width of Countable Graphs: A Compatness Property,Disrete Mathematis 276 (2004) 127�148.[12℄ J. T. Baldwin, S. Shelah, Seond-Order Quanti�ers and the Complexity ofTheories, Notre Dame Journal of Formal Logi 29 (3) (1985) 229�303.[13℄ N. Robertson, P. D. Seymour, Graph Minors. V. Exluding a Planar Graph,Journal of Combinatorial Theory B 41 (1986) 92�114.[14℄ D. Seese, Entsheidbarkeits- und De�nierbarkeitsfragen der Theorie `netzartiger'Graphen, Wissenshaftlihe Zeitshrift der Humbold-Universität zu BerlinMath.-Nat. R. XXI (5) (1972) 513�517.

47



[15℄ R. Berger, The undeidability of the domino problem, Mem. Amer. Math. So.66, 1966.[16℄ M. Parigot, Théories d'arbes, Journal of Symboli Logi 47 (1982) 841�853.

48


