
R

Achim Blumensath∗
TU Darmstadt, Mathematik, AG Logik
Schloßgartenstraße
 Darmstadt
Germany
Phone: +--
Fax: +--
blumensath@mathematik.tu-darmstadt.de

th February

We develop an algebraic language theory for languages of infin-
ite trees. We define a class of algebras called ω-hyperclones and we
show that a language of infinite trees is regular if, and only if, it is
recognised by a finitary path-continuous ω-hyperclone.

Keywords. infinite trees; recognisability; tree automata; monadic
second-order logic

Instead of using finite automata to develop the theory of regular languages,
one can also employ semigroup theory. By now this approach has a long tradition
and there exists an extended structure theory connecting varieties of languages
with finite semigroups. ¿is theory is particularly effective if one is interested
in characterising subclasses of the class of all regular languages. For instance,
the only known decidable characterisation of the class of first-order definable
languages is based on semigroup theory.

∗Work supported by ESF project ‘Automata: from Mathematics to Applications’.

Naturally, there have been attempts to generalise this theory to other notions
of regularity. For languages of ω-words, such a generalisation has largely been
achieved. A detailed account can be found in the book of Pin and Perrin [].
¿ere also have been several contributions to an algebraic theory for languages
of finite trees [, , , , , , , ,]. But the resulting theory is still fragmentary
with several competing approaches and formalisations. Our own work has been
influenced in particular by the following two articles: Ésik and Weil [] have
developed an approach using preclones, while Bojańczyk and Walukiewicz []
use forest algebras. As far as the algebraic setting is concerned, the formalisation
in the present article most closely resembles the work on clones by Ésik [].
So far, an algebraic theory for languages of infinite trees is still missing. ¿e

main obstacle is the lack of appropriate combinatorial tools, like Ramseyan fac-
torisation theorems for infinite trees. In particular, a purely combinatorial proof
that every nonempty regular language of infinite trees contains a regular tree is
still missing.¿ere is recent work of Bojańczyk and Idziaszek [] on characterisa-
tion results for classes of infinite trees thatmanages to circumvent these problems
by a technical trick: since every regular language of infinite trees is determined
by the regular trees it contains, it is sufficient to consider only regular trees.
¿is paper provides a first step in the development of an algebraic theory for

recognisability of classes of infinite trees. Inspired by the work of Ésik and Weil
on preclones, we define suitable algebras of infinite trees called ω-hyperclones.
We can show that every regular language is recognised by some homomorphism
into such a (finitary, path-continuous) ω-hyperclone.
¿e proof is performed in two steps. First, we define a special class of ω-hyper-

clones called path-hyperclones that directly correspond to tree-automata. ¿e
problem with path-hyperclones is that their definition is not axiomatic, but syn-
tactic.¿at is, given an arbitrary ω-hyperclone we cannot tell from the definition
whether or not this ω-hyperclone is isomorphic to some path-hyperclone.
In the second step, we therefore give an algebraic characterisation of the main

properties of such path-hyperclones (they are path-continuous). Using this result
we can transfer our characterisation from path-hyperclones to path-continuous
ω-hyperclones.
Finally, we prove that the class of path-continuous ω-hyperclones is closed

under products and a certain power-set operation. From these results we can
deduce a second (equivalent) version of our main theorem: recognisability by
finitary path-continuous ω-hyperclones is the same as definability in monadic
second-order logic.

A. Iwould like to thank¿omasColcombet andArnaud
Carayol for the intensive discussions that started this work. In particular, the no-
tion of a path-hyperclone is partially based on their ideas.

 P

Let us fix our notation and recall basic definitions. We set [n] ∶= {, . . . , n − }.
Frequently, we do not distinguish between a tuple ā = ⟨a , . . . , an−⟩ and the
set {a , . . . , an−} of its components. In particular, we sometimes write ā ⊆ A
instead of ā ∈ An . We denote the power set of a set A by ℘(A).
Definition .. (a) An ω-semigroup is a two-sorted structureS = ⟨S, Sω , ⋅ , α, π⟩
where

◆ ⟨S, ⋅ ⟩ forms a semigroup,
◆ α ∶ S × Sω → Sω is a le action of S on Sω , and

◆ π ∶ Sω → Sω is a function satisfying the following associative law:

π((s i)i<ω) = α(s⋯sk− , π((sk i⋯sk i+−)i<ω)) ,
for every sequence (s i)i ∈ Sω and all increasing sequences of indices k <
k < ⋅ ⋅ ⋅ < ω.

Usually, we will omit α and ⋅ and write sw and st instead of, respectively, α(s,w)
and s ⋅ t.
(b) A morphism µ ∶ S → T of ω-semigroups is a pair µ = ⟨µ , µω⟩ of maps

µ ∶ S → T and µω ∶ Sω → Tω such that µ is a morphism of semigroups and we
have

µω(sw) = µ(s)µω(w) and µω(π(s i)i) = π(µ(s i))i .
(c) A semigroup S operates in a canonical way on Sn and on ℘(S) by

a ⋅ ⟨b , . . . , bn−⟩ ∶= ⟨ab , . . . , abn−⟩ and a ⋅ P ∶= { ab ∣ b ∈ P } ,
respectively.

For more information about ω-semigroups we recommend the book [].

Definition .. Let Σ be a set.
(a) A tree domain is a prefix closed subset T ⊆ ω<ω such that wd ∈ T , for

w ∈ ω<ω and d < ω, implies wc ∈ T , for all c < d. ¿e element wd ∈ T is called
the d-th successor of w ∈ ω<ω .
(b) A Σ-labelled tree is a function t ∶ dom(t) → Σ where dom(t) is a tree

domain.
(c) Let Σ be a signature, i.e., a set of function symbols, and let X be a set of

variable symbols. A Σ-term with variables X is a (Σ ∪ X)-labelled tree t where
◆ every internal vertex x ∈ dom(t) is labelled by some function symbol

t(x) ∈ Σ and the number of immediate successors of x coincides with
the arity of the symbol t(x),

◆ every leaf x of t is labelled either by a variable from X or a constant symbol
(i.e., a -ary function symbol) from Σ.

¿e set of all Σ-terms with variables from X is denoted by Tω[Σ, X], the set of
all finite Σ-terms by T[Σ, X].
Definition .. A parity automaton is a tuple A = ⟨Q , Σ, δ, q ,Ω⟩ where Q is
the finite set of states, Σ is a signature, q ∈ Q is the initial state, Ω ∶ Q → ω is a
priority function, and ∆ ⊆ Q × Σ ×Q∗ is the transition relation.
Let t ∈ Tω[Σ,∅]. A run of A on t is a Q-labelled tree ρ ∶ dom(t) → Q with

the same domain as t such that ρ(⟨⟩) = q and
⟨ρ(x), t(x), ρ(y) . . . ρ(yn−)⟩ ∈ ∆ ,

for every vertex x ∈ dom(t) with immediate successors y , . . . , yn− .
Such a run is accepting if every infinite branch x , x , . . . in dom(t) satisfies

the following parity condition:

lim inf
n→∞

Ω(ρ(xn)) is even.
¿e language recognised by A consist of all trees t ∈ Tω[Σ,∅] for which there
is an accepting run. Languages recognised by some parity automaton are called
regular.

 H

Before introducing the notion of a hyperclone let us first give some intuition.
A hyperclone is an algebra where each element can be thought of as a tuple of

objects each of which has a number of ports. Each port is labelled by a natural
number. For instance, the objects could be terms where each occurrence of a
variable x i corresponds to a port with label i. In particular, the ports are arranged
in a le -to-right fashion and there may be several ports with the same label. For
simplicity, we assume that each object has only finitely many ports. Hence, to
each object we can associate a finite tuple of natural numbers. We can depict an
element of a hyperclone consisting of four objects with ports ⟨, ⟩, ⟨, , ⟩, ⟨⟩,
and ⟨, ⟩, respectively, as in the following diagram.

¿ere are two main operations in a hyperclone: horizontal and vertical com-
position. Horizontal composition ⊕ is just the concatenation of tuples.

⊕ =

For vertical composition ⋅ we plug in the i-th object of the second tuple into
every port of the first tuple with label i. For instance, if the objects are terms
then vertical composition might correspond in substituting the i-th term of the
second tuple for the variable x i in each term of the first tuple.

⋅ =

For technical reasons, we will not use the basic vertical composition ⋅, but amore
complicated operation ∶I ,τ where we can plug in objects into only some of the
ports, while changing the numbers of the remaining ports.
¿e motivating example of a hyperclone is the algebra consisting of all terms.

We define this algebra first, before giving the general definition of a hyperclone.

Definition .. (a) Let Σ be a signature and set X ∶= {x , x , . . . }. We denote by
Tω[Σ] the set of all terms t ∈ Tω[Σ, X] with only finitely many occurrences of
variables from X. As usual, T[Σ] is the subset of Tω[Σ] consisting of all finite
terms.
For a term t ∈ Tω[Σ], we denote by var(t) the sequence of all (indices of) vari-

ables appearing in t in le -to-right order. Formally, we define var as the unique
function Tω[Σ]→ ω<ω satisfying the following equations:

var(t) = ⟨⟩ , if t does not contain a variable,

var(x i) = ⟨i⟩ ,
and var(f (t , . . . , tn−)) = var(t) . . . var(tn−) .
(b) ¿e free ω-hyperclone over Σ is the many-sorted structure

Fω[Σ] ∶= ⟨(Fū[Σ])ū∈(ω<ω)<ω ,⊕, , (λσ)σ , (∶I ,τ)I ,τ , π, ≤⟩
where I ranges over finite subsets of ω, σ over all functions [m]→ [n], form, n <
ω, and τ over all functions [m]→ ω, form < ω.¿e set of sorts is (ω<ω)<ω where
the domain of sort ū = ⟨u , . . . , un−⟩ ∈ (ω<ω)<ω is the set

Fū[Σ] ∶= { ⟨t , . . . , tn−⟩ ∣ t i ∈ Tω[Σ] ∖ {x , x , . . . } with var(t i) = u i }
of all finite tuples of non-trivial terms such that the i-th term has variables u i .
Fω[Σ] has the following operations:

◆ ⊕ is the concatenation of tuples.

◆ ∶I ,τ , for I ⊆ [n] and τ ∶ [k]→ ω, is defined as

⟨s , . . . , sm−⟩ ∶I ,τ ⟨t , . . . , tn−⟩ ∶= ⟨u , . . . , um−⟩ ,
where u l is obtained from s l by replacing every occurrence of a variable x i
with i ∈ I by the term t i . Variables x i with i ∉ I are replaced by the vari-
able xτ(i).

◆ λσ reorders its argument according to σ ∶ [m]→ [n] :
λσ⟨t , . . . , tn−⟩ = ⟨tσ(), . . . , tσ(m−)⟩ .

◆ π(a , a , . . .) is the limit of the terms a, (a ⋅ a), (a ⋅ a ⋅ a),. . . , where,
for an m-tuple s̄ and an n-tuple t̄, the simple version of the vertical com-
position is defined by s̄ ⋅ t̄ ∶= s̄ ∶[n],id t̄.

◆ denotes the empty tuple of terms.

◆ ¿e order ≤ is trivial: a ≤ b iff a = b.

(c) ¿e free hyperclone over Σ is the restriction F[Σ] of Fω[Σ] where we omit
the infinite product π and restrict the domains to finite terms only.

Remark. Wehave omitted trivial terms t = x i consisting of a single variable from
our algebra in order to avoid technical difficulties with the infinite product. (¿e
product of x, x, x ,. . . is the term x, but it should be a termwithout variables.)
¿e price we have to pay for this choice is that we need a more complication
version ∶I ,τ of the vertical composition to build terms like

f (x , g(x)) = f (x , x) ∶{},τ ⟨h(x), g(x)⟩ where τ() = .
Before stating the general definition of a hyperclone, we need a bit of notation.

To manipulate finite sequences we define the following operations.

Definition .. Let A, B be sets.
(a) For ā = ⟨a , . . . , an−⟩ ∈ An and functions σ ∶ [m] → [n] and τ ∶ A → B,

we define

āσ ∶= ⟨aσ(), . . . , aσ(m−)⟩ ∈ Am

and τ(ā) ∶= ⟨τ(a), . . . , τ(an−)⟩ ∈ Bn .

Note that (āσ)σ′ = āσ○σ′ and τ(τ′(ā)) = (τ ○ τ′)(ā), for σ′ ∶ [n] → [k] and
τ′ ∶ B → C.
(b) For readability, we introduce a concatenation operation

cat ∶ (A<ω)<ω → A<ω by cat(ā , . . . , ān−) ∶= ā . . . ān− .
Since the definition of a hyperclone is rather long, we isolate some parts and

treat them separately. We start by axiomatising the horizontal composition ⊕.

Definition .. Let S be a set and C an S<ω-sorted structure with domains Cū ,
for ū ∈ S<ω .
(a) ¿e width of an element a ∈ Cū with ū ∈ Sn is the number n.
(b) A free monoid structure on C consists of

◆ a constant ∈ C⟨⟩ ;

◆ binary operations ⊕ ∶ Cū × Cv̄ → Cūv̄ for all ū, v̄ ∈ S<ω ;

◆ unary operations λσ ∶ Cū → Cūσ for all ū ∈ S<ω and every function σ ∶[m]→ [n] with n = ∣ū∣ and m < ω
that satisfy the following conditions:

() ¿emonoid laws for ⊕ :

(a ⊕ b)⊕ c = a ⊕ (b ⊕ c) and ⊕ a = a = a ⊕ ,

for all a, b, c ∈ C.

() is the only element of sort ⟨⟩ :
C⟨⟩ = {} .

() ¿e laws of the action of λσ on C :

λσ(λτ(a)) = λτ○σ(a) and λid(a) = a
for all a ∈ C and all suitable σ and τ.

() We can decompose every element a ∈ Cū of width m into a sum of ele-
ments in C⟨u⟩ , . . . ,C⟨um−⟩ of width :

a = λτ(a)⊕ ⋅ ⋅ ⋅ ⊕ λτm−(a) , where τ i ∶ []→ [m] ∶ ↦ i .

() For a ∈ Cū of width m and b ∈ Cv̄ of width n

λσ(a ⊕ b) = a and λτ(a ⊕ b) = b ,
where σ ∶ [m]→ [m + n] ∶ i ↦ i

and τ ∶ [n]→ [m + n] ∶ i ↦ m + i .

Lemma .. Let , ⊕, (λσ)σ be a free monoid structure on an S<ω-sorted struc-
ture C. For every sort ū = ⟨u , . . . , un−⟩ ∈ S<ω , the function

C⟨u⟩ × ⋅ ⋅ ⋅ × C⟨un−⟩ → Cū ∶ ⟨a , . . . , an−⟩↦ a ⊕ ⋅ ⋅ ⋅ ⊕ an−

is bijective. Furthermore,

λσ(a ⊕ ⋅ ⋅ ⋅ ⊕ an−) = aσ() ⊕ ⋅ ⋅ ⋅ ⊕ aσ(m−) ,

for all a i ∈ C⟨u i⟩ with u i ∈ S and all functions σ ∶ [m]→ [n].

Proof. ¿e above function is surjective by (). For injectivity, it is sufficient to
prove that

a ⊕ b = a′ ⊕ b′ implies a = a′ and b = b′ ,

for all a, a′ ∈ Cū and b, b
′ ∈ Cv̄ . ¿is follows from () since

a ⊕ b = a′ ⊕ b′ implies a = λσ(a ⊕ b) = λσ(a′ ⊕ b′) = a′
and similarly for b and b′.
For the second claim, we consider an element a = a ⊕ ⋅ ⋅ ⋅ ⊕ an− of width n.

For τk ∶ [] → [n] ∶ ↦ k and σk ∶ [n − k] → [n] ∶ i ↦ i + k it follows by ()
that

λτk(a) = λσk○τ(a ⊕ ⋅ ⋅ ⋅ ⊕ an−)
= λτ(λσk((a ⊕ ⋅ ⋅ ⋅ ⊕ ak−)⊕ (ak ⊕ ⋅ ⋅ ⋅ ⊕ an−)))
= λτ(ak ⊕ ⋅ ⋅ ⋅ ⊕ an−)
= ak .

For σ ∶ [m]→ [n], we therefore obtain
λσ(a) = λτ(λσ(a))⊕ ⋅ ⋅ ⋅ ⊕ λτm−(λσ(a))

= λσ○τ(a)⊕ ⋅ ⋅ ⋅ ⊕ λσ○τm−(a)
= λτσ()(a)⊕ ⋅ ⋅ ⋅ ⊕ λτσ(m−)(a)
= aσ() ⊕ ⋅ ⋅ ⋅ ⊕ aσ(m−) .

¿is lemma tells us that, in every algebra with a free monoid structure, we can
regard elements of width n as n-tuples of elements of width . ¿is identification
is formalised in the following definition.

Definition .. Let C be a structure with a free monoid structure , ⊕, (λσ)σ .
¿e decomposition of an element a ∈ C of width m is the tuple ⟨a , . . . , am−⟩ of
elements a i of width such that a = a ⊕ ⋅ ⋅ ⋅ ⊕ am−.

¿e free hyperclones defined above are S<ω-sorted algebras for S = ω<ω . We
define the following notation regarding this set of sorts.

Definition .. Let S ∶= (ω<ω)<ω .

(a) We write elements ū ∈ S as tuples ū = ⟨u , . . . , un−⟩ of functions u i ∶[m i]→ ω.
(b) Let ū = ⟨u , . . . , un−⟩ ∈ S. ¿e width of ū is its length n. ¿e support of ū

is the set

supp(ū) ∶= rngu ∪ ⋅ ⋅ ⋅ ∪ rngun− .
(c) For two tuples ū = ⟨u , . . . , um−⟩ and v̄ = ⟨v , . . . , vn−⟩ in S, a set I ⊆ [m],

and a function σ ∶ [k]→ ω such that

supp(ū) ∩ I ⊆ [n] and supp(ū) ∖ I ⊆ [k] ,
we define the substitution operation

ū ∶I ,σ v̄ ∶= ⟨cat(w̄), . . . , cat(w̄m−)⟩
where

wk
i ∶=
⎧⎪⎪⎨⎪⎪⎩
vuk(i) if uk(i) ∈ I ,⟨σ(uk(i))⟩ if uk(i) ∉ I .

Example. Let ū = ⟨⟨, , ⟩, ⟨, ⟩⟩, and v̄ = ⟨⟨, ⟩, ⟨, ⟩, ⟨, ⟩⟩. ¿en

ū ∶{,},σ v̄ = ⟨⟨, , , , σ()⟩, ⟨σ(), , ⟩⟩ .
In the next step, we introduce the axioms for the substitution operation ∶I ,σ .

Definition .. Let S ∶= (ω<ω)<ω and let C be an S-sorted algebra with free
monoid structure , ⊕, (λσ)σ .
(a) A substitution operation is a family of binary operations

∶I ,σ ∶ Cū × Cv̄ → Cū∶I ,σ v̄ , for all finite I ⊆ ω, all σ ∶ [m]→ ω, and

all ū, v̄ ∈ S such that ū ∶I ,σ v̄ is defined,

that satisfy the following conditions.

() For b = b ⊕ ⋅ ⋅ ⋅ ⊕ bm− of width m and c = c ⊕ ⋅ ⋅ ⋅ ⊕ cn− of width n, we
have the associative law

(a ∶I ,σ b) ∶J ,τ c = a ∶I∪σ−[J],τ○σ (d ⊕ ⋅ ⋅ ⋅ ⊕ dm−) ,

where

d i ∶=
⎧⎪⎪⎨⎪⎪⎩
b i ∶J ,τ c if i ∈ I ,
cσ(i) if i ∉ I .

() ¿e distributive law

(a ⊕ b) ∶I ,σ c = (a ∶I ,σ c)⊕ (b ∶I ,σ c) .
() a ∶∅,id b = a

() Let ū, v̄ ∈ S be sorts and σ ∶ [m]→ ω a function such that ū ∶∅,σ v̄ is defined.
For every a ∈ Cσ(ū), there are elements b ∈ Cū and c ∈ Cv̄ with a = b ∶∅,σ c.

() For a ∈ Cū and b, b
′ ∈ Cv̄ with decompositions b = b ⊕ ⋅ ⋅ ⋅ ⊕ bn− and

b′ = b′ ⊕ ⋅ ⋅ ⋅ ⊕ b′n− ,

a ∶I ,σ b = a ∶J ,τ b
′ ,

for all sets I, J and functions σ , τ such that

– b i = b′i , for all i ∈ I ∩ supp(ū) ,
– I ∩ supp(ū) = J ∩ supp(ū) ,
– σ ↾ (supp(ū) ∖ I) = τ ↾ (supp(ū) ∖ I) .

(b) For a substitution operation (∶I ,σ)I ,σ , we define the following abbreviations.
For a ∈ Cū and b ∈ Cv̄ , we set

a ∶I b ∶= a ∶I ,id b ,

a ⋅ b ∶= a ∶supp(ū) b ,

ρσ(a) ∶= a ∶∅,σ c , for an arbitrary c .

Note that, by (), the value of ρσ(a) does not depend on the chosen element c.
Let us collect some properties of the operation ρσ .

Lemma .. Let (∶I ,σ)I ,σ be a substitution operation for C. For all suitable values
of a, b, σ, τ, and I,

(a) ρid(a) = a

(b) ρσ(ρτ(a)) = ρσ○τ(a)
(c) λσ(ρτ(a)) = ρτ(λσ(a))
(d) λτ(a ∶I ,σ b) = λτ(a) ∶I ,σ b
(e) ρτ(a ∶I ,σ b) = a ∶I ,τ○σ ρτ(b)
(f) ρτ(a) ∶I ,σ b = a ∶τ−[I],σ○τ λτ(b)
(g) ρσ ∶ Cū → Cσ(ū) is bijective, for all suitable ū and σ.

(h) if a ∈ Cū and σ ↾ supp(ū) = τ ↾ supp(ū), then ρσ(a) = ρτ(a).
Proof. (a) is just a restatement of ().
(b) We have

ρσ(ρτ(a)) = (a ∶∅,τ b) ∶∅,σ c
= a ∶∅,σ○τ (d ⊕ ⋅ ⋅ ⋅ ⊕ dm−) = ρσ○τ(a) ,

where d , . . . , dm− are as in ().
(c) Let a = a ⊕ ⋅ ⋅ ⋅ ⊕ am− and σ ∶ [n]→ [m]. ¿en

λσ(ρτ(a)) = λσ(ρτ(a ⊕ ⋅ ⋅ ⋅ ⊕ am−))
= λσ(ρτ(a)⊕ ⋅ ⋅ ⋅ ⊕ ρτ(am−))
= ρτ(aσ())⊕ ⋅ ⋅ ⋅ ⊕ ρτ(aσ(n−))
= ρτ(aσ() ⊕ ⋅ ⋅ ⋅ ⊕ aσ(n−))
= ρτ(λσ(a)) .

(d) Let τ ∶ [m] → [n] and let a = a ⊕ ⋅ ⋅ ⋅ ⊕ an− be the decomposition of a.
¿en

λτ(a ∶I ,σ b) = λτ((a ⊕ ⋅ ⋅ ⋅ ⊕ an−) ∶I ,σ b)
= λτ(a ∶I ,σ b ⊕ ⋅ ⋅ ⋅ ⊕ an− ∶I ,σ b)
= (aτ() ∶I ,σ b)⊕ ⋅ ⋅ ⋅ ⊕ (aτ(m−) ∶I ,σ b)
= (aτ() ⊕ ⋅ ⋅ ⋅ ⊕ aτ(m−)) ∶I ,σ b
= λτ(a) ∶I ,σ b .

(e) Let b = b ⊕ ⋅ ⋅ ⋅ ⊕ bm− and c = c ⊕ ⋅ ⋅ ⋅ ⊕ cn−. Setting

d i ∶=
⎧⎪⎪⎨⎪⎪⎩
b i ∶∅,τ c if i ∈ I ,
cσ(i) if i ∉ I

as in (), it follows that

ρτ(a ∶I ,σ b) = (a ∶I ,σ b) ∶∅,τ c
= a ∶I ,τ○σ (d ⊕ ⋅ ⋅ ⋅ ⊕ dm−)
= a ∶I ,τ○σ ((b ∶∅,τ c)⊕ ⋅ ⋅ ⋅ ⊕ (bm− ∶∅,τ c))
= a ∶I ,τ○σ ((b ⊕ ⋅ ⋅ ⋅ ⊕ bm−) ∶∅,τ c)
= a ∶I ,τ○σ ρτ(b) .

(f) Let b = b ⊕ ⋅ ⋅ ⋅ ⊕ bm− and c = c ⊕ ⋅ ⋅ ⋅ ⊕ cn−. Setting

d i ∶=
⎧⎪⎪⎨⎪⎪⎩
c i ∶I ,σ b if i ∈ ∅ ,

bτ(i) if i ∉ ∅

as in (), it follows that

ρτ(a) ∶I ,σ b = (a ∶∅,τ c) ∶I ,σ b
= a ∶τ−[I],σ○τ (d ⊕ ⋅ ⋅ ⋅ ⊕ dn−)
= a ∶τ−[I],σ○τ (bτ() ⊕ ⋅ ⋅ ⋅ ⊕ bτ(n−))
= a ∶τ−[I],σ○τ λτ(b) .

(g) Consider σ ∶ [m]→ [n]. It follows immediately from () that ρσ is surject-
ive. For injectivity, suppose that ρσ(a) = ρσ(b). Let τ ∶ [n]→ [] be the constant
function with value . Since τ○σ ∶ [m]→ [] is surjective, there exists a function
τ′ ∶ [] → [m] such that τ ○ σ ○ τ′ = id. By (), we can find elements a and b
such that a = ρτ′(a) and b = ρτ′(b). It follows that

a = ρid(a) = ρτ○σ○τ′(a) = ρτ(ρσ(ρτ′(a))) = ρτ(ρσ(a))
= ρτ(ρσ(b)) = ρτ(ρσ(ρτ′(b))) = ρτ○σ○τ′(b) = ρid(b) = b .

Consequently, a = ρτ′(a) = ρτ′(b) = b.
(h) follows from () :

ρσ(a) = a ∶∅,σ b = a ∶∅,τ b = ρτ(a) .

Mainly we are interested in the simple version ⋅ of the substitution operation.
¿e corresponding laws take the following simpler form.

Corollary .. Let (∶I ,σ)I ,σ be a substitution operation for C. ¿en

(a) (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(b) (a ⋅ b) ∶I ,σ c = a ⋅ (b ∶I ,σ c)
(c) λτ(a ⋅ b) = λτ(a) ⋅ b
(d) ρτ(a ⋅ b) = a ⋅ ρτ(b)
(e) ρτ(a) ⋅ b = a ⋅ λτ(b)

Definition .. Let (∶I ,σ)I ,σ be a substitution operation for C and let a ∈ Cū be
an element of sort ū = u . . . um−.
(a) We say that a is in separation normal form if there are numbers = k ≤

⋅ ⋅ ⋅ ≤ km < ω such that

u i = ⟨k i , k i + , . . . , k i+ − ⟩ , for all i < m .

(b)¿e separation normal form of a is an element b in separation normal form
such that a = ρσ(b), for some σ. We denote this normal form by sep(a).
Remark. Since the operations ρσ are bijective, every element a ∈ Cū has a unique
separation normal form. Hence, sep(a) is well-defined.
Example. In the free hyperclone we have

sep⟨ f (x , f (x , x)), f (x , x)⟩ = ⟨ f (x , f (x , x)), f (x , x)⟩ .
A er these preparations we can finally state the definition of a hyperclone.

Definition .. (a) Let S ∶= (ω<ω)<ω . A hyperclone is an S-sorted structure

C = ⟨(Cū)ū∈S , ⊕, (∶I ,σ)I ,σ , , (λσ)σ∈ω<ω , ≤⟩
such that

◆ , ⊕, (λσ)σ is a free monoid structure on C,

◆ (∶I ,σ)I ,σ is a substitution structure on C, and

◆ ≤ is a (family of) partial orders of each domain Cū such that, for all suit-
able a, b, c,

a ≤ b implies { a ⊕ c ≤ b ⊕ c , a ∶I ,σ c ≤ b ∶I ,σ c ,

c ⊕ a ≤ c ⊕ b , c ∶I ,σ a ≤ c ∶I ,σ b .

(b) To simplify notation, we write

σa ∶= λσ(a) , ab ∶= a ⋅ b ,

aσ ∶= ρσ(a) , στ ∶= τ ○ σ ,
for a, b ∈ C and σ , τ ∈ ω<ω .

(c) ¿e support of an element a ∈ Cū is the support of its sort ū :

supp(a) ∶= supp(ū) .
(d) A hyperclone C is finitary if every domain Cū is finite.
(e) Morphisms between hyperclones are defined in the usual way, i.e., they are

sort-preserving maps that are compatible with every operation and preserve the
ordering.

Remark. In the simplified notation, we have the following associative laws for a
hyperclone:

σ(τa) = (στ)a , σ(aτ) = (σa)τ ,
(aσ)τ = a(στ) , (aσ)b = a(σb) .

To check that the above definition of a hyperclone captures our intuition of
generalising F[Σ] we outline a proof of the fact that the ‘free hyperclone’ F[Σ] is
really free.

Remark. Note that the free hypercloneF[Σ] is generated by all terms of the form
σ(x , . . . , xn−), for σ ∈ Σ. In the following, we identify the symbols σ ∈ Σ with
these terms σ(x , . . . , xn−). Hence, we regard Σ as a subset of F[Σ].
Lemma .. F[Σ] is the free hyperclone generated by Σ.
Proof. To show that F[Σ] is free consider a hyperclone C and a sort-preserving
function f ∶ Σ → C. We have to extend f to a morphism φ ∶ F[Σ]→ C.
First, we define φ(t), for single terms t. We do so by induction on t. If t =

σ(x i , . . . , x im−) for some σ ∈ Σ, we define
φ(t) ∶= ρτ(f (σ)) , where τ ∶ [m]→ ω ∶ k ↦ ik .

For the inductive step, consider a term t = σ(s , . . . , sm−) with σ ∈ Σ. We
define I ⊆ [m] and τ ∶ [m]→ ω by

I ∶= { i < m ∣ s i is a non-trivial term} ,
τ(i) ∶= ⎧⎪⎪⎨⎪⎪⎩

k if s i = xk ,
 if i ∈ I .

We define

φ(t) ∶= f (σ) ∶I ,τ b ,
where b ∶= b ⊕ ⋅ ⋅ ⋅ ⊕ bm− for

b i ∶=
⎧⎪⎪⎨⎪⎪⎩
φ(s i) for i ∈ I ,
arbitrary otherwise .

For tuples t̄ = ⟨t , . . . , tm−⟩ with more than one component, we can now set

φ(t̄) ∶= φ(t)⊕ ⋅ ⋅ ⋅ ⊕ φ(tm−) .
For the empty tuple, we define φ(⟨⟩) ∶= .
It remains to prove that the mapping φ defined in this way is indeed a morph-

ism of hyperclones. Immediately from the definition of φ we see that

φ() = and φ(s̄ ⊕ t̄) = φ(s̄)⊕ φ(t̄) .
For λσ , we have

φ(λσ(t̄)) = φ(t̄σ) = φ(tσ())⊕ ⋅ ⋅ ⋅ ⊕ φ(tσ(m−)) = λσ(φ(t̄)) .
If t is a single term, we can show by induction on t that

φ(t ∶I ,σ s̄) = φ(t) ∶I ,σ φ(s̄) .
¿is implies the same statements for tuples t̄.

 ω-

Our main object of study are so-called ω-hyperclones which are obtained from
hyperclones by adding an infinite vertical product π(a , a , a , . . .). To formally

state the associative law for such infinite products we have to deal with different
factorisations of a sequence (an)n<ω. Note that we can split such a sequence not
only by cutting it ‘horizontally’ (i.e., ⟨a , . . . , ak−⟩, ⟨ak , . . . , a l−⟩,. . .), but also
‘vertically’ (i.e, an = bn ⊕ cn , for all n) and in many other intermediate ways. To
make this idea precise we associate with (an)n a forest as follows.
Let an = an ⊕ ⋅ ⋅ ⋅ ⊕ anm(n)− be the decomposition of an into elements of

width . We construct the graph whose vertices are pairs of indices ⟨n, i⟩ (repres-
enting ani), for all n < ω and i < m(i), wherewe add an edge from ⟨n, i⟩ to ⟨n+, k⟩
if k ∈ supp(ani). ¿e branch tree of (an)n is the tree-unfolding of this graph.
Example. In the free ω-hyperclone, consider the sequence (an)n<ω where an =⟨ f (x , x), g(x)⟩, for every n.¿e first levels of the branch tree of this sequence
are

⋮ ⋮

Each partition of this branch tree into connected parts corresponds to a factor-
isation of the product π(a , a , . . .). In the following definition we will encode
such a partition by a setH containing the least element (in the tree order) of each
class. ¿e associative law below states that every such factorisation results in the
same product.

Definition .. Let C be a hyperclone.
(a) We use the notation a◻ for a sequence (an)n<α of length α ≤ ω such that

the product an ⋅ an+ is defined for every n.
(b) We say that a sequence a◻ = (an)n<α is in separation normal form if

every an is in separation normal form.
(c) Let a◻ = (an)n<α be a sequence, letm(n) be the width of an , and suppose

that an = an ⊕ ⋅ ⋅ ⋅ ⊕ anm(n)− is the decomposition of a
n into elements of width .

¿e branch tree of a◻ is the forest

Λ(a◻) ∶= { η ∈ ω<α ∣ ∣η∣ > , η() < m(), and
η(n +) ∈ supp(anη(n)), for all n } .

A branch of a◻ is a sequence β ∈ ω≤ω of maximal length such that every finite
prefix η ⪯ β belongs to Λ(a◻).
(d) We define functions µ ∶ Λ(a◻)→ C and µ ∶ Λ(a◻)→ ω × ω by setting

µ(η) ∶= ⟨n − , η(n −)⟩ and µ(η) ∶= an−η(n−) , for n ∶= ∣η∣ > .
Hence, µ(η) = ank , for ⟨n, k⟩ ∶= µ(η).
A subset U ⊆ Λ(a◻) is connected if there exists an element η ∈ U such that

ζ ∈ U implies η ⪯ ζ and ξ ∈ U for all η ⪯ ξ ⪯ ζ .

We extend µ to finite connected subsets U ⊆ Λ(a◻) as follows. We define an
element µ[U] ∈ C by induction on ∣U ∣. For U = {η}, we set

µ[{η}] ∶= sep(µ(η)) .
For ∣U ∣ > , let η be the minimal element of U and let ζ , . . . , ζm− be its suc-
cessors in Λ(a◻). We define

µ[U] ∶= sep(b ∶I c) .
where

I ∶= { i < m ∣ ζ i ∈ U } ,
b ∶= µ[{η}] ,
c ∶= µ[U]⊕ ⋅ ⋅ ⋅ ⊕ µ[Um−] for U i ∶= {ζ i} ∪ { ξ ∈ U ∣ ξ ⪰ ζ i } .

(e) Let H ⊆ Λ(a◻) be a set such that
◆ H contains all roots of Λ(a◻) (i.e., all sequences η ∈ Λ(a◻) with ∣η∣ =),
◆ every infinite branch of Λ(a◻) contains infinitely many elements of H,
◆ µ(η) = µ(ζ) implies η ∈ H⇔ ζ ∈ H, for η, ζ ∈ Λ(a◻).

¿en H induces a factorisation b◻ of a◻ as follows.
For each η ∈ H, we set

∥η∥ ∶= ∣{ ζ ∈ H ∣ ζ ≺ η }∣ ,
Uη ∶= { ζ ∈ Λ(a◻) ∣ η ⪯ ζ and there is no η′ ∈ H with η ≺ η′ ⪯ ζ } ,
bη ∶= µ[Uη] .

We define

bn ∶= sep(bηn

⊕ ⋅ ⋅ ⋅ ⊕ bηn

l
) ,

where ηn , . . . , η
n
l is an enumeration, from le to right, of all η ∈ H with ∥η∥ = n.

(f) ¿e unravelling of a◻ is the factorisation b◻ of a◻ induced by the set H ∶=
Λ(a◻).
Remark. Note that the unravelling b◻ of a sequence a◻ is always in separation
normal form. Suppose that an has widthm(n) and let ηn , . . . , ηnk(n)− be an enu-
meration, from le to right, of all elements of Λ(a◻) of length n + . Defining
the functions σn ∶ [k(n)]→ [m(n)] with

σn(i) ∶= ηni (n) ,
we obtain

bnσn+ = µ(ηn)⊕ ⋅ ⋅ ⋅ ⊕ µ(ηnk(n)−) = σnan , for all n < ω .

Definition .. (a) An ω-hyperclone is an expansion of a hyperclone C by (a fam-
ily of) ω-ary operations

π ∶ ∏
n<ω

Cūn → Cv̄ ,

for all v̄ , ū , ū , . . . such that

◆ supp(ūn) ⊆ [mn+], where mn+ is the width of ūn+, and

◆ v̄ = ⟨∅, . . . ,∅⟩ is the tuple of the same width as ū consisting entirely of
empty tuples ∅ ∶ ∅→ ω.

We require C to satisfy the following conditions, for every sequence a◻ :

() For all k < k < k < ⋅ ⋅ ⋅ < ω, we have the associative laws

π(a , a , a , . . .) = a ⋅ π(a , a , . . .) ,
π(a , a , a , . . .) = π((a⋯ak−), (ak⋯ak−), (ak⋯ak−), . . .) .

() Let b◻ be the factorisation of a◻ induced by some H ⊆ Λ(a◻). ¿en

π(b◻) = π(a◻) .
() Let m(n) be the width of an and set bn ∶= π(an , an+ , . . .). For all In ⊆[m(n)], we have

π(a , a , . . .) = π(a ∶I b , a ∶I b , a ∶I b , . . .) .
() Let m(n) be the width of an . If σn ∶ [m(n)] → [m(n)], n < ω, are func-

tions such that

σnπ(an , an+ , . . .) = π(an , an+ , . . .) ,
then

π(σa , σa , σa , . . .) = π(a , a , a , . . .) .
() For all sequences a◻ and b◻,

an ≤ bn , for all n < ω, implies π(a , a , . . .) ≤ π(b , b , . . .) .
Remark. Note that, if b◻ is the unravelling of a◻, then () implies that π(b◻) =
π(a◻). More generally, if a◻ and b◻ are sequences such that bnσn+ = σnan , for
suitable functions σn , n < ω, then π(b◻) = σπ(a◻), since the sequences b◻ and
σa , a , a , . . . have the same unravelling.

Remark. Every ω-semigroup ⟨S, Sω⟩ can be turned into an ω-hyperclone with
domains

C⟨u⟩ ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sω if u = ⟨⟩ ,
S if u = ⟨k⟩ ,
∅ otherwise ,

C⟨u , . . . ,um−⟩ ∶= C⟨u⟩ × ⋅ ⋅ ⋅ × C⟨um−⟩ , for m ≠ .

¿e definition of ⊕ and λσ is canonical; ∶I ,τ and π correspond to the products of
the ω-semigroup.

Morphisms between ω-hyperclones are defined in the obvious way. We con-
clude this section by showing that the free ω-hyperclone Fω[Σ] defined above
really is free.

Lemma .. Fω[Σ] is the free ω-hyperclone generated by Σ.
Proof. To show that Fω[Σ] is free, consider an ω-hyperclone C and a sort-pre-
serving function f ∶ Σ → C. We have to extend f to a morphism φ ∶ Fω[Σ]→ C.
We have already seen in Lemma . that we can extend f to a function φ ∶

F[Σ] → C that is a morphism of hyperclones. Hence, it remains to define φ(t)
for infinite terms t and to show that it is also a morphism of ω-hyperclones.
We define φ(t) by induction on the number of variables in t. If t does not

contain a variable, we set

φ(t) ∶= π(a , a , . . .) ,
where the an are defined as follows. Let vn , . . . , v

n
m(n)− be an enumeration (in

lexicographic order) of all vertices v ∈ dom(t) of length ∣v∣ = n, and set σnk ∶=
t(vnk). We define

an ∶= sep(f (σn)⊕ ⋅ ⋅ ⋅ ⊕ f (σnm(n)−)) .
For an infinite term t with variables, we factorise t as

t = s ∶I ,σ t̄
′

where s is a finite term and t̄′ is a tuple of infinite terms with fewer variables
than t. We define

φ(t) ∶= φ(s) ∶I ,σ φ(t̄′) .
It remains to check that φ is a morphism of ω-hyperclones. We only give a

sketch for the proof that φ commutes with infinite products. Let t̄n ∈ Fūn
[Σ],

n < ω, be a sequence such that the product t̄ω ∶= π(t̄◻) is defined. We have to
show that

φ(t̄ω) = π(φ(t̄), φ(t̄), . . .) .
Note that, by definition of φ,

φ(t̄ω) = φ(tω)⊕ ⋅ ⋅ ⋅ ⊕ φ(tωm−) ,
φ(t̄) = φ(t)⊕ ⋅ ⋅ ⋅ ⊕ φ(tm−) ,

where t̄ω = tω ⊕ ⋅ ⋅ ⋅ ⊕ tωm− and t̄
 = t ⊕ ⋅ ⋅ ⋅ ⊕ tm− are the decompositions of

t̄ω and t̄, respectively. Since for all suitable a, b, c , c , . . . , it follows by () and
() that

π(a ⊕ b, c , c , . . .) = (a ⊕ b) ⋅ π(c , c , . . .)
= a ⋅ π(c , c , . . .)⊕ b ⋅ π(c , c , . . .)
= π(a, c , c , . . .)⊕ π(b, c , c , . . .) ,

it is therefore sufficient to prove the claim for elements t̄ω = tω of width .
Let s̄◻ be the unravelling of t̄◻. ¿en (φ(s̄n))n is the unravelling of (φ(t̄n))n

and, by (), we have

π(s̄◻) = π(t̄◻) = tω ,
and π(φ(s̄), φ(s̄), . . .) = π(φ(t̄), φ(t̄), . . .) .
Replacing t̄◻ by s̄◻ we may therefore assume w.l.o.g. that the sequence t̄◻ is in
separation normal form.
Note that

tω = π(a◻) and φ(tω) = π(φ(a), φ(a), . . .) ,
where, as above,

an ∶= sep(tω(vn)⊕ ⋅ ⋅ ⋅ ⊕ tω(vnm(n)−)) ,
for an enumeration vn , . . . , v

n
m(n)− of all vertices of dom(tω) of length n. Since

the term tω is the product of the t̄n , there exists, for every term tni , an embedding
dom(tni)→ dom(tω) such that the images of these embeddings form a partition
of dom(tω). Furthermore, there is a canonical isomorphism dom(tω) ≅ Λ(a◻).
Let H ⊆ Λ(a◻) be the set of all vertices that correspond to the root of some tni
under the corresponding embedding.¿en t̄◻ is the factorisation of a◻ induced
by H, and (φ(an))n is the factorisation of (φ(tn))n induced by H. By (), it
follows that

φ(tω) = π(φ(a), φ(a), . . .) = π(φ(t̄), φ(t̄), . . .) .
We are interested in using ω-hyperclones to recognise languages of infinite

terms. In the following sections we will isolate a class of finitary ω-hyperclones
that recognise exactly the regular languages.

Definition .. Let φ ∶ Fω[Σ] → C be a morphism of ω-hyperclones. A sub-
set L ⊆ F⟨∅⟩[Σ] is recognised by φ if there exists some set P ⊆ C⟨∅⟩ such that
L = φ−[P]. Similarly, we say that L is recognised by C if there exists a morphism
φ ∶ Fω[Σ]→ C recognising L.

Let us give an example of an ω-hyperclone recognising a language which will
be used in the proof of ¿eorem . below.

Lemma .. Let Γ ⊆ Σ be signatures. ¿en L ∶= F⟨∅⟩[Γ], regarded as a subset of
F⟨∅⟩[Σ], is recognised by a finitary ω-hyperclone.
Proof. Let us give some intuition first. For each tree, we only need to compute
one bit of information: whether or not it contains a symbol from Σ ∖ Γ. Hence,
we map an n-tuple t̄ of trees to an n-tuple b̄ of bits where b i = if, and only if,
t i only contains symbols from Γ.
Consequently, we use the following ω-hyperclone C. ¿e domain of sort ū is

Cū ∶= {, }n where n ∶= ∣ū∣ .
For ā ∈ Cū of widthm and b̄ ∈ Cv̄ of width n, we define the operations as follows:

ā ⊕ b̄ ∶= āb̄ , ∶= ⟨⟩ , λσ(ā) ∶= āσ ,
ā ∶I ,σ b̄ ∶= c̄ , where c i ∶=min({a i} ∪ { bk ∣ k ∈ I ∩ supp(u i) }) .

¿e infinite product is defined as

π(ā , ā , ā , . . .) ∶= b̄ , where b i ∶= lim
n→∞
(ai ⋅ ā ⋅ ā ⋅ ⋯ ⋅ ān) .

¿emorphism φ ∶ Fω[Γ]→ C recognising L is defined by

φ(t) ∶= ⎧⎪⎪⎨⎪⎪⎩
 if t ∈ F⟨∅⟩[Γ] ,
 otherwise ,

and φ(t̄) ∶= ⟨φ(t), . . . , φ(tn−)⟩. It follows that L = φ−().

 P-

In this section we prove our first characterisation result. We define path-hyper-
clones andwe show that they are equivalent to parity automata. Intuitively, a path-
hyperclone is an ω-hyperclone where the elements are (tuples of) trees whose

edges are labelled by elements of a given ω-semigroup ⟨S, Sω⟩. We label a term t
with n variables by an n-tuple s̄ ∈ Sn of semigroup elements, one for each path
from the root to a variable. Furthermore, we label the infinite paths of t by ele-
ments of Sω . ¿ese are collected in a set P ⊆ Sω . Hence, the labelling of t is a
pair (s̄, P) ∈ Sn × ℘(Sω). In fact, with each term t we associate a set of possible
labellings. Hence, the actual labels are sets in ℘(Sn × ℘(Sω)).
Definition .. Let S = ⟨S, Sω⟩ be an ω-semigroup. We associate with S an
ω-hyperclone C called the path-hyperclone ofS. ¿e domains are

C⟨u⟩ ∶= ℘(Sn × ℘(Sω)) , for u ∶ [n]→ ω of width ,

and Cū ∶= Cu
× ⋅ ⋅ ⋅ × Cum−

, for ū = u . . . um− of width m ≠ .

Horizontal composition ā⊕b̄ ∶= āb̄, the constant ∶= ⟨⟩, and the action λσ(ā) ∶=
āσ are defined canonically. For a ∈ C⟨u⟩ and b̄ ∈ Cv̄ with u ∶ [n] → ω of width ,
we define the substitution operation

a ∶I ,σ b̄ ∶= {(cat(z̄ , . . . , z̄n−), P ∪⋃i∶u(i)∈I s i ⋅ Q i) ∣
(s̄, P) ∈ a, (t̄ i ,Q i) ∈ bu(i) , z̄ i ∶=

⎧⎪⎪⎨⎪⎪⎩
s i ⋅ t̄

i if u(i) ∈ I ,
⟨s i⟩ if u(i) ∉ I . } .

(s i ⋅ t̄
i and s i ⋅Q i refer to the canonical action of S on, respectively, S

<ω and℘(S).)
We extend this definition to tuples ā ∈ Cū and b̄ ∈ Cv̄ by setting

ā ∶I ,σ b̄ ∶= ⟨a ∶I ,σ b̄, . . . , a∣ū∣− ∶I ,σ b̄⟩ .
We define an order on Cū by setting

ā ≤ b̄ : iff a i ⊆ b i , for all i .

To define the infinite product consider a sequence ā◻ inC. Let µ ∶ Λ(a◻)→ C
be the function from Definition .. A run on a◻ is a function

χ ∶ Λ(a◻)→ S<ω × ℘(Sω) such that χ(η) ∈ µ(η) , for all η .

Let χ be a run on ā◻ and let η ∈ Λ(a◻) be a vertex with ∣η∣ = k. We denote
the prefix of η of length n by ηn . Suppose that ηn+ is the dn-th successor of ηn
in Λ(a◻), and let χ(ηn) = (s̄n , Pn). We set

Π χ(η) ∶= { sd
⋯sk−dk−

w ∣ w ∈ Pk } .

For infinite branches β = (ηn)n<ω of Λ(a◻) where ηn+ is the dn-th successor
of ηn and χk(ηn) = (s̄n , Pn), we set

πχ(β) ∶= π(sd
, sd

, . . .) .
Finally, we set

Π(χ) ∶= ⋃
η∈Λ(a◻)

Π χ(η) ∪ { πχ(β) ∣ β an infinite branch of Λ(a◻) } .
We define the infinite product as follows. Suppose that ā = ⟨a , . . . , am−⟩ has
width m. We set

π(ā , ā , . . .) ∶= ⟨b , . . . , bm−⟩ ,
where

b i ∶= { (⟨⟩,Π(χ)) ∣ χ a run on ai , ā , ā , . . . } .
With each automaton we can associate a corresponding path-hyperclone.

Definition .. Suppose thatA = ⟨Q , Σ, ∆, q ,Ω⟩ is a parity automaton and set
D ∶= rngΩ. ¿e hyperclone CA forA is the path-hyperclone associated with the
ω-semigroup ⟨S, Sω⟩ where

S ∶= Q × D × Q ⊍ {�} and Sω ∶= Q ⊍ {�} .
¿emultiplication S × S → S is defined by

(p, d , q) ⋅ (p′, d′ , q′) ∶= ⎧⎪⎪⎨⎪⎪⎩
(p,min {d , d′}, q′) if q = p′ ,
� otherwise .

s ⋅ � = � ⋅ s ∶= � , for all s ∈ S .

¿emultiplication S × Sω → Sω is defined by

(p, d , q) ⋅ r ∶= ⎧⎪⎪⎨⎪⎪⎩
p if q = r ≠ � ,
� otherwise .

� ⋅ r ∶= � .

For sn = (pn , dn , qn) ∈ S, n < ω, we define the infinite product by

π(s , s , . . .) ∶=
⎧⎪⎪⎨⎪⎪⎩
p if qn = pn+ , for all n, and lim inf

n→∞
dn is even ,

� otherwise .

If some sn = � then we set

π(s , s , . . .) ∶= � .
¿e following two theorems show that path-hyperclones recognise the same

languages as parity automata.

¿eorem .. For every automaton A, there exists a morphism φ ∶ Fω[Σ] → C

into a path-hyperclone C associated with a finite ω-semigroup such that φ recog-
nises L(A).
Proof. Suppose thatA = ⟨Q , Σ, ∆, q ,Ω⟩ is a nondeterministic parity automaton
and let C ∶= CA be the hyperclone for A. We define the morphism φ as follows.
Recall that Fω[Σ] is freely generated by Σ. Hence, it is sufficient to define φ for
elements of Σ. If σ ∈ Σ is of arity n, we set

φ(σ) ∶= { (s̄,∅) ∈ Sn × ℘(Sω) ∣ there is some (p, σ , q̄) ∈ ∆ with
s i ∶= (p,Ω(q i), q i) for all i } .

We claim that L(A) = φ−[P] where
P ∶= {X ∈ C⟨⟩ ∣ (⟨⟩, {q}) ∈ X } .

Let t ∈ T
ω[Σ] be a tree and let vn , . . . , vnm(n)− be an enumeration from le to

right of all vertices v ∈ dom(t) of length ∣v∣ = n. Setting ani ∶= φ(t(vni)) it follows
that

φ(t) = π(a , a , . . .) where an ∶= sep(an ⊕ ⋅ ⋅ ⋅ ⊕ anm(n)−) .
Furthermore, note that the trees dom(t) and Λ(a◻) are isomorphic. Let

µ ∶ dom(t)→ Λ(a◻)
be the corresponding isomorphism. We have to show that φ(t) ∈ P iff t ∈ L(A).

(⇐) Let ρ ∶ dom(t) → Q be an accepting run of A on t. We obtain a run χ
on (φ(an))n as follows. Let η ∈ Λ(a◻) be a vertex with successors ζ , . . . , ζk−
and suppose that ρ(µ−(η)) = p and ρ(µ−(ζ i)) = q i . We set

χ(η) ∶= (s̄,∅) where s i ∶= (p,Ω(q i), q i) , for all i < k .
χ is a run on a◻. Since ρ is accepting it follows that Π(χ) = {q}. Hence, φ(t) ∈
P. (⇒) Since φ(t) ∈ P there is some run χ on a◻ with Π(χ) = {q}. Let w ∈
dom(t) and suppose that χ(µ(w)) = (s̄,∅). ¿ere are states p, q , q , ⋅ ⋅ ⋅ ∈ Q
such that s i = (p,Ω(q i), q i). We set

ρ(wn) ∶= p .
¿en ρ is a run ofA on t. It is accepting by choice of χ.

¿e proof of the converse result is split into several lemmas.

Lemma .. Let S = ⟨S, Sω⟩ be a finite ω-semigroup. For every u ∈ Sω , there
exists an ω-automaton Au recognising the language

L(Au) ∶= { (an)n ∈ Sω ∣ π(a , a , . . .) = u } .
Proof. Let (an)n ∈ Sω be the input word. By the¿eoremof Ramsey, we can find
an increasing sequence of indices k < k < ⋅ ⋅ ⋅ < ω such that

ak i . . . ak i+− = ak j
. . . ak j+− , for all i , j < ω .

Hence, the automaton Au can check that π(a , a , . . .) = u by guessing two
elements s, e ∈ S with seω = u and then checking that there are indices k < k <
⋅ ⋅ ⋅ < ω such that

a⋯ak− = s and ak i⋯ak i+− = e , for all i < ω .

Lemma .. Let C be the path-hyperclone associated with a finite ω-semigroup⟨S, Sω⟩ and let φ ∶ Fω[Σ] → C be a homomorphism. For every Q ⊆ Sω , there
exists an automaton AQ such that

(⟨⟩,Q) ∈ φ(t) iff t ∈ L(AQ) , for all trees t ∈ F⟨∅⟩[Σ] .

Proof. Let t ∈ F⟨∅⟩[Σ] be a tree and let vn , . . . , vnm(n)− be an enumeration from
le to right of all vertices v ∈ dom(t) of length ∣v∣ = n. Setting ani ∶= φ(t(vni)) it
follows that

φ(t) = π(a , a , . . .) where an ∶= sep(an ⊕ ⋅ ⋅ ⋅ ⊕ anm(n)−) .
As in the proof of ¿eorem . there is an isomorphism

µ ∶ Λ(a◻)→ dom(t) .
If χ is a run on a◻, then we have

χ(η) ∈ φ(t(µ(η))) , for all η .

Consequently, our automaton AQ can guess a run χ by guessing a labelling χ ∶
dom(t)→ C and checking that χ(v) ∈ φ(t(v)), for all v ∈ dom(t). Having done
so, it uses Lemma . to verify that

◆ Π χ(v) ⊆ Q, for all vertices v of χ ;
◆ πχ(β) ∈ Q, for every infinite branch β of χ ;
◆ for every s ∈ Q, there is some vertex v of χ with s ∈ Π χ(v), or there is an
infinite branch β of χ with πχ(β) = s.

¿eorem .. Let C be a path-hyperclone associated with a finite ω-semigroup.
For every homomorphism φ ∶ Fω[Σ] → C into C and for every subset P ⊆ C⟨∅⟩,
there exists an automatonA recognising the set

L(A) = φ−[P] .
Proof. We use the automata AQ provided by the preceding lemma. Given an
input tree t, the automatonA guesses some a ∈ P and checks that

◆ AQ accepts t, for every Q with (⟨⟩,Q) ∈ a, and
◆ AQ does not accept t, for every Q with (⟨⟩,Q) ∉ a.

 P-

In¿eorem . and ., we have characterised the regular tree languages as those
that are recognised bymorphisms into path-hyperclones.¿is result is somewhat
unsatisfactory since the definition of a path-hyperclone is not ‘algebraic’ in the
sense that path-hyperclones are not closed under isomorphisms. In particular,
there is no known axiomatic characterisation of path-hyperclones, say, via a set
of equations. ¿erefore, we define a second class of ω-hyperclones (this time
by axioms that are invariant under isomorphisms) and we show that these ω-
hyperclones can also be used to characterise regular tree languages.
Our approach is as follows.We isolate several special properties of path-hyper-

clones and we show that these properties are sufficient for constructing an auto-
maton that evaluates infinite products. In the proof of Lemma . the main in-
gredient was the fact that an infinite product in a path-hyperclone basically re-
duces to a family of infinite products along branches of the term. ¿erefore, we
will consider ω-hyperclones where we can evaluate an infinite product by con-
sidering each branch separately.
¿e idea is as follows. Given a sequence a◻ we would like to compute the

product π(a◻) by guessing the values bn ∶= π(an , an+ , an+ , . . .), for all n < ω,
and then checking that our guess was correct. A necessary condition for (bn)n<ω
are the equations bn = anbn+. In general, this condition is not sufficient, even
for path-hyperclones. But adding an additional consistency condition on every
branch of a◻, we obtain a condition that is sufficient for path-hyperclones.

Definition .. Let C be an ω-hyperclone and J ⊆ C a subset.
(a) A sequence (bn)n<ω where bn ∈ C⟨∅, . . . ,∅⟩ is locally consistent with a◻ if

bn = anbn+, for every n < ω. We denote by LCJ(a◻) the set of all locally consist-
ent sequences (bn)n<ω with bn ∈ J, for all n.
(b) Let a◻ be a sequencewhere an has the decomposition an = an⊕⋅ ⋅ ⋅⊕a

n
m(n)−,

let (bn)n ∈ LCJ(a◻) be locally consistent with a◻, and let β be a branch of a◻.
¿e trace of (bn)n along β is the sequence c◻ with

cn ∶= sep(anβ(n) ∶In bn+) ,
where

In ∶=
⎧⎪⎪⎨⎪⎪⎩
[m(n +)] ∖ {β(n +)} if n + ∈ dom(β) ,
[m(n +)] otherwise .

We set

TrJ(β) ∶= { π(c◻) ∣ c◻ the trace of some (bn)n ∈ LCJ(a◻) along β } ,
BTJ(a◻) ∶= {TrJ(β) ∣ β a branch of Λ(a◻) } .

Remark. Let c◻ be the trace of (bn)n over a◻ along the branch β and letm(n) be
the width of an . Each element cn has width . Setting

σn ∶ [m(n +)]→ [] ∶ x ↦ ,

τn ∶ []→ [m(n)] ∶ ↦ β(n) ,
we have

π(c◻) = π(τ(a ∶I ,σ b), τ(a ∶I ,σ b), . . .)
= τπ((a ∶I ,σ b)τ , (a ∶I ,σ b)τ , . . .)
= τπ(a ∶I b , a ∶I b , . . .) .

In particular, for the special case that bn = π(an , an+ , an+ , . . .), we have
π(c◻) = τπ(a◻) .

Note that, for J = C, there is at least one sequence (bn)n ∈ LCJ(a◻) : the
sequence with bn = π(an , an+ , an+ , . . .). Unfortunately, inmost cases this ‘real’
sequence is not the only one. Let us mention two simple cases, where we always
have a unique locally consistent sequence.

◆ Every sequence a◻ in the free ω-hyperclone Fω[Σ] has this property.
◆ A sequence a◻ in an arbitraryω-hyperclone has this property if the branch
tree Λ(a◻) is finite. (Hence, the product π(a◻) is not truly infinite.)

In the general case, we thus face the problem of singling out the ‘real’ sequence
from among the sequences in LCJ(a◻). We will introduce a class of ω-hyper-
clones, where this can be done by checking the branches separately. To obtain
the precise definitions we will first take a look at path-hyperclones.We start with
collecting some technical results on infinite products in path-hyperclones.

Definition .. Let C be a path-hyperclone. An element a ∈ Cu of width is
subminimal if ∣a∣ ≤ . An element a = a ⊕ ⋅ ⋅ ⋅ ⊕ an− ∈ Cū of width n > is
subminimal if every component a i is subminimal. Finally, we call a sequence a

◻

of elements subminimal if every an is subminimal.

Lemma .. Let C be a path-hyperclone and ā◻ a subminimal sequence where
ā has width , and let (b̄n)n ∈ LCJ(ā◻), where J is the set of all subminimal
elements.

(a) ¿ere is at most one run on ā◻.

(b) ∣π(ā◻)∣ ≤ .
(c) ¿ere exists a run on ā◻ if, and only if, π(ā◻) ≠ ∅.
(d) If c̄◻ is the trace of (b̄n)n over ā◻ along some branch β then c̄◻ is also sub-

minimal.

(e) If b ≠ ∅ and if c̄◻ is the trace of (b̄n)n over ā◻ along some branch β, then
π(c̄◻) ≠ ∅.

Proof. (a) holds since ∣ank ∣ ≤ , for all n and k.
(b),(c) By (a), there is atmost one run χ on (ān)n . Consequently, π(ā, ā , . . .)

is either empty or π(ā , ā , . . .) = {(⟨⟩,Π(χ))} is a singleton.
(d) follows by the definition of a trace.
(e) Let I ∶= µ[Λ(a◻)] where µ ∶ Λ(a◻) → ω × ω is the function from

Definition .. We claim that

ani , b
n
i , c

n
i ≠ ∅ , for all ⟨n, i⟩ ∈ I .

We start by proving, by induction on n, that bni ≠ ∅. For n = , we have b

 ≠ ∅,

by assumption. Hence, suppose that n > . Let η ∈ Λ(a◻) be an element with
µ(η) = ⟨n, i⟩ and let η be the predecessor of η. ¿en µ(η) = ⟨n − , k⟩, for
some k. By induction hypothesis, we have bn−k ≠ ∅. Hence, bn−k = an−k ⋅ b̄n

implies bni ≠ ∅, as desired.
¿e two remaining claims follow. For ani , note that

bni ≠ ∅ and bni = a
n
i ⋅ b̄

n+ implies ani ≠ ∅ .

It follows that cni = sep(ani ∶In b̄n+) ≠ ∅, for ⟨n, i⟩ ∈ I. Consequently, π(c̄◻) ≠
∅.

One important property of path-hyperclones is the fact that the traces of sub-
minimal sequences uniquely determine the value of an infinite product.

Lemma .. Let C be a path-hyperclone, J ⊆ C the set of all subminimal elements,
and ā◻ a subminimal sequence where ā has width .

(a) π(ā◻) ∈ TrJ(β), for every branch β.
(b) Suppose that π(ā◻) = {(⟨⟩, P)}. For every s ∈ P, there exists some branch β

of Λ(ā◻) such that s ∈ Q, for every set Q with {(⟨⟩,Q)} ∈ TrJ(β).
(c) If π(ā◻) = ∅, there exists a branch β of Λ(ā◻) such that TrJ(β) = {∅}.
(d) ¿e value of the product π(ā◻) is uniquely determined by the set BTJ(ā◻).

Proof. (a) Let b̄n ∶= π(ān , ān+ , . . .). By Lemma . (b), we have b̄n ∈ J. Hence,(b̄n)n ∈ LCJ(ā◻) and π(ā◻) = b̄ ∈ TrJ(β).
(b) By Lemma . (c), there is a unique run χ on (ān)n . Note that

P = Π(χ) = ⋃
η

Π χ(η) ∪ { πχ(β) ∣ β an infinite branch } .
First, suppose that s ∈ Π χ(η), for some η ∈ Λ(ā◻) of length k. Let β be a

branch of Λ(ā◻) containing η. We claim that β has the desired properties. Let{(⟨⟩,Q)} ∈ TrJ(β). ¿ere exists a sequence (b̄n)n ∈ LCJ(ā◻) such that π(c̄◻) ={(⟨⟩,Q)}, where c̄◻ is the trace of (b̄n)n along β. By Lemma . (c), there is a
unique run χ′ on c̄◻. Since Π χ(η) ⊆ Π χ′(k), it follows that

π(c̄◻) = {(⟨⟩, R)} where s ∈ ⋃
ζ∈Λ(c̄◻)

Π χ′(ζ) ⊆ R .

It remains to consider the case that s = πχ(β), for some infinite branch β. We
claim that β has the desired properties. Let {(⟨⟩,Q)} ∈ TrJ(β). ¿ere exists a
sequence (b̄n)n ∈ LCJ(ā◻) such that π(c̄◻) = {(⟨⟩,Q)}, where c̄◻ is the trace of(b̄n)n along β. By Lemma . (c), there is a unique run χ′ on c̄◻. For the unique
infinite branch γ = ω of χ′, we obtain

s = πχ(β) = πχ′(γ) ∈ Π(χ′) .
(c) Let µ ∶ Λ(ā◻)→ C be the function fromDefinition .. If π(ā◻) = ∅, there

exists a vertex η ∈ Λ(ā◻) such that
µ(η) = ∅ and µ(ζ) ≠ ∅ , for all ζ ≺ η .

Let β be a branch containing η. For every (b̄n)n ∈ LCJ(ā◻)with trace c̄◻ along β,
it follows that π(c̄◻) = ∅. Hence, TrJ(β) = {∅}.

(d) If π(ā◻) = ∅, then (c) implies that there is some branch β with TrJ(β) ={∅}. Conversely, if π(ā◻) = {(⟨⟩, P)}, then (a) implies that {(⟨⟩, P)} ∈ TrJ(β),
for every branch β. ¿erefore, we have

π(ā◻) = ∅ iff there is some branch β with TrJ(β) = {∅}
iff {∅} ∈ BTJ(ā◻) .

Suppose that π(ā◻) = {(⟨⟩, P)} ≠ ∅. For a branch β of Λ(ā◻), we set
F(β) ∶= {Q ∣ {(⟨⟩,Q)} ∈ TrJ(β) } .

We claim that

P = ⋃{⋂ F(β) ∣ β a branch} .
By (a), we have {(⟨⟩, P)} ∈ TrJ(β), for every β, i.e., P ∈ F(β). Consequently,

we have P ⊇ ⋂ F(β), for every β, which implies that P ⊇ ⋃β ⋂ F(β).
Conversely, it follows by (b) that, for every s ∈ P, there is some branch β with

s ∈ ⋂ F(β). Hence, P ⊆ ⋃β ⋂ F(β).
By the preceding lemma we know how to compute the product of a submin-

imal sequence. In the next lemma we reduce the computation of arbitrary prod-
ucts to this special case.

Lemma .. Let C be the path-hyperclone associated with an ω-semigroup ⟨S, Sω⟩,
and let ā◻ be a sequence in separation normal form. ¿en

π(ā◻) = sup{ π(b̄◻) ∣ b̄◻ ≤ ā◻ is subminimal} .
Proof. Given a run χ on ā◻, we define a sequence b̄◻χ ≤ ā

◻ such that

π(b̄◻χ) = {(⟨⟩,Π(χ))} .
Since each ān is in separation normal form, it follows by induction on n < ω that,
for all k < ω, there is at most one element η ∈ Λ(ā◻) such that

∣η∣ = n + and η(n) = k .
If such an element exists, we denote it by ηnk . Let

(bnχ)k ∶=
⎧⎪⎪⎨⎪⎪⎩
{χ(ηnk)} if ηnk exists,

∅ otherwise.

¿en b̄◻χ ≤ ā
◻ is subminimal and χ is a run on b̄◻χ . By Lemma . (a), it follows

that

π(b̄◻χ) = {(⟨⟩,Π(χ))} ⊆ π(ā◻) .
Conversely, since every element of π(ā◻) is of the form (⟨⟩,Π(χ)), for some

run χ, it follows that π(ā◻) is covered by the sets π(b̄◻χ) corresponding to these
runs.

We use the two properties of path-hyperclones isolated in Lemmas . and .
to define a subclass of ω-hyperclones that are sufficiently similar to path-hyper-
clones for our characterisation results to go through.

Definition .. Let C be an ω-hyperclone.
(a) An ideal of C is a sub-ω-hyperclone J ⊆ C where each domain Jū is down-

ward closed, i.e., J is a substructure of C that is an ω-hyperclone such that a ≤
b ∈ Jū implies a ∈ Jū .
(b) An ω-hyperclone C is path-continuous if there exists an ideal J such that

◆ for every sequence a◻ in separation normal form, we have

π(a◻) = sup{ π(b◻) ∣ b◻ ≤ a◻ a sequence in J } ,
◆ and the product π(a◻) of a sequence a◻ in J is uniquely determined by
the set BTJ(a◻).

Proposition .. Every finitary path-hyperclone is path-continuous.

Proof. By Lemmas . and ., we can take for J the set of all subminimal ele-
ments.

Example. Let us give an example of an ω-hyperclone that is not path-continuous.
We set

Cū ∶= []n , for each sort ū of width n ∶= ∣ū∣ .
⊕, and λσ are defined canonically:

ā ⊕ b̄ ∶= āb̄ , = ⟨⟩ , λσ(ā) = āσ .

¿e substitution operation ∶I ,σ is defined as follows. For a ∈ C⟨u⟩ of width and
b̄ ∈ Cv̄ , we set

a ∶I ,σ b̄ ∶=max({a} ∪ { b i ∣ i ∈ I ∩ supp(u) }) .
For a sequence ā◻ where ā has width , we define the infinite product by

π(ā◻) ∶=max({x} ∪ { µ(η) ∣ η ∈ Λ(ā◻) }) ,
where x ∈ [] is defined as follows. Let us call a branch β of Λ(ā◻) heavy if β is
infinite and, for every prefix η ≺ β, there is some ζ ⪰ η with µ(ζ) > . We set

x ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 if Λ(ā◻) has infinitely many heavy branches,
 if Λ(ā◻) has heavy branches, but only finitely many,
 if Λ(ā◻) does not have heavy branches.

We equip C with the natural order < < < . We claim that there is no
ideal (Jū)ū with respect to which C is path-continuous.
For a proof, we distinguish two cases. First, suppose that ∉ J⟨,⟩.¿en J⟨,⟩ ={}. Consider the sequences ā◻ and b̄◻ where ān = ⟨, ⟩ and b̄n = ⟨, ⟩, are

both elements of C⟨,⟩,⟨,⟩. Let ā
◻ and b̄◻ be their respective unravellings. Since

π(b̄◻) = ⟨, ⟩ > ⟨, ⟩ = π(ā◻) ,
it follows that

π(b̄◻) ≠ sup{ x̄◻ ∣ x̄◻ ≤ ā◻ in J } .
It remains to consider the case that ∈ J⟨,⟩. Let ā◻ be the sequence where

ā = ∈ C⟨,⟩ and ān = ⟨, , ⟩ ∈ C⟨,⟩,⟨,⟩,⟨,⟩ , for n > ,

and let b̄◻ be the sequence where

b̄ = ∈ C⟨,⟩ ,

b̄ = ⟨, ⟩ ∈ C⟨,⟩,⟨,⟩ ,
b̄n = ⟨, , , ⟩ ∈ C⟨,⟩,⟨,⟩,⟨,⟩,⟨,⟩ , for n > .

Again, let ā◻ and b̄◻ be the unravellings of these sequences.

ā◻

b̄◻

¿en

π(ā◻) = and π(b̄◻) = ,
but BTJ(ā◻) = {{, }, {, , }} = BTJ(b̄◻).
From the results of the previous section it follows that we can describe each

regular tree language via a morphism to some finitary path-continuous ω-hyper-
clone. To complete the picture it remains to prove the converse.

¿eorem .. Let φ ∶ Fω[Σ] → C be a morphism into a finitary path-continuous
ω-hyperclone C. Every set recognised by φ is regular.

Proof. Let t ∈ F⟨∅⟩[Σ]. We fix enumerations vn , . . . , v
n
m(n)− of all vertices v ∈

dom(t) of length ∣v∣ = n from le to right. Setting an ∶= sep(an ⊕ ⋅ ⋅ ⋅ ⊕ anm(n)−)
with ani ∶= φ(t(vni)), it follows that

φ(t) = π(a◻) .
Note that there is an isomorphism

µ ∶ Λ(a◻)→ dom(t) .
Using this isomorphism we can encode a sequence â◻ ≤ a◻, a sequence (bn)n ∈
LCJ(â◻), and a branch β as a labelling of dom(t). We will denote such labellings
as tuples ⟨t, â◻⟩, ⟨t, â◻, β⟩, or ⟨t, â◻, β, (bn)n⟩, etc.
We construct an automaton recognising φ−[P] in several steps. Let J be the

ideal of C witnessing path-continuity.
() For every element c ∈ C of width , we first construct an automaton Bc

accepting those tuples ⟨t, â◻, β, (bn)n⟩ such that
◆ â◻ ≤ a◻ is in J ;

◆ β is a branch of Λ(a◻) ;
◆ (bn)n ∈ LCJ(â◻) ;
◆ the product of the trace of (bn)n along β evaluates to c.

Clearly, the first three conditions are strictly local and can be checked by an auto-
maton. For the last one, we can use the automatonAu from Lemma ..
() For every set Q ⊆ C of elements of width , we construct an automaton CQ

accepting those triples ⟨t, â◻, β⟩ such that
◆ â◻ ≤ a◻ is in J ;

◆ β is a branch of Λ(a◻) ;
◆ TrJ(β) = Q.

Using the automata Bc from (), the automaton CQ checks that

◆ for every c ∈ Q, there is some (bn)n such that Bc accepts ⟨t, â◻, β, (bn)n⟩,
◆ for every c ∉ Q, there is no (bn)n such that Bc accepts ⟨t, â◻, β, (bn)n⟩.
() Having constructed the automata CQ we can build an automaton Dc , for

c ∈ C, that accepts those pairs ⟨t, â◻⟩ such that
◆ â◻ ≤ a◻ is a sequence in J ;

◆ π(â◻) = c.
Since C is path-continuous, there exists a set Fc ⊆ ℘(℘(C)) such that

π(â◻) = c iff BTJ(â◻) ∈ Fc .
Hence,Dc can guess some set H ∈ Fc and check that

◆ for every branch β of Λ(a◻), there is some Q ∈ H such that CQ accepts⟨t, â◻, β⟩,
◆ for every Q ∈ H, there is some branch β of Λ(a◻) such that CQ accepts⟨t, â◻, β⟩.
() A er these preparations we can construct an automaton Ec , for c ∈ C,

accepting all trees t such that φ(t) = c. ¿e automaton Ec has to check that

◆ for every sequence â◻ ≤ a◻ in J, there is some c ≤ c such thatDc accepts⟨t, â◻⟩,

◆ for every c with c ≰ c, there is some c ≰ c and a sequence â◻ ≤ a◻ in J
such thatDc accepts ⟨t, â◻⟩.

() Finally, the desired automaton accepting φ−[P] guesses some c ∈ P and
checks that t ∈ L(Ec).
Combining ¿eorems . and . and Proposition ., we obtain one of the

main theorems of this article.

¿eorem .. Let L ⊆ T
ω[Σ]. ¿e following statements are equivalent:

() L is regular.

() L is recognised by a morphism φ ∶ Fω[Σ] → C into a path-hyperclone C
associated with a finite ω-semigroup.

() L is recognised by a morphism φ ∶ Fω[Σ] → C into a finitary path-continu-
ous ω-hyperclone C.

 C

In this section we study closure properties of the class of path-continuous ω-
hyperclones and of the class of languages recognised by them. We start with
products.

Definition.. LetC(i), i ∈ I, be a family ofω-hyperclones.¿e product∏i∈I C
(i)

is the ω-hypercloneD where the domain of sort ū is

Dū ∶=∏
i∈I

C
(i)
ū ,

and where all operations are defined component-wise.

Lemma .. ¿e product of ω-hyperclones is an ω-hyperclone.

Proof. Except for axiom (), all of theω-hyperclone axioms are either equations
or implications between inequalities. Such axioms are preserved by products.
Axiom () states that operations ρσ ∶ Cū → Cσ(ū) are bijective.¿is condition

is also preserved by products since we can turn it into an equation by adding the
inverse function ρ−σ to the structure.

Lemma .. ¿e product∏i∈I C
(i) of path-continuous ω-hyperclones C(i) is path-

continuous.

Proof. Suppose that eachC(i) is path-continuous and letJi be the corresponding
ideal of C(i). To see thatD ∶= ∏i C

(i) is path-continuous, we check that the ideal
H ∶= ∏i∈I Ji satisfies the two conditions of Definition ..
First, consider a sequence a◻ in D in separation normal form where an =(ani)i∈I ∈ Dūn

. ¿en

π(a◻) = (π(a◻i))i∈I = (sup{ π(b◻i) ∣ b◻i ≤ a◻i in Ji })i∈I
= sup{ π(b◻) ∣ b◻ ≤ a◻ in H } .

¿e second condition we have to check is that, for a sequence a◻ in H, the
product π(a◻) is uniquely determined by the set BTJ(a◻).
Note that, for i ∈ I, the components π(a◻i) are determined by BTJ(a◻i). Hence,

it is sufficient to show that the set BTJ(a◻) determines all sets BTJ(a◻i), i ∈ I.
¿e claim follows since BTJ(a◻i) = p i(BTJ(a◻)) where p i is the projection to
the i-th component.

¿e closure of the class of path-continuous ω-hyperclones under products im-
plies that the languages recognised by them are closed under boolean operations.

¿eorem .. ¿e class of languages recognised by finitary path-continuous ω-
hyperclones is closed under boolean operations.

Proof. If L and L′ are recognised by, respectively,C andC′, then the complement
of L is also recognised by C, while L∩L′ and L∪L′ are recognised by C×C′.

Next we turn to closure under projections.

Definition .. Let C be an ω-hyperclone. We define an ω-hyperclone P(C) as
follows.¿e domain of sort ū = ⟨u , . . . , un−⟩ is

℘(Cu
) × ⋅ ⋅ ⋅ × ℘(Cun−

) .
(For n = , we take the empty product {⟨⟩}.) To simplify notationwewill identify
an element a = a⊕⋅ ⋅ ⋅⊕am− ∈ Cū ofwidthmwith them-tuple ā = ⟨a , . . . , am−⟩,
and we write ā ∈ Ā, for ā ∈ Cū and Ā ∈ Dū , if we have a i ∈ A i , for all i. For Ā of
widthm and B̄ of width n, we define the operations of the free monoid structure
by

Ā⊕ B̄ ∶= ĀB̄ , ∶= ⟨⟩ , and λσ(Ā) ∶= Āσ .

For elements Ā is separation normal form, we define the substitution operation
by

Ā ∶I ,σ B̄ ∶= D̄ , where D i ∶= { a ∶I ,σ b̄ ∣ a ∈ A i , b̄ ∈ B̄ } .
If Ā is not in separation normal form, say, Ā = ρτ(sep(Ā)), we set

Ā ∶I ,σ B̄ ∶= sep(Ā) ∶I ,σ B̄τ .

Similarly, we first define the infinite product for sequences Ā◻ in separation nor-
mal by

π(Ā◻) ∶= B̄ , where B i ∶= { π(a , ā , ā . . .) ∣ a ∈ A
i and

ān ∈ Ān , for n > } .
For arbitrary sequences Ā◻, we then set π(Ā◻) ∶= π(B̄◻), where B̄◻ is the separ-
ation normal form of Ā◻. Finally, the ordering is defined by

Ā ≤ B̄ : iff there exist injections φ i ∶ A i → B i such that

a ≤ φ i(a), for all a ∈ A i .

Lemma .. P(C) is an ω-hyperclone.
¿e proof is straightforward but tedious: axioms ()–() and (), () fol-

low immediately from the definitions; each of the remaining axioms requires
some small amount of calculations.

Proposition .. If C is path-continuous then so is P(C).
Proof. Let J be the ideal witnessing that C is path-continuous. We claim that
H ∶= {∅} ∪ {{a} ∣ a ∈ J } is a witness of the path-continuity ofD ∶= P(C). We
have to check two conditions.
First, consider a sequence Ā◻ in D in separation normal form. We claim that

π(Ā◻) = sup{ π(B̄◻) ∣ B̄◻ ≤ Ā◻ in H } .
W.l.o.g. assume that Ā = A has width . Continuing our abuse of notation we
write {ā} for the tuple ⟨{a}, . . . , {an−}⟩. We have

π(Ā◻) = ⋃{{π(ā◻)} ∣ ān ∈ Ān }
= ⋃{{sup{ π(b̄◻) ∣ b̄◻ ≤ ā◻ in J }} ∣ ān ∈ Ān }
= ⋃{ sup{ π({b̄}, {b̄}, . . .) ∣ b̄◻ ≤ ā◻ in J } ∣ ān ∈ Ān }
= ⋃{ sup{ π(B̄◻) ∣ B̄◻ ≤ ({ān})n in H } ∣ ān ∈ Ān }
= sup{ π(B̄◻) ∣ B̄◻ ≤ Ā◻ in H } .

¿e second condition we have to check is that, for a sequence Ā◻ in H, the
product π(Ā◻) is uniquely determined by the set BTH(Ā◻). W.l.o.g. we may as-
sume that Ā◻ is in separation normal form and that Ā has width . If An

i = ∅,
for some n, i, then π(Ā◻) = ∅ and BTH(Ā◻) = {{∅}}. Hence, we may assume
that An

i ≠ ∅, for all n, i. Since Ā
◻ is in H, it follows that An

i = {ani }, for suitable
ani ∈ C. Let β be a branch and (B̄n)n ∈ LCH(Ā◻). If B

 = ∅, the trace of (B̄n)n
along β evaluates to ∅. Otherwise, all Bn

i are nonempty and there are b
n
i ∈ C

such that Bn
i = {bni }. If C̄◻ is the trace of (B̄n)n along β then C̄n ∈ H, for all n.

Hence, Cn
i = {cni } and c̄◻ is the trace of (b̄n)n along β. It follows that

TrH(β) = {∅} ∪ {{c} ∣ c ∈ TrJ(β) } .
Since this set uniquely determines TrJ(β), the product π(Ā◻) = {π(ā◻)} is
uniquely determined by

{TrH(β) ∣ β a branch} = BTH(Ā◻) .
¿is implies the claim.

It follows that the class of recognisable languages is closed under projections.

¿eorem.. Let p ∶ Σ → Γ be a surjective, arity preserving function between func-
tional signatures. If L ⊆ F⟨∅⟩[Σ] is recognised by a path-continuousω-hypercloneC
then p[L] ⊆ F⟨∅⟩[Γ] is recognised by P(C).
Proof. Let φ ∶ Fω[Σ] → C recognise L and set P ∶= φ[L]. We claim that the
function ψ ∶ Fω[Γ]→ P(C) with

ψ(t̄) ∶= (φ ○ p−)(t̄)
recognises p[L]. More precisely, setting Q ∶= {A ∣ A ∩ P ≠ ∅} we claim that
p[L] = ψ−[Q].(⊆) Let t ∈ p[L]. ¿en there is some s ∈ L such that t = p(s). Since φ(s) ∈ P
and s ∈ p−(t) it follows that φ(s) ∈ P ∩ φ[p−(t)]. Hence, ψ(t) ∩ P ≠ ∅ and
ψ(t) ∈ Q.(⊇) Let ψ(t) ∈ Q. ¿en {φ(s) ∣ s ∈ p−(t) }∩ P = ψ(t)∩ P ≠ ∅. Hence, there
is some s ∈ p−(t) with φ(s) ∈ P. Consequently, s ∈ L and p(s) = t. It follows
that t ∈ p[L].
Together the closure properties established in this section imply that recognis-

ability by finitary path-continuous ω-hyperclones is equivalent to axiomatisab-
ility in monadic second-order logic and, hence, to regularity. In particular, this

yields an alternative proof of ¿eorem ., a proof that does not make use of
automata.
For the following theorem, we use the variant of monadic second-order lo-

gic (MSO) without first-order variables. ¿e atomic formulae of this variant are
of the form X ⊆ Y and RZ̄, for set variables X ,Y , Z , Z , . . . and relation sym-
bols R. An atom of the form RZ̄ is true if, and only if, there is some tuple ā ∈ R
with a i ∈ Z i , for all i. We regard a Σ-term t as a structure ⌈t⌉ ∶= ⟨T , ⪯, (Pf) f ∈Σ⟩
where the universe T ∶= dom(t) consists of all vertices of t, ⪯ is the tree order-
ing and, for every function symbol f ∈ Σ, we have a unary relation Pf contain-
ing all vertices of T labelled by f . Since in the inductive step below we will be
dealing with formulae χ(X̄) with free set variables X̄, we also have to consider
expansions ⟨⌈t⌉, Q̄⟩ ∶= ⟨T , ⪯, (Pf) f ∈Σ , Q̄⟩ of such trees by additional unary pre-
dicates Q̄ providing values for the variables X̄. If X̄ = ⟨X , . . . , Xn−⟩, we can
encode such an expansion as a term tQ̄ over the signature

Σn ∶= { fb̄ ∣ f ∈ Σ, b̄ ∈ {, }n }
where, for v ∈ dom(t), we set

tQ̄(v) ∶= fb̄ with f ∶= t(v) and b i ∶=
⎧⎪⎪⎨⎪⎪⎩
 if v ∈ Q i ,

 if v ∉ Q i .

In this way, we can associate with everyMSO-formula χ(X̄) the language
Lχ ∶= { tQ̄ ∈ F⟨∅⟩[Σn] ∣ ⌈t⌉ ⊧ χ(Q̄) } .

Languages of this form are calledMSO-axiomatisable.

¿eorem .. Let Σ be a finite signature. A set L ⊆ F⟨∅⟩[Σ] of trees is recognised
by a finitary path-continuous ω-hyperclone if, and only if, it isMSO-axiomatisable.

Proof. (⇒) Let φ ∶ Fω[Σ]→ C be a homomorphism into a finitary path-contin-
uous ω-hyperclone and let J be the ideal witnessing that C is path-continuous.
For every c ∈ C⟨∅⟩, we will construct a formula χc such that

⌈t⌉ ⊧ χc iff φ(t) = c , for all t .

Given t, let vn , . . . , v
n
m(n)− be an enumeration of all vertices v ∈ dom(t) of length∣v∣ = n, and set

tni ∶= t(vni) , tn ∶= sep(tn ⊕ ⋅ ⋅ ⋅ ⊕ tnm(n)−) ,
ani ∶= φ(tni) , an ∶= sep(an ⊕ ⋅ ⋅ ⋅ ⊕ anm(n)−) = φ(tn) .

¿en t = π(t◻) and φ(t) = π(a◻).
¿e formula χc has to check that π(a◻) = c. To do so it has to consider a

sequence a◻ ≤ a
◻ in J and a sequence (bn)n ∈ LCJ(a◻). We can encode such

sequences a tuples Ā and B̄ of set variables as follows. Letm be the maximal arity
of a function in Σ and set

F ∶= { a ∈ C ∣ a ≤ φ(f) for some f ∈ Σ } ,
F ∶= C⟨∅⟩ ∪ C⟨∅,∅⟩ ∪ ⋅ ⋅ ⋅ ∪ C∅m .

Note that the sets F and F are finite. To encode a sequence a◻ where an =
sep((an) ⊕ ⋅ ⋅ ⋅ ⊕ (an)m(n)−) we use a tuple (Ax)x∈F of set variables where

Ax ∶= {u ∈ dom(t) ∣ (an)i = x for i and n with u = vni } ,
and we encode (bn)n<ω where bn = sep(bn ⊕ ⋅ ⋅ ⋅ ⊕ bnm(n)−) by the set variables(Bx)x∈F where

Bx ∶= {u ∈ dom(t) ∣ bni = x for i and n with u = vni } .
Using this encoding, we can write downMSO-formulae expressing the follow-

ing facts:

◆ ϑ≤(Ā) : “a◻ ≤ a◻ is in J.”
◆ ϑlc(Ā, B̄) : “(bn)n ∈ LCJ(a◻).”
◆ ϑbranch(Z) : “Z is a branch in dom(t).”
◆ ϑ ctr(Ā, B̄, Z) : “¿e product of the trace of B̄ along Z equals c.”

For every set Q ⊆ C⟨∅⟩, we set

ϑQTR(Ā, Z) ∶= ⋀
c∈Q

∃B̄[ϑlc(Ā, B̄) ∧ ϑ ctr(Ā, B̄, Z)]
∧ ∀B̄[ϑlc(Ā, B̄)→ ⋁

c∈Q

ϑ ctr(Ā, B̄, Z)] .
¿en we have

⌈t⌉ ⊧ ϑQTR(Ā, Z) iff TrJ(β) = Q where β is the branch encoded in Z .

For every c ∈ C⟨∅⟩, there exists a set Sc ⊆ ℘(℘(C⟨∅⟩)), such that
π(a◻) = c iff BTJ(a◻) ∈ Sc .

It follows that the formula

ϑ cπ(Ā) ∶= ⋁
U∈Sc

[⋀
Q∈U

∃Z[ϑbranch(Z) ∧ ϑQTR(Ā, Z)]
∧ ∀Z[ϑbranch(Z)→ ⋁

Q∈U

ϑQTR(Ā, Z)]]
satisfies

⌈t⌉ ⊧ ϑ cπ(Ā) iff π(a◻) = c ,
for all sequences a◻ in J. Setting

ϑ≤cπ (Ā) ∶= ⋁
d≤c

ϑdπ(Ā)
we obtain the desired formula

χc ∶= ∀Ā[ϑ≤(Ā)→ ϑ≤cπ (Ā)] ∧ ⋀
d≱c

∃Ā[ϑ≤(Ā) ∧ ¬ϑ≤dπ (ā)] .
(⇐) For simplicity, we will call a language L recognisable if it is recognisable

by a finitary path-continuous ω-hyperclone. We will show that Lχ is recognis-
able by induction on the MSO-formula χ. By ¿eorems . and ., the class of
recognisable languages is closed under boolean operations and projections. It
is therefore sufficient to show that every language Lχ axiomatised by an atomic
MSO-formula χ is recognisable.
First, we consider a formula of the form χ = X i ⊆ Xk . Note that Lχ = F⟨∅⟩[Γ]

where

Γ ∶= { fb̄ ∈ Σn ∣ b i ≤ bk } .
Wehave seen in Lemma ., that the set F⟨∅⟩[Γ] is recognisable. Furthermore, the
ω-hyperclone used in the proof of that lemma is finitary and path-continuous.
Next, suppose that χ = Pf X i . In this case we have Lχ = F⟨∅⟩[Σn]∖ F⟨∅⟩[Γ] for

Γ ∶= { gb̄ ∈ Σn ∣ g ≠ f or b i = } .

As above F⟨∅⟩[Γ] is recognisable. ¿e claim follows since the recognisable lan-
guages are closed under complement.
It remains to consider formulae of the form χ = X i ⪯ Xk . We use the path-

hyperclone C associated with the ω-semigroup ⟨S, Sω⟩ where S ∶= {, } ∪ {}
and Sω ∶= {�, ∗, ⊺}. Intuitively, a pair ⟨b, c⟩ ∈ S records whether the correspond-
ing term contains a vertex in X i (in this case b =) or a vertex in Xk (in this case
c =). ¿e element ∈ S indicates a term containing vertices u ⪯ v with u ∈ X i

and v ∈ Xk . Similarly, � ∈ Sω represents a term without any vertex in Xk , ∗ ∈ Sω
represents a term with some vertex in Xk , and ⊺ ∈ Sω represents a term with
vertices u ⪯ v with u ∈ X i and v ∈ Xk . ¿e multiplication of ⟨S, Sω⟩ is defined as
follows

 ⋅ x = = x ⋅ , for all x ∈ S ,

⟨b, b′⟩ ⋅ ⟨c, c′⟩ = ⎧⎪⎪⎨⎪⎪⎩
 if b = and c′ = ,
⟨max{b, c},max{b′ , c′}⟩ otherwise ,

x ⋅ ⊺ = ⊺ for x ∈ S ,

 ⋅ u = ⊺ for u ∈ Sω ,

⟨, ⟩ ⋅ u = u for u ∈ Sω ,

⟨b, ⟩ ⋅ u = ∗ for u ∈ {�, ∗} ,
⟨, b⟩ ⋅ ∗ = ⊺ ,
⟨, ⟩ ⋅ � = � .

¿e infinite product π(s , s , s , . . .) is defined as follows. If there is somem < ω
with sm = , or there are l < m < ω with s l = ⟨, b⟩ and sm = ⟨c, ⟩, then

π(s , s , s , . . .) = ⊺ .
Otherwise, if there is some m < ω with sm = ⟨b, ⟩ then

π(s , s , s , . . .) = ∗ .
Finally, if sm ∈ {⟨, ⟩, ⟨, ⟩} for all m, then we set

π(s , s , s , . . .) = � .
We define the homomorphism φ ∶ Fω[Σn] → C as follows. For a function

symbol f ∈ Σ of arity m and b̄ ∈ {, }n , we set
φ(fb̄) ∶=

⎧⎪⎪⎨⎪⎪⎩
{⟨m ,∅⟩} if b i = bk = ,{⟨⟨b i , bk⟩m ,∅⟩} otherwise .

It follows that

Lχ = φ−[P] where P ∶= {{⟨⟨⟩, X⟩} ∈ C⟨∅⟩ ∣ ⊺ ∈ X } .

 C

In this article we have developed the beginnings of a theory of recognisability
for infinite trees, but there remains much to do. First of all, we do not believe
that the framework we have set up is in its final form.¿e algebras we use (path-
continuous ω-hyperclones) are far too complicated. In particular,

◆ we use infinitely many sorts,
◆ there are too many operations (in particular ∶I ,σ), and
◆ the definition of path-continuity is too complex.

Apart from simplifying the algebraic framework the logically next step con-
sists in finding the right notion of a Wilke algebra. Our hope is that such algeb-
ras can be used in conjunction with ¿eorem . to give an alternative proof of
Rabin’s Tree ¿eorem. Finding such a proof has been an open problem for
years. ¿e main missing ingredient seems to be the lack of a suitable Ramseyan
factorisation theorem for infinite trees. It is even unclear what exactly such a the-
orem should state. Since the search for a Wilke algebra for ω-hyperclones seems
to require exactly such a factorisation theorem, we hope that we can make some
headway by approaching the problem from this direction.
Finally, a longterm goal would be the development of a theory of pseudo-

varieties of path-continuous ω-hyperclones and a corresponding structure the-
ory. But, before embarking upon such a project, it seems advisable to wait until
we have found the ‘right’ definition for our algebras.

R

[] P. B,M-Solid Varieties of Languages, Acta Cynbernetica, (), pp. –
.

[] M. B T. I, Algebra for Infinite Forests with an Application

to the Temporal Logic EF, in Proc. th International Conference on Concurrency
¿eory, CONCUR, LNCS , , pp. –.

[] M. B I. W, Forest Algebras, in Logic and Automata: His-
tory and Perspectives, J. Flum, E. Grädel, and T. Wilke, eds., Amsterdam University
Press, , pp. –.

[] Z. É, A variety theorem for trees and theories, Publ. Math. Debrecen, (),
pp. –.

[] , Characterizing CTL-like logics on finite trees, ¿eoretical Computer Science,
 (), pp. –.

[] Z. É P. W, Algebraic recognizability of regular tree languages, ¿eoretical
Computer Science, (), pp. –.

[] ,Algebraic Characterization of Logically Defined Tree Languages, International
Journal of Algebra and Computation, (), pp. –.

[] D. P J.-E. P, Infinite Words – Automata, Semigroups, Logic and Games,
Elsevier, .

[] T. P S. S, Positive varieties of tree languages, ¿eoretical Com-
puter Science, (), pp. –.

[] S. S M. S, Tree algebras and varieties of tree languages, ¿eoretical
Computer Science, (), pp. –.

[] M. S, A theory of tree language varieties, in Tree Automata and Languages,
North-Holland, , pp. –.

[] , General Varieties of Tree Languages, ¿eoretical Computer Science,
(), pp. –.

[] T.W,Algebras for Classifying Regular Tree Languages and an Application to Fron-
tier Testability, in Proc. th Int. Colloquium onAutomata, Languages and Program-
ming, ICALP , LNCS , , pp. –.

