
Bounded Arithmetic and Descriptive Complexity

Achim Blumensath

Mathematische Grundlagen der Informatik
RWTH Aachen, D-52056 Aachen

blume@i7.informatik.rwth-aachen.de

Abstract. We study definability of languages in arithmetic and the free
monoid by bounded versions of fixed-point and transitive-closure logics.
In particular we give logical characterisations of complexity classes C by
showing that a language belongs to C if and only if it is definable in either
arithmetic or the free monoid by a formula of a certain logic. We investi-
gate in which cases the bounds of fixed-point operators may be omitted.
Finally, a general translation of results from descriptive complexity to
the approach described in this paper is presented.

Keywords: descriptive complexity, definability, arithmetic

1 Introduction

Descriptive complexity theory studies the connections between definability and
complexity classes (see [1, 4, 5] for an overview). The most common approach
originates in finite model theory and yields characterisations of the following
form: “Some class K of finite structures belongs to the complexity class C if
and only if K is the class of finite models of some sentence of the logic L.”
More formally, K ∈ C iff K = Mod(ϕ) for some ϕ ∈ L. Starting with Fagin’s
famous characterisation of Nptime descriptions of most of the common com-
plexity classes have been obtained in this way.

Another equally well developed method is based on function algebras and
recursion schemes (see [3] for an overview, or [6] for a formulation in terms of
proof theory). It originated in recursion theory with characterisations of the
recursive and primitive recursive functions and later on was applied by Cobham
to describe the class of polynomial time computable functions.

In the present article we will follow a third approach. We fix a model with
universe {0, 1}∗, N, or some other countable set with canonical encoding in
{0, 1}∗, and investigate which languages are definable within this model using
different logics. This approach has mainly been used in recursion theory so far,
for instance to define the arithmetic and analytic hierarchy. To the author’s
knowledge there are only few characterisations of decidable complexity classes
using this method. The Büchi-Bruyère Theorem (see [2] for an overview) states
that the p-adic encoding of a set of natural numbers is regular if and only if the set
is first-order definable in (N,+, Vp) where Vp(x) := pk for the greatest k such that
pk |x. Wrathall [7] showed that the class of languages definable by ∆0

0-formulae in

(N,+, ·) is equal to the linear hierarchy. As mentioned in [6], a characterisation of
the polynomial hierarchy is obtained if one adds the operator x#y = 2log

2
x log

2
y.

Below we will show that by adding fixed-point or transitive-closure opera-
tors those results can be extended to characterise many of the usual complexity
classes. The results themselves are unsurprising and mirror those of finite model
theory. Indeed, the similarity between both approaches enables us to present
a translation from the formalism of finite model theory to definability in the
binary tree and vice versa. So, what are the differences between them? First,
our formalism seems to be more general since by using other structures than the
binary tree—e.g., arithmetic—we can capture different classes such as Exptime

or Expspace for which there is no “classical” characterisation. A second point
is that depending on the circumstances one approach might be more convenient
to work with. For instance, from an an algorithmic point of view the classi-
cal approach seems to be more suitable since one can speak about, say, graphs
directly instead of having to encode them as words. On the other hand when
dealing with languages, e.g., in structural complexity, or when thinking of appli-
cations in feasible model theory, our formalism might be of advantage. Finally,
by changing the formalism a different set of logical and algebraic methods for
the investigation of complexity classes becomes available (although whether this
is of any help remains to be seen).

The paper is organised as follows. In the next section we give a short overview
of classical descriptive complexity theory and list some results for comparison.
Furthermore, we introduce the logics used in the rest of the article.

Section 3 considers various structures of natural numbers and investigates
which complexity classes can be characterisations within them. We show how
to generalise these results to arbitrary linear orderings of type ω, and study in
which cases the bounds of fixed-point operators are really needed.

In Section 4 we turn to the free monoid and show that many classical results
can be translated to our approach, and vice versa.

2 Preliminaries

We recall the basic definitions of descriptive complexity theory. For simplicity
we will consider only languages over a binary alphabet. In the classical approach
each word w ∈ {0, 1}+ is represented by the word model

w :=
(
{0, . . . , |w| − 1}, <, S,min,max, P

)

where S is the successor relation of <, min and max are the first and last
elements, and P is the set of positions carrying the symbol 1. While in descriptive
complexity theory one usually allows classes of arbitrary finite models we will
only consider word models in the following.

Let C be a complexity class. We say that the logic L captures C (on word
models) iff C = {L(ϕ) | ϕ ∈ L }, where L(ϕ) := {w ∈ {0, 1} | w |= ϕ }.

Logics capturing complexity classes include first-order logic FO and its ex-
tensions by transitive-closure or fixed-point operators, and fragments of second-
order logic (see Table 1).

Table 1. Logics capturing complexity classes

Class Logic

AC0 FO
Logspace FO(DTC)
Nlogspace FO(TC)

Class Logic

Ptime FO(LFP)
— ” — Σ1

1-Horn

— ” — SO-Horn

Class Logic

Nptime Σ1
1

PH SO
Pspace FO(PFP)

(Deterministic) transitive-closure logic FO((D)TC) is obtained from FO by
adding the operator

[(D)TCx̄,ȳ ϕ(x̄, ȳ, z̄)](ū, v̄).

The semantics is defined as follows (where for notational convenience we omitted
all references to the structure in question). [TCx̄,ȳ ϕ](ā, b̄) holds iff there are
tuples ā0 = ā, ā1, . . . , ān = b̄, n > 0, such that ϕ(ai, ai+1) holds for all i < n.
The deterministic version is defined by

[DTCx̄,ȳ ϕ(x̄, ȳ, z̄)](ū, v̄)

≡
[
TCx̄,ȳ ϕ(x̄, ȳ, z̄) ∧ ∀ȳ′(ϕ(x̄, ȳ′, z̄) → ȳ′ = ȳ)

]
(ū, v̄)

Similarly, in least and partial fixed-point logic FO(LFP) and FO(PFP) one
adds the operator

[L/PFPR,x̄ ϕ(R, x̄, z̄)](ū)

where in the case of LFP, R occurs only positive in ϕ. To define the semantics
consider the operator

F (R) := { ā | ϕ(R, ā) holds }.

[LFPR,x̄ ϕ](ā) holds iff ā is in the least fixed-point of F , and [PFPR,x̄ ϕ](ā) holds
iff there is some n such that Fn+1(∅) = Fn(∅) and ā ∈ Fn(∅).

Finally, denote full second-order logic by SO, existential second-order logic by
Σ1

1, and (existential) second-order horn logic by SO-Horn and Σ1
1-Horn, respec-

tively. Here, SO-Horn consists of second-order formulae in prenex-normalform
where the first-order part is universal, in conjunctive normalform, and each
clause contains at most one positive literal Xx̄ for second-order variables X .

In this article we want to ask which languages can be defined within some
fixed structure A. Of course, in order to do so the universe of A should either
consists of {0, 1}∗ or we have to choose some encoding of the elements of A by
words.

Definition 1. Let A be a countable structure and suppose e : A → {0, 1}∗ is
bijective. Let C be a complexity class. We say that the logic L captures C on A

iff C = { e(ϕA) | ϕ(x) ∈ L },

where ϕA := { a ∈ A | A |= ϕ(a) }.

Obviously this definition may be generalised to relations of arbitrary arity.
As there are pairing functions definable in all structures considered below the
arity can w.l.o.g. assumed to be one. So, for simplicity, we will only deal with
this case.

Below we will investigate which classes are captured on several variants of
arithmetic and the free monoid. Since the first-order theory of arithmetic is
highly undecidable, we can only hope to capture decidable complexity classes by
fragments of FO. In particular we will try to ensure that all variables only range
over finite sets. The following definition was motivated by the observation that
in recursion theory “bounded quantifiers come for free.”

Definition 2. Fix some structure A. A bounded guard on A is a quantifier-free
formula α(x̄; ȳ) such that for all b̄ ∈ Am the set { ā ∈ An | A |= α(ā; b̄) } is finite.
Here, x̄ are called the bounded variables of α, and ȳ are the free variables or
parameters of α.

The bounded fragment BFO on A is defined like FO where all quantifiers
are guarded, i.e., of the form (Qx̄.α)ϕ for Q ∈ {∃, ∀} and some bounded guard α
with bounded variables x̄.

For O ∈ {DTC,TC,LFP,PFP} we define the bounded version BO by re-
stricting the syntax to

[(D)TCx̄,ȳ α(ȳ; z̄) ∧ ϕ(x̄, ȳ, z̄)] and [L/PFPR,x̄ α(x̄; z̄) ∧ ϕ(R, x̄, z̄)]

for some bounded guard α. Let BFO(O) be the logic obtained by adding the
operator O to BFO. Similarly, bounded second-order logic BSO is obtained by
adding (unrestricted) second-order quantifiers to BFO.

Definition 3. Let ϕ(x̄) be a formula of some bounded logic, and let y be a
variable appearing bound in ϕ (w.l.o.g. assume that no variable is quantified
twice). For values c̄ of x̄, the domain of y at c̄ is defined inductively as follows.
Let (Qy.α(y; x̄, z̄))ψ be the subformula where y is bound.

dom(y) := { a | there are b̄ in the domains of z̄ such that α(a; c̄, b̄) holds }.

Intuitively, the domain contains all values y may have. Note that, by induction
the domains of bound variables are finite.

Remark 4. Regarding the expressive power the following inclusions hold:

FO ⊆ FO(DTC) ⊆ FO(TC) ⊆ FO(LFP) ⊆ FO(PFP)
∪| ∪| ∪| ∪| ∪|

BFO ⊆ BFO(BDTC) ⊆ BFO(BTC) ⊆ BFO(BLFP) ⊆ BFO(BPFP)

3 Arithmetic and high complexity classes

In this section we will consider (N, <,F), the natural numbers with order and
some additional functions f ∈ F where F is allowed to be empty. Note that in
this case we can w.l.o.g. assume that all guards are of the form

x̄ < t(ȳ) := x0 < t(ȳ) ∧ · · · ∧ xn−1 < t(ȳ)

for some F -term t. The expressive power of bounded logics mainly depends on
the growth-rate of the bounds. In order to compare such rates we defineF0 ≤ F1

for classes F0 and F1 of functions on N iff for all f0 ∈ F0 there is some f1 ∈ F1

such that f0(n, . . . , n) ≤ f1(n, . . . , n) for all n ∈ N, and we write F0 ≡ F1 iff
both F0 ≤ F1 and F1 ≤ F0.

Let TF be the set of terms built from functions of F . We will see that
it mainly depends on the growth-rate of TF which complexity classes can be
captured on (N, <,F).

In order to define the complexity of a set of natural numbers it is assumed
that numbers are coded by their binary encoding in reversed order, i.e., with
the least significant bit first. Note that the number of bits of n is ⌈log2(n+ 1)⌉.
Thus, given a monotone function f : N

k → N and a tuple n̄ ∈ N
k where ni has

li bits, the number of bits of f(n̄) is

(Bf)(l̄) :=
⌈
log2

(
f(2l0−1, . . . , 2lk−1−1) + 1

)⌉
.

Our first result is preceeded by some two lemmas. Let f : N
k → N be a

function such that f(ā) ≥ ai for all i < k. We call a formula ϕ(x̄) f -bounded iff
for all ā ∈ N

k and every term t(x̄, ȳ) in ϕ(x̄) the inequality t(ā, b̄) ≤ f(ā) holds
for values b̄ in the domains of ȳ. Note that for all formulae ϕ(x̄) of bounded
logics defined above there is some F -term t(x̄) such that ϕ is t-bounded.

Lemma 5. Let F be a set of functions whose graphs are decidable in linear
space, and let ϕ(x̄) ∈ BFO be f -bounded. The question whether (N, <,F) |=
ϕ(ā) can be decided in space O(|ϕ| log2 f(ā)).

Proof. Since ϕ is f -bounded we need to consider only values less than f(ā). These
can be stored in space O(log2 f(ā)). The claim is proved by induction on ϕ. To
evaluate a function h(b̄) we can enumerate all numbers c and check if the tuple
(b̄, c) belongs to the graph. Thus, since both the arguments and the values of
functions are less than f(ā), atoms can be evaluated in space O(log2 f(ā)). The
induction step for boolean connectives is trivial. So consider a formula of the
form (Qy < t(x̄))ψ(y, x̄). To decide whether it holds we can iterate over all
values for y. The only space needed to do so is the storage of y. Thus, it is
sufficient to have space O(log2 f(ā)) for each variable appearing in ϕ. ⊓⊔

The second lemma shows that in many cases we can assume that addition
and multiplication is available.

Lemma 6. The graphs of addition and multiplication are BFO(BDTC)-defin-
able in (N, <).

Proof. Clearly, 0 and the successor relation S are definable. + and · are defined
via the usual recurrence.

x+ y = z := (y = 0 ∧ x = z)

∨ [DTCuv,u′v′ u′ < y ∧ v′ < z ∧ Su′u ∧ Sv′v](yz, 0x)

x · y = z := (y = 0 ∧ z = 0)

∨ [DTCuv,u′v′ u′ < y ∧ v′ < z ∧ Su′u ∧ v′ + x = v](yz, 00) ⊓⊔

The previous lemma indicates that it does not matter much which functions
are present since many of them are definable if the logic is at least as expressible
as BFO(BDTC). In deed, for such logics, our next result shows that the only
thing which matters is the growth-rate of the available functions.

Theorem 7. Let R and F be sets of functions such that R ≡ BTF , the graphs
of functions in F are computable in linear space, O(n) ⊆ R, and OR ⊆ R. Let
X ⊆ N.

(i) X ∈ Dspace[R] iff X is BFO(BDTC)-definable in (N,F , <).

(ii) X ∈ Nspace[R] iff X is BFO(BTC)-definable in (N,F , <).

(iii) X ∈ Dtime[2R] iff X is BFO(BLFP)-definable in (N,F , <)

iff X is BΣ1
1-Horn-definable in (N,F , <)

iff X is BSO-Horn-definable in (N,F , <).

(iv) X ∈ Ntime[2R] iff X is BΣ1
1-definable in (N,F , <).

(v) X ∈ Dspace[2R] iff X is BFO(BPFP)-definable in (N,F , <).

Proof. In the formulae defined below we will use addition and multiplication
whose graphs are definable in all logics mentioned above. In order to keep them
readable we will use not only their graphs but also the functions themselves. This
can be done since we only use equations of the form x = t for some variable x
and term t. Thus all intermediate results are less than or equal to x and we can
reduce t by introducing new variables y by bounded quantification (∃y ≤ x).

Below the following model of Turing machine is used. A k-tape Turing ma-
chine M is given by a tuple (Q,Σ,∆, q0, F) where Q is the set of states, Σ =
{0, 1} is both the input and the working alphabet, q0 is the initial state, F is
the set of final states, and

∆ ⊆ Q×Σ ×Σk ×Σk ×Q× {−1, 0, 1}k+1

is the transition relation with components: old state, symbol on the input tape,
symbols on the working tapes, symbols to write on the working tapes, new state,
and movement of the heads.

We prove only two items. The other proofs are similar.
(i) (⇒) Let M = (Q,Σ,∆, q0, F) be an f space-bounded k-tape Turing

machine recognising X . W.l.o.g. assume that Q = {0, . . . , n}, Σ = {0, 1}, and
q0 = 0. Choose some F -term r(x) such that f(x) ≤ Br(x) for all x ∈ N.
Configurations ofM can be stored in tuples (q, w̄, p̄) where each component is less
than 2r(x). If there is a formula TRANS(c̄, c̄′) expressing that the configuration
stored in c̄′ is the successor of c̄, we can determine whether a final configuration
can be reached from the initial one using an DTC-operator.

ϕX(x) := (∃w1 · · ·wkp0 · · · pk < 2r(x))
∨

qf∈F

[DTCqw̄p̄,q′w̄′p̄′ q‘w̄′p̄′ < 2r(x) ∧ TRANS(qw̄p̄, q′w̄′p̄′)]

(0 0 · · · 0
︸ ︷︷ ︸

k

1 · · · 1
︸ ︷︷ ︸

k+1

, qfw1 · · ·wkp0 · · · pk).

TRANS is defined by

TRANS(qw̄p̄, q′w̄′p̄′) :=

∨

(i,a0ā,b̄,j,m̄)∈∆

(

q = i ∧ q′ = j ∧ bita0
(x, p0) ∧

k∧

l=0

MOVEml
(pl, p

′
l)

∧
k∧

l=1

(∃s < wl)(∃s
′ < pl) (wl = (2s+ al)pl + s′ ∧

w′
l = (2s+ bl)pl + s′)

)

,

where

bitd(x, p) := (∃s < x)(∃s′ < p)(x = (2s+ d)p+ s′),

MOVEm(p, p′) :=

p = 2p′ if m = −1,

p′ = p if m = 0,

p′ = 2p if m = 1.

(⇐) Let X be defined by ϕ(x), and let ϕ(x) be t(x)-bounded. Since R ≡
BTF there is some r ∈ R with log2 t(2

n) ≤ r(n) for all n ∈ N. Thus it is
sufficient to prove that X ∈ Dspace[O(log2 t(2

n))]. For BFO-formulae this was
proved in the above lemma. It remains to consider the evaluation of a DTC-
operator [DTCx̄,ȳ z̄ < s(z̄) ∧ ψ(x̄, ȳ, z̄)] which can be done by calculating the
sequence x̄0, x̄1, x̄2, . . . of tuples such that ψ(x̄i, x̄i+1, z̄) holds for all i. By induc-
tion we can assume that this condition can be checked in Dspace[O(log2 t(2

n))].
In order to compute x̄i+1 we only need to remember x̄i. Thus the space to store
two such tuples is sufficient.

(iii) (⇒) Let M = (Q,Σ,∆, q0, F) be an f time-bounded k-tape Turing
machine recognising X . W.l.o.g. assume that Q = {0, . . . , n}, Σ = {0, 1}, and
q0 = 0. Choose some F -term t(x) such that f(x) ≤ Bt(x) for all x ∈ N, and let
r(x) = 2t(x) + n. Using least-fixed points we inductively define relations Q, W̄ ,
P̄ containing the whole run of M on input x. For instance, (q, t) ∈ Q means that
M is in state q at time t. W.l.o.g. we define those relations by a simultaneous
fixed-point which can always be transformed into a normal one.

ϕX(x) := (∃t < r(x))
∨

qf ∈F

[LFPQ,qt;W̄ ,apt;P̄ ,pt qt < r(x) ∧ ψQ

apt < r(x) ∧ ψW1

. . .

apt < r(x) ∧ ψWk

pt < r(x) ∧ ψP0

. . .

pt < r(x) ∧ ψPk
]0(qf t)

where

CONFq,a0ā(t) :=

Qqt ∧ (∃p < r(x))(∃s < x)(∃s′ < p)(P0pt ∧ x = (2s+ a0)p+ s′)

∧
k∧

l=1

(∃p < r(x))(Plpt ∧Wlalpt)

ψQ(q, t) := (q = 0 ∧ t = 0) ∨
∨

(i,a0ā,b̄,j,m̄)∈∆

(CONFi,a0ā(t− 1) ∧ q = j)

ψWl
(a, p, t) := (a = 0 ∧ t = 0)

∨
∨

(i,a0ā,b̄,j,m̄)∈∆

[CONFi,a0ā(t− 1) ∧

(∃p′ < r(x))(Plp
′(t− 1) ∧ [(p 6= p′ ∧Wlap(t− 1))

∨ (p = p′ ∧ a = bl)])]

ψPl
(p, t) := (p = 1 ∧ t = 0)

∨
∨

(i,a0ā,b̄,j,m̄)∈∆

[CONFi,a0ā(t− 1) ∧

(∃p′ < r(x))(Plp
′(t− 1) ∧ MOVEml

(p, p′))]

(⇐) Let X be defined by ϕ(x), and let ϕ(x) be t(x)-bounded. Since R ≡
BTF there is some r ∈ R with log2 t(2

n) ≤ r(n) for all n ∈ N. Thus, it is
sufficient to prove that X ∈ Dtime[2O(log

2
t(2n))] = Dtime[O(t(2n)O(1))]. To

evaluate a fixed-point operator [LFPR,x̄ x̄ < t(ȳ) ∧ ψ(x̄, ȳ)] we calculate its
stages R0, R1, R2, . . . where by boundedness we only need to consider the part
R̃i := Ri ∩ {0, . . . , t(a) − 1}n. Thus, R̃i+1 can be computed in t(a)n steps from
R̃i each of which takes time O(t(a)O(1) (by induction). Since the fixed-point is
reached after at most t(a)n stages we obtain a bound of O(t(a)O(1) ·t(a)n ·t(a)n).

⊓⊔

To apply this theorem we need to define functions of appropriate growth. Let
x# y := 2⌈log2

x⌉⌈log
2

y⌉. (Note that # is associative and commutative.) Since

BT {+, ·} ≡ O(n),

BT {+, ·,#} ≡ O(nO(1)),

BT {+, ·, 2n} ≡ T
{
2n

}

we obtain the results in Table 2. What happens when no functions are present?

Theorem 8. Let X ⊆ N. The results of the previous theorem also hold forF = ∅ and R = O(n).

Proof. The only place where the proofs above fail is the existence of a term r(x)
providing a bound large enough to store either the complete contents of a tape
or the position of a cell on the tape. For R = O(n) this term would be r(x) := xc

Table 2. Logics capturing complexity classes on arithmetic

Class Logic Structure

Dspace[O(n)] BFO(BDTC) (N, <, +, ·)
Nspace[O(n)] BFO(BTC) (N, <, +, ·)
Pspace BFO(BTC) (N, <, +, ·, #)

Dtime[2O(n)] BFO(BLFP) (N, <, +, ·)

Ntime[2O(n)] BΣ1
1 (N, <, +, ·)

Exptime BFO(BLFP) (N, <, +, ·, #)
Nexptime BΣ1

1 (N, <, +, ·, #)

Dspace[2O(n)] BFO(BPFP) (N, <, +, ·)
Expspace BFO(BPFP) (N, <, +, ·, #)
Elementary BFO(BDTC) (N, <, +, ·, 2n)

for some c. Though such an r is not available we can handle values of this size
by storing each in c variables. Using the (BFO-definable) lexicographic order on
c-tuples we can then define addition and multiplication as above. ⊓⊔

The only property of (N, <,F) used in the proofs above was the order type
and the growth-rate of F -terms. This enables us to generalise the results to ar-
bitrary structures as follows. Let A = (A,<,R0, . . . , Rr, f0, . . . , fs) be a linearly
ordered structure of order type ω. For a ∈ A let |a| := { b ∈ A | b < a }. If we
identify elements a ∈ A by the natural number |a| we get the isomorphic struc-
ture (N, <,R′

0, . . . , R
′
r, f

′
0, . . . , f

′
s) to which we can apply our capturing results.

If the complexity of subsets X ⊆ A is measured with regard to the encoding
a 7→ |a| we obtain

Theorem 9. Let A = (A,<,R0, . . . , Rr, f0, . . . , fs) be a linearly ordered struc-
ture of order type ω such that Ri, i ≤ r, and the graphs of fi, i ≤ s, are
computable in linear space. Let F := {f0, . . . , fs} and let R be a set of functions
such that if F is empty then R = O(n), otherwise R ≡ BTF , O(n) ⊆ R, and
OR ⊆ R. Let X ⊆ A.

(i) X ∈ Dspace[R] iff X is BFO(BDTC)-definable in A.

(ii) X ∈ Nspace[R] iff X is BFO(BTC)-definable in A.

(iii) X ∈ Dtime[2R] iff X is BFO(BLFP)-definable in A

iff X is BΣ1
1-Horn-definable in A

iff X is BSO-Horn-definable in A.

(iv) X ∈ Ntime[2R] iff X is BΣ1
1-definable in A.

(v) X ∈ Dspace[2R] iff X is BFO(BPFP)-definable in A.

So far, we only considered extensions of first-order logic. Next we look at the
expressive power of BFO. An old result provides an answer in the case of the
structure (N, <,+, ·).

Theorem 10 (Wrathall [7]). X belongs to the linear hierarchy iff X is BFO-
definable in (N, <,+, ·).

As mentioned in [6], by adding the operator # characterisation of PH is
obtained.

Theorem 11. X ∈ PH iff X is BFO-definable in (N, <,+, ·,#).

Proof. (⇐) Let X be defined by

ϕ(x) = (Q0y0 < t0) · · · (Qn−1yn−1 < tn−1)ψ(x, ȳ)

where ψ is quantifier-free. There is some k ∈ N such that ϕ(x) is (2logk
2

x)-
bounded. Hence each yi (i < n) can be encoded in (log2 x)

k bits. Obviously,
quantifier-free formulae ψ(ā) can be evaluated in polynomial time with respect
to the length of ā. Thus,

X := { x | Qp
0y0 · · ·Q

p
n−1yn−1R(x, ȳ) }

where all quantifiers are polynomial bounded and

R(x, ȳ) := y0 < t0 ∧ · · · ∧ yn−1 < tn−1 ∧ ψ(x, ȳ)

is a Ptime-predicate. Hence, X ∈ PH.
(⇒) By a corollary to Fagin’s characterisation of Nptime, there is some

ϕ ∈ SO such that x ∈ X iff x |= ϕ for all x ∈ {0, 1}+ where x is the word
model of x. We construct a formula ϕ̃(x) ∈ BFO with

x |= ϕ iff (N, <, 0, 1,+, ·,#) |= ϕ̃(val(x1))

where val(y) is the number whose binary encoding in reversed order is y. Define

ϕ̃(x) := (∃p < x+ 1)(P2p ∧ x < 2p ∧ ϕ∗(x, p))

where p denotes the position of the final digit,

P2x := x = 1 ∨ (∀y < x+ 1)(y | x ∧ y 6= 1 → 2 | y)]

defines the powers of 2, and ϕ∗ is constructed such that

x |= ψ(U0, . . . , Un−1, y0, . . . , ym−1)

iff (N, <, 0, 1,+, ·,#) |= ψ∗(x, p, u0, . . . , un−1, 2
y0 , . . . , 2ym−1)

where ui :=
∑{

2l0+l1|x|+···+lk−1|x|
k−1

∣
∣ (l0, . . . , lk−1) ∈ Ui

}
. Define

(y0 = y1)
∗ := y0 = y1

(y0 < y1)
∗ := y0 < y1

(Py)∗ := bit(x, y)

(Uy0 . . . yk−1)
∗ := bit(u, y0(y1 # p) · · · (yk−1 # p# · · · # p))

(¬ψ)∗ := ¬ψ∗

(ψ ∨ ϑ)∗ := ψ∗ ∨ ϑ∗

(∃yψ)∗ := (∃y < p)(P2y ∧ ψ
∗)

(∃Uψ)∗ := (∃u < p# · · · # p)ψ∗

where bit(x, y) expresses that the bit of x at position y is 1

bit(x, y) := (∃s < x)(∃s′ < y)(x = (2s+ 1)y + s′). ⊓⊔

Theorem 12. X ⊆ N is of elementary complexity iff X is BFO-definable in
(N, <,+, ·, 2n).

The proof is done by directly coding computations of Turing machines. In this
case fixed-points are not needed since numbers large enough to code whole runs
are available.

Remark 13. The results of Theorems 7 (i), (ii), and 10–12 also hold for oracle
machines if one adds the orcale set as unary predicate to the structure.

Unbounded fixed-points. Above we met the boundedness requirement for the
logics considered by an ad hoc definition of bounded fixed-points. Next we will
investigate under which conditions this can be avoided by using normal (un-
bounded) operators instead. The first result shows that in many situations it
can not.

Proposition 14. Any relation which is FO(DTC)-definable in (N, <,+, ·) (in
particular any arithmetic relation) is already BFO(DTC)-definable in (N, <).

Proof. Since addition and multiplication are FO(DTC)-definable it is sufficient
to show how to emulate unbounded quantifiers by DTC-operators. To simulate
∃xϕ we can enumerate all numbers until some n with ϕ(n) is found. Formally,

∃xϕ ≡ [DTCx,x′ (¬ϕ(x) ∧ x′ = x+ 1) ∨ (ϕ(x) ∧ x′ = 0)](0, 0). ⊓⊔

In contrast, for purely relational structures a positive result is obtained. Note
that the proof above shows that it does not hold for transitive-closure operators.

Proposition 15. Let A = (A,<,R0, . . . , Rm) be a relational structure of order
type ω, and let X ⊆ Ak.

(i) X is BFO(LFP)-definable if and only if it is BFO(BLFP)-definable.
(ii) X is BFO(PFP)-definable if and only if it is BFO(BPFP)-definable.

Proof. (⇐) is trivial. For (⇒) consider the stages R0, R1, . . . of the fixed-point
induction of ψ(ȳ, z̄) := [LFPR,x̄ ϕ(x̄, ȳ)](z̄). Since all bounds are of the form
u < v for variables u and v the decision whether x̄ ∈ Ri+1 depends only on
values of Ri for arguments less than

t := max{x0, . . . , xn, y0, . . . ym, z0, . . . , zl}.

In particular, the value at position z̄ only depends on lower positions. Therefore
we can replace the operator by an bounded one.

ψ(ȳ, z̄) ≡
∨

i

(
max(yi, ȳ, z̄) ∧ χ(yi)

)
∨

∨

i

(
max(zi, ȳ, z̄) ∧ χ(zi)

)

Table 3. Logics capturing complexity classes on arithmetic

Class Logic Structure

LinH BFO (N, <, +, ·)
PH BFO (N, <, +, ·, #)
Dspace[O(n)] BFO(BDTC) (N, <)
Nspace[O(n)] BFO(BTC) (N, <)
Pspace BFO(BTC) (N, <, #)

Dtime[2O(n)] BFO(BLFP) (N, <)

Ntime[2O(n)] BΣ1
1 (N, <)

Exptime BFO(BLFP) (N, <, #)
Nexptime BΣ1

1 (N, <, #)

Dspace[2O(n)] BFO(BPFP) (N, <)
Expspace BFO(BPFP) (N, <, #)
Elementary BFO (N, <, +, ·, 2n)

where max(u, ȳ, z̄) :=
∧

k yk ≤ u ∧
∧

k zk ≤ u says that u is a maximal element,
and

χ(u) := [LFPR,x̄ x0 ≤ u ∧ · · · ∧ xn ≤ u ∧ ϕ(x̄, ȳ)](z̄)

is the bounded version of the LFP-operator. The proof for BFO(PFP) is identi-
cal. ⊓⊔

The characterisations of standard complexity classes we have obtained is
summarised in the table above. The results remain valid if we add any relations
or functions computable in the respective class. In particular we may add 0, 1,
+, and ·. Also the structure (N, <) may be replaced by any linear order (A,<)
of the same order type. Similarly, (N, <,#) may be replaced by (A,<, f) where

2logc
2
|a| ≤ |f(a)| ≤ 2logd

2
|a| for some c, d > 1.

4 The free monoid and low complexity classes

So far, we have obtained only characterisations of high (above Ptime) complexity
classes. Intuitively, this was caused by the fact that, in arithmetic with the usual
order, numbers of n bits have about 2n predecessors. If we are interested in
low complexity classes we thus have to choose a different order. In the classical
approach variables can range over n positions in a word model of length n.
Therefore, we next consider the free monoid with prefix-ordering where words
of length n have n predecessors.

Definition 16. Let T := ({0, 1}∗, σ0, σ1,≺) where

σixy : iff y = xi, and x ≺ y : iff y = xz for some z 6= ε.

It turns out that this choice enables us to translate many of the classical
results to our setting and vice versa. Let L consists of the following logics: FO,
FO(DTC), FO(TC), FO(LFP), FO(PFP), Σ1

1-Horn, Σ1
1, SO-Horn, and SO.

For L ∈ L denote by BL the corresponding bounded version.

Theorem 17. Let X ⊆ {0, 1}+ and L ∈ L . The following statements are
equivalent:

(i) There is some ϕ ∈ L such that w ∈ X iff w |= ϕ.
(ii) There is some ϕ(x) ∈ BL such that w ∈ X iff T |= ϕ(w).

The familiar results of descriptive complexity theory can thus be stated as

Corollary 18. Let X ⊆ {0, 1}∗.

(i) X ∈ Logspace iff X is BFO(BDTC)-definable in T

(ii) X ∈ Nlogspace iff X is BFO(BTC)-definable in T

(iii) X ∈ Ptime iff X is BFO(BLFP)-definable in T

iff X is BΣ1
1-Horn-definable in T

iff X is BSO-Horn-definable in T.

(iv) X ∈ Nptime iff X is BΣ1
1-definable in T

(v) X ∈ PH iff X is BSO-definable in T

(vi) X ∈ Pspace iff X is BFO(BPFP)-definable in T

The proof of Theorem 17 is divided into two propositions.

Lemma 19. For every ϕ ∈ L there is some ϕ∗(x) ∈ BL such that, for all
w ∈ {0, 1}+, w |= ϕ iff T |= ϕ∗(w).

Proof. We construct ϕ∗(x) such that for all subformulae ψ the following condi-
tion is satisfied:

x |= ψ(X0, . . . , Xn, y0, . . . , ym) iff T |= ψ∗(x,X∗
0 , . . . , X

∗
n, y

∗
0 , . . . , y

∗
m)

where y∗i is the prefix of x of length yi, and X∗
i contains a tuple of prefixes of x

iff the tuple of their lengths is in Xi. In the following definition variables named
y, y0, etc. are bounded, whereas x is the only free variable.

(y0 = y1)
∗ := y0 = y1 (¬ψ)∗ := ¬ψ∗

(Py)∗ := (∃y′ � x)σ1yy
′ (ψ ∨ ϑ)∗ := ψ∗ ∨ ϑ∗

(y0 < y1)
∗ := y0 ≺ y1 (∃yψ)∗ := (∃y ≺ x)ψ∗

(Xȳ)∗ := Xȳ (∃Xψ)∗ := (∃X)ψ∗

(
[(D)TCū,v̄ ψ](t̄, t̄′)

)∗
:= [(D)TCū,v̄ v0 ≺ x ∧ · · · ∧ vk−1 ≺ x ∧ ψ∗](t̄, t̄′)

(
[XFPR,ū ψ](t̄)

)∗
:= [XFPR,ū ū ≺ x ∧ · · · ∧ uk−1 ≺ x ∧ ψ∗](t̄) ⊓⊔

Lemma 20. For every ϕ(x) ∈ BL there is some ϕ′ ∈ L such that, for all
w ∈ {0, 1}+, T |= ϕ(w) iff w |= ϕ′.

Proof. Note that, since ϕ(x) has only one free variable x, all bounded variables
are prefixes of x. Thus, it again is sufficient to ensure that

T |= ψ(x,X0, . . . , Xn, y0, . . . , ym) iff x |= ψ′(X ′
0, . . . , X

′
n, |y0|, . . . , |ym|)

where the definition of X ′
i is slightly more involved since there are |x|+1 prefixes

of x, but only |x| elements in x. Therefore, we double the arity of Xi and define

X ′
i := { (u′00u

′
01, . . . , u

′
k0u

′
k1) | (u0, . . . , uk) ∈ Xi }

where

(u′j0, u
′
j1) :=

{

(0, uj) if uj ≺ x

(|x| − 1, |x| − 1) if uj = x.

In the following definition variables named y, y0, etc. are bounded, whereas
x is the only free variable. t stands for an arbitrary term which can either be on
of y, x, or one of y, min, max. Furthermore, P it is Pt for i = 1, and ¬Pt for
i = 0.

(y0 = y1)
′ := y0 = y1 (σiy0y1)

′ := Sy0y1 ∧ P
iy0

(y = x)′ := false (σixt)
′ := false

(x = x)′ := true (σiyx)
′ := y = max ∧ P iy

(y0 ≺ y1)
′ := y0 < y1 (y ≺ x)′ := true

(x ≺ t)′ := false

(¬ψ)′ := ¬ψ′ ((∃y0 ≺ y1)ψ)′ := ∃y0(y0 < y1 ∧ ψ
′)

(ψ ∨ ϑ)′ := ψ′ ∨ ϑ′ ((∃y ≺ x)ψ)′ := ∃yψ′

(∃Xkψ)′ := ∃X2kψ′ (Xt0 . . . tk−1)
′ := Xt̃0 . . . t̃k−1

where

t̃ :=

{

min y if t = y,

maxmax if t = x.
(
[(D)TCū,v̄ v0 ≺ t0 ∧ · · · ∧ vn−1 ≺ tn−1 ∧ ψ](t̄′, t̄′′)

)′
:=

[(D)TCū,v̄ v0 < t0 ∧ · · · ∧ vn−1 < tn−1 ∧ ψ
′](t̄′, t̄′′)

(
[XFPR,ū u0 ≺ t0 ∧ · · · ∧ un−1 ≺ tn−1 ∧ ψ](t̄′)

)′
:=

[XFPR,ū u0 < t0 ∧ · · · ∧ un−1 < tn−1 ∧ ψ
′](t̄′) ⊓⊔

Remark 21. (i) The preceding results can be generalised to formulae with several
free variables.

(ii) Nothing changes if we replace σ0, σ1 by the corresponding functions or
even add concatenation. For the last part note that for all variables y appearing

Table 4. Logics capturing complexity classes on the free monoid

Class Logic Structure

AC0 BFO (T, bit)
Logspace BFO(BDTC) T
Nlogspace BFO(BTC) T
Ptime BFO(LFP) T
Nptime BΣ1

1 T
PH BSO T
Pspace BFO(PFP) T

in a formula ϕ(x) there is some k such that y ranges over values of the form
y0 · · · yj, j < k, where the yi are prefixes of x. Hence the value of each y can be
stored in a fixed number of variables and we can eliminate concatenation by its
BFO(BDTC)-definition.

(iii) Since T is relational bounded LFP- and PFP-operators can be replaced
by unbounded ones as in the case of arithmetic.

(iv) If one adds to T either the relations |x| + |y| = |z| and |x| · |y| = |z|,
or the relation bit(x, y) saying that the |y|th bit of |x| is 1, and considers word
models with analogous predicates, we also can characterise the class AC0, i.e.,
X ⊆ {0, 1}∗ is in AC0 iff X is BFO-definable in (T, bit).

References

1. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

2. V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire, Logic and p-

recognizable sets of integers, Bull. Belg. Math. Soc., 1 (1994), pp. 191–238.
3. P. Clote, Computation models and function algebras, in Handbook of Computabil-

ity Theory, E. R. Griffor, ed., North-Holland, 1999.
4. H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer, 1995.
5. N. Immerman, Descriptive Complexity, Springer, New York, 1998.
6. J. Kraj́iček, Bounded Arithmetic, Propositional Logic, and Complexity Theory,

Cambridge University Press, 1995.
7. C. Wrathall, Rudimentary predicates and relative computation, SIAM Journal on

Computing, 7 (1978), pp. 194–209.

