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Abstract

We present an abstract framework to compose economic games. It
is sufficiently general to represent all types of games encountered in eco-
nomics. Our framework is based on category-theoretical techniques and
the notion of a coalgebra. Coalgebras have been successfully used to
model the observable behavior of systems with unobservable state space.
We introduce the fundamental notion of a process as a coalgebra of a
certain kind, and we show how to use them to describe stage games,
finitely, infinitely and potentially infinitely repeated games with imperfect
and incomplete information based on deterministic, non-deterministic or
probabilistic processes. Our framework allows us to compose games se-
quentially, in parallel and hierarchically and it provides a formal account
of the aggregate behavior of networks of agents. The models are directly
implementable in high level declarative functional programing languages.
The abstract mathematics of our approach links economics to the latest
developments in mathematical game theory, theoretical computer science
and self-referential structures that underly the Lucas critique and many
other economic modeling issues.
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1 Introduction

[t]he idea of rational expectations is ... said to embody the idea that
economists and the agents they are modeling should be placed on the
equal footing: the agents in the model should be able to forecast and
profit-maximize and utility-maximize as well as the economist - or
should we say the econometrician - who constructed the model.

Thomas Sargent [100, 106]

I am claiming, that in any natural science, there is only as much
genuine science as there is mathematics.

Immanuel Kant [62]

We present a new mathematical representation for games. The goal is to
raise the abstraction level of the mathematical language that has been used so
far. The methods we propose were developed in theoretical computer science in
fields such as modeling and verification of processes, semantics of programming
languages, logic, and automata theory [94]. A key idea that we want to exploit is
that the behavior of systems is composed from the behavior of more basic ones
[103, 65]. In our framework we can compose games uniformly over different
types of agents, games, and networks.

The motivation for higher levels of abstraction is similar as the one in com-
puter science and quantum physics [3, 25]. A level that is too low precludes to
understand and synthesize complex structures from the analysis of substructures
in specialized formalisms. We want to take serious the hard learned lessons of
computer science for the need of compositionality, types and abstraction and
logic and algebraic tools in order to design and understand complex informa-
tional systems [3].

We sketch in this introduction and further in the unification section below
how our framework relates, integrates and unifies the major subfields of eco-
nomics such as computational, network, agent based and macroeconomics and
econometrics. The common thread in these fields is reflexivity or self-reference
that is inherent in the interaction of content and context, or the object and
its encoding (semantics and syntax) that arises in computer science when writ-
ing code that process its own or other code. In social science reflexivity arises
since the modeling takes place in the modeled system and changes it as well
[66, 117, 13, 15, 14].

The category-theoretical machinery we use is based on coalgebras [98, 58].
Category theory [77] provides a universal language for mathematics and certain
parts of theoretical computer science [1]. Algebras support finite constructions,
while coalgebras model the observation of infinite objects. In particular, coal-
gebras are well suited to model unobservable state-based systems [109], the
observation of their behaviors at an interface and it provides a formal semantics
to behavioral specifications. This approach has been developed for programing
languages that are modeled as abstract unobservable state transition systems.
The coalgebraic representation of games was introduced in [74, 5]. The proxim-
ity of our framework to those used in the theory of programing languages has the
side effect for computational economics that games modeled in our framework
can be implemented more or less directly in high level programing languages.
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The goal of computational economics as we understand it is not to translate
the low level mathematical language of economics by hand and long session in
the debugger into even lower computer languages like Matlab, Fortran, C++
or Java but to raise the mathematical language of economics such that high
level programing languages like Haskell, SML or Maude and their underlying
compilers and interpreters that are based on category theory and coalgebras can
do the translation job. In that way the powerful mathematical tools to design
languages can be used to design economic theories as well.

In this paper we only take advantage of the very basic notions of category
theory namely functors, natural transformations, and coalgebras. Functors are
used to represent types of agents and games, while natural transformations
translate between functors (i.e., types) for a formal account of composition.
Each game will be represented by a coalgebra and gives rise to a corresponding
final coalgebra, which can be regarded as a fixed point of the functor. Its
domain allows us to define the behavior or the semantics of a system. The
same kind of fixed points allows us to model reflexive structures [73, 118, 22, 2]
that arise everywhere in social sciences like the infinite regress of “I know that
you know that I know. . . ”. However, more powerful constructions await their
interpretation in economics and we discuss some in the unification section below.

We show how to formulate some standard games in our framework [44, 87,
79, 107]. The novel and abstract representation provides us with the following
immediate advantages.

Firstly, we can formally compose simple games into complicated ones, se-
quentially or in parallel. The types of agents, games and strategies can be
deterministic, non-deterministic or probabilistic and can be based on imper-
fect or incomplete information. Any finite and possibly very irregular game
constructed in this way can be repeated infinitely or potentially infinitely. It
is worth noting that we have a formal way to set up potentially or actually
infinite games. In economics the usual approach is to form a limit on finite
games which precludes this choice. The implied behavior (a possibly infinite
tree) of such corecursively formulated games can be defined as a coalgebra mor-
phism into the final coalgebra, which contains all behaviors of a certain type (or
functor) of agents and games.

Secondly, compositionality allows for a formal account of aggregation of
games. We aggregate along the horizontal and the vertical dimension. The
horizontal structures are groups of agents combined into a single agent and the
vertical structures aggregate over hierarchies of agents in networks. Hierarchies
may be spatial or, as in our example, informational networks for imperfect mon-
itoring games. This approach to aggregation or composition contributes to a
formal microfoundation of macroeconomics [7].

Thirdly, our approach can be taken as a formal semantics for agent based
economics [111] based on ideas in [112] and complements its hypothesis gener-
ating simulation approach to emergent properties. This meets the often raised
objection to agent based modeling namely that simulation and statistical in-
ference of systematic properties can not replace a formal account of synthesis.
We do not rely on simulation, but on the approach of the semantics of pro-
graming languages instead that derives by compositional methods the behavior
of systems from the behavior of their subparts. This is a major analogy of
our approach that we exploit. Our agents can be arbitrary heterogenous and
combined with a synthetic approach we unify agent based economics with the
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macroeconomic literature of heterogenous agents [49].
Fourthly, our framework generalizes network economics [56] where games

in networks can be played over the structure of the network. However, we do
not want to formalize such a game in this paper within our framework but it
is important that in principle it would be possible to do so. The interaction
of the network structure and the games played in the network is the realm of
institutional economics and the general field of the reflexivity of the interaction
of the context and the content or the object and its encoding. Coalgebras are
well prepared to model this characteristic of societies that also underlie the Lucas
critique where the model and the modeled interact. We will discuss reflexivity
in some more details in the unification section.

Fifthly, the application of methods from computer science and language de-
sign suggest a division of labor in economics. Theoretical economics develops the
interpreter for the economic language while applied economics uses the language
to answer economic questions. Our formulation of games is directly program-
able in high level declarative functional programing languages [34, 55, 88, 24].
The types or functorial definitions of our framework form the core of a simula-
tion engine or the interpreter of our language while the specification of concrete
games is the runnable code as type transformations. Under the Curry-Howard
isomorphism [1] types are propositions and computations are proofs. This du-
ality opens the way to proof assistants and logical specification languages for
economics. Coalgebras come with appropriate logical systems to define and
proof properties [70] of the systems like coinduction for all kind of infinite as
opposed to induction for finite structures or modal logic for the specification
and verification of complicated real world systems. Not only can we compute
the games by the identity of code and model but we can also analyze the models
by powerful logical and category theoretical tools.

Last but not least the current development of the information society moves
computer sciences into the traditional realms of social science such that both
overlap [39]. Computers communicate in networks and allocate decentralized
computational resources and also steer human societies with more or less ex-
plicit human-computer interfaces. It is therefore of paramount importance that
economics and computer science interact at the theoretic level. This means
most of all that as much as possible of the informal semantics and methodology
of economics formulated in natural languages [36, 26, 18] need to be formalized.
But this presupposes that the formal structures are sufficiently expressive or
high level in order to be able to accommodate the expressivity of economics
formulated in natural languages without eschewing decidability [19, 48].

We base our approach essentially on the deepest commonalities of both sci-
ences namely reflexivity and functorial fixed points. Composability, types and
abstraction are needed as urgent in economics as in computer science in order to
understand and design the interacting complex information systems of humans,
computers and nature.

In the next section we describe our framework. It is based on the building
block of processes as coalgebras. We define the operators to compose processes
from more simple ones. We then define agents, strategies and games as pro-
cesses. Final coalgebras are the semantical domains where we can find the
behaviors of our systems. For the types of our framework in the current stage
final coalgebras contain sets of potentially infinite labelled trees. We show how
these trees arise in the semantic domain. We end with the definition of outcomes
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and equilibria for games.
In the following section we will present some examples how to formulate

games within our framework. These examples are not meant to take advantage
of the full power of our framework. We do aim neither to formally proof the
representational power of our framework nor its formal relation to the repre-
sentation of games so far. But we want to suggest by some examples that the
present state of game theory can be encoded in our framework. More complex
examples and more mathematics is left for the work to come.

We want to mention some of these directions in the section on unification.
The unification and synthesis of various strands of literatures in economics is
a major strength and goal of our abstract framework. It extends beyond eco-
nomics and opens the door to powerful mathematical and computer scientific
methods that have been developed outside of economics.

2 The coalgebraic framework

Definition 2.1. A category C consists of a class Cobj of objects, a class Carr of
arrows, and a composition operation ◦ on arrows. Each arrow f ∈ Carr has a
domain X ∈ Cobj and a codomain Y ∈ Cobj. We write f : X → Y to indicate
that f is an arrow with domain X and codomain Y . The composition operation
is assumed to satisfy the following two conditions:

1. The composition f ◦ g of two arrows is defined if, and only if, the domain
of f is equal to the codomain of g.

2. The composition operation is associative, i.e., for all arrows f : X → Y ,
g : Y → Z, h : Z →W ,

(h ◦ g) ◦ f = h ◦ (g ◦ f) .

3. For each object X, there is an identity arrow idX : X → X such that

f ◦ idX = f and idX ◦ g = g ,

for all arrows f : X → Y and g : Z → X.

The only category we will use in this paper is the category of all sets, where
the objects are sets and the arrows are total functions. Other examples of cate-
gories contain sets and relations, measurable spaces and measurable functions,
or topological spaces and continuous functions.

In order to keep the category-theoretical overhead to a minimum, we will
introduce all category-theoretical notions only in the special case of the category
of sets. The main concepts we will need are that of a functor and a natural
transformation.

Definition 2.2. A functor F (from the category of sets to itself) is an operation
assigning

• to each set X a new set F(X) and

• to each function g : X → Y a function F(g) : F(X)→ F(Y )

6



such that

F(idX) = idF(X) and F(f ◦ g) = F(f) ◦ F(g) ,

for all sets X and all functions f : Y → Z and g : X → Y .

X

Y Z

F(X)

F(Y ) F(Z)

g
f ◦ g

f

F(g)
F(f ◦ g)

F(f)

As an example, let us introduce three functors that will be used below.

1. The identity functor id maps every set X and every function f : X → Y
to itself.

2. The finite power-set functor Pfin maps every set X to the set Pfin(X) of
its finite subsets, and it maps a function f : X → Y to the function

Pfin(f) : Pfin(X)→ Pfin(Y ) : S 7→ { f(s) | s ∈ S } .

3. The finite probability functor Dfin maps a set X to the set of all finite
probability distributions on X, i.e., all maps d : X → [0, 1] such that only
finitely many elements of X are mapped to non-zero values. For a function
f : X → Y , it returns the function

Dfin(f) : Dfin(X)→ Dfin(Y ) : d 7→ df ,

where

df (y) :=
∑

x∈f−1(y)

d(x) .

Besides the notion of a functor, we also need those of a natural transforma-
tion and a distributive law.

Definition 2.3. (a) A natural transformation η : F⇒ G from a functor F to a
functor G is a family η = (ηX)X of functions

ηX : F(X)→ G(X) ,

indexed by sets X, satisfying

ηY ◦ F(f) = G(f) ◦ ηX , for every function f : X → Y .

X

Y

F(X)

F(Y )

G(X)

G(Y )

f F(f) G(f)

ηX

ηY

(b) A distributive law between two functors F and G is a natural transfor-
mation η : F ◦G⇒ G ◦ F.

Examples of natural transformations will appear in Section 2.2 below.
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2.1 Processes

Before introducing games, let us define the simpler notion of a process, which
corresponds to a game with a single player. Processes will provide the technical
machinery our framework is based on.

A process is a state-based system transforming an input sequence into an
output sequence. In each step it receives an input value and, depending on its
current state, it produces an output value and changes its state. Alternatively,
a process can decide to terminate. Formally, a process is given by

• a set S of states,
• a set I of inputs,
• a set O of outputs,
• a set R of results, and
• a function π : S × I → C(R+ S ×O), for some functor C.

The function π describes one step of the process. When in state s ∈ S and
given the input i ∈ I, the process chooses a possible continuation that consists
in either terminating with a result r ∈ R, or in continuing in a state s′ ∈ S and
producing an output value c ∈ O.

In the above definition, the choice functor C determines which kind of pro-
cess we are dealing with. Important examples for choice functors are the fol-
lowing ones.

1. The deterministic choice functor Cdet = id is the identity functor. It can
be used if the input uniquely determines what happens next.

2. The non-deterministic choice functor Cndet = Pfin is the finite power-set
functor. It can be used if, for a given input, there might by several possible
continuations of the process.

3. The probabilistic choice functor Cprob = Dfin is the finite probability func-
tor. It can be used if the continuation of the process is random.

To apply the category-theoretical machinery it will be convenient to write
the function π in the form

π : S → (C(R+ S ×O))I .

In category-theoretical terms, such functions can be seen as so-called coalgebras.

Definition 2.4. Let F be a functor. An F-coalgebra is a function h : X → F(X),
for some set X.

Hence, a process π becomes a Π0-coalgebra π : S → Π0(S), where Π0 is the
process functor

Π0(X) := C(R+X ×O)I .

We denote by

Π(S; I,O,R) := Π0(S)S

the set of all processes with states S, inputs I, outputs O, and results R.
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2.2 Transformations of choice functors

In this section we present several natural transformations between choice func-
tors that will be needed in the next section.

1. For two choice functors C1 and C2, we define a natural transformation

µ1,2 : C1 ◦ C2 ⇒ C1,2

that combines a choice of C1 followed by a choice of C2 into a single choice
with respect to a combined functor C1,2.

2. For a choice functor C and fixed sets A,B, we define a distributive law

δ : A+B × C(X)⇒ C(A+B ×X) .

3. For two choice functors C1 and C2, we define a natural transformation

λ1,2 : C1(X)× C2(Y )⇒ C1,2(X × Y ) .

The definitions of all three natural transformations are the ones you would
expect from looking at the respective types. We encourage the reader to skip
the formal definitions below, which are only included for sake of completeness.

(1.) For C2 = Cdet, we can use C1,2 := C1 and the identity function

µ1,det : C1(X)→ C1(X) .

Analogously, we can define µ1,2 for C1 = Cdet. For C1 = C2 = Cndet, we use
C1,2 := Cndet and the functions

µndet,ndet : Pfin(Pfin(X))→ Pfin(X) : U 7→
⋃
Z∈U Z

mapping a set U ⊆ Pfin(X) to its union. For C1 = C2 = Cprob, we use C1,2 :=
Cprob and the functions

µprob,prob : Dfin(Dfin(X))→ Dfin(X)

mapping a distribution d over Dfin(X) to the distribution

x 7→
∑

d′∈D(X)

d(d′) · d′(x) .

The case where one of C1 and C2 equals Cndet and the other one equals Cprob

is more involved. We omit the definitions.

(2.) We define δ as follows. If C = Cdet, we can use the identity map

δdet : A+B ×X → A+B ×X .

If C = Cndet, we use the map

δndet : A+B × Pfin(X)→ Pfin(A+B ×X) ,
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defined by

δndet(x) :=

{
{x} for x ∈ A ,
{ (b, u) | u ∈ U } for x = (b, U) ∈ B × Pfin(X) .

If C = Cprob, we use the map

δprob : A+B × Dfin(X)→ Dfin(A+B ×X) ,

defined by

δprob(x) :=

{
dx for x ∈ A ,
db,e for x = (b, e) ∈ B × Dfin(X) ,

where

dx(y) :=

{
1 for y = x ,

0 otherwise .
and db,e(y) :=

{
e(c) for y = (b, c) ,

0 otherwise .

(3.) For C1 = Cdet, we can use for

λdet,det : X × C2(Y )⇒ C2(X × Y )

the distributive law δ from (2.) (setting A := ∅ and B := X). The case where
C2 = Cdet is handled symmetrically. For C1 = C2 = Cndet, we define

λndet,ndet : Pfin(X)× Pfin(Y )→ Pfin(X × Y ) : (U, V ) 7→ U × V .

For C1 = C2 = Cprob, we define

λprob,prob : Dfin(X)× Dfin(Y )→ Dfin(X × Y ) : (d, d′) 7→ ed,d′

where

ed,d′(x, y) := d(x) · d′(y) .

Again, we omit the cases mixing Cndet and Cprob.

2.3 Operations on processes

Before introducing games, let us present several operations to construct pro-
cesses from simpler ones. We start with sums and products of processes.

(a) The sum of two processes is a processes where, depending on the state,
either the first process takes a step, or the second one does. We only support
the case where both processes use the same choice functor. Formally, the sum +
is the operation

+ : Π(S0; I,O0, R0) + Π(S1; I,O1, R1)→ Π(S0 + S1; I,O0 +O1, R0 +R1)

defined by

(π0 + π1)(s) :=

{
π0(s) if s ∈ S0 ,

π1(s) if s ∈ S1 .
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(b) The product π1×π2 of two processes is a process where both components
take steps simultaneously. We support the case where π1 and π2 use different
choice functors. Suppose that π1 uses C1, while π2 uses C2. Formally, the
product × is the operation

× : Π(S0; I0, O0, R0) + Π(S1; I1, O1, R1)→
Π(S0 × S1; I0 × I1, O0 ×O1, R0 ×R1 +R0 +R1)

defined by

(π0 × π1)(s0, s1)(i0, i1) := (C1,2(f) ◦ λ1,2)(π0(s0)(i0), π1(s1)(i1)) ,

where λ is the natural transformation from Section 2.2 and

f : (R0 + S0 ×O0)× (R1 + S1 ×O1)→
(R0 ×R1 +R0 +R1 + S0 × S1 ×O0 ×O1)

is the function

f(x0, x1) :=


(x0, x1) if x0 ∈ R0 and x1 ∈ R1 ,

x0 if x0 ∈ R0 and x1 /∈ R1 ,

x1 if x0 /∈ R0 and x1 ∈ R1 ,

(s0, s1, c0, c1) if x0 = (s0, c0) and x1 = (s1, c1) ,

(c) We also introduce two operations to modify the inputs and outputs.
Given a process π and a function f , we define new processes π . f and f . π as
follows.

For a function f : S×O → S×O′ and a process π ∈ Π(S; I,O,R), the process
π . f applies, after each step, the function f to the returned state-output pair.
Formally, we define π . f ∈ Π(S; I,O′, R) by

(π . f)(s)(i) := C(id + f)
(
π(s)(i)

)
.

For a function f : I ′ → I and a process π ∈ Π(S; I,O,R), the process f . π
applies, before each step, the function f to the given input value. Formally, we
define f . π ∈ Π(S; I ′, O,R) by

(f . π)(s)(i) := π(s)(f(i)) .

(d) Finally, we introduce two more complicated operation on processes. The
feedback operation takes a process π and feeds back its output as additional
input. That is, given a process π ∈ Π(S; I × O,O,R) we construct a new
process π	 ∈ Π(S ×O; I,O,R) which, at each step, calls the process π with its
current input value and the output of the previous turn. We define

π	(s, c)(i) := C(idR + f)(π(s)(i, c)) ,

where

f : S ×O → (S ×O)×O : (s, c) 7→ ((s, c), c) .

(e) The cascading operation takes two processes π and %, runs them in par-
allel, and uses the outputs of the first process as inputs of the second one. We
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support the case where π and % use different choice functors. Suppose that
π uses C1, while % uses C2. Given π ∈ Π(S; I,M,P ) and % ∈ Π(T ;M,O,R), we
define π . % ∈ Π(S × T ; I,O, P +R) as follows. Let

%′ : T ×M → C2(R+ T ×O) : (t,m) 7→ %(t)(m) ,

π′ : S × T × I → C1(P + S × T ×M) : (s, t, i) 7→ C1(idP + ft)
(
π(s)(i)

)
,

where

ft : S ×M → S × T ×M : (s,m) 7→ (s, t,m) .

We set

(π . %)(s, t)(i) :=
(
C1,2(g) ◦ µ ◦ δ ◦ C1(idP + idS × %′)

)(
π′(s, t, i)

)
,

where µ and δ are the natural transformations from Section 2.2 and

g : P + S × (R+ T ×O)→ P +R+ S × T ×O

is the function

g(x) :=


x if x ∈ P ,
r if x = (s, r) ∈ S ×R ,
(s, t, c) if x = (s, (t, c)) ∈ S × T ×O .

2.4 Games

We consider games between several players that can consist of finitely many or
infinitely many rounds. The game starts is a certain state and, in each round,
every player chooses an action to perform. These actions determine the state
the game enters next. To determine the outcome of a game, we assume that it
produces an output value each turn and that, at the end of the game, it returns
some result. Together, the produced sequence of output values and the final
result will determine the outcome. Formally, a game is therefore given by

• a set N of players,
• for each player p ∈ N , a set Ap of actions for player p,
• a set S of states of the game,
• a set R of results,
• a set O of output values, and
• a function

γ : S ×
∏
p∈N

Ap → C(R+ S ×O) .

Thus, a game is a process where the input has the special form
∏
p∈N Ap. In

particular, a game γ is a Γ-coalgebra

γ : S → Γ(S) ,

where Γ is the game functor

Γ(S) := C(R+ S ×O)
∏

p∈N Ap .
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Example 2.5. To formalise the Prisoner’s Dilemma in our framework we use two
players N := {1, 2}, each with two actions Ap := {c, d} (‘confess’ and ‘deny’).
The game needs only one state S := {∗}, no outputs O := ∅, and results
R := R× R. The deterministic game function γ : S → RA1×A2 is defined by

γ(∗)(a1, a2) :=


(1, 1) if (a1, a2) = (c, c) ,

(2,−1) if (a1, a2) = (d, c) ,

(−1, 2) if (a1, a2) = (c, d) ,

(0, 0) if (a1, a2) = (d, d) .

Example 2.6. Let us also formalise the Repeated Prisoner’s Dilemma. Again,
there are two players N := {1, 2} with two actions Ap := {c, d} each. We still
have only one state S := {∗}, but now use outputs O := R × R and no results
R := ∅. The deterministic game function γ : S → (S ×O)A1×A2 is defined by

γ(∗)(a1, a2) :=


(∗, (1, 1)) if (a1, a2) = (c, c) ,

(∗, (2,−1)) if (a1, a2) = (d, c) ,

(∗, (−1, 2)) if (a1, a2) = (c, d) ,

(∗, (0, 0)) if (a1, a2) = (d, d) .

2.5 Players and strategies

Let γ : S → Γ(S) be a game. A strategy for a player p ∈ N is a function telling
him which action to choose in a given turn of the game. The player has access
to his current observations and his knowledge of the play so far. Thus, formally
a strategy is a function

σ : Ep ×Bp → C(Ep ×Ap) ,

where Ep is the epistemic state of player p and Bp is the set of possible obser-
vations. Again, we write σ as a coalgebra

σ : Ep → C(Ep ×Ap)Bp ,

that is, a process with inputs Bp, outputs Ap, and results R = ∅.
The observations of a player depend on the current input, the output of the

previous turn, and the actions of all players during the previous turn. To specify
what exactly player p can observe, we use a function

βp : O ×
∏
p∈N

Ap → Bp ,

which we assume is part of the description of the game.

Example 2.7. Suppose we are playing the Repeated Prisoner’s Dilemma. A prob-
abilistic strategy for player 1 would be to copy the previous action of the other
player with probability 2/3, and to choose the other action with probability
1/3. We use only one state E1 := {∗} and the observations B1 := {c, d} are the
previous action of player 2.

σ1 : {∗} → Dfin({∗} × {c, d}){c,d} : ∗ 7→ d

13



where

d(x)(∗, y) :=

{
2/3 if x = y ,

1/3 if x 6= y .

If, in a game γ, we fix strategies (σp)p∈N0
for a subset N0 ⊆ N of the

players, we obtain a new game with players N \ N0. We denote this game by
γ[σp]p∈N0

. The formal definition is as follows. For players p ∈ N \ N0 where
no strategy is provided, we introduce a non-deterministic dummy strategy that,
independently of the input, always tells the player to play some action from Ap
without restricting his choice. This strategy uses only one state. Its formal
definition is

σp : 1→ Pfin(1×Ap)Bp : i 7→ Ap .

With the help of these dummy strategies, we can define the desired game as

γ[σp]p∈N0 :=
[[
f .

∏
p∈N

σp

]	
. γ
]	
,

where the function

f : O ×
∏
p∈N

Ap →
∏
p∈N

Bp : (c, ā) 7→ (βp(c, ā))p∈N ,

computes the observations of each player.

2.6 Game trees

Given a game γ and strategies σp for each player, we would like to compute the
result of the game if each player follows her strategy. Besides the techniques
from the previous section, we need one more definition: that of a game tree.
Informally, a game tree is a tree containing all possible sequences of events
allowed in the game. The formal definition is based on the notion of a final
coalgebra.

Definition 2.8. Let F be a functor. An F-coalgebra ω : Ω → F(Ω) is final if,
for every F-coalgebra h : X → F(X), there exists a unique morphism ϕ : X → Ω
such that the diagram

X Ω

F(X) F(Ω)

h

ϕ

F(ϕ)

ω

commutes.

For the process functors

Π0(X) = C(R+X ×O)I

14



there exist final Π0-coalgebras ω : Ω → Π0(Ω), provided that the choice func-
tor C is sufficiently well-behaved. In particular, this is the case for the three
choice functors Cdet, Cndet, and Cprob.

Let us describe the final Π0-coalgebras for the choice functors C introduced
above. The elements of these final coalgebras are trees, which are directed
acyclic graphs such that there exists one vertex, the root of the tree, with the
property that every other vertex can be reached by a unique path from the root.
A tree is (A,B,C)-labelled if it has of more than one vertex and

• the root is unlabelled,

• every other inner vertex is labelled by an element of B,

• every leaf is labelled by an element of A ∪B,

• every edge is labelled by an element of C.

If there is an edge with label c from a vertex x to a vertex y, we call y the
c-successor of x.

(a) We start with the functor

Π0(X) := (A+X ×B)C

for C = Cdet. In this case the final Π0-coalgebra ω : Ω → Π0(Ω) takes the
following form. The set Ω consists of all (A,B,C)-labelled trees that are deter-
ministic, that is, such that every leaf has a label in A and every inner vertex
has exactly one c-successor, for each c ∈ C. The function ω is defined as follows.
Given a tree T and a value c ∈ C, we distinguish two cases depending on the
label of the c-successor x of the root. If x is labelled by an element a ∈ A, we
set ω(T )(c) := a. If x is labelled by an element b ∈ B, we set ω(T )(c) := 〈T ′, b〉
where T ′ is the subtree of T rooted at x.

To see that this is indeed the final Π0-coalgebra, consider an arbitrary Π0-
coalgebra π : S → Π0(S). The required unique function ϕ : S → Ω is given
by

ϕ(s) := Ts , for s ∈ S ,

where the tree Ts is defined as follows.
We first construct a graph 〈V,E〉 with set of vertices V := A+S×B and the

following edges. For every 〈s, b〉 ∈ S×B, there is a c-labelled edge from 〈s, b〉 to
π(s)(c). The elements of A have no outgoing edges. The vertex labelling is the
natural one: a vertex a ∈ A gets the label a and a vertex 〈s, b〉 gets the label
b ∈ B.

The tree Ts is now obtained from the unravelling of this graph starting at
a vertex 〈s, b〉, for an arbitrary b ∈ B, by forgetting the label b of the root.
Formally, the unravelling of a graph 〈V,E〉 starting at a vertex s is defined as
the tree consisting of all finite paths through the graph that start at s. There is
an edge between two such paths if the second one is obtained from the first one
by appending a single edge. This edge also determines the label of edge label.
The vertex labelling of the tree is obtained by labelling each path with the label
of its end-vertex.
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Example 2.9. Let π ∈ Π({sa, sb}; {0, 1}, {a, b}, ∅) be the deterministic process
defined by

π(sx)(y) :=

{
(sa, x) if y = 0 ,

(sb, x) if y = 1 .

The (top of the) tree ϕ(sa) has the following form:

•

a a

a a b b

0 1

0 1 0 1

...
...

...
...

To see that the function ϕ defined in this way has the required property we
need to check that

Π0(ϕ) ◦ π = ω ◦ ϕ .

For s ∈ S and c ∈ C, suppose that

π(s)(c) = 〈s′, b〉 ∈ S ×B .

Let T := ϕ(s) and T ′ := ϕ(s′). Note that T ′ is equal to the subtree of T rooted
at the c-successor of the root and that this c-successor is labelled by b. Hence,

(Π0(ϕ) ◦ π)(s)(c) = Π0(ϕ)(〈s′, b〉) = 〈T ′, b〉 = ω(T )(c) = (ω ◦ ϕ)(s)(c) .

In the case where π(s)(c) = a ∈ A we argue similarly.
(b) Consider the functor

Π0(X) := Pfin(A+X ×B)C

for non-deterministic games. In this case the final Π0-coalgebra ω : Ω→ Π0(Ω)
takes the following form. The set Ω consists of all (A,B,C)-labelled trees where
each vertex has only finitely many c-successors, for every c ∈ C. The function ω
is defined as follows. Given a tree T and a value c ∈ C, let S be the set of all
c-successors of the root of T . Then ω(T )(c) returns the set

{ a ∈ A | some x ∈ S has label a } ∪ { 〈Tx, b〉 | x ∈ S has label b ∈ B } ,

where Tx is the subtree of T rooted at x.
Given an arbitrary Π0-coalgebra π : S → Π0(S), the required unique func-

tion ϕ : S → Ω is defined similarly as in (a). We set

ϕ(s) := Ts , for s ∈ S ,

where Ts is the unravelling of the following graph 〈V,E〉. Again the set of
vertices is V := A + S × B and the vertex labelling is the natural one. For
each 〈s, b〉 ∈ S × B, there there is a c-labelled edge from 〈s, b〉 to x, for every
x ∈ π(s)(c).

As above, a straightforward calculation shows that the function ϕ defined in
this way has the required properties.
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Example 2.10. Let π ∈ Π({∗}; {0, 1}, {a, b}, ∅) be the non-deterministic process
defined by

π(∗)(x) := {(∗, a), (∗, b)} .

The tree ϕ(∗) has the following form:

•

a b a b

a b a b a b a b a b a b a b a b

0
0 1

1

0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

1

(c) Finally, consider the functor

Π0(X) := Dfin(A+X ×B)C

for probabilistic games. In this case the final Π0-coalgebra ω : Ω→ Π0(Ω) takes
the following form. The set Ω consists of all (A,B,C × [0, 1])-labelled trees
where, for every c ∈ C and every vertex v,

• v has only finitely many outgoing edges labelled 〈c, p〉, for some p ∈ [0, 1],

• the sum of all values p such that there is an outgoing edge with label 〈c, p〉
equals 1, and

• v does not have two outgoing edges with labels 〈c, p〉 and 〈c, p′〉 where
p, p′ ∈ [0, 1] and such that the subtrees rooted at the corresponding suc-
cessors are isomorphic.

The function ω is defined as follows. Given a tree T , a value c ∈ C, a ∈ A, and
〈T ′, b〉 ∈ Ω×B, we set

ω(T )(c)(a) := p

if the root of T has an outgoing edge with label 〈c, p〉 that leads to a leaf with
label a, and we set

ω(T )(c)(〈T ′, b〉) := p

if the root of T has an outgoing edge with label 〈c, p〉 that leads to an inner
vertex x with label b such that the subtree of T rooted at x is equal to T ′. In
all other cases, we set

ω(T )(c)(x) := 0 .

Given an arbitrary Π0-coalgebra π : S → Π0(S), the required unique func-
tion ϕ : S → Ω is defined similarly as in (a). We set

ϕ(s) := Ts , for s ∈ S ,

where Ts is the unravelling of the following graph 〈V,E〉. Again the set of
vertices is V := A+S ×B and the vertex labelling is the natural one. For each
〈s, b〉 ∈ S ×B and every x ∈ A+ S ×B, there is a 〈c, π(s)(c)(x)〉-labelled edge
from 〈s, b〉 to x.

As above, a straightforward calculation shows that the function ϕ defined in
this way has the required properties.
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Example 2.11. Let π ∈ Π({∗}; {0, 1}, {a, b}, ∅) be the probabilistic process de-
fined by

π(∗)(x)(s, c) := 1/2 .

The tree ϕ(∗) has the following form:

•

a b a b

a b a b a b a b a b a b a b a b

0, 1
2

0, 1
2

1, 1
2

1, 1
2

0, 1
2

1, 1
2

0, 1
2

1, 1
2

0, 1
2

1, 1
2

0, 1
2

1, 1
2

(Due to space considerations we have omitted some edge labels.)

We have seen that the final coalgebras consist of trees describing all possible
sequences in the game. Given a game γ : S → Γ(S) and the unique morphism
ϕ : S → Ω into the final Γ-coalgebra, we call the tree ϕ(s) the game tree of γ
when starting in state s ∈ S.

2.7 The outcome of a game

After these preparations we can determine the outcome of a game. Given a
game γ and strategies σp for each player, we can compute a game γ[σp]p without
players and determine its game tree T . Hence, it remains to define how to read
off the outcome from a game tree.

Let γ : S → Γ(S) be a game without players and let ω : Ω → Γ(Ω) be the
final Γ-coalgebra. To define the outcome γ we specify a set U of outcomes and
two functions % : Ω→ U and τ : Γ(U)→ U such that

Ω

U

Γ(Ω)

Γ(U)

%

ω

τ

Γ(%)

Intuitively, % maps a game tree to its outcome, while τ computes the outcome
of a game from the outcomes of its subgames. Hence, τ performs a local compu-
tation, while % is needed to compute the limit of an infinite sequence of turns.
Ideally, the function τ uniquely determines %. This is the case, for instance,
for discounted pay-off games, where the value of a game mostly depends on an
initial segment of the game tree.

Example 2.12. Consider a deterministic two player game with R = R × R and
O = R×R. Fixing deterministic strategies for both players, we obtain a deter-
ministic zero-player game, whose game tree is either an infinite sequence over O
or a finite sequence where the last element is from R and the remaining ones
are from O.

Choosing a discount factor λ ∈ (0, 1), we can define the outcome by the
functions

τ : R+ U ×O → U and % : Ω→ U ,
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where U := R× R and

τ(x, y) := (x, y) , for (x, y) ∈ R ,
τ((x, y), (u, v)) := (λx+ u, λy + v) , for ((x, y), (u, v)) ∈ U ×O .

The function % is uniquely determined by τ . An explicit definition is

%(xn, yn)n<α :=
(∑

n<α λ
nxn,

∑
n<α λ

nyn
)
.

Having defined the outcome of a game, we can introduced equilibria. Con-
sider an game γ with set of players N and set of outcomes U := RN . Let
τ : Γ(U) → U and % : Ω → U be the functions to compute the outcome of γ.
For a tuple σ̄ = (σp)p∈N of strategies, we denote by ϕ[σ̄] : S → Ω the function
from the reduced game γ[σ̄] to the final coalgebra.

Given strategies σp, for each p ∈ N , and an initial game state s0 ∈ S, we
say that σp is a best response to the other strategies if

%(ϕ[σ̄](s0)) ≥ %(ϕ[σ̄′](s0)) ,

for all tuples σ̄′ that differ from σ̄ only in the p-th component.
The tuple σ̄ is a Nash equilibrium of γ if, for every player p ∈ N , σp is a

best response to the other strategies.

2.8 Summary

Summing up the preceding sections, we have seen that we can specify a game
by the following data:

• a set N of players,
• for each p ∈ N , a set Ap of actions for player p,
• for each p ∈ N , a set Bp of observations for player p,
• a set S of states of the game,
• a set R of results,
• a set O of output values,
• a set U of outcomes,
• a function

γ : S → C(R+ S ×O)
∏

p∈N Ap

computing a single step of the game,
• for each p ∈ N , a function

βp : O ×
∏
p∈N

Ap → Bp

computing the observations of player p, and
• two functions % : Ω→ U and τ : Γ(U)→ U that satisfy

% = τ ◦ Γ(%) ◦ ω

and that compute the outcome of a play.
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3 Examples

In this section we present the formulations of two basic games in our framework.
The first game is one with imperfect information as imperfect monitoring. The
second game is one with incomplete information.

The usual approach in economics is to reduce incomplete to imperfect in-
formation. Incomplete information denotes situations where the type of agents
is not known while imperfect information denotes situations where the state of
the game is not known.

In our framework this differentiation is not important both kinds of lack of
information are captured by unobservable state spaces. However, some more
experiences in representing economic games in our framework will clarify these
differences.

3.1 Imperfect Public Monitoring

The imperfect information game with imperfect monitoring and noisy signal
considers games where the agents’ actions may not be directly observable. The
state of the game is driven by a probabilistic state transition and may be either
“good” or “bad”. This information is publicly observed by the agents, i.e. all
players observe the same signal. The payoff is a function of this public outcome.

Again we have two players with two actions each: N = {1, 2} and Ap =
{c, d}. There are no results R = ∅ since the game never ends. The output
values are O = R × R × Y with Y := {G,B} that encode the pay-offs in the
stage games and the public signal. The game has a single state S = {∗}.

The game for the probabilistic functor Cγ = Cprob, is the function

γ : S → Cprob(S ×O)A1×A2

(∗, a1, a2) 7→ (∗, (r1, r2, y))

where

rp =


1 + 2−2k

k−m if (ap, y) = (c,G)

1− 2k
k−m if (ap, y) = (c,B)

2−2n
m−n if (ap, y) = (d,G)
−2n
m−n if (ap, y) = (d,B)

y =



G with probability k if (a1, a2) = (c, c)

G with probability m if (a1, a2) = (c, d) ∨ (a1, a2) = (d, c)

G with probability n if (a1, a2) = (d, d)

B with probability 1− k if (a1, a2) = (c, c)

B with probability 1−m if (a1, a2) = (c, d) ∨ (a1, a2) = (d, c)

B with probability 1− n if (a1, a2) = (d, d)

The probabilities of the state transition are characterize by the parameters k >
m > n. The parameters are chosen such that the expected value of the payoffs
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is given by the prisoner’s dilemma matrix:

c d
c (1, 1) (−1, 2)
d (2,−1) (0, 0)

The game has imperfect information so that the epistemic state of the players
is not the state of the game. Each player knows the history of his actions and
the history of the public signals

Ep = (Ap × Y )∗.

The observation function is

βp : O ×A1 ×A2 → Bp

((r1, r2, y), a1, a2) 7→ (rp, y, ap).

We consider deterministic strategies with choice functor Cσ = Cdet. An
example of always (unconditionally) playing d for a player p is given by

σ1 : E1 → (E1 ×A1)B1

(h, (r1, y, a1)) 7→ (h(a1, y), d)

where h(ap, y) denotes that the history h of the epistemic state is extended by
the action ap and the public signal y.

3.2 Incomplete Information

In a Bayesian game of incomplete information the types of agents are not com-
mon knowledge. In the simplest case we take types of agents to be represented
as different payoff functions of the game and each agent knows his own type but
not the one of his opponent.

In the following example we define that the game is played only once. How-
ever, our framework is rich enough in order to easily extend the game to be
played finitely, infinitely or potentially infinitely often. The types of agents can
be drawn repeatedly or as in the following example only once. The agents can
use Bayesian updating or in fact any kind of learning rule.

We define a Bayesian game of four 2 × 2 games: Matching Pennies (MP),
Prisoner’s Dilemma (PD), Coordination Game (CG) and Battle of the Sexes
(BS) with equivalence classes Ii,j for players i and types j. Player 1, if of type
1, knows that the payoff is either MP or PD and if of type 2, that the payoff is
either CG or BS. Player 2, if of type 1, knows that the payoff is either MP or
CG and if of type 2, that the payoff is either PD or BS. The probabilities are
given by pMP = 0.3, pPD = 0.1, pCG = 0.2 and pBS = 0.4.
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MP

2,0 0,2

0,2 2,0

p = 0.3

PD

2,2 0,3

3,0 1,1

p = 0.1

CG

2,0 0,0

0,0 1,1

p = 0.2

BS

2,1 0,0

0,0 1,2

p = 0.4

I1,1

I1,2

I2,1 I2,2

The state space of the game is S = {∗,MP, PD,CG,BS}. The output space
of the game is O = S and the result space is R = R × R. The action spaces
are A1 = {U,D} and A2 = {L,R} and the epistemic state spaces have a single
state E1 = E2 = {∗}. We formalize this game in two rounds.

1. In the first round the game is in state ∗ and nature realizes the types of
the players, the actions of the players are irrelevant.

γ : S → Cprob(R+ S ×O)A1×A2

(∗, a1, a2) 7→


(MP,MP ) with pMP = 0.3

(PD,PD) with pPD = 0.1

(CG,CG) with pCG = 0.2

(BS,BS) with pBS = 0.4

In the second round the game yields a result.

(MP, a1, a2) 7→


(2, 0) if a1 = U, a2 = L

(0, 2) if a1 = U, a2 = R

(0, 2) if a1 = D, a2 = L

(2, 0) if a1 = D, a2 = R

An analogous definition has to be given for the other type realizations
PD,CG,BS.

2. The observation function of the first player is

β1 : O ×A1 ×A2 → B1

(o, a1, a2) 7→


∗ if o = ∗
{MP,PD} if o = MP ∨ o = PD

{CG,BS} if o = CG ∨ o = BS

The observation function of the player 2 is defined analogously.
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3. The strategies for both players are given by

σp : {∗} → C({∗} ×Ap)Bp

For example, the strategy of player 1 who plays U if he is of type 1 and
D if he is of type 2 is given by

(∗, b1) 7→

{
U if b1 = {MP,PD}
D if b1 = {CG,BS}

In the first round when nature chooses the types, the strategy of the
players is irrelevant since it does not matter in the game function.

4 Unification

We have shown how to instantiate games in our general framework. Its high level
of abstraction provides a path to a unification with other subfields of economics.
Beside game theory we want to mention the relations to computational, network
and agent based economics, macroeconomics and econometrics, and to point to
the reflexive structures in these subfields. The coalgebraic tools are related
to functorial fixed points on the category of sets. These fixed points are well
suited to model reflexive and self-referential structures that are so far hardly
modeled in social sciences even so they constitute the core feature of societies.
By reflexivity we mean the interaction of an object with its encoding or of a
context with its content. This happens in general in societies where modelers
are part of the modeled system and mutually model each other.

4.1 Computational Economics

Our framework is built on mathematical techniques that were developed in
theoretical computer science in fields such as modeling and verification of pro-
cesses, semantics of programming languages, logic, and automata theory. These
techniques are well suited to model interactive behavior and our framework ac-
cordingly provides the beginning of an interpreter for an economic language.
The models therein are representable as executable code. This helps on the
difficult, not formalized, error prone, unreliable and accordingly tedious ad hoc
approach in computational economics when it comes to simulate, analyze, solve
and synthesize economic theories in software. A next step is to program a game
theoretical engine with our type definitions, natural transformations and basic
operations for the composition of games. Games are to be programed in this
framework as instantiations and transformations of the defined types of the en-
gine. In the development of our framework we need to iterate between examples
and improvements of the interpreter of the language and to extract the reoccur-
ring operations and specifications into the vocabulary that is needed in game
theory and economics.

Our approach to computational economics aims to extend the software for
simulation and numerical solution of models by proof assistants. An important
next goal is to add the logical structures that naturally come with coalgebras and
that are used in computer science, system and language design in order to proof
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and specify properties of systems. At the specification level we need to provide
logical predicates for the specific needs in the domain of economics at a high
level like predicates of equilibria or other properties of strategy profiles. Logical
specification languages and predicates defined in this way may contribute to
the development and increased usage of economic ontologies in economics as it
is done in the economy and the research on the semantic web. This aims to
reduce the ambiguities regarding the meaning of the expressions that are used
in natural language economics and to foster interdisciplinary collaborations.
At the verification level we need to provide tools to check for example safety
conditions like invariances over state transitions. These are often some kind
of logic modalities of necessity and possibility of some temporal, epistemic or
deontic kind.

Logical tools can assist during abduction and debugging cycles of theory
development. Abduction is the process to infer additional properties or restric-
tions on the maintained set of logical sentences such that intended theorems can
be proved [9]. The theorems may involve safety conditions, desired properties
or some empirical facts to be explained. This process of induction during de-
duction is hardly formalizable but computational tools may assist in generating
counter examples that can then be used to induce additional restrictions by the
human capability of pattern matching. Here it is of paramount importance to
define formal translations (natural transformations) between the representations
(functors) since patterns and their detection do depend on the representation.
The generation of counter examples by the logical tools of model generation is
important for the debugging cycle of theory development that is so far done by
hand.

4.2 Computing Economic Agents

The current approach in economics to proof properties of theories is rather spe-
cific to the theories and properties of interest. Our abstract framework can pro-
vide a uniform approach to this logical goal since coalgebras come with general
proof systems [70, 71]. The predicates and logical tools that need to be inte-
grated into our framework serve the central goal to proof properties of games
like the question what equilibria can result from certain strategies.

A dual goal is to ask what strategies can result in certain equilibria or what
specific outcomes can be the result of some behavior. An interesting question
is whether the duality of both tasks, analysis of games by asking for outcomes
given behavior and the design of games by asking for behavior given outcomes
can be formally dualized.

The goal of establishing a formal duality of the tasks of design and analysis of
games is to endogeneize the policy maker into theory. Agents should be able to
analyze the game they play as well as to change the rules of the game in order to
model the policy maker being integrated in the model. This again points to the
need to model reflexive structures that most prominently appeared in the Lucas
critique. The basic reflexive structure of lambda calculus suggests an obvious
approach. If players are modeled as computers (or universal Turing machines
as coalgebras [57] or monoidal categories [91]) then the computation of payoffs
can be taken to be a player as well [81]. Hence, lambda calculus or computable
functions provide approaches to the reflexivity of institutional economics as the
interaction of the context and the content.
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4.3 Reflexivity

Reflexivity is a self-referential pattern or a kind of fixed point where objects
and their encoding interact. This is an important, if not a defining feature of
biological and social systems [117, 66, 76, 52, 86, 97, 96].

The usual fixed points in economics are Brouwer’s kind of fixed points. They
are not suited to accommodate the reflexive nature of societies, we need fixed
points on structures, hence functorial ones which generalize largest fixed points
on posets.

The intuition how coalgebras generalize largest fixed points is to understand
partial orders as categories, where the objects of the category are the elements
of the partial order and there is at most one arrow between any two objects
indicating the order relation between them. Having at most one arrow captures
partiality. Functors, that preserve order, can be taken as monotonic functions.
Final coalgebras arise as functorial fixed points and generalize largest fixed
points on posets to any category and functor [8]. Final coalgebras µF can be
taken as functorial fixed points since their structure maps are isomorphisms by
the Lambek lemma, hence µF ' F(µF ).

In game theory largest fixed points have been already used in a small number
of influential applications. An existing strand in game theory are supermodu-
lar games that have been build on largest fixed points on posets in order to
model strategic complementarities and multiple equilibria [84, 82, 83]. In the
macroeconomic literature largest fixed points of posets have been used for the
approximation of value function iteration on Bellman equations in dynamic pro-
gramming [28, 29, 27, 69]. An important paper in game theory is [6] that became
an important technique in the literature on infinitely repeated games, see the
text book [79]. This technique uses largest fixed points of set valued functions,
heads and tails as continuation values, equivalence classes of behavioral equality
like bisimulation and automatons. The goal is to characterize a set of payoffs
that can be the result of subgame perfect equilibria in infinitely repeated games.

These largest fixed points on posets have been steps in the direction we follow
but they went not far enough into the functorial fixed points of the coalgebraic
approach. It is interesting to understand how these economically motivated
constructions can be merged into the abstract coalgebraic techniques.

An important generalization of the games that we have seen in our framework
are epistemic games that are based on largest fixed points as well [21, 20]. In
epistemic games one goal is to construct a domain with infinite hierarchies of
beliefs of beliefs that arise for example in Keynes’ notion of a beauty contest that
drives expectation formation on prices. The circularity arises if fundamentals
drive prices and beliefs that in turn drive fundamentals. The implied question is
whether any kind of opportunity cost argumentation needs to ultimately answer
how the feedback of mutual opportunities can be resolved.

One goal of epistemic game theory is to substantiate the notion of common
knowledge and rationality. Common knowledge is a coinductive modality [23].
The domains that are constructed in epistemic game theory are Harsanyi type
spaces [51] and have been constructed as coalgebras on the category of measur-
able spaces [85]. The unobservable state space models are accordingly a natural
approach to private hence unobservable types of agents.

The coalgebraic construction of functorial fixed points on the category of sets
can be extended to the category of measurable spaces as in the case of Harsanyi
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types spaces. In case of functorial fixed points on games in networks played over
networks we may change the underlying category of sets to the one of relations
or generalizations thereof like the category of span(graphs) that was used for
parallel processes [64]. The relational categories need to capture ultimately the
process logical nature of double accounting as a core technique of economies
which is a theory of the measurement of parallel processes with only local ex-
change of information such that a global state of a balanced sheet is maintained
[63]. The underlying problem to be solved is a stock-flow consistent macroeco-
nomic approach [53, 72] in order to generalize Walras law, double accounting
and budget constraints, into some sort of decentralized constraint propagation
algorithm that represents the search processes in the economy across markets,
hierarchies and time. This requires some relational category where we can model
money and value theory that arises as a property of the network where the
money is used. It is a rather complicated problem since within the time struc-
ture and belief formation that determine the value of money we have to model
the banking and financial sector, fiscal and monetary policy as well as theories
of capital formation and ultimately decentralized and hierarchical structures.

The formulation of agents as coalgebras or unobservable state space systems
prepares the ground for the integration with the learning literature of agents
that are isomorphic to the econometrician [100]. This, as well as the dualization
of analysis and design of games, brings us to reflexivity as the core issue of so-
cial systems, the interaction of the model and the theory, or the object and its
encoding, respectively, that is underlying the Lucas critique. We can instantiate
one form of reflexivity in our networks by games where the strategic actions are
the structures of the network. Hence we may formulate games in the network
being played about the network. These games connect us to institutional eco-
nomics or the interaction of the context and the content. We have argued above
that the reflexive lambda calculus,hence Scott domains or in general tools of
computable functions are natural tools for institutional economics.

Just as the coalgebraic or functorial fixed points can be switched from the
category of sets to the category of measurable spaces in order to accommodate
the construction of beliefs of beliefs in terms of distributions over distributions
we may take functorial fixed points to construct the domains for rules to change
rules, games over games or as in our case of games over networks. The early
work of Vassilakis [115, 116, 114] builds on the computer scientific work on data
types and Scott domains and applies it to some economic reflexivities. However,
coalgebras have not been developed at that time and accordingly Vassilakis has
used for his functorial fixed points the category of domains, which has ordered
sets as objects. Hence, our coalgebraic approach is a simpler starting point
without the complications of domains, which we may need to explore later.

One of the most important features of category theory is that the categor-
ical universal constructions are self-participating and do not dependent on the
structures they operate on. For example, the characterization of products as
categorical limits or dually of disjoint unions as colimits is independent of the
structures they operate on, be them sets for cartesian products or topological
spaces. This data independency and universality is the underlying reason why
category theory is well prepared to discuss the notion of compositionality and
modularity. Moreover, categories are in a sense fractal or hierarchical themselves
since the functors form the objects of a category with natural transformations
as arrows. This kind of hierarchical constructions can be extended infinitely

26



and are very convenient for reflexive structures. Both, self-participation and
fractality, contribute to an evolutive modeling approach. Once constructions on
categories repeat themselves they can be relocated into the underlying category
in order to simplify the constructions on top of it. The goal for economics is to
arrive at a category of the economy as its state with functors as state transition
in the category of categories.

We have seen in the definition the essential building block of categories as the
composition of arrows. This makes category theory into a necessary tool for a
relational or structural social science [41] that can hope to understand the nature
of complex or compositional systems [101]. The ability to construct properties
by self-participating universals has far reaching philosophical consequences one
is that we can hope for policies that respect self-determination of humans in
form of a help to help themselves [40]. The non-self-participating nature of
set theory suggests that it is insufficient to understand reflexivity and therefore
synthesis and ultimately societies.

Reflexivity is a deep common root of mathematics, computer science, biology,
economics, linguistics, social science and philosophy. In computer science it
appears most prominently as the need to model languages that need to be
able to interpret themselves [15, 14, 13]. This appeared for the first time in
computability theory where programs processing the codes of other programs
(or their own) were introduced. It resulted from the simple but far reaching
idea of von Neumann to place code and data in the same memory and hence
to make code into data of (other) code just as a theory appears in the modeled
systems in economics. One approach to this code as data problem is based on
the untyped lambda calculus, a bare-boned functional programming language
where functions operate on functions. This led to functorial fixed points of type
D ' DD. A solution was finally provided by domain theory [105, 4].

The solution for these so called reflexive domains is the genuine reflexive
problem of self-referential structures. They can be detected in natural languages
as expressions of the form X of X [10, 12, 11], set of sets, function of functions,
belief of beliefs, rules of rules, game of games or economics of economics. These
are interactions of the object and its encoding as in the cognitive act of Anna
calling herself “Anna”, the Anna of “Anna”. It is the identity generating act
of naming and accordingly the mathematics of quoting that is captured by
functorial fixed points.

The Lucas critique can be formulated as the need for the economics of eco-
nomics to be economics or for the need to model the economic agents isomorphic
to the econometrician, both being inside the modeled systems. The economics
of economics studies the production function of economics. This paper being
about reflexivity practices reflexivity since it wants to change the production
function of economics. This process is a higher order function since economic
consulting takes production functions as inputs, transforms them and outputs
new ones, just as in lambda calculus. Economics professors produce economists
who become consultants who transform production functions. But economic
professors also produce other economic professors. The economy has to be de-
scribed by a higher order production function just as Robinson Crusoe’s coconut
which produces a coconut – out of a coconut. Similarly capital is an operator,
input or output and in need of a type theory just as value theory and money
theory. One function of money is to provide a unit for accounting, hence money
is a type constructor and exchange rates some natural transformations. Once
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we have the reflexive tools of recursive functorial fixed points at our disposal
they appear to be a natural starting point in order to model the prevailing
circularities in social cognitive systems that think about themselves. However,
coalgebras on the category of sets and recursive domain equations X ' F(X)
that are solved by final coalgebras are a natural interface to import and then
generalize the usual mathematics of economics.

4.4 Networks

We can place agents in our framework into a network structure that can be
further generalized to any algebra and thus a formal syntax. The network in
our example represents the locality of the observed information in the game
of imperfect monitoring. There are many other different kinds of hierarchical
structures that may be encoded in that way: workers that aggregate into firms,
then into sectors, then into economies, and finally into the world economy. At
each level different information may be modeled to be available. Beside the
hierarchical or informational structures, of course, we may encode networks as
spatial structures. Another important hierarchy are time scales that naturally
arise in models of overlapping generations or yield curves managed by central
banks. In general, parallel and hierarchical processes with different time scales
can not be controlled by single concrete control units and need to be managed
by some emergent or composed control structure [38]. Hence, probably the most
important hierarchical structure that we study in social sciences is the hierarchy
of control that brings us into the realm of political economics, political science
and theories of democracy. Again, democracy is a reflexive structure in that
peoples are meant to reign themselves.

4.5 Agent Based Economics

Our framework can be taken as a complementary approach for agent based
economics [111]. We provide an agent based programing language and the se-
mantics for it. Object oriented languages are the main kind of languages in
the agent based approach that simulate data that trace the interactions of the
programmed agents. The data is then used to statistically infer the properties
of the composed systems. This is a convenient way to get familiar interactively
with the maintained theory and to generate hypotheses but it can not substitute
a formal account of the compositionally of social systems just as simulations can
not substitute the formal derivation of the behavior of the programing languages
in theoretical computer science.

Probably the most sever problem is that ontological and epistemic states, of
the game and the agents, respectively, as opposed to our approach can not be
properly distinguished in agent based approaches [112]. It is not clear whether
a program needs a global or local state as a feature of the model or due to the
implementation details. Without such a distinction it is also not clear whether
emergent properties of the system arise as a feature of the system or as an
emergent understanding of the modeler. So, do simulated emergent properties
arise from the interaction of the subparts of the system or the ignorance of the
modeler?

The linguistic or knowledge representation caveat in the simulation based
approach is that object oriented languages are simpler to use and are, at least
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pragmatically, more expressive than differential equations. But this expressivity
is payed by a reduced decidability in terms of statistical inference only. It is
better to directly approach the problem by tools of language design and to find
an optimal tradeoff between expressivity and decidability, tailored to the mod-
eling problem at hand. The optimal tradeoff is the core issue in the knowledge
representation research that needs to be applied to economic language design
[48, 19].

Object orientation in programing languages was meant to cope with large
software systems by compositionality and modularization of components. It was
developed without a formal semantics but it is now formalized by coalgebraic
semantics in theoretical computer science [95, 59]. Object orientation is a way
to cope with complexity by modularizing subparts that interact only at their
interfaces with some contracted behavior arising from unobservable state spaces.
Hence, coalgebras are a natural approach to object oriented modularization.

A formal semantics or account of the composition of behavior from the be-
havior of subparts as opposed to simulation alone is especially important in
order to understand how errors propagate in systems during the interaction of
the parts and also how to properly design and compose systems from parts.
Both, the error propagation and design issues arise equally in programing lan-
guages and social sciences and can not be sufficiently studied by the current
approach of statistical inference of system properties from simulated data.

Hence, our approach to compositionality by natural transformations can be
taken as an attempt to complement the simulation approach in agent based
economics. We do not want to rely on the law of large numbers alone in order
to derive properties of the behavior of the composed system but aim at analytic,
or more accurately, synthetic composition.

4.6 Macroeconomics

The macroeconomic literature relates to our approach obviously through the
goal to model aggregation. At the technical level both are related by states
that are distributions that result at the next level in distributions over distri-
butions. These features arise during the composition of stochastic micro agents
and macro games. In the literature on heterogenous agents in macroeconomics
[49] we find similar structures in terms of idiosyncratic and aggregated shocks
and distributions as states. In our framework we see distributions as states and
distributions over distributions as natural transformations.

On the technical level of the languages of microeconomics and macroeco-
nomics there is still a gap to fill given that macroeconomics and economic
dynamics is traditionally formulated in differential and difference equations.
Coalgebras can unite these structures with our approach as well. Calculus has
a coalgebraic form [90], metric coinduction [68, 67] can operate on functional
vector spaces [75] and the continuum can be constructed as a final coalgebra
[89]. However, a methodological and philosophical question is whether there
are any real numbers in the economy at all and what kind of approximation
are we working at if real numbers approximate discrete structures of reality and
discrete computers approximate the real numbers.

The categorical machinery points to a more elaborate mathematics of for-
mal aggregation. Our natural transformations simply state the composition
or aggregation operations but we are also interested in the conditions which
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enable aggregation and show how additional properties arise from the combi-
nation of subparts without being properly in the subparts. These structures
are mathematically discussed in sheaf theory [78] that formalize the transition
from local to global structures in mathematics as in algebraic geometry. In the
computer scientific literature [46, 45, 47, 80] they have been used to formalize
composition by categorical colimits (that construct initial algebras and gener-
alize disjoint unions) and to formalize behavior by limits (that construct the
final coalgebras and generalize products). The sheaf conditions describe how
objects arises out of observations from different points of view and when these
observations can be consistently composed. In econometrics we similarly ask
how differently identified structural models fit together on the behavioral level.
After all models are meant to incompletely describe the one and only economy
and we would like to know whether they are consistent in one way or another.
If sheaves are used to model the world then cosheaves can be used to weight the
models [31]. In econometrics this may be used for a generalized model weighting
as in Bayesian statistics. In theory this may be used to arrive at the identity of a
social system that arises from the models that are maintained by the individual
agents. This can be related to the maximally self-fulfilling notion of rational
expectation models and to the question for conditions that render expectations
to be rational derived from the same model of the observer and the observed.

4.7 Econometrics

The program of the rational expectations revolution is to model the economically
reasoning agents in economic models as econometricians [100] that decide upon
observations. However, it is still at stake to pass beyond the so called model
communism which denotes that the observer and the observed maintain the
same model. Our framework is well prepared to this kind of reflexivity of the
interaction of the object of interest (the economy) and its encoding (in the
models of the agents interacting in the economy).

Our agents and games are represented by processes that are coalgebras.
Coalgebras formalize the unobservable state space models [99] that underly the
Kalman filter. The duality of Kalman filters and control systems is well known in
macroeconomics. Coalgebras and the inherently duality based category theory
are therefore natural generalizations of these economic tools.

A causal empirical theory suggests (directed) conditional independence as-
sumptions but data does only provide (undirected) correlations. A major prob-
lem in econometrics is accordingly the fact that in general in parametric speci-
fications of joint densities there are more causal parameters than can be deliv-
ered by correlations. Hence, there is a gap that in econometrics is filled under
the heading of identification. We are left with classes of theories that are, in
econometrics so called observationally equivalent [108]. This is called behavioral
equivalence and bisimulation in coalgebra and establishes an algebraic path to
the core problem of econometrics that relate by identification the correlations
of data to the causal theories of interest. The only way to do this is to change
and experiment the systems, hence to formalize the notion of an experiment
given non-experimental data only. Non experimentality refers to the inability
of totally control the environment of the experiment in order to unambiguously
identify causalities. Hence, a core issue of science is the dual notion of construc-
tion and observation and therefore of algebras and coalgebras, see also [113].
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Statistical models and their implied joint densities are represented as graphs
in the machine learning literature of Bayesian networks [93, 92]. Bayesian net-
works use the conditional independence assumptions to reduce the complexity
and increase compositionality during the modeling process by visualizing equa-
tions of joint densities as graphs. A graph theoretic representation allows as well
to exploit the composition of large Bayes networks from simpler ones in order
to automatically tailor efficient algorithms to irregular networks. We can think
of this approach as a decomposition of sparse matrices in linear econometric
models along their block structure in order to avoid the inversion of the whole
matrices. The graph theoretical representation replaces the usual matrix inver-
sion in econometric algorithms by belief propagations in networks that maintain
the global property of the validity of the Bayes formula by a local exchange of
informations as a decentralized communication algorithms between appropriate
subgraphs [54]. This ultimately represents the statistical inversion and learning
of the densities of the unobservable random variables from observed data.

This graphical approach meets with our framework in influence diagrams
[60]. Influence diagrams extend the nodes of Bayesian networks that repre-
sent random variables by decision nodes which are set by agents given some
utility nodes. Here the composition and decomposition is along the mutual in-
fluence of the involved agents on their payoff functions rather than conditional
independencies as in Bayes networks. Therefore influence diagrams generalize
the decomposition of random variables in Bayes networks via conditional inde-
pendence assumptions to non-influence assumptions. Our framework relates to
influence diagrams since our observing agents do interact in networks as well.

However, Bayes networks are only probabilistic models at the level of propo-
sitional logic and Markov logic is developed in order to extend them to predicates
within a suitable probabilistic approach [35]. Our goal to unify our approach
with econometrics and modal logic is similar. In terms of a categorical approach
to Bayes networks [43] and logic, the path to an algebraic predicate-based statis-
tics is via adjoint functors as logical quantifiers [30, 110]. Predicates are needed
for a more expressive language beyond propositional logic in order to improve
models of relational structures [35]. However, it is important to recapture the
role and tools of statistics in that it is usually meant to capture the unmodeled
part of the world that is the general goal of approximation and that can be
approached algebraically by the tools of abstract interpretation [42, 104, 102]
developed in program language semantics. Statistics is also meant to provide
a model of uncertainty. However, uncertainty in social systems may be cast
as a non-well founded [50] and hence coalgebraic structure. How to combine
nonmodeling, uncertainty, statistics and coalgebra is therefore on open quest
for the future.

A possible path might be to consider coalgebraic structure as fundamen-
tally capturing openness as infinity and by that uncertainty. There might be an
economically interpretable relation to the open world semantics of knowledge
representation research [48]. An interesting questions is how the asymmetry of
a “no” (proved “no” or not provable) in a theorem prover and the open world
semantics relate to the asymmetry of losses and gains in the cumulative prospect
theory of Tversky and Kahneman. The open and closed world semantics are
different with respect to the assumptions on the truth value of non mentioned
sentences. This is related also to non monotonic reasoning where an additional
logical sentence may render a formally provable theorem unprovable. This sug-
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gests a formal approach to model that in an open world new information may
render a formally valueless option valuable, a situation that is impossible in the
world of monotonic reasoning where it is always the case that additional sen-
tences may not be used. The links of this line of reasoning might contribute to
the literature of incomplete contracts and markets in economics. However these
intricacies turn out to be resolvable, they strongly point to the need for logical
systems in social sciences that are beyond the exclusive “true” and “false” but
ones where a third “I don’t know” value is possible and important. A statis-
tical approach to the third value is in [32]. Coalgebras, that are not build on
the axiom of foundation, seem to allow these lines of thought, that underlies
Luhmann’s sociology, since the Russell sets ”do, do not, do, do not ...” con-
tain themselves. The infinite sequence of ”true” and ”false” may be taken to
represent the third truth value ”I don’t know” of both ”true and false”.

4.8 Endogenous Language

A theory of a sufficiently complex system is an approximation to a certain degree
for some subparts of the system. The motto of numerical economics is that the
question is not whether but where to approximate [61]. Numerical economics
usually approximates a model that is assumed to be the truth and we need
to rethink the model and proof theory of economics. However, the numerical
motto is an approximation and we need to take it serious that a theory is an
approximation and the questions is what is an approximation of theories and
what a theory of approximations.

We need to ask for the marginal utility of improving a model by Taylor
expansions at the level of functors and domains [31] and by a transition from the
local approximating structures to the global object, the society. But again, there
is the reflexive caveat: social theories are only approximations of the modeled
system, and yet they are meant to be implemented as policies or institutions in
order to become the rules that drive the systems.

The quest for approximation is answered in computer science under the head-
ing of abstract interpretation [42, 104, 102] that provides a notion of approxi-
mation of the semantics of a programing language. Types are put in hierarchies
like booleans that approximate natural numbers, integers, rationals and reals
and the goal is to ensure behavioral invariance under different levels of approxi-
mations. In economics we want to add some features to a theory and ask which
behavior is preserved and which one is new and most of all how is it related to
the measured behavior of the modeled system. In terms of compositionality of
theories it is of paramount interest to check whether and in what sense different
theories show consistent behaviors. Of course, in order to take advantage of the
toolbox of formal semantics and abstract interpretation we need to interpret
the meaning of the computer scientific concepts in the realm of economics, with
operational and denotational semantics being two important ones.

The framework we are proposing is based on category theory and we have
to ask how to endogeneize even this process as the generalization of the goal to
model the modeler. We need to take the endogeneization of scientific, every day
and political economic languages as our ultimate problem of the coevolution
of objects and their encoding [33, 37]. A general point is that we usually can
only see, understand and intentionally construct what we can write down as a
theory, if only for the purpose of communication and cooperation. An important
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question is to account for the notion of truth implied by a given language,
mathematics or dogma in social science. This goal to endogeneize the language
itself may be approached mathematically by topos theory that can account for
local mathematical languages [17, 33] and differentiated notions of truth that
we may take to be something beyond “true” or “false” or ultimately as some
degree of approximation only and most of all dependent on the point of view
and some individual notions of (relative) truth or mutual inconsistency [16].

5 Conclusion

We have seen in this paper how to represent a variety of games in one unified and
abstract framework. One goal of this framework is to ensure compositionality
of games from simpler ones for an approach to synthesis in social science. Our
framework is sufficiently abstract in order to be uniform over types of games
and other economic theories.

Another goal of our framework is to unify economics and its main tools under
a sufficiently abstract language. The coalgebraic language can subsume all of
game theoretical models and it comes with internal logics, proof systems and a
direct implementability in code. It most of all provides the simplest account of
the core feature of social sciences namely reflexivity. The fixed points that are
used in economics have to be accompanied by the functorial fixed points that
allow us to model reflexivity and hyper structures such as beliefs of beliefs or the
history of histories for their reinterpretations and ultimately we need to arrive at
the economics of economics where the economic process of knowledge generation
itself is formalized and decentralized. In the present paper we have seen that the
simplest domain for hyper structures provides us with the behaviors of many
models specified in game theory. The generalization into more general functorial
fixed points seems to be a proper path for many of the insufficiently modeled
economic issues.

The linguistic point of view suggests a division of labor for economics. The-
oretical economics supplies the linguistic means to express economic theories.
Applied economics on the other side uses the language in order to formulate
theories and extract them from data. The goal is to answer economic questions
in order to implement economic policies for and by groups of individuals and
to set up their institutions. The pragmatic development of the formal economic
language is to start with ontologies that are used in applied work and extract
the repeating patterns into the vocabulary and the syntax of the engine and the
interpreter of the formal language. Hence, the development of economic theory
takes place as the reflexive interaction of the syntax and the semantics of its
language. And this is what we need to model: the institutional economics of an
interacting network (syntax) and behavior (semantics) as a game that is played
in a network over the structure of the network. Reflexive agents are autonomous
if they form their environment or if the categorical imperative of behavior may
be thought as the rule that materializes as an institution. Thus reflexivity is
the core of the European enlightening [52] and still far from being at its end -
if not mathematized.
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