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Abstract

We study definability and complexity issues for automatic
andω-automatic structures. These are, in general, infinite
structures but they can be finitely presented by a collection
of automata. Moreover, they admit effective (in fact auto-
matic) evaluation of all first-order queries. Therefore, au-
tomatic structures provide an interesting framework for ex-
tending many algorithmic and logical methods from finite
structures to infinite ones.

We explain the notion of (ω-)automatic structures, give
examples, and discuss the relationship to automatic groups.
We determine the complexity of model checking and query
evaluation on automatic structures for fragments of first-
order logic. Further, we study closure properties and de-
finability issues on automatic structures and present a tech-
nique for proving that a structure is not automatic. We give
model-theoretic characterisations for automatic structures
via interpretations. Finally we discuss the composition the-
ory of automatic structures and prove that they are closed
under finitary Feferman-Vaught-like products.

1. Introduction

The relationship between logical definability and com-
putational complexity is an important issue in a number
of different fields including finite model theory, databases,
knowledge representation, and computer-aided verification.
So far most of the research has been devoted to finite struc-
tures where the relationship between definability and com-
plexity is by now fairly well understood (see e.g. [6, 18])
and has many applications in particular to database theory
[1]. However, in many cases the limitation to finite struc-
tures is too restrictive. Therefore in most of the fields men-
tioned above, there have been considerable efforts to extend
the methodology from finite structures to suitable classes of
infinite ones. In particular, this is the case for databases and
computer-aided verification where infinite structures (like
constraint databases or systems with infinite state spaces)

are of increasing importance.
From a more general theoretical point of view, one may

ask what classes of infinite structures are suitable for such
an extension. More specifically what conditions must be
satisfied by a classK of not necessarily finite structures such
that the approach and methods of finite model theory make
sense. There are two obvious and fundamental conditions:

Finite representations.Every structureA ∈ K should be
representable in a finite way.

Effective semantics(for a relevant logicL, e.g., first-order
logic). Given any formulaψ(x̄) of L and (a presenta-
tion of) a structureA ∈ K, one can effectively produce
a presentation of the set{ ā : A |= ψ(ā) }.

Note that effective semantics means in particular that the
L-theory of everyA ∈ K is decidable. A class of infinite
structures that have been studied quite intensively in model
theory arerecursive structures. There have recently been
some papers proposing the study of recursive structures
(e.g., recursive databases) for the issues just mentioned
[14, 15, 22]. However, the class of recursive structures is
too large since, in general, only the quantifier-free formu-
lae admit effective evaluation algorithms. Other classes of
infinite structures where the relationship of definability and
complexity has been studied include metafinite structures
[12] and constraint databases [20].

In this paper we considerautomatic structures. While
automatic groupshave been studied rather intensively in
computational group theory (see [9, 10]) a general notion of
automatic structure has only been defined and investigated
in a paper by Khoussainov and Nerode [19], and the theory
of these structures is not well-developed yet. Informally,
a relational structureA = (A,R1, . . . , Rm) is automatic
if its universe and its relations can be presented by finite
automata. This means that we can find a regular language
Lδ ⊆ Σ∗ (which provides names for the elements ofA) and
a functionν : Lδ → A mapping every wordw ∈ Lδ to the
element ofA that it represents. The functionν must be sur-
jective (every element ofA must be named) but need not be
injective (elements can have more than one name). In addi-



tion it must be recognisable by finite automata whether two
words inLδ name the same elements, and, for each relation
Ri of A, whether a tuple of words inLδ names a tuple be-
longing toRi. A more detailed definition will be given in
the next section.

We believe that automatic structures are very promising
for the approach sketched above. Not only do automatic
structures admit finite presentations, there also are numer-
ous interesting examples and a large body of methods that
has been developed in five decades of automata theory. Fur-
ther, contrary to the class of recursive structures, automatic
structures admit effective (in fact, automatic) evaluation of
all first-order queries and possess many other pleasant algo-
rithmic properties.

The notion of an automatic structure can be modified and
generalised in many directions, for instance by using au-
tomata over infinite words, or over finite or infinite trees. In
this paper we study automatic andω-automatic structures
only. Many results can be extended to tree-automatic struc-
tures without much change (see [2]), but for lack of space,
we do not mention them here.

Here is an outline of this paper. In Section 2 we de-
fine the notions of automatic andω-automatic structures
and mention some examples. For the purposes of this pa-
per, our most important examples of automatic structures
are the expansionsNp = (N,+, |p) of Presburger arith-
metic by a restricted divisibility predicate and tree struc-
turesTree(p). Our fundamental examples ofω-automatic
structures areRp, the expansion of the additive real group
(R,+) by order and restricted divisibility, andTreeω(p), a
natural extension ofTree(p). We will also explain in Sec-
tion 2 the notion of an automatic group.

In Section 3 we show that first-order logic (and in fact its
extension by the quantifier “there exist infinitely many”) has
effective semantics on (ω-)automatic structures. We also
study complexity results for model-checking and query-
evaluation for first-order logic and for some of its frag-
ments.

In Section 4 we study definability properties of auto-
matic structures and present a technique for proving that
a structure is not automatic. As an application we prove,
for instance, that neither Skolem arithmetic(N, ·) nor the
divisibility poset(N, |) are automatic.

In Section 5 we present model-theoretic characterisa-
tions of automatic andω-automatic structures. We prove
that a structure is automatic if and only if it is interpretable
in Np or, equivalently, inTree(p) for some (and hence all)
p ≥ 2. Similarly, a structure isω-automatic if and only if it
is interpretable inRp or Treeω(p).

Finally in Section 6 this characterisation is used to study
the composition theory of automatic structures. We prove
that automatic structures are closed under finitary products,
unions, and similar constructions.

The goal of this paper is not to make significant new con-
tributions to automata theory. The main technical contri-
butions of this paper are (1) an algorithm to evaluate the
quantifier “there exists infinitely many”, (2) the complexity
results for low level fragments of first-order logic on auto-
matic structures, (3) the proofs that certain interesting struc-
tures are not automatic and in particular, (4) the composition
theorem for automatic structures. But the main purpose of
this paper isconceptual: we want to explore to what extent
automatic structures are a suitable framework for extending
the methods of finite model theory to infinite structures. We
believe that the model-theoretic characterizations of auto-
matic andω-automatic structures in terms of interpretability
are particularly useful for this and also suggest a very gen-
eral way for obtaining other interesting classes of infinite
structures suitable for such an approach: Fix a structureA

with ‘nice’ (algorithmic and/or model-theoretic) properties,
and consider the class of all structures that are (first-order)
interpretable inA. Obviously each structure in this class
is finitely presentable (by an interpretation). Further, since
many ‘nice’ properties are preserved by first-order interpre-
tations, every structure in the class inherits them fromA.
In particular, every class of queries that is effective onA

and closed under first-order operations is effective on the
interpretation-closure ofA.

2. Automatic structures and automatic groups

We assume that the reader is familiar with the basic
notions of automata theory and regular languages. One
slightly nonstandard aspect is that we need a notion of reg-
ularity not just for languagesL ⊆ Σ∗ but alsok-ary rela-
tions of words, fork > 1. The idea is that regular relations
are defined by automata that take tuplesw̄ = (w1, . . . , wk)
of words as inputs and work synchronously on allk com-
ponents ofw̄. To make this precise, we represent a tuple
w̄ ∈ (Σ∗)k by a wordw1 ⊗ · · · ⊗ wk over the alphabet
(Σ ∪ {�})k, called theconvolutionof w1, . . . , wk. Here�

is a padding symbol not belonging toΣ, which is appended
to some of the wordswi to make sure that all components
have the same length. More formally, forw1, . . . , wk ∈ Σ∗,
with wi = wi1 · · ·wiℓi

andℓ = max{|w1|, . . . , |wk|},

w1 ⊗ · · · ⊗ wk :=





w′
11

...
w′

k1



 . . .





w′
1ℓ

...
w′

kℓ



 ∈
(

(Σ ∪ {�})k
)∗

wherew′
ij = wij for j ≤ |wi| andw′

ij = � otherwise.
Now, a relationR ⊆ (Σ∗)k is calledautomaticor reg-

ular, if {w1 ⊗ · · · ⊗ wk : (w1, . . . , wr) ∈ R } is a regular
language. In the sequel we do not distinguish between a
relation on words and its encoding as a language.

As usual in mathematical logic, we considerstructures
A = (A,R1, R2, . . . , f1, f2, . . . ) whereA is a non-empty



set, called theuniverseof A, where eachRi ⊆ Ari is
a relation onA and eachfj : Asj → A is a function
onA. The names of the relations and functions ofA, to-
gether with their arities, form thevocabularyof A. We
consider constants as functions of arity 0. Arelational
structure is a structure without functions. We can associate
with every structureA its relational variant which is ob-
tained by replacing each functionf : As → A by its graph
Gf := { (ā, b) ∈ As+1 : f(ā) = b }.

Definition 2.1. A relational structureA is automatic if
there exist a regular languageLδ ⊆ Σ∗ and a surjective
functionν : Lδ → A such that the relation

Lε := { (w,w′) ∈ Lδ × Lδ : νw = νw′ } ⊆ Σ∗ ×Σ∗

and, for all predicatesR ⊆ Ar of A, the relations

LR := { w̄ ∈ (Lδ)
r : (νw1, . . . , νwr) ∈ R } ⊆ (Σ∗)r

are regular. An arbitrary (not necessarily relational) struc-
ture is automatic if and only if its relational variant is.

By an automatic presentationof a τ -structureA we
either mean a pair(ν, d) consisting of the functionν :
Lδ → A and a collectiond = (Mδ,Mε, (MR)R∈τ ) of
finite automata that recogniseLδ, Lε, andLR for all re-
lationsR of A, or we mean just the collectiond alone.
(Note thatd determines the structure that it presents up to
isomorphism.) An automatic presentation is calleddeter-
ministic if all its automata are, and it is called injective if
Lε = { (u, u) : u ∈ Lδ } (which implies thatν : Lδ → A is
injective). We writeAutStr[τ ] for the class of all automatic
structures of vocabularyτ .

Examples.(1) All finite structures are automatic.

(2) Important examples of automatic structures are Presburger
arithmetic(N, +) and its expansionsNp := (N, +, |p) by the re-
lation

x |p y : iff x is a power ofp dividing y.

Usingp-ary encodings (starting with the least significant digit) it
is not difficult to construct automata recognizing equality, addition
and|p.

(3) Natural candidates for automatic structures are those con-
sisting of words. (But note that free monoids with at least two gen-
erators donothave automatic presentations.) Fix some alphabetΣ

and consider the structureTree(Σ) := (Σ∗, (σa)a∈Σ,�, el)
where

σa(x) := xa,

x � y : iff ∃z(xz = y),

el(x, y) : iff |x| = |y| .

Obviously, this structure is automatic as well.

The following two observations are simple, but useful.

(1) Every automatic structure admits an automatic presen-
tation with alphabet{0, 1} [2].

(2) Every automatic structure admits an injective auto-
matic presentation [19].

Automatic Groups. The class of automatic structures that
have been studied most intensively are automatic groups.
Let (G, ·) be a group andS = {s1, . . . , sm} ⊆ G a set of
semigroup generators ofG. This means that eachg ∈ G
can be written as a productsi1 · · · sir

of elements ofS and
hence the canonical homomorphismν : S∗ → G is sur-
jective. TheCayley graphΓ (G,S) of G with respect toS
is the graph(G,S1, . . . , Sm) whose vertices are the group
elements and whereSi is the set of pairs(g, h) such that
gsi = h. By definition(G, ·) is automaticif there is a fi-
nite setS of semigroup generators and a regular language
Lδ ⊆ S∗ such that the restriction ofν to Lδ is surjective
and provides an automatic presentation ofΓ (G,S). (That
is, the inverse image of equality,

Lε = { (w,w′) ∈ Lδ × Lδ : νw = νw′ },

andν−1(Si) (for i = 1, . . . ,m) are regular).
Note that it is not the group structure(G, ·) itself that

is automatic in the sense of Definition 2.1, but the Cay-
ley graph. There are many natural examples of automatic
groups (see [9, 10]). The importance of this notion in com-
putational group theory comes from the fact that an auto-
matic presentation of a group yields (efficient) algorithmic
solutions for computational problems that are undecidable
in the general case.

Remark.By definition, if G is an automatic group, then
for some setS of semigroup generators, the Cayley graph
Γ (G,S) is an automatic structure. Contrary to a claim in
[19] it is not clear whether the converse holds. Indeed the
definition of an automatic group requires that the function
ν : Lδ → G is the restriction of the canonical homomor-
phism fromS∗ toG. The mere condition thatΓ (G,S) is an
automatic structure does not seem to imply this.

ω-automatic structures. The notion of an automatic
structure can be modified and generalised in a number of
different directions (see [2, 19]). In particular, we obtain
the interesting classω-AutStr of ω-automatic structures.
The definition is analogous to the one for automatic struc-
tures except that the elements of anω-automatic structure
are named by infinite words from some regularω-language
and the relations of the structure are recognisable by Büchi
automata.

Examples.(1) All automatic structures areω-automatic.



(2) The real numbers with addition,(R, +), and indeed the ex-
panded structureRp := (R, +,≤, |p, 1) areω-automatic, where

x |p y : iff ∃n, k ∈ Z : x = p
n andy = kx.

(3) The tree automatic structuresTree(Σ) extend in a natu-
ral way to the (uncountable)ω-automatic structuresTreeω(Σ) =
(Σ≤ω, (σa)a∈σ,�, el).

3. Model-checking and query-evaluation

In this section we study decidability and complexity is-
sues for automatic structures. For a structureA and a for-
mulaϕ(x̄), let ϕA := { ā : A |= ϕ(ā) } be the relation
(or query) defined byϕ on A. Two fundamental algorith-
mic problems are

Model-checking:Given a (presentation of a) structureA, a
formulaϕ(x̄), and a tuple of parametersā in A, decide
whetherA |= ϕ(ā).

Query-evaluation:Given a presentation of a structureA
and some formulaϕ(x̄), compute a presentation of
(A, ϕA). That is, given a pair(ν, d) representingA,
construct an automaton that recognisesν−1(ϕA).

We first observe that all first-order queries on automatic
structures are effectively computable. In fact, this is thecase
not only for first-order logic but also for formulae contain-
ing the quantifier∃ω meaning “there are infinitely many”.

Proposition 3.1. Given an injective presentation(ν, d) of
an automatic orω-automatic structureA and a formula
ϕ(x̄) ∈ FO(∃ω) one can effectively construct an automaton
recognisingν−1(ϕA).

Proof. ForFO-formulae this follows readily from classical
results on the closure properties of regular (ω-)languages.

In case of automatic structures the quantifier∃ω can be
handled using a pumping argument. Consider for simplicity
the formula∃ωxψ(x, y). There are infinitely manyx satis-
fying ψ iff for any m there are infinitely many elementsx
whose encoding is at leastm symbols longer than that ofy.
If we takem to be the number of states of the automaton
for ψ then, by the Pumping Lemma, the last condition is
equivalent to the existence of at least one suchx. Thus
∃ωxψ(x, y) ≡ ∃x(ψ(x, y) ∧ “x is long enough”) for which
we can obviously construct an automaton. Note that the in-
jectivity of (ν, d) ensures that each of the infinitely many
words encodes a different element ofA.

For ω-automatic structures the proof is more involved.
First we introduce some notation. Byv[i, k) we denote
the factorvi . . . vk−1 of v = v0v1 . . . ∈ Σω. Similarly,
v[i, ω) is equal tovivi+1 . . . , andv[i] := v[i, i+ 1).

LetM be a deterministic Muller automaton withs states
recognising the languageL(M) ⊆ Γω ⊗Σω. Forw ∈ Γω

let V (w) := { v ∈ Σω : w ⊗ v ∈ L(M) }.

Let v, w ∈ Σω and definev ≈∗ w iff v[n, ω) = w[n, ω)
for somen. Let [v]∗ := { v′ ∈ V (w) : v′ ≈∗ v } be the
≈∗-class ofv in V (w).

Claim. V (w) is infinite if and only if there is somev ∈ Σω

such that[v]∗ ∈ V (w)/≈∗ is infinite.

Proof. (⇐) is trivial and (⇒) is proved by showing that
V/≈∗ contains at mosts finite≈∗-classes.

Assume there are wordsv0, . . . , vs ∈ V (w) belong-
ing to different finite≈∗-classes. Denote the run (se-
quence of states) ofM on w ⊗ vi by ̺i. DefineIij :=
{ k < ω : ̺i[k] = ̺j [k] }. Since there are onlys states,
for eachk < ω there have to be indicesi, j such that
k ∈ Iij , i.e.,

⋃

i,j Iij = ω. Thus, at least oneIij is
infinite. For each[vi]∗ there is a positionni such that
v[ni, ω) = v′[ni, ω) for all v, v′ ∈ [vi]∗. Let m be the
maximum ofn0, . . . , ns. Fix i, j such thatIij is infinite.
Since vi 6≈∗ vj there is a positionm′ > m such that
vi[m,m

′) 6= vj [m,m
′). Choose somem′′ ∈ Iij with

m′′ ≥ m′. Let u := vi[0,m)vj [m,m
′′)vi[m

′′, ω). Then,
w ⊗ vi ∈ L(M) iff w ⊗ u ∈ L(M) which implies that
u ∈ [vi]∗. But u[m,ω) 6= vi[m,ω) in contradiction to the
choice ofm.

To finish the proof letϕ(x̄) := ∃ωyψ(x̄, y) andA be
ω-automatic. One can express that[v]∗ is finite by

finite(x̄, v) := ∃n∀v′(ψ(x̄, v′) ∧ v ≈∗ v′

→ equal(v, v′, n)),
where

equal(v, v′, n) := n = 1i0ω ∧ v[i, ω) = v′[i, ω).

Clearly,≈∗ and equal can be recognised byω-automata.
By the claim above,

ϕ(x̄) ≡ ∃v(ψ(x̄, v) ∧ ¬finite(x̄, v)).

Hence, we can construct an automaton recognisingϕA.

Corollary 3.2. TheFO(∃ω)-theory of any automatic struc-
ture and of anyω-automatic with injective presentation is
decidable.

As an immediate consequence we conclude that full
arithmetic(N,+, ·) is neither automatic, norω-automatic.
For most of the common extensions of first-order logic
used in finite model theory, such as transitive closure log-
ics, fixed point logics, monadic second-order logic, or first-
order logic with counting, the model-checking problem on
automatic structures becomes undecidable.



Complexity. The complexity of model-checking can be
measured in three different ways. First, one can fix the
formula and ask how the complexity depends on the input
structure. This measure is calledstructure complexity. The
expression complexityon the other hand is defined relative
to a fixed structure in terms of the formula. Finally, one can
look at thecombined complexitywhere both parts may vary.

Of course, the complexity of these problems may very
much depend on how automatic structures are presented.
We focus here on presentations bydeterministicautomata
because these admit boolean operations to be performed in
polynomial time, whereas for nondeterministic automata,
complementation may cause an exponential blow-up.

In the following we always assume that the vocabulary
of the given automatic structures and the alphabet of the au-
tomata we deal with are fixed. Furthermore the vocabulary
is assumed to be relational when not stated otherwise. For
a (deterministic) presentationd of an automatic structure,
we denote by|d| the maximal size of the automata ind, and
for an automatic presentation(ν, d) of the structureA, we
defineλd : A→ N to be the function

λd(a) := min{ |x| : ν(x) = a }

mapping each element ofA to the length of its shortest en-
coding. Finally, letλd(a1, . . . , ar) be an abbreviation for
max{λd(ai) : i = 1, . . . , r }.

While we have seen above that query-evaluation and
model-checking for first-order formulae are effective
on AutStr, the complexity of these problems is non-
elementary, i.e., it exceeds any fixed number of iterations
of the exponential function. This follows immediately from
the fact the the complexity ofTh(Np) is non-elementary
(see [11]).

Proposition 3.3. There exist automatic structures such that
the expression complexity of the model-checking problem is
non-elementary.

It turns out that model-checking and query-evaluation for
quantifier-free and existential formulae are still—to some
extent—tractable. As usual, letΣ0 andΣ1 denote, respec-
tively the class of quantifier-free and the class of existential
first-order formulae.

Theorem 3.4. (i) Given a presentationd of a relational
structureA ∈ AutStr, a tuple ā in A, and a quantifier-
free formulaϕ(x̄) ∈ FO, the model-checking problem for
(A, ā, ϕ) is in

DTIME
[

O
(

|ϕ|λd(ā) |d| log |d|
)]

and

DSPACE
[

O
(

log |ϕ| + log |d| + logλd(ā)
)]

.

(ii) The structure complexity of model-checking for
quantifier-free formulae isLOGSPACE-complete with re-
spect toFO-reductions.

(iii) The expression complexity isALOGTIME-complete
with regard to deterministic log-time reductions.

Proof. (i) To decide whetherA |= ϕ(ā) holds, we need to
know the truth value of each atom appearing inϕ. Then,
all what remains is to evaluate a boolean formula which
can be done in DTIME

[

O
(

|ϕ|
)]

and ATIME
[

O
(

log |ϕ|
)]

⊆

DSPACE
[

O
(

log |ϕ|
)]

(see [5]). The value of an atomRx̄
can be calculated by simulating the corresponding automa-
ton on those components ofā which belong to the variables
appearing inx̄. The naïve algorithm to do so uses time
O

(

λd(ā) |d| log |d|)
)

and spaceO
(

log |d| + logλd(ā)
)

.
For the time complexity bound we perform this simu-

lation for every atom, store the outcome, and evaluate the
formula. Since there are at most|ϕ| atoms the claim fol-
lows.

To obtain the space bound we cannot store the value of
each atom. Therefore we use the LOGSPACE-algorithm to
evaluateϕ and, every time the value of an atom is needed,
we simulate the run of the corresponding automaton on a
separate set of tapes.

(ii) We present a reduction of the LOGSPACE-complete
problem DETREACH, reachability by deterministic paths,
(see e.g. [18]) to the model-checking problem. Given a
graphG = (V,E, s, t) we construct the automatonM =
(V, {0}, ∆, s, {t}) with

∆ := { (u, 0, v) : u 6= t, (u, v) ∈ E and there is no

v′ 6= v with (u, v′) ∈ E }

∪ {(t, 0, t)}.

That is, we remove all edges originating at vertices with
out-degree greater than1 and add a loop att. Then there
is a deterministic path froms to t in G iff M accepts some
word0n iff 0|V | ∈ L(M). Thus,

(V,E, s, t) ∈ DETREACH iff A |= P0|V |

whereA = (B,P ) is the structure with the presentation
({0}∗, L(M)). A closer inspection reveals that the above
transformation can be defined in first-order logic.

(iii) Evaluation of boolean formulae is ALOGTIME-
complete (see [5]).

For most questions we can restrict attention to relational
vocabularies and replace functions by their graphs at the ex-
pense of introducing additional quantifiers. When study-
ing quantifier-free formulae we will not want do to this and
hence need to consider the case of quantifier-free formu-
lae with function symbols separately. This class is denoted
Σ0+fun. The following lemma is essentially due to Epstein
et al. [9].

Lemma 3.5. Given a tuplew of words overΣ, and an au-
tomatonA = (Q,Σ, δ, q0, F ) recognising the graph of a



functionf , the calculation off(w) is in

DTIME
[

O
(

|Q|
2
log |Q| (|Q| + |w|)

)]

and

DSPACE
[

O
(

|Q| log |Q| + log |w|
)]

.

Theorem 3.6. (i) Let τ be a vocabulary which may con-
tain functions. Given the presentationd of a structureA

in AutStr[τ ], a tupleā in A, and a quantifier-free formula
ϕ(x̄) ∈ FO[τ ], the model-checking problem for(A, ā, ϕ) is
in

DTIME
[

O
(

|ϕ| |d|
2
log |d|

(

|ϕ| |d| + λd(ā)
))]

and

DSPACE
[

O
(

|ϕ|
(

|ϕ| |d| + λd(ā)
)

+ |d| log |d|
)]

.

(ii) The structure complexity of the model-checking
problem for quantifier-free formulae with functions is in
NLOGSPACE.

(iii) The expression complexity isPTIME-complete with
regard to≤log

m -reductions.

Proof. (i) Our algorithm proceeds in two steps. First the
values of all functions appearing inϕ are calculated starting
with the innermost one. Then all functions can be replaced
by their values and a formula containing only relations re-
mains which can be evaluated as above. We need to evaluate
at most|ϕ| functions. If they are nested the result can be of
length|ϕ| |d| + λd(ā). This yields the bounds given above.

(ii) It is sufficient to present a nondeterministic log-
space algorithm for evaluating a single fixed atom contain-
ing functions. The algorithm simultaneously simulates the
automata of the relation and of all functions on the given
input. Components of the input corresponding to values of
functions are guessed nondeterministically. Each simula-
tion only needs counters for the current state and the input
position which both use logarithmic space.

(iii) Let M be ap(n) time-bounded deterministic Turing
machine for some polynomialp. A configuration(q, w, p)
of M can be coded as wordw0qw1 with w = w0w1 and
|w0| = p. Using this encoding both the functionf map-
ping one configuration to its successor and the predicateP
for configurations containing accepting states can be recog-
nised by automata. We assume thatf(c) = c for accepting
configurationsc. Let q0 be the starting state ofM . Then
M accepts some wordw if and only if the configuration
fp(|w|)(q0w) is accepting if and only ifA |= Pfp(|w|)(q0w)
whereA = (A,P, f) is automatic. Hence, the mapping tak-
ingw to the pairq0w andPfp(|w|)x is the desired reduction
which can clearly be computed in logarithmic space.

Remark.Theorem 3.6 says that, on any fixed automatic
structure, quantifier-free formulae can be evaluated in
quadratic time. This extends the result of [9] that the word
problem for every automatic group is solvable in quadratic
time. Indeed, for every automatic groupG generated by

s1, . . . , sm, the structure(G, e, g 7→ gs1, . . . , g 7→ gsm)
is just a functional way of presenting the Cayley graph and
therefore automatic. Each instance of the word problem is
described by a quantifier-free sentence (a term equation) on
this structure.

Theorem 3.7. (i) Given a presentationd of a structureA

in AutStr, a tupleā in A, and a formulaϕ(x̄) ∈ Σ1, the
model-checking problem for(A, ā, ϕ) is in

NTIME
[

O
(

|ϕ| |d|λd(ā) + |d|O(|ϕ|))] and

NSPACE
[

O
(

|ϕ| (|d| + log |ϕ|) + logλd(ā)
)]

.

(ii) The structure complexity of model-checking for
Σ1-formulae is NPTIME-complete with respect to≤p

tt-
reductions.

(iii) The expression complexity isPSPACE-complete with
regard to≤log

m -reductions.

Proof. (i) As above we can run the corresponding automa-
ton for every atom appearing inϕ on the encoding of̄a. But
now there are some elements of the input missing which we
have to guess. Since we have to ensure that the guessed
inputs are the same for all automata, the simulation is per-
formed simultaneously.

The algorithm determines which atoms appear inϕ and
simulates the product automaton constructed from the au-
tomata for those relations. At each step the symbol for the
quantified variables is guessed nondeterministically. Note
that the values of those variables may be longer than the in-
put so we have to continue the simulation after reaching its
end for at most the cardinality of the state-space number of
steps. Since this cardinality isO

(

|d|
|ϕ|) a closer inspection

of the algorithm yields the given bounds.
(ii) We reduce the NPTIME-complete non-universality

problem for nondeterministic automata over a unary alpha-
bet (see [21, 17]), given such an automaton check whether
it does not recognise the language0∗, to the given prob-
lem. This reduction is performed in two steps. First the
automaton must be simplified and transformed into a deter-
ministic one, then we construct an automatic structure and
a formulaϕ(x) such thatϕ(a) holds for several values ofa
if and only if the original automaton recognises0∗. As the
model-checking has to be performed for more than one pa-
rameter this yields not a many-to-one but a truth-table re-
duction.

Let M = (Q, {0}, ∆, q0, F ) be a nondeterministic fi-
nite automaton over the alphabet{0}. We construct an
automatonM ′ such that there are at most two transitions
outgoing at every state. This is done be replacing all tran-
sition form some given state by a binary tree of transi-
tions with new states as internal nodes. Of course, this
changes the language of the automaton. Since inM every
state has at most|Q| successors, we can take trees of fixed



heightk := ⌈log |Q|⌉. Thus,L(M ′) = h(L(M)) where
h is the homomorphism taking0 to 0k. Note that the size
of M ′ is polynomial in that ofM .
M ′ still is nondeterministic. To make it deterministic we

add a second component to the labels of each transitions
which is either0 or 1. This yields an automatonM ′′ such
thatM accepts the word0n iff there is somey ∈ {0, 1}kn

such thatM ′′ accepts0kn ⊗ y.
M ′′ can be used in a presentationd := ({0, 1}∗, L(M ′′))

of some{R}-structureB. Then

B |= ∃y R0kny iff 0kn ⊗ y ∈ L(M ′′)

iff 0n ∈ L(M).

It follows that

L(M) = 0∗ iff B |= ∃y R0kny for all n < 2 |Q| .

The part(⇒) is trivial. To show(⇐) let n be the least
number such that0n /∈ L(M). By assumptionn ≥ 2 |Q|.
But then we can apply the Pumping Lemma and find some
numbern′ < n with 0n′

/∈ L(M). Contradiction.
(iii) is shown by coding computations of Turing ma-

chines. The proof can be found in [2].

We now turn to the query-evaluation problem for these
formula classes.

Theorem 3.8. Given a presentationd of a structureA in
AutStr and a formulaϕ(x̄), an automaton representingϕA

can be computed

(i) in time O
(

|d|
O(|ϕ|)) and spaceO

(

|ϕ| log |d|
)

in the
case of quantifier-freeϕ(x̄), and

(ii) in time O
(

2|d|
O(|ϕ|))

and spaceO
(

|d|
O(|ϕ|)) in the

case of existential formulaeϕ(x̄).

In particular, the structure complexity of query-evaluation
is in LOGSPACEfor quantifier-free formulae and inPSPACE

for existential formulae. The expression complexity is in
PSPACE for quantifier-free formulae and inEXPSPACEfor
existential formulae.

Proof. Enumerate the state space of the product automaton
and output the transition function.

4. Structures that are not automatic

To prove that a structure is automatic, we just have to
find a suitable presentation. But how can we prove that a
structure is not automatic? The main difficulty is that a pri-
ori, nothing is known about how elements of an automatic
structure are named by words of the regular language.1

1In the case of automatic groups, where the naming function isfixed,
more techniques are available such as thek-fellow traveller property,
see [9].

Structure-Complexity Expression-Complexity

Model-Checking

Σ0 LOGSPACE-complete ALOGTIME-complete

Σ0 + fun NLOGSPACE PTIME-complete

Σ1 NPTIME-complete PSPACE-complete

Query-Evaluation

Σ0 LOGSPACE PSPACE

Σ1 PSPACE EXPSPACE

Besides the two obvious criteria, namely that automatic
structures are countable and that their first-order theory is
decidable, not much is known. The only non-trivial cri-
terion that is available at present use growth rates for the
length of the encodings of elements of definable sets.

Proposition 4.1(Elgot and Mezei [8]). Let A be an auto-
matic structure with injective presentation(ν, d), and let
f : An → A be a function ofA. Then there is a constantm
such thatλd(f(ā)) ≤ λd(ā) +m for all ā ∈ An.

The same is true if we replacef by a relationR where
for all ā there are only finitely many valuesb such thatRāb
holds.

This result deals with a single application of a function or
relation. In the remaining part of this section we will study
the effect of applying functions iteratively, i.e., we willcon-
sider some definable subset of the universe and calculate
upper bounds on the length of the encodings of elements
in the substructure generated by it. First we need bounds
for the (encodings of) elements of some definable subsets.
The following lemma follows easily from classical results
in automata theory (see, e.g., [7, Proposition V.1.1]).

Lemma 4.2. LetA be a structure inAutStr with presenta-
tion d, and letB be anFO(∃ω)-definable subset ofA. Then
λd(B) is a finite union of arithmetical progressions.

In the process of generating a substructure we have to
count the number of applications of functions.

Definition 4.3. Let A ∈ AutStr with presentationd, let
f1, . . . , fr be finitely many operations ofA with arities
r1, . . . , rr, respectively, and letE = {e1, e2, . . . } be some
subset ofA with λd(e1) ≤ λd(e2) ≤ · · · . ThenGn(E), the
nth generationof E, is defined inductively by

G1(E) := {e1},

Gn(E) := {en} ∪Gn−1(E)

∪
{

fi(ā) : ā ∈ Gri

n−1(E), 1 ≤ i ≤ r
}

.

Putting everything together we obtain the following re-
sult. The case of finitely generated substructures already
appeared in [19].



Proposition 4.4. Let d an injective presentation of an au-
tomatic structureA, let f1, . . . , fr be finitely many defin-
able operations onA and letE be a definable subset ofA.
Then there is a constantm such thatλd(a) ≤ mn for all
a ∈ Gn(E). In particular, |Gn(E)| ≤ |Σ|

mn+1 whereΣ is
the alphabet ofd.

The proof consists of a simple induction onn.

Theorem 4.5. None of the following structures has an au-
tomatic presentation.

(i) Any trace monoidM = (M, ·) with at least two non-
commuting generatorsa andb.

(ii) Any structureA in which a pairing functionf can be
defined.

(iii) The divisibility poset(N, |).

(iv) Skolem arithmetic(N, ·).

Proof. (i) We show that{a, b}≤2n

⊆ Gn+1(a, b) by induc-
tion on n. We have{a, b} ⊆ {a, aa, b} = G2(a, b) for
n = 1, and forn > 1

Gn+1(a, b) =
{

uv : u, v ∈ Gn(a, b)
}

⊇
{

uv : u, v ∈ {a, b}≤2n−1 }

= {a, b}≤2n

.

Therefore,|Gn(a, b)| ≥ 22n

and the claim follows.
(ii) is analogous to (i), and (iv) immediately follows

from (iii) as the divisibility relation is definable in(N, ·).
(iii) Suppose(N, |) ∈ AutStr. We define the set of

primes

Px : iff x 6= 1 ∧ ∀y(y | x→ y = 1 ∨ y = x),

the set of powers of some prime

Qx : iff ∃y(Py ∧ ∀z(z | x ∧ z 6= 1 → y | z)),

and a relation containing all pairs(n, pn) wherep is a prime
divisor ofn

Sxy : iff x | y ∧ ∃=1z(Qz ∧ ¬Pz ∧ z | y ∧ ¬z | x).

The least common multiple of two numbers is

lcm(x, y) = z : iff x | z ∧ y | z

∧ ¬∃u(u 6= z ∧ x | u ∧ y | u ∧ u | z).

For everyn ∈ N there are only finitely manym with Snm.
ThereforeS satisfies the conditions of Proposition 4.1.
Consider the set generated byP via S and lcm, and let
γ(n) := |Gn(P )| be the cardinality ofGn(P ). If (N, |) is
in AutStr then(N, |, P,Q, S) ∈ AutStr andγ(n) ∈ 2O(n)

by Proposition 4.4. LetP = {p1, p2, . . . }. Forn = 1 we
haveG1(P ) = {p1}. Generally,Gn(P ) consists of

(1) numbers of the formpk1
1 ,

(2) numbers of the formpk2
2 · · · pkn

n , and

(3) numbers of a mixed form.

In n steps we can create

(1) p1, . . . , p
n
1 (via S),

(2) γ(n− 1) numbers withk1 = 0, and

(3) for every0 < k1 < n, γ(n − 2) − 1 numbers of a
mixed form (vialcm).

All in all we obtain

γ(n) ≥ n+ γ(n− 1) + (n− 1)(γ(n− 2) − 1)

= γ(n− 1) + (n− 1)γ(n− 2) + 1

≥ nγ(n− 2) (asγ(n− 1) > γ(n− 2))

≥ n(n− 2) · · · 3γ(1)

(w.l.o.g. assume thatn is odd)

= n(n− 2) · · · 3

≥ ((n+ 1)/2)!

∈ 2Ω(n log n).

Contradiction.

Remark.(1) Since it is easy to construct atree-automatic
presentation of Skolem arithmetic this result implies thatthe
class of structures with tree-automatic presentation strictly
includes the class of automatic structures (see [2]).

(2) The structure(N,⊥) where⊥ stands for having no
common divisor is automatic.

5. Characterising automatic structures via in-
terpretations

Interpretations are important in mathematical logic, for
model-theory in particular. They are used to define a copy
of a structure inside another one, and thus permit to trans-
fer definability, decidability, and complexity results among
theories.

Definition 5.1. A (k-dimensional) interpretationof a rela-
tionalσ-structureA = (A,R1, . . . , Rm) in a τ -structureB
is given by a sequence

I = 〈δ(x̄), ε(x̄, ȳ), ϕR1(x̄1, . . . , x̄r1), . . . 〉

of first-order formulae of vocabularyτ (where each tuplēx,
ȳ, x̄i consists ofk variables), provided that there exists a
surjective maph : δB → A, called thecoordinate mapof
the interpretation such that the following hold:

(i) For all b̄, c̄ ∈ δB

B |= ε(b̄, c̄) iff h(b̄) = h(c̄),



(ii) for every relationRj of A and allb̄1, . . . , b̄rj
∈ δB

B |= ϕR(b̄1, . . . , b̄rj
) iff

(

h(b̄1), . . . , h(b̄r)
)

∈ R.

That is, the formulaε(x̄, ȳ) defines a congruence on the
structure

(

δB, ϕB
R1
, . . . , ϕB

Rm

)

such thath is an isomor-
phism from the quotient structure

(

δB, ϕB
R1
, . . . , ϕB

Rm

)

/εB

toA. In the case thatA is this quotient structure itself (rather
than just being isomorphic to it) we say thatA is definable
in B. Obviously,A is definable inB if and only if there
is an interpretation ofA in B whose coordinate map is the
canonical projection, mapping every tupleb̄ ∈ δB to its
equivalence class̄b/ε.

If A is a structure including not only relations but also
functions then, by definition, an interpretation ofA in B is
an interpretation of the relational variant ofA (where func-
tions are replaced by their graphs) inB.

We writeA ≤FO B to denote that there exists an inter-
pretation ofA in B. If both A ≤FO B andB ≤FO A we
sayA andB aremutually interpretable.

Examples.(1) Recall that we writea |p b to denote thata is a
power ofp dividing b. Let Vp : N → N be the function that maps
each number to the largest power ofp dividing it. It is very easy
to see that the structures(N, +, |p ) and(N, +, Vp) are mutually
interpretable. Indeed we can define the statementx = Vp(y) in
(N, +, |p ) by the formulax |p y ∧ ∀z(z |p y → z |p x). In the
other direction,Vp(x) = x ∧ ∃z(x + z = Vp(y)) is a definition
of x |p y.

(2) For everyp ∈ N we write Tree(p) for the tree structure
Tree({0, . . . , p−1}). The structuresNp andTree(p) are mutually
interpretable, for eachp ≥ 2 (see [2, 11]).

Observe that Proposition 3.1 implies an interesting clo-
sure property forAutStr andω-AutStr.

Proposition 5.2. The classes of automatic andω-automat-
ic structures are closed under interpretations, i.e., ifB is
(ω-)automatic andA ≤FO B, then so isA.

Corollary 5.3. The classes of automatic, resp.ω-automat-
ic, structures are closed under(i) extensions by defin-
able relations,(ii) factorisations by definable congruences,
(iii) substructures with definable universe, and(iv) finite
powers.

The model-theoretic characterisation of automatic struc-
tures is given in the following theorem. It states that the
structureNp (andTree(p)) is completefor AutStr, i.e., a
structureA belongs toAutStr if and only if A ≤FO Np.

Theorem 5.4. For every structureA, the following are
equivalent:

(i) A is automatic.

(ii) A ≤FO Np for some (and hence all)p ≥ 2.

(iii) A ≤FO Tree(p) for some (and hence all)p ≥ 2.

Proof. The facts that (ii) and (iii) are equivalent and that
they imply (i) follow immediately from the mutual inter-
pretability ofNp andTree(p), from the fact that these struc-
tures are automatic, and from the closure of automatic struc-
tures under interpretations.

It remains to show that every automatic structure is in-
terpretable inNp (or Tree(p)). Suppose thatd is an auto-
matic presentation ofA with alphabet[p] := {0, . . . , p− 1}
for somep ≥ 2 (without loss of generality, we could take
p = 2). For every wordw ∈ [p]∗, let val(w) be the nat-
ural number whosep-ary encoding isw, i.e., val(w) :=
∑

i<|w| wip
i. By a classical result, sometimes called the

Büchi-Bruyère Theorem, a relationR ⊆ N
k is first-order

definable in(N,+, Vp) if and only if

{ (val−1(x1), . . . , val−1(xk)) : (x1, . . . , xk) ∈ R }

is regular. (See [4] for a proof of this fact and for more infor-
mation on the relationship between automata and definabil-
ity in expansions of Presburger arithmetic.) The formulae
that define in this sense the regular language and the regular
relations in an automatic presentation ofA provide an inter-
pretation ofA in (N,+, Vp). Hence alsoA ≤FO Np.

For automatic groups we are not free to change the co-
ordinate map, therefore the arguments used above give a
characterisation in terms of definability rather than inter-
pretability.

Theorem 5.5. (G, ·) is an automatic group if and only if
there exists a finite setS ⊆ G of semigroup generators such
thatΓ (G,S) is FO-definable inTree(S).

We now turn toω-automatic structures. To provide a
similar characterisation we can use an equivalent of the
Büchi-Bruyère Theorem for encodings ofω-regular rela-
tions. One such result has been obtained recently by
Boigelot, Rassart and Wolper [3]. Using natural translations
betweenω-words over[p] and real numbers, they prove that
a relation over[p]ω can be recognised by a Büchi automa-
ton if an only if its translation is first-order definable in the
structure(R,+, <,Z, Xp) whereXp ⊆ R

3 is a relation
that explicitly represents the translation between[p]ω andR.
Xp(x, y, z) holds iff there exists a representation ofx by a
word in [p]ω such that the digit at the position specified byy
is z. A somewhat unsatisfactory aspect of this result is the
assumption that the encoding relationXp must be given as
a basic relation of the structure. It would be preferable if
more natural expansions of the additive real group(R,+)
could be used instead.

We show here that this is indeed possible if, as in the
case ofNp, we use a restricted variant of the divisibility
relation. Recall that the structuresRp andTreeω(p) (intro-
duced at the end of Section 2) areω-automatic. As a first



step we show that the behaviour of Büchi automata recog-
nising regular relations over[p]ω can be simulated by first-
order formulae inTreeω(p). Second we show thatTreeω(p)
andRp are mutually interpretable. As a result we obtain the
following model-theoretic characterisation ofω-automatic
structures.

Theorem 5.6. For every structureA, the following are
equivalent

(i) A is ω-automatic.

(ii) A ≤FO Rp for some (and hence all)p ≥ 2.

(iii) A ≤FO Treeω(p) for some (and hence all)p ≥ 2.

Proof. In order to construct interpretations ofTreeω(p)
in Rp and vice versa we define formulae which allow to
access the digits of, respectively, some number inRp and
some word inTreeω(p). In the later case we set

digk(x, y) := ∃z(el(z, y) ∧ σkz � x)

which states that the digit ofx at position|y| is k. ForRp

the situation is more complicated as some real numbers ad-
mit two encodings. The following formula describes that
there is one encoding ofx such that the digit at positiony
is k. (This corresponds to the predicateX of [3].)

digk(x, y) := ∃s∃t( |x| = s+ k · y + t ∧ p · y |p s

∧ 0 ≤ s ∧ 0 ≤ t ≤ y)

For Rp ≤FO Treeω(p) we represent each number as a
pair of words. The first one is finite and encodes the integer
part, the other one is infinite and contains the fractional part.
In the other direction we map finite wordsa1 · · · ar ∈ [p]∗

to the interval[2, 3] via

p−r+1 +

r
∑

i=1

aip
−i + 2 ∈ [2, 3].

Infinite wordsa1a2 · · · ∈ [p]ω are mapped to two intervals
[−1, 0] and[0, 1] via

±
∑

i

aip
−i ∈ [−1, 1].

This is necessary because some words, e.g.,0(p − 1)ω

and10ω, would be mapped to the same number otherwise.
Now the desired interpretations can be constructed easily
using the formulaedigk defined above.

It remains to prove that ifR ⊆ ([p]∗)n is ω-regular then
it is definable inTreeω(p). Let M = (Q, [p]n, ∆, q0, F )
be a Büchi-automaton forR. W.l.o.g. assumeQ = [p]m

for somem andq0 = (0, . . . , 0). We prove the claim by
constructing a formulaψM (x̄) ∈ FO stating that there is a
successful run ofM onx1 ⊗ · · · ⊗ xn. The run is encoded

by a tuple(q1, . . . , qm) ∈ ([p]ω)m of ω-words such that the
symbols ofq1, . . . , qm at some position equalk1, . . . , km

iff the automaton is in state(k1, . . . , km) when scanning
the input symbol at that position.ψM (x̄) has the form

∃q1 · · · ∃qm[ADM(q̄, x̄) ∧ START(q̄, x̄)

∧ RUN(q̄, x̄) ∧ ACC(q̄, x̄)]

where the admissibility conditionADM(x̄, q̄) states that all
components of̄x andq̄ are infinite,START(x̄, q̄) says that
the first state is̄0, ACC(x̄, q̄) that some final state appears
infinitely often, andRUN(x̄, q̄) ensures that all transitions
are correct.

Define the following auxiliary formulae. To access
the digits of a tuple of words at some position we define
Symā(x̄, z) :=

∧

i digai
(xi, z), and to characterise theω-

words of[p]≤ω we set

Inf(x) := ∀y(x � y → x = y).

ADM andSTART are defined as

ADM(q̄, x̄) :=

m
∧

i=1

Inf(qi) ∧

n
∧

i=1

Inf(xi),

START(q̄, x̄) := Sym0̄(q̄, ε),

RUN states that at every position a valid transition is used

RUN(q̄, x̄) :=

∀z
∨

(k̄,ā,k̄′)∈∆

(

Symk̄(q̄, z) ∧ Symā(x̄, z)

∧ Symk̄′(q̄, σ0z)
)

,

andACC says that there is one final state which appears
infinitely often in q̄

ACC(q̄, x̄) :=
∨

k̄∈F

∀z∃z′
(

|z′| > |z| ∧ Symk̄(q̄, z′)
)

.

6. Composition of structures

The composition method developed by Feferman and
Vaught, and by Shelah considers compositions (products
and sums) of structures according to some index struc-
ture and allows one to compute—depending on the type of
composition—the first-order or monadic second-order the-
ory of the whole structure from the respective theories of its
components and the monadic theory of the index structure.

The characterisation given in the previous section can be
used to prove closure of automatic structures under such
compositions of finitely many structures (see [23, 13, 16]).
A generalised product—as it is defined below—is a general-
isation of a direct product, a disjoint union, and an ordered
sum. We will prove that given a finite sequence(Ai)i of



structures which belong to some classK containing a com-
plete structure, all their generalised products are members
of K as well.

The definition of such a product is a bit technical. Its
relations are defined in terms of the types of the compo-
nents of its elements. Theatomicn-typeatpA(ā) of a tu-
ple (a0, . . . , an−1) in a structureA is the conjunction of all
atomic and negated atomic formulaeϕ(x̄) such thatϕ(ā)
holds inA.

Let us first look at how a direct product and an ordered
sum can be defined using types.

Example.(1) Let A := A0 × A1 whereAi = (Ai, Ri), for i ∈
{0, 1}, andR is a binary relation. The universe ofA is A0 × A1.
Some pair(ā, b̄) belongs toR iff (a0, b0) ∈ R0 and(a1, b1) ∈
R1. This is equivalent to the condition that the atomic types of
a0b0 and ofa1b1 both include the formulaRx0x1.

(2) Let A := A0 + A1 whereAi = (Ai, <i), for i ∈ {0, 1},
and<0, <1 are partial orders. The universe ofA is A0 ·∪ A1

∼=
A0 × {♦} ∪ {♦} × A1, and we have

ā < b̄ iff ā = (a0, ♦), b̄ = (b0, ♦) anda0 <0 b0,

or ā = (♦, a1), b̄ = (♦, b1) anda1 <1 b1,

or ā = (a0, ♦), b̄ = (♦, b1).

Again, the conditionai <i bi can be expressed using types.

Definition 6.1. Let τ = {R0, . . . , Rs} be a finite relational
vocabulary,rj the arity ofRj , andr̂ := max{r0, . . . , rs}.
Let (Ai)i∈I be a sequence ofτ -structures, andI be an arbi-
trary relationalσ-structure with universeI.

Fix for eachk ≤ r̂ an enumeration{tk0 , . . . , t
k
n(k)} of the

atomick-types and set

σk := σ ·∪ {D0, . . . , Dk−1}

·∪ {Tm
l : m ≤ k, l ≤ n(m) }.

Theσk-expansionI(b̄) of I belonging to a sequencēb ∈
(
∏

i∈I(Ai ·∪ {♦})
)

k is given by

D
I(b̄)
l :=

{

i ∈ I : (bl)i 6= ♦
}

,

(Tm
l )I(b̄) :=

{

i ∈ I : atpA((bj0)i . . . (bjm−1)i) = tml

and{ j : (bj)i 6= ♦ } =

{j0, . . . , jm−1}
}

.

ForD ⊆ B
I andβj ∈ FO[σrj

], C := (I, D, β0, . . . , βs)
defines the generalised product C(Ai)i∈I :=
(A,R0, . . . , Rs) of (Ai)i∈I where

A :=
⋃

d̄∈D

∏

i∈I

χdi

(

{♦}, Ai

)

,

Ri := { b̄ ∈ Ari : I(b̄) |= βi },

andχb(a0, a1) := ab.

Example.(continued)
(1) For the direct product ofA0 × A1 we would setI := (I)

with I = {0, 1}, D := {(1, 1)}, and

β :=
∨

l∈L

T
2

l 0 ∧
∨

l∈L

T
2

l 1,

whereL is the set of atomic types containing the formulaRx0x1.
(2) In this case we would setI := (I) with I = {0, 1}, D :=

{(1, 0), (0, 1)}, and

β :=
(

D00 ∧ D10 ∧
∨

l∈L

T
2

l 0
)

∨
(

D01 ∧ D11 ∧
∨

l∈L

T
2

l 1
)

∨ (D00 ∧ D11),

whereL is the set of atomic types containing the formulax0 < x1.

Theorem 6.2. Let τ be a finite relational vocabulary, and
K a class ofτ -structures containing all finiteτ -structures
and a structureC which is complete forK with regard to
many-dimensionalFO-interpretations.

Let I be a finite relationalσ-structure, let(Ai)i∈I be a
sequence of structures inK, andC = (I, D, β̄) a gener-
alised product. ThenC(Ai)i∈I ∈ K, and an interpretation
C(Ai)i∈I ≤FO C can be constructed effectively from the
interpretationsAi ≤FO C andI ≤FO C.

Proof. Let τ = {R0, . . . , Rs}. W.l.o.g. assume thatI =
{0, . . . , |I| − 1} and thatC contains constants0 and1. We
have to construct an interpretation ofA := C(Ai)i∈I in C.
Let rj be the arity ofRj . Considerni-dimensional interpre-
tations

Ii :=
〈

hi, δi(x̄i), εi(x̄i, ȳi), ϕi
0(x̄

i
0, . . . , x̄

i
r0−1), . . . ,

ϕi
s(x̄

i
0, . . . , x̄

i
rs−1)

〉

of Ai in C. We represent an elementa of A by a tuple of
(|I| + n0 + · · · + n|I|−1) elements

x̄ :=
(

d̄, x̄0, . . . , x̄|I|−1
)

whered̄ ∈ D determines which components are empty and
x̄i encodes theith component ofa. The desired interpreta-
tion is constructed as follows.

I :=
〈

h, δ(x̄), ε(x̄, ȳ), ϕ0(x̄0, . . . , x̄r0−1), . . . ,

ϕs(x̄0, . . . , x̄rs−1)
〉

where

h(d̄, x̄0, . . . , x̄|I|−1) :=
(

χd0

(

♦, h0(x̄0)
)

, . . . , χd|I|−1

(

♦, h|I|−1(x̄|I|−1)
))

,

δ(d̄, x̄0, . . . , x̄|I|−1) :=
∨

c̄∈D

(

d̄ = c̄ ∧
∧

i : ci=1

δi(x̄i)
)

,



and

ε(d̄, x̄0, . . . , x̄|I|−1, ē, ȳ0, . . . , ȳ|I|−1) :=

d̄ = ē ∧
∧

i<|I|

(

di = 1 → εi(x̄i, ȳi)
)

.

In order to defineϕj we consider an interpretationII of I

in C. SinceI is finite such an interpretation exists. Let
αj := βII

j be the formula definingRj . Note thatβj con-
tains additional relationsDl andTm

l which are not inσ.
Thusαj is a sentence over the signatureτ extended by the
symbolsDl andTm

l for appropriatel andm. We have to
be replace them in order to obtain a definition ofϕj . Let
x̄0, . . . , x̄rj−1 be the parameters ofϕj where

x̄k = (d̄k, x̄
0
k, . . . , x̄

|I|−1
k )

for k < rj . Dl andTm
l can be defined by

Dli := (dl)i = 1 and

Tm
l i := (tml )I

i

(x̄i
0, . . . , x̄

i
rj−1).

Note that those definitions are only valid becausei ranges
over a finite set. ϕj can now be defined asαj with
Dl andTm

l replaced by the above definitions.
Obviously, all steps in the construction above are effec-

tive.

Corollary 6.3. Both,AutStr andω-AutStr are effectively
closed under finitary generalised products.

As promised we immediately obtain closure under sev-
eral types of compositions.

Corollary 6.4. Let A0, . . . ,An−1 ∈ AutStr. Then there
exists automatic presentations of

(i) the direct product
∏

i<n Ai,

(ii) the disjoint union ·
⋃

i<nAi, and

(iii) theω-fold disjoint unionω · A0 of A0.

Corollary 6.5. Let A0, . . . ,An−1 ∈ AutStr be ordered
structures. There exists automatic presentations of

(i) the ordered sum
∑

i<n Ai and

(ii) theω-fold ordered sum
∑

i<ω A0 of A0.
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