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Abstract. We prove decidability of the boundedness problem for monadic least fixed-point
recursion based on positive monadic second-order (MSO) formulae over trees. Given an
MSO-formula ϕ(X,x) that is positive in X, it is decidable whether the fixed-point recursion
based on ϕ is spurious over the class of all trees in the sense that there is some uniform
finite bound for the number of iterations ϕ takes to reach its least fixed point, uniformly
across all trees. We also identify the exact complexity of this problem. The proof uses
automata-theoretic techniques.

This key result extends, by means of model-theoretic interpretations, to show decidability
of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes
of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow
us to derive major known decidability results for boundedness for fragments of first-order
logic as well as new ones.

1. Introduction

In applications one frequently employs tailor-made logics to achieve a balance between
expressive power and algorithmic manageability. Adding fixed-point operators to weak logics
turned out to be a good way to achieve such a balance. Think, for example of the addition
of transitive closure operators or more general fixed-point constructs to database query
languages, or of various fixed-point defined reachability or recurrence assertions to logics used
in verification, like linear or branching time temporal logics or the modal µ-calculus. Fixed-
point operators introduce a measure of relational recursion and typically boost expressiveness
in the direction of more dynamic and less local properties. They offer relational recursion
based on the iteration of relation updates that are definable in the underlying logic. We here
primarily consider monadic least fixed points, based on formulae ϕ(X,x) that are monotone
(positive) in the monadic recursion variable X. On a fixed structure A, any such ϕ induces
a monotone operation Fϕ : P 7→ { a ∈ A | A |= ϕ(P, a) } on monadic relations P ⊆ A. The
least fixed point of this operation over A, denoted as ϕ∞(A), is also the first stationary
point of the monotone, ordinal-indexed iteration sequence of stages ϕα(A) starting from

2012 ACM CCS: [Theory of computation]: Logic; Theory and algorithms for application domains—
Database theory—Logic and databases.

Key words and phrases: Monadic Second-Order Logic, Fixed Points, Boundedness.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(3:2)2014
c© A. Blumensath, M. Otto, and M.Weier
CC© Creative Commons

http://creativecommons.org/about/licenses


2 A. BLUMENSATH, M. OTTO, AND M.WEIER

ϕ0(A) := ∅, with updates ϕα+1(A) := Fϕ(ϕα(A)) and unions in limits. The least α for which
ϕα+1(A) = ϕα(A) is called the closure ordinal for this fixed-point iteration on A.

For a concrete fixed-point process it may be hard to tell whether the recursion employed
is crucial or whether it is spurious and can be eliminated. Indeed this question comes in
two versions: (a) one can ask whether a resulting fixed point is also uniformly definable
in the base logic without fixed-point recursion (purely an expressiveness issue); (b) one
may also be interested to know whether the given fixed-point iteration terminates within a
uniformly bounded finite number of steps (an algorithmic issue, concerning the dynamics of
the fixed-point recursion rather than its result).

The boundedness problem BDD(L, C) for a class of formulae L and a class of structures C
concerns question (b): to decide, for a given formula ϕ ∈ L, whether there is a finite upper
bound on its closure ordinal, uniformly across all structures A ∈ C. We call such fixed-point
iterations, or ϕ itself, bounded over C.

Interestingly, for first-order logic, as well as for many natural fragments, the two questions
concerning eliminability of least fixed points coincide – at least over the class of all structures.
By a classical theorem of Barwise and Moschovakis [2], the only way that the fixed point
ϕ∞(A) can be first-order definable for every A, is that there is some finite α for which
ϕ∞(A) = ϕα(A) for all A. The converse is clear from the fact that the unfolding of the
iteration to any fixed finite depth α is easily mimicked in FO.

In other cases – and even for FO over other, restricted classes of structures, e.g., in finite
model theory – the two problems can indeed be distinct, and of quite independent interest.

We here deal with the boundedness issue. Boundedness (even classically, over the class
of all structures, and for just monadic fixed points as considered above) is undecidable
for most first-order fragments of interest (see, e.g., [20]). Notable exceptions are monadic
boundedness for positive existential formulae (Datalog) [8], for modal formulae [24], and
for (a restricted class of) universal formulae without equality [25].

One common feature of these decidable cases of the boundedness problem is that the
fragments concerned have a kind of tree-model property (not just for satisfiability in the
fragment itself, but also for the fixed points and for boundedness). This is obvious for
the modal fragment [24], but clearly also true for positive existential FO (derivation trees
for monadic Datalog programs can be turned into models of bounded tree-width), and
similarly also for the restricted universal fragment in [25].

Motivated by this observation, [23] has made a first significant step in an attempt
to analyse the boundedness problem from the opposite perspective, varying the class of
structures rather than the class of formulae. The hope is that this approach could go
beyond an ad-hoc exposition of the decidability of the boundedness problem for individual
syntactic fragments, and offer a unified model-theoretic explanation instead. [23] shows that
boundedness is decidable for all monadic fixed points in FO over the class of all acyclic
relational structures. Technically [23] expands on modal and locality-based proof ideas and
reductions to the monadic second-order theory of trees from [24, 25] that also rest on the
availability of a Barwise–Moschovakis equivalence. These techniques do not seem to extend
to either the class of all trees (where Barwise–Moschovakis fails) or to bounded tree-width
(where certain simple locality criteria fail).

The present investigation offers another step forward in the alternative approach to the
boundedness problem, on a methodologically very different note. Its most important novel
feature may be that it deals with a setting where neither locality nor Barwise–Moschovakis
are available. On the one hand, the class of formulae considered is extended from first-order
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logic FO to full monadic second-order logic MSO – a leap which greatly increases the
robustness of the results w.r.t. interpretations, and hence their model-theoretic impact. On
the other hand, automata are crucially used and the underlying structures are restricted
to trees. Using MSO-interpretations it follows that the boundedness problem for MSO
is decidable over any MSO-definable class of bounded tree-width, and similarly even for
guarded second-order logic GSO instead of MSO.

These ramifications demonstrate the strength and unifying explanatory power of our
main decidability result in the wider context of the boundedness issue. One of our strongest
concrete decidability results concerns the boundedness problem for GSO over GSO-definable
classes of bounded tree-width, cf. Corollary 11.5. This, in its turn, encompasses all the
major, previously known decidability results for natural fragments of FO and, furthermore,
settles decidability of boundedness for the guarded fragment GF. Equally importantly it
goes a long way to explain the perceived dichotomy between the many undecidability results,
which may typically be understood in terms of reductions from the tiling problem over
suitably grid-like structures, and the comparatively rare cases of decidability, which can now
be systematically linked to some generalised tree-model property.

Among the classical and previously known decidability results for the boundedness of
(systems of) monadic least fixed points, which can be integrated into this new picture, are
those for

– monadic Datalog, or systems of monadic least fixed points for the purely existential–
positive fragment of first-order logic, [8];

– dually, (systems of) monadic least fixed points in the purely universal-negative fragment
of first-order logic (which may equivalently be phrased in terms of the boundedness for
greatest fixed points for Datalog or for existential–positive first-order), [25];

– modal logic, [24];
– monadic least fixed points for unconstrained FO in restriction to the class of all acyclic

relational structures, [23].

Our decidability results are based on a reduction of the monadic boundedness problem to the
limitedness problem for weighted parity automata, whose decidability is due to Colcombet
and Löding [7] (cf. Theorems 7.2 and 7.3 below). This reduction introduces a rather
sophisticated annotation (of ternary tree structures) that records dependencies between the
stages of a fixed-point iteration over these tree structures; it is established that, subject to a
limitedness condition on a related cost function, these annotations can serve as certificates
for boundedness.

The overall structure of the paper is as follows. We divide the material into two major
parts: the first part, comprising Sections 3–7, is devoted to the development of the new
techniques and leads up to the core technical result: the decidability of the boundedness
problem for MSO on the class of all ternary trees through reduction to the limitedness
problem for a certain class of automata. The ramifications of this result are investigated in
the second half of the paper. Sections 8–11 develop transfer and reduction arguments that
allow us to make links with previously known decidability results and to derive several new
concrete decidability results. Section 12, finally, discusses complexity issues.
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2. Preliminaries

We assume some familiarity with basic concepts of logic as can be found, e.g., in [12].
Throughout the paper we assume that all vocabularies are finite and that they contain only
relation symbols and constant symbols, but no function symbols.

Consider a second-order formula ϕ(X, x̄) with free variables as indicated in an underlying
vocabulary τ . Suppose that ϕ(X, x̄) is positive in the r-ary second-order variable X and
x̄ = (x1, . . . , xr) is a matching tuple of free first-order variables. Any X-positive formula of
this format induces, over every τ -structure A, an operation on the power set of Ar :

P 7→ ϕ(A, P ) := { ā ∈ Ar | (A, P, ā) |= ϕ } .
As ϕ is X-positive, this operation is monotone (P ⊆ P ′ implies ϕ(A, P ) ⊆ ϕ(A, P ′))

and hence possesses a unique least fixed point, which we denote as ϕ∞(A). This least fixed
point is obtained as the limit of the monotone sequence of inductive stages ϕα(A) induced
by ϕ on A. These stages are defined by transfinite induction, for all ordinals α, according to:

ϕ0(A) := ∅ ,
ϕα+1(A) := ϕ(A, ϕα(A)) ,

ϕδ(A) :=
⋃
α<δ

ϕα(A) for limits δ .

The finite stages ϕα(A), for α < ω, are uniformly definable by formulae, which we also
denote by ϕα, obtained from ϕ(X, x̄) by iterated substitution of ϕ for X in ϕ. Letting
ϕ[ψ(x̄)/X] stand for the result of replacing all free occurrences of X in atoms Xȳ in ϕ
by ψ(ȳ), we obtain formulae ϕα for α < ω, by

ϕ0 := ⊥ and ϕα+1 := ϕ[ϕα(x̄)/X] .

Clearly, for finite α, ϕα ∈ MSO for ϕ ∈ MSO, and similarly for all natural fragments of
first- and second-order logic that are closed under this substitution operation. It is easy to
see that ϕα defines the stage ϕα(A) for finite α, uniformly across all A. We therefore need
not distinguish between the two readings of ϕα(A) for finite α. For infinite α, on the other
hand, we do not regard ϕα as a formula (it would in general have to be a formula in some
infinitary extension of the base logic), but only allow ϕα(A) as shorthand notation for the
corresponding stage of ϕ over A.

Because of monotonicity, ϕ∞(A) =
⋃
α ϕ

α(A) = ϕγ(A) for the least ordinal γ for which
ϕγ+1(A) = ϕγ(A). This ordinal γ is called the closure ordinal for ϕ on A, denoted ‖ϕ‖A.
The stage of an individual ā ∈ ϕ∞(A) is the least ordinal α such that ā ∈ ϕα+1(A); therefore,
the closure ordinal could also be described as the least ordinal greater than the stages of all
members of the fixed point ϕ∞(A).

The closure ordinal can in general only be bounded, for simple cardinality reasons, by
the successor cardinal of the cardinality of A, or by |A|r for finite A.

For instance, the fixed-point induction based on ϕ(X,x) = ∀y(Ryx → Xy) yields as
its fixed point over A = (A,R) the set of elements a ∈ A that are well-founded w.r.t. R ;
over the well-ordering A = (α,<), the closure ordinal is α. In fact, ϕ∞(A) = α ; the stage of
β ∈ α is β.

The fixed-point induction based on ϕ, or for simplicity: ϕ itself, is said to be bounded
if, for some finite α < ω, ‖ϕ‖A ≤ α for all A. Similarly, ϕ is bounded over the class C if, for
some α < ω, ‖ϕ‖A ≤ α for all A ∈ C.
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Definition 2.1. (a) Let ϕ be a formula over τ , positive in X, and let α < ω. We say that
ϕ is bounded by α over a class C if ϕα(A) = ϕα+1(A), for all A ∈ C. We call ϕ bounded
over C if it is bounded by some α < ω.

(b) The boundedness problem for a logic L over a class C is the problem to decide,
given a formula ϕ ∈ L, whether ϕ is bounded over C. We denote this decision problem as
BDD(L, C).

The monadic boundedness problem is the corresponding problem where we only consider
formulae ϕ with monadic variables X. We denote it as BDD1(L, C).

If C is the class of all structures, we just write BDD(L) or BDD1(L).

A vocabulary τ is called a tree vocabulary, if τ consists of one binary relation symbol E
and, otherwise, only of constant symbols and unary relation symbols. A τ -structure T is
called a tree structure, or tree for short, if ET is a symmetric, acyclic, and connected relation
on T . In particular, tree structures are undirected.

In Part I of the paper, we shall exclusively look at BDD1(MSO, T ) for the class of
MSO-formulae ϕ(X,x) suitable for monadic fixed points (positive in the monadic variable X)
over the class T of all tree structures and some of its subclasses. We refer to this core
problem as the boundedness problem for MSO over trees for short.

Theorem 2.2 (Main theorem). BDD1(MSO, T ), the monadic boundedness problem for
MSO over the class of all tree structures, is decidable.

In Part II we employ model-theoretic interpretations and similar transfer arguments to
deduce from this result the decidability of many other boundedness problems. In particular,
we obtain new proofs of many previous decidability results for boundedness, as well as some
new results like the decidability for the guarded fragment of first-order logic and for full
guarded second-order logic over structures of bounded tree-width.

Part I. The main result

In this first part we prove the main technical result, the decidability of the monadic
boundedness problem for MSO on the class of all ternary trees. The ramifications of this
result will then be investigated in the second half of the paper.

To help the reader through the later technicalities, we start with a simplified outline of
the proof idea towards the main theorem. The key idea is to derive, for every formula ϕ, a
bound N = N(ϕ) that provides a uniform strict upper bound on the closure ordinals ‖ϕ‖T
over any tree structure T in case ϕ is bounded. Then boundedness of ϕ is equivalent to the
unsatisfiability of ϕN ∧ ¬ϕN−1 (over the class of all tree structures T). In other words, a
formula which (on the class of all trees) is not bounded by this number N is not bounded at
all. To reason towards such a uniform bound N , assume that for some tree T, some node v
enters the fixed point in stage N . Then (T, ϕN (T), v) |= ϕ but (T, ϕN−1(T), v) 6|= ϕ. Using
a Feferman–Vaught style lemma (cf. Proposition 3.2), this change in the status of ϕ can be
traced back to some other node w such that (T, ϕN (T), w) |= Xx but (T, ϕN−1(T), w) 6|= Xx,
which means that w entered the fixed point in stage N − 1. In this way we obtain a path of
dependencies which travels through the tree and at places decreases the stage by 1. In a
chain of N such jumps, we conclude that, if N is large in comparison to the number of types
used in the Feferman–Vaught style lemma, then the path has repetitions and we can use a
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pumping argument to produce trees where some node enters the fixed point at arbitrarily
large stages. Consequently, ϕ is unbounded.

The actual proof has to deal with further difficulties, so it does not exactly follow this
outline. One difficulty is that a pumping lemma essentially requires that (in some very loose
sense) we only use regular properties. In particular, we have to weaken the counting of
stages and, consequently, we will slightly relax the concept of a dependency. Also, it is not
sufficient to consider a single dependency path: we have to do the pumping such that it
works for all paths simultaneously. Fortunately, there is already a suitable pumping theorem
for a certain kind of weighted automaton that we can reduce our problem to. The main
part of this paper describes this highly non-trivial reduction.

Convention. For technical reasons we choose in the following not to distinguish formally
between (assignments to) free first and second-order variables (and interpretations of)
constant or relation symbols. For instance, we shall often regard x and X, which in usual
parlance occur free in ϕ(X,x), as part of the vocabulary, and think of assignments a ∈ A
and P ⊆ A over some A in terms of the expansion (A, P, a) of A.

3. A Feferman–Vaught theorem for positive types

For a vocabulary τ , we denote by MSOn[τ ] the set of all MSO-formulae over τ with quantifier
rank at most n (we count both first- and second-order quantifiers). If X ∈ τ is a unary
predicate we write MSOn

X [τ ] for the subset of all formulae where the predicate X occurs
only positively. Recall that, for finite vocabularies τ , MSOn[τ ], and hence also MSOn

X [τ ], is
finite up to logical equivalence.

Definition 3.1. Let τ be a vocabulary and X ∈ τ . The X-positive n-type of a τ -structure A
is the set

tpnX(A) := {ϕ ∈ MSOn
X [τ ] | A |= ϕ } .

We write TpnX [τ ] for the set of all X-positive n-types of τ -structures.

Let T1 and T2 be tree structures. If T1 and T2 are disjoint, and if furthermore no
constant symbol is interpreted in both trees, then we define a concatenation operation as
follows: let c1 and c2 be constant symbols from the structures T1 and T2, respectively. Then
we denote by T1 +c1,c2 T2 the tree obtained from the disjoint union of the trees T1 and T2

by adding an edge between cT1
1 and cT2

2 . Note that every finite tree can be constructed from
one-element trees using this operation and reduct operations.

If T is a tree and vw an edge of T, then removing vw from T produces two disjoint
trees. Of these, we denote the one containing the vertex v by Tvw. Note that, if there
are constants c and d for v and w, then T = Tvw +c,d Twv. If c is a constant symbol not
interpreted by Tvw, then we set Tvw,c := (Tvw, v), where the expansion interprets c by v.

We will frequently need a derived operation: let T1 and T2 be trees such that T1 and
T2 are disjoint, and suppose that there is exactly one constant symbol c that is interpreted
both in T1 and in T2. Let d be a constant symbol which is interpreted in neither. Then
we denote by T1 hc T2 the reduct of T1 +c,d T2[d/c] that expels d from the vocabulary
(T2[d/c] denotes the structure obtained from T2 by renaming the constant symbol c to d).
Intuitively, c denotes the root of (directed versions of) the respective trees, and hc appends
its second argument as a new subtree below the root of its first argument. For a more
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uniform treatment, we allow the empty tree 4 as a neutral second argument to hc, and we
use 4 also for its type.

Proposition 3.2. For every n < ω, there is a binary operation ⊕nc1,c2 on X-positive n-types
such that, for all trees T1,T2 for which T1 +c1,c2 T2 is defined, we have

tpnX(T1 +c1,c2 T2) = tpnX(T1)⊕nc1,c2 tpnX(T2) .

Furthermore, ⊕nc1,c2 is monotone:

t1 ⊆ t′1 and t2 ⊆ t′2 implies t1 ⊕nc1,c2 t2 ⊆ t
′
1 ⊕nc1,c2 t

′
2 .

Finally, t1 ⊕nc1,c2 t2 is computable from n, t1, and t2.

Proof. Computability of the operation will be evident, once we show how to compute with
types in an effective way. For this sake, note that we can represent an n-type by a finite set
of formulae where all maximal boolean combinations are in disjunctive normal form without
repetition of clauses or of literals in clauses.

We proceed by induction on n. Assume that we already know how to compute ⊕mc1,c2
for all m < n and all vocabularies. For convenience, we set

T := T1 +c1,c2 T2 , t1 := tpnX(T1) , t2 := tpnX(T2) , and t := tpnX(T) .

We will describe t solely in terms of n, t1, t2, and the operations ⊕mc1,c2 with m < n.
Each formula in an X-positive n-type is a positive boolean combination of atoms, negated
atoms, and formulae of the form ∃yϕ, ∀yϕ, ∃Y ϕ, and ∀Y ϕ, where y is a first-order variable
and Y is a set variable. Whether the full formula belongs to t is clearly determined by
whether the individual formulae in the positive boolean combination do. Also, as the
boolean combinations are positive, monotonicity is preserved. Hence it suffices to consider
subformulae of the above form.

In the following we explicitly treat the cases of atomic and negated atomic formulae and
of ∃yϕ and ∀Y ϕ. The remaining cases ∃Y ϕ and ∀yϕ can be handled using combinations of
the techniques used in these cases.

First, we consider atoms and negated atoms. Each (negated) atom that only uses
constants from Ti occurs in t iff it occurs in ti. It remains to consider (negated) atoms
involving constants from both T1 and T2. As E is the only relation symbol of arity more
than 1, such an atom must be of the form c= d or Ecd where, without loss of generality,
c is from the vocabulary of T1 and d from the vocabulary of T2. In this case, we always
have c= d /∈ t and, hence, ¬(c= d) ∈ t; so

Ecd ∈ t iff ¬Ecd /∈ t iff c= c1 ∈ t1 and d= c2 ∈ t2 .

Next, let us consider a formula of the form ∃yϕ with m := qr(ϕ) < n. We make use
of ⊕mc1,c2 . Let t′1 and t′2 be the X-positive m-types of T1 and T2, that is, t′1 = t1 ∩MSOm

X

and t′2 = t2 ∩MSOm
X . Further, let S1 be the set of X-positive m-types of expansions of T1

by some a ∈ T1 interpreted for y, and let S2 be the respective set of types of expansions of
T2. Clearly, ∃yϕ ∈ t iff ϕ ∈ tpmX(T, a) for some a ∈ T . For a ∈ T1 and t′′1 := tpmX(T1, a), the
inductive hypothesis implies that

tpmX(T, a) = tpmX(T1 +c1,c2 T2, a)

= tpmX((T1, a) +c1,c2 T2)

= tpmX(T1, a)⊕mc1,c2 tpmX(T2) = t′′1 ⊕mc1,c2 t
′
2 .
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Note that t′′1 ∈ S1. The case where a ∈ T2 is similar. It follows that

∃yϕ ∈ t iff ϕ ∈ t′′1 ⊕mc1,c2 t
′
2 , for some t′′1 ∈ S1 ,

or ϕ ∈ t′1 ⊕mc1,c2 t
′′
2 , for some t′′2 ∈ S2 .

As an artifact of positivity in X, the set S1 is not determined by t1. The point is that, for
instance, if ∃x(Xx ∧ χ(x)) ∈ t1, then S1 may or may not contain a type t′ such that χ ∈ t′
but Xx 6∈ t′, because we do not know about the status of ∃x(¬Xx ∧ χ(x)).

Unlike S1, the following superset of S1 is determined by t1 :

S′1 :=
{
t′′1 ∈ TpmX [τ ]

∣∣ ∃y∧ t′′1 ∈ t1 } ⊇ S1 .

(Recall that representations of types are finite, so
∧
t′′1 is in fact a formula.) Hence it suffices

to show that

ϕ ∈ t′′1 ⊕mc1,c2 t
′
2 , for some t′′1 ∈ S1 iff ϕ ∈ t′′1 ⊕mc1,c2 t

′
2 , for some t′′1 ∈ S′1 .

(The corresponding statement for T2 then follows by symmetry.)
(⇒) is trivial since S1 ⊆ S′1. For (⇐), assume that t′′1 is a type such that ∃y

∧
t′′1 ∈ t1

and ϕ ∈ t′′1 ⊕mc1,c2 t
′
2. Let a ∈ T1 be an element with (T1, a) |=

∧
t′′1, and set t′′′1 := tpmX(T1, a).

Clearly, t′′1 ⊆ t′′′1 . Hence, monotonicity of ⊕mc1,c2 implies that ϕ ∈ t′′′1 ⊕mc1,c2 t
′
2, as desired.

It remains to show monotonicity of ⊕nc1,c2 (as far as the formula ∃yϕ is concerned). We
need to establish that, if ∃yϕ ∈ t1 ⊕nc1,c2 t2, then this still holds after increasing t1 or t2.
This follows from the fact that the sets S′1 and S′2 (defined analogously to S′1) are monotone
in t1 and t2.

Finally, let us consider a formula of the form ∀Y ϕ with m := qr(ϕ) < n. This time let
S1 be the set of X-positive m-types of expansions of T1 by some unary predicate P ⊆ T1

interpreted for Y , and let S2 be the respective set for T2. Using the equality

(T, P ) = (T1, P ∩ T1) +c1,c2 (T2, P ∩ T2)

we obtain, similarly to the case above, that

∀Y ϕ ∈ t iff ϕ ∈ t′′1 ⊕mc1,c2 t
′′
2 for all t′′1 ∈ S1 and t′′2 ∈ S2 .

Let us call a pair (S′1, S
′
2) good for t1, t2, if the following conditions hold:

• S′1 is a set of X-positive m-types of the vocabulary used for expansions of T1 by Y and
S′2 is a corresponding set for of T2.
• ∀Y

∨
s1∈S′1

∧
s1 ∈ t1 and ∀Y

∨
s2∈S′2

∧
s2 ∈ t2.

• For all s1 ∈ S′1 and s2 ∈ S′2 we have ϕ ∈ s1 ⊕mc1,c2 s2.

If ∀Y ϕ ∈ t, then (S1, S2) is good, whence a good pair exists. We claim that the converse
also holds, i.e., that the existence of a good pair implies ∀Y ϕ ∈ t. Thus, we obtain a
characterisation of whether ∀Y ϕ ∈ t solely in terms of t1, t2, and ⊕mc1,c2 . Furthermore, being
good for t1, t2 is clearly monotone in t1 and t2.

To prove the claim, suppose that (S′1, S
′
2) is a good pair and let t′′1 ∈ S1 and t′′2 ∈ S2 be

arbitrary. We need to show that ϕ ∈ t′′1⊕mc1,c2t
′′
2. Fix a predicate P1 such that t′′1 = tpmX(T1, P1).

By the second condition on good pairs, we have (T1, P1) |=
∨
s1∈S′1

∧
s1. Hence, there is some

s1 ∈ S′1 such that (T1, P1) |=
∧
s1. This implies that s1 ⊆ t′′1. Analogously, we obtain some

s2 ∈ S′2 such that s2 ⊆ t′′2. By the third condition on good pairs, we have ϕ ∈ s1 ⊕mc1,c2 s2.
Therefore, monotonicity of ⊕mc1,c2 implies that ϕ ∈ t′′1 ⊕mc1,c2 t

′′
2.
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The previous proof needed to consider different vocabularies. From now on, a single
vocabulary nearly suffices. Let τ be a fixed tree vocabulary without any constant symbols.
Let X be a unary relation symbol and x a constant symbol such that x,X /∈ τ . We will
consider fixed points with respect to X and x. The fixed points are evaluated in trees
of vocabulary τ . Stages of the fixed-point induction are evaluated in trees of vocabulary
τ ∪ {X}. In order to determine whether a single tree node belongs to some iteration for the
fixed point, we consider trees of vocabulary τ ∪ {X,x}. If x is present in the vocabulary, its
interpretation can be thought of as the root of the tree.

Let ϕ be a τ ∪ {X,x}-formula positive in X and let n be the quantifier rank of ϕ.

Corollary 3.3. Let y /∈ τ ∪ {X,x} be a new constant symbol. We define a binary opera-
tion hn on X-positive n-types of τ ∪ {X,x}-structures by

shn t :=
(
s⊕nx,y t[y/x]

)
∩MSOn

X [τ ∪ {X,x}] .
The operation hn is monotone and satisfies

tpnX(Shx T) = tpnX(S)hn tpnX(T) ,

for all non-empty tree structures S and T of vocabulary τ ∪ {X,x}.

We extend hn by adjoining the X-positive n-type 4 of the empty tree as a right-neutral
element. This does not hurt monotonicity: without loss of generality, assume that n ≥ 1.
Then only 4 contains ∀y⊥ and only this type does not contain ∃y>, so it is incomparable
to any other type.

In the first part, which contains the technical heart of the article, we will only consider
ternary trees, that is, undirected trees where each node has degree at most 3. We assume
that each such tree T is implicitly equipped with an edge-colouring using 3 colours {1, 2, 3}.
That means that, for every colour d, each vertex v of T has at most one neighbour that
is connected to v via an edge of colour d. We call this neighbour “the neighbour of v in
direction d” and we denote it by vd. If there is no such neighbour, we set vd := 4.

To account for missing neighbours we extend the above definition of Tvw,x by setting
Tv4,x := (T, v) and letting T4w,x := 4. Furthermore, let T{v} := (T � {v}, v). With this
notation we have

(T, v) = T{v} hx Tv1v,x hx Tv2v,x hx Tv3v,x ,

where we assume that the operation hx is associative to the left.
We also need a variant of Proposition 3.2 that concerns a decomposition into a possibly

infinite number of subtrees. We omit the proof, which is similar to that of Proposition 3.2.

Proposition 3.4. Let T be a τ ∪{X,x}-tree and (v1, d1), (v2, d2), . . . a sequence of pairwise

distinct pairs (vi, di), such that vi ∈ T and vdii = 4. Further, let S1,S2, . . . and S′1,S
′
2, . . .

be sequences of τ ∪ {X,x}-trees such that tpnX(Si) = tpnX(S′i) for all i. Finally, let U be the
tree obtained from T by adding Si as a child of vi in direction di for all i, and define U′

analogously using S′i instead of Si. Then, tpnX(U) = tpnX(U′).
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4. Tilings

We are now in a position to provide a second, more precise proof outline. Given a tree
structure T of vocabulary τ , we consider the fixed-point induction of ϕ. For every stage α
and every vertex v of T we consider the type tpnX(T, ϕα(T), v). We annotate T with all
these types. At each vertex v we write down the list of these types for all stages α. These
annotations can be used to determine the fixed-point rank of elements of T. A vertex v
enters the fixed point at stage α if the α-th entry of the list is the first one containing a
type t with Xx ∈ t.

We can regard the annotation as consisting of several layers, one for each stage of the
induction. At a vertex v each change between two consecutive layers is caused by some
change at some other vertex in the previous step. In this way we can trace back changes of
the types through the various layers.

In order to determine whether the fixed-point inductions of the formula are bounded,
we construct a weighted automaton (see Section 7 below) that recognises (approximations
of) such annotations and that computes (an approximation of) the length of the longest
path of changes in the annotation.

Actually, the annotations we use do not consist of single types but of tuples of such
types, called a tile. In this section we consider single layers of such tiles. In the next section
we will then introduce annotations consisting of several such layers.

Definition 4.1. A letter is a one-element τ ∪ {x}-tree.

Observe that, for each letter L, there are exactly two τ ∪ {X,x}-expansions of L: one
where the element belongs to X and one where it does not. Let us denote their X-positive
n-types by 1L and 0L, respectively. Note that 0L ⊆ 1L and that Xx ∈ 1L r 0L, for every L.
We omit the index L whenever it is irrelevant.

We can decompose a τ ∪ {X}-tree T into its one-element substructures T{v}, i.e., its
letters. Each of these letters T{v} can be labelled with its type and the types of the subtrees
Tvdv.

v T
v
1
v

T
v
2
v

T
v
3
v

1

2

3

For convenience, we will not only use the types t/0 and t/d of T{v} and Tvdv, d = 1, 2, 3,
respectively, but also the types t.d of Tvvd , d = 1, 2, 3 and the type t.4 of the whole tree
(T, v). Our intuition regards the vertex v as a processing unit that receives as its inputs
the types t/0, t/1, t/2, t/3 and produces as output the types t.1, t.2, t.3, t.4. The vertex v
receives from its neighbours vd, d = 1, 2, 3, the inputs t/d and it passes back to vd the
outputs t.d.

Definition 4.2. (a) Let L be a letter. An L-tile is an 8-tuple

(t/0, . . . , t/3, t.1, . . . , t.4)

of X-positive n-types over τ ∪ {X,x} where
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• t/0 ∈ {0L, 1L},
• t.1 = t/0 hn t/2 hn t/3,
• t.2 = t/0 hn t/1 hn t/3,
• t.3 = t/0 hn t/1 hn t/2, and
• t.4 = t/0 hn t/1 hn t/2 hn t/3.

If we do not want to mention the letter, we refer to an L-tile simply as a tile. When γ is a
tile, we denote its components by γ/0 through γ.4.

(b) Let T be a τ -tree. A T-tiling is a mapping c that assigns to each vertex v ∈ T a
T{v}-tile c(v).

(c) Let T be a τ ∪ {X}-tree. The canonical tiling tT of T is the function assigning to a
vertex v the tile

tT(v)/0 := tpnX(T{v}) , tT(v)/d := tpnX(Tvdv) , for 1 ≤ d ≤ 3 ,

tT(v).4 := tpnX(T, v) , tT(v).d := tpnX(Tvvd) , for 1 ≤ d ≤ 3 .

Intuitively the /d-component of a tile contains information incoming from direction d,
whereas the .d-component contains the information passed on in that direction. Similarly,
the .4-component contains information passed on to the next stage. The /0-component is
special, since it contains local information about the current vertex.

Note that the canonical tiling is indeed a tiling.

Lemma 4.3. Let T be a τ ∪ {X}-tree and T0 its τ -reduct. Then tT is a T0-tiling.

Proof. Let v ∈ T . Since T{v} is an expansion of L := (T0){v}, its type tT(v)/0 must be one
of 0L and 1L.

For the equalities concerning tT(v).d with 1 ≤ d ≤ 3, we may by symmetry assume that
d = 3. Then

tT(v).3 = tpnX(Tvv3)

= tpnX(T{v} hx Tv1v hx Tv2v)

= tpnX(T{v})h
n tpnX(Tv1v)h

n tpnX(Tv2v)

= tT(v)/0 h
n tT(v)/1 h

n tT(v)/2 ,

as desired. The equality for .4 is obtained similarly.

Not every tiling stems from an actual tree. In the next definition we collect some simple
consistency properties a tiling should satisfy. Note that these properties can be checked by
an automaton.

Definition 4.4. Let T be a τ -tree and v ∈ T a vertex.
(a) The orientation of T towards v is the mapping ov : T → {1, . . . , 4} such that

ov(v) = 4 and, for vertices w ∈ T r {v}, we define 1 ≤ ov(w) ≤ 3 such that the neighbour

wov(w) is closer to v than w.
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v

w
ov(w)

w

(b) A T-tiling c is locally consistent towards v if, for all w ∈ T and all directions 1 ≤ d ≤ 3
with d 6= ov(w), we have

c(w)/d =

{
c(wd).d if wd 6= 4 ,
4 otherwise .

(c) A T-tiling c is globally consistent towards v if, for all vertices w ∈ T and all directions
1 ≤ d ≤ 3 with d 6= ov(w), we have

c(w)/d = tpnX((T, P )wdw) ,

where (T, P ) is the expansion of T by the set P := { v ∈ T | c(v)/0 = 1 } interpreted for X.

Of course, canonical tilings are globally consistent.

Lemma 4.5. Let T be a τ -tree and P ⊆ T . The T-tiling t(T,P ) is globally consistent towards
each vertex v ∈ T .

Proof. We have already seen in Lemma 4.3 that t(T,P ) is a T-tiling. Let v ∈ T . For global
consistency, note that

P =
{
v ∈ T

∣∣ (T, P, v) |= Xx
}

=
{
v ∈ T

∣∣ tpnX((T, P ){v}) = 1
}

=
{
v ∈ T

∣∣ tT,P (v)/0 = 1
}
,

as desired.

Finally, let us show that global consistency implies local consistency.

Lemma 4.6. Let T be a τ -tree and v ∈ T . Every T-tiling that is globally consistent towards v
is locally consistent towards v.

Proof. Let c be a T-tiling globally consistent towards v and let T′ be the τ ∪ {X}-expansion
of T by the set P := { v ∈ T | c(v)/0 = 1 }. Let w ∈ T and d 6= ov(w) be given. Without loss
of generality, we may assume that d = 3. If w3 = 4, then c(w)/3 is the type of T′4v = 4.

Otherwise, let u := w3 6= 4. Since c is a T-tiling, c(u)/0 is either 0T{u} or 1T{u} . By definition

of T′ it follows that c(u)/0 = tpnX(T′{u}). Consequently,

c(w)/3 = tpnX(T′uw) = tpnX(T′{u})h
n tpnX(T′u1u)hn tpnX(T′u2u)

= c(u)/0 h
n c(u)/1 h

n c(u)/2

= c(u).3 .
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5. Annotations

Ideally we would like to annotate a given tree with one tiling for each stage of the fixed-point
induction. Since this is an infinite amount of data we have to opt for something less: at each
vertex of the tree we do not store the full sequence of tiles for each stage, but only a shortened
sequence obtained by removing all duplicates. This is a finite amount of information we
can label the tree with. The drawback of this method is that, by removing duplicates, we
lose synchronisation between the sequences from adjacent vertices. Here are the formal
definitions.

For a τ -tree T and an ordinal α, let Tα := (T, ϕα(T)) be the τ ∪ {X}-expansion of T
by the αth stage of the fixed-point induction. Similarly, we set Tαvw,x := (Tα)vw,x and
Tα{v} := (Tα){v}.

We extend the order ⊆ on X-positive n-types to tiles by requiring that ⊆ holds
component-wise.

Definition 5.1. (a) Let L be a letter. An L-history is a strictly increasing sequence
h =

(
h0 ( . . . ( hm

)
of L-tiles such that

(1) h0
/0 = 0L and

(2) hi+1
/0 = 1L iff ϕ ∈ hi.4, for 0 ≤ i < m.

The number m is the length of the history, denoted |h|.
(b) Let T be a τ -tree and v ∈ T a vertex. The history of T at v is the sequence hT(v) of

tiles tTα(v), for all ordinals α, with duplicates removed.

Example 5.2. For simplicity, we give an example of a fixed-point induction on a path,
instead of a tree, i.e., a tree where no vertex has a neighbour in direction 3. We consider the
fixed-point of the formula ϕ(X,x) stating that

x1 = 4 or x2 = 4 or Tx1x ⊆ X or Tx2x ⊆ X .

Figure 1 shows the histories of the first 4 elements of a finite path of length at least 9. All
further elements, except for the last two, have the same history as the third and fourth
elements. Here, we assume that the edges are alternatingly labelled by 1 and 2 and the tiles
are drawn in the format

.4 .1 .2 .3
/0 /1 /2 /3

where

• 4 denotes the type of the empty tree,
• ϕ denotes any type containing ϕ,
• × denotes any type not containing ϕ,
• ∀ denotes any type containing the formula ∀yXy,
• ∃ denotes any type containing ∃yXy, but not ∀yXy, and
• − denotes any type not containing the formula ∃yXy.

Of course, the history of T at v is indeed a history.

Lemma 5.3. Let T be a τ -tree and v ∈ T a vertex. Then hT(v) is a T{v}-history.

Proof. Let h := hT(v). We have already seen in Lemma 4.3 that each hi is a T{v}-tile. The
sequence is increasing, because we are considering positive (hence monotone) types and the
sequence ϕα(T) is increasing. It is strictly increasing because we have removed duplicates.
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0 △ − △

ϕ − − −

1 △ ∃ △

ϕ ∃ ∀ ∃

1 △ ∀ △

ϕ ∀ ∀ ∀

0 − − △

× − − −

0 ∃ ∀ △

ϕ ∃ ∃ ∃

1 ∃ ∀ △

ϕ ∀ ∃ ∃

1 ∀ ∀ △

ϕ ∀ ∀ ∀

0 − − △

× − − −

0 ∃ ∃ △

× ∃ ∃ ∃

0 ∀ ∃ △

ϕ ∃ ∃ ∃

1 ∀ ∃ △

ϕ ∃ ∀ ∃

1 ∀ ∀ △

ϕ ∀ ∀ ∀

0 − − △

× − − −

0 ∃ ∃ △

× ∃ ∃ ∃

0 ∃ ∀ △

ϕ ∃ ∃ ∃

1 ∃ ∀ △

ϕ ∀ ∃ ∃

1 ∀ ∀ △

ϕ ∀ ∀ ∀

· · ·· · ·· · ·

2 1 2 1

Figure 1: Annotation for ϕ(X,x)

For ordinals α, let k(α) be the index at which the αth stage appears in h, i.e., hk(α) = tTα(v).
As the sequence is increasing, so is k.

Since ϕ0(T) = ∅, we have

h0
/0 = h

k(0)
/0 = tT0(v)/0 = tpnX(T0

{v}) = 0L .

For 0 ≤ i < |h|, let α be the minimal ordinal with k(α) = i+ 1. Then

hi+1
/0 = 1 iff tpnX(Tα{v}) = 1 iff v ∈ ϕα(T) .

Since elements enter the fixed point only at successor stages, we have

v ∈ ϕα(T) iff v ∈ ϕβ+1(T) for some β < α ,

iff (Tβ, v) |= ϕ

iff ϕ ∈ tpnX(Tβ, v) ⊆ hi.4 .
We would like to annotate each vertex v of a tree T by the sequence (tTα(v))α. To obtain a
finite object, we have to remove duplicates and, therefore, we work with the history hT(v)
instead. For each α, we would like to have an automaton that can recover the tiling tTα
from hT. In general, this is not possible.

For instance, in Example 5.2 the ‘real’ tilings tTα(v) for a path T of even length are
words of the form uxnynv where ynv is the ‘mirror image’ of uxn. This language is not
regular.

Hence, we use an approximation. For each vertex v, each index i of hT(v), and each
direction d, we record the index j of hT(vd) such that hT(vd)j and hT(v)i belong to the
same ordinal α. Of course, given i, there are several choices of α and, hence, of j, so we lose
information. It will turn out that these two pieces of data, the function h and the function
(v, i, d) 7→ j, are sufficient for our purposes.

Definition 5.4. (a) An annotated tree is a tuple (T, h, s), where

(1) T is a τ -tree,
(2) h is a mapping that assigns to each vertex v ∈ T a T{v}-history h(v), and
(3) s is a mapping assigning a natural number s(v, i, d) to each vertex v ∈ T , each index

0 ≤ i ≤ |h(v)|, and every direction 1 ≤ d ≤ 3 with vd 6= 4.
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We call h the history map and s the synchronisation of the annotated tree.
(b) Let (T, h, s) be an annotated tree. For v ∈ T and 0 ≤ i ≤ |h(v)|, the section at v, i

is the tiling c defined inductively as follows:

(1) c(v) := h(v)i.

(2) For w ∈ T r {v}, let u := wov(w). We assume by induction that c(u) is already defined.

Let j be the index such that c(u) = h(u)j . Then we set c(w) := h(w)s(u,j,ov(w)).

Of course, not every annotated tree (T, h, s) encodes the ‘real’ fixed-point induction. The
next definition collects some necessary conditions.

Definition 5.5. Let A = (T, h, s) be an annotated tree.
(a) A is locally consistent if, for all vertices v ∈ T , indices 0 ≤ i ≤ |h(v)|, and directions

1 ≤ d ≤ 3 the following conditions are satisfied:

(1) If vd = 4, then h(v)i/d = 4.

(2) Otherwise, s(v, i, d) ≤
∣∣h(vd)∣∣ and h(v)i/d = h

(
vd
)s(v,i,d)

.d
.

(b) A is globally consistent if it is locally consistent and if, for all v, i as above, the
section at v, i is globally consistent towards v.

Lemma 5.6. Let (T, h, s) be a locally consistent annotated tree. Every section c at some
v, i is locally consistent towards v.

Proof. Let v, w ∈ T be distinct vertices, d 6= ov(w), and let i be the index such that
c(w) = h(w)i. Then we have wd = 4 and c(w)/d = h(w)i/d = 4, or

c(w)/d = h(w)i/d = h(wd)
s(w,i,d)
.d = c(wd).d .

We have not yet defined the ‘real annotation’ of a tree. In fact, due to the choices
involved in defining the synchronisation there are several possible ‘real’ annotations. We
obtain them by fixing an ordinal β and selecting that synchronisation that selects from
among all possible choices the stage that is closest to β.

Definition 5.7. Let T be a τ -tree and β < ω. We denote by Aβ(T) the annotated tree
(T, hT, s) where the synchronisation s is defined as follows. For v ∈ T , 0 ≤ i ≤ |hT(v)|, and
1 ≤ d ≤ 3 with w := vd 6= 4, we define s(v, i, d) such that

hT(w)s(v,i,d) = tTα(w) ,

where the ordinal α is chosen as follows:

(1) if hT(v)i = tTβ (v), then α = β,

(2) if hT(v)i ( tTβ (v), then α ≤ β is maximal such that tTα(w).d = hT(v)i/d, and

(3) if hT(v)i ) tTβ (v), then α ≥ β is minimal such that tTα(w).d = hT(v)i/d.

We start with a technical lemma containing a monotonicity property for the sections of
an annotation.

Lemma 5.8. Let T be a tree with vertices v, w ∈ T , let c be the section of Aβ(T) at v, i,
and set d := ov(w).

(a) If c(w) = tTβ (w), then c(u) = tTβ (u), for all u ∈ Twwd.
(b) Let α < β. If tTα(w) ⊆ c(w), then tTα(u) ⊆ c(u), for all u ∈ Twwd.

(Here we set Tww4 := T .)
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Proof. We only prove the claims for w 6= v. The argument for w = v is similar. We prove
both claims by induction on the distance between u ∈ Twwd and v. The claims are immediate
for u = w.

For the inductive step assume that the claims hold for u and let u′ be a neighbour of u
which is further away from v than u, so that u = (u′)ov(u′). It follows that u′ = ud

′
for some

d′ 6= ov(u). Let i be the index such that c(u) = hT(u)i. By definition of c and s, respectively,
we have

c(u′) = hT(u′)s(u,i,d
′) = tTα′ (u

′) ,

for some ordinal α′.
For (a), using the inductive hypothesis, we have hT(u)i = c(u) = tTβ (u), which implies

that α′ = β. Hence, c(u′) = tTβ (u′).
Similarly, for (b), we have hT(u)i = c(u) ⊇ tTα(u), which implies that α′ ≥ α. Hence,

c(u′) ⊇ tTα(u′).

Let us also show that Aβ(T) is always globally consistent.

Lemma 5.9. For all τ -trees T and all β < ω, Aβ(T) is a globally consistent annotated tree.

Proof. We have seen in Lemma 5.3 that hT(v) is a T{v}-history. Hence, Aβ(T) is an annotated
tree. For local consistency, fix v, i, d and let α be the ordinal from the definition of s at v in
Aβ(T) (cf. Definition 5.7). Then

hT(vd)
s(v,i,d)
.d = tTα(vd).d = hT(v)i/d ,

as desired.
It remains to prove global consistency. Fix a vertex v ∈ T and an index 0 ≤ i ≤ |hT(v)|,

and let c be the section at v, i. For w ∈ T , let α(w) be the ordinal closest to β such that
c(w) = tTα(w)(w). Let T′ be the expansion of T by the set P := {w ∈ T | c(w)/0 = 1 }. We
need to show that c(w)/d = tpnX(T′

wdw
), for all w ∈ T and d 6= ov(w). (Here, T′v4v := T′.)

By local consistency of c (which holds by Lemma 5.6), it is sufficient to show that c(w).d =
tpnX(T′

wwd
), for all w ∈ T and d := ov(w). We do this by induction on the distance between

α(w) and β.
First, suppose that α(w) = β. Then Lemma 5.8 (a) implies that c(u) = tTβ (u), for

all u ∈ Twwd . Consequently T′
wwd

= Tβ
wwd

, and hence tpnX(T′
wwd

) = tTβ (w).d = c(w).d, as
desired.

It remains to consider the case that α(w) 6= β. By symmetry, we may assume that
α(w) > β. Let S be the maximal subtree of T′

wwd
that contains the vertex w and such that

α(u) = α(w) for all u ∈ S. Let (x1, d1), (x2, d2), . . . be the finite or infinite list of all pairs

(x, d) such that x ∈ S and xd ∈ T rS. Let yk := xdkk be the missing neighbour. Note that, by

definition of s, α(yk) is the minimal ordinal α such that tpnX(Tαykxk) = tpnX(T
α(xk)
ykxk ). Hence,

α(yk) ≤ α(xk) and it follows that α(xk) = α(w) and α(yk) < α(w). By local consistency
and the inductive hypothesis, we have

c(xk)/dk = c(yk).dk = tpnX(T′ykxk) ,

while, by definition of S, we have

c(xk)/dk = tTα(w)(xk)/dk = tpnX(Tα(w)
ykxk

) .
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It follows that tpnX(T′ykxk) = tpnX(T
α(w)
ykxk ) for each index k. As the subtrees of T′

wwd
and

T
α(w)

wwd
induced by S agree, we can use Proposition 3.4 to deduce that

c(w).d = tpnX(T
α(w)

wwd
) = tpnX(T′wwd) .

6. Ranks

It remains to compute the length of the fixed-point iteration from a given annotated tree.
The goal essentially is to obtain an estimate for the stage of a designated element of the fixed
point; this estimate is extracted from an annotation in terms of the weight of an accepting
run of a weighted automaton which checks consistency of the annotation. The appropriate
kind of weighted automata for this purpose will be presented in the next section.

Definition 6.1. (a) Let (T, h, s) be an annotated tree and v ∈ T a node. We say that there
is a jump at v if there is some index i such that h(v)i/0 = 0 and h(v)i+1

/0 = 1. Observe that
this value of i is uniquely determined. We call the jump a base jump if i = 0.

(b) Suppose that there is a jump at v that is not a base jump. We say that this jump
depends on another jump at a node w if c(w)/0 = 0 where c is the section at v and i− 1.
The rank of a jump is the minimal number of jumps on any dependency chain from this
jump to some base jump.

(c) An annotated tree (T, h, s) is jump-consistent, if the set of vertices with a jump
equals ϕ∞(T).

The notion of dependency in (b) may warrant some comment, because the terminology
could easily be misunderstood. What the criterion is meant to capture is not that there
must be a (causal or temporal) dependence of the appearance of v in the fixed point on the
(prior) appearance of w ; rather, it says that such a dependence cannot be ruled out. At least
any w that v does not depend on in the sense of the definition can have had no influence on
the appearance of v. In this sense our dependency relation provides a generous upper bound
on any intuitive ‘real’ dependency: it may be useful to think of w as a potential trigger for v.

Let us compare the rank of a jump with the stage of the corresponding vertex in the
fixed point (the stage at which the vertex enters the fixed point). First, we show that in
every annotation the latter bounds the former.

Lemma 6.2. Let A = (T, h, s) be a globally consistent and jump-consistent annotated tree,
let v be a vertex with a jump in A, and α < ω. If v ∈ ϕα(T), then the rank of v is at most α.

Proof. We proceed by induction on α. For α = 0 there is nothing to do since ϕ0(T) = ∅.
Hence, we may assume that α > 0 and that the claim already holds for smaller ranks. Let i
be the index such that h(v)i/0 = 0 and h(v)i+1

/0 = 1.
If i = 0, then there is a base jump at v and its rank is 1 ≤ α.
For i > 0, let c be the section at v, i − 1 and let P := {w ∈ T | c(w)/0 = 1 }.

From h(v)i/0 = 0 we conclude that ϕ /∈ c(v).4. As c is globally consistent, it follows that
ϕ /∈ tpnX(T, P, v). On the other hand, ϕ ∈ tpnX(T, ϕα−1(T), v). By monotonicity, there must
be some vertex w ∈ ϕα−1(T) r P , which, by jump-consistency, has a jump. As w /∈ P , we
have c(w)/0 = 0. Consequently, v depends on w. By inductive hypothesis, w has rank at
most α− 1. Therefore, v has rank at most α.
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Some form of converse is true for annotations of the form Aβ(T).

Lemma 6.3. Let T be a τ -tree, v ∈ ϕ∞(T), and α < β < ω. If the rank of v in Aβ(T) is
at most α, then v ∈ ϕα(T).

Proof. We proceed by induction on α. As all ranks are positive, α > 0. Let i be the index
such that hT(v)i/0 = 0 and hT(v)i+1

/0 = 1. If i = 0, then ϕ ∈ hT(v)0
.4 = tT0(v). Therefore,

v ∈ ϕ1(T) ⊆ ϕα(T) and we are done. Hence we may assume that i > 0, i.e., the jump at v
is not a base jump.

Let c be the section at v, i − 1. As the jump at v is not a base jump and its rank is
finite, there is some vertex w with a jump rank at most α − 1 such that v depends on w.
By the inductive hypothesis, we have w ∈ ϕα−1(T). Consequently, tTα−1(w)/0 = 1. On the
other hand, we have c(w)/0 = 0 by choice of w. Therefore, c(w) ( tTα−1(w). By Lemma 5.8,
this implies that

hT(v)i−1 = c(v) ( tTα−1(v) .

It follows that α′ < α− 1 < β < ω for any α′ such that hT(v)i−1 = tTα′ (v). Therefore, there
exists a maximal such ordinal α′ and, moreover, α′ + 2 ≤ α.

As i is maximal such that hT(v)i/0 = 0, it follows that i − 1 is maximal such that

ϕ /∈ hT(v)i−1
.4 . Accordingly, α′ is maximal such that ϕ /∈ tTα′ (v).4. Thus, ϕ ∈ tTα′+1(v).4

and tTα′+2(v)/0 = 1. It follows that v ∈ ϕα′+2(T) ⊆ ϕα(T).

It follows that boundedness of the fixed-point iteration is equivalent to the existence of
a finite bound on the ranks of all annotations.

Definition 6.4. A proposal is a tuple (T, h, s, v), where (T, h, s) is a globally consistent and
jump consistent annotated tree and v ∈ ϕ∞(T). The rank of such a proposal is the rank of
the jump at v in (T, h, s).

Proposition 6.5. A formula ϕ is bounded over the class of all ternary trees if, and only if,
there is some number N < ω such that the rank of each proposal is at most N .

Proof. (⇐) Suppose there exists a bound N < ω on the ranks of proposals. Let T be some
ternary tree, and v ∈ ϕ∞(T). By Lemma 5.9, (AN+1(T), v) is a proposal. By choice of N ,
the rank of v is at most N . Hence, Lemma 6.3 implies that v ∈ ϕN (T). As v was arbitrary,
it follows that ϕN (T) = ϕ∞(T).

(⇒) Suppose that ϕ is bounded by some number N < ω. Let (T, h, s, v) be an arbitrary
proposal. Then v ∈ ϕ∞(T) = ϕN (T) and Lemma 6.2 implies that the rank of the proposal
is at most N .

7. Weighted automata

In order to decide the boundedness problem for MSO we reduce it to the so-called limitedness
problem for a certain kind of weighted automaton. These automata have Σ-labelled directed
trees as inputs. Such a tree is a triple (T,E, λ) where λ : T → Σ is a labelling of T and
(T,E) is a directed tree (meaning that E ∩ E−1 = ∅,

(
T,E ∪ E−1

)
is a tree structure, and

there is some r ∈ T called the root of the tree such that r E∗ t for all t ∈ T ).
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Definition 7.1. (a) A weighted parity automaton A = (Q,Σ,∆, I,Ω, w) consists of a finite
state space Q, a finite input alphabet Σ, a set I ⊆ Q of initial states, a finite transition
relation ∆ ⊆ Σ× ωQ ×Q, a priority function Ω : Q→ ω, and a weight function w : ∆→ ω.

A weighted parity automaton A takes as input Σ-labelled directed trees (T,E, λ). Let
π3 : Σ× ωQ ×Q→ Q be the projection to the third component. A run of A on this tree is
a mapping % : T → ∆ satisfying, for all vertices v ∈ T , the following condition:

%(v) = (c, f, q) implies c = λ(v) and f is the function mapping p ∈ Q to

the number of children u of v with π3(%(u)) = p .

A run % is accepting, if

• π3(%(r)) ∈ I for the root r of (T,E, λ) and
• for every branch β of (T,E), the limit

lim inf
v∈β

Ω(π3(%(v))) is even.

The language L(A) recognised by A is the set of all Σ-labelled directed trees (T,E, λ) on
which there is an accepting run of A.

For a run % on some tree (T,E, λ) and a branch β of the tree, we set

wA(%, β) :=
∑
v∈β

w(%(v)) and wA(%) := sup
β
wA(%, β) ,

with values in ω ∪ {∞}.
The associated cost function wA maps (T,E, λ) ∈ L(A) to the minimum of wA(%) taken

over all accepting runs % on (T,E, λ). If (T,E, λ) /∈ L(A), wA returns ∞.
(b) We say that the automaton A is limited, if there is some bound N < ω such that

wA(T,E, λ) ≤ N for all (T,E, λ) ∈ L(A). We say that A is limited in the finite, if there is a
bound N < ω such that wA(T,E, λ) ≤ N for all finite (T,E, λ) ∈ L(A).

Note that, if we only consider finite trees as input, we can omit the priority function Ω
from the automaton. Weighted automata as defined above are a special case of so-called cost
tree automata introduced in [7]. In that paper it is shown than the limitedness problem for
cost tree automata over finite trees is decidable. Hence, the following is a direct consequence
of [7].

Theorem 7.2 (Colcombet and Löding). It is decidable whether a weighted parity automa-
ton A is limited in the finite.

Colcombet and Löding have also announced a decidability result for the general limited-
ness problem, but this result has not been published yet.

Theorem 7.3 (Colcombet and Löding). It is decidable whether a weighted parity automa-
ton A is limited.

Although the proof is still not published, its key arguments appear in [28, 6]. The
following sketch of how they fit together was communicated to the authors by Colcombet
and Löding.

A cost function f : T → ω∪{∞} associates with every tree a natural number or ∞. We
say that such a cost function f is dominated by g if f is bounded over every subset X ⊆ T
over which g is bounded. We denote this domination relation by f � g.

We can state Theorem 7.3 in terms of the domination relation as follows. Let A be a
weighted automaton and let L be the language defined by A if we consider it as an ordinary
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parity automaton without weight function. Let f be the cost function wA associated with A
and let g be the cost function that maps every tree in L to 0 and every other tree to ∞.
Then Theorem 7.3 states that it is decidable whether f � g.

We would like to reduce this statement to Corollaire 8.11 of [6], which states – in the
terminology of [6] – that the domination relation f � g between cost functions f and g
is decidable, provided that f is given by a nondeterministic S-Muller automaton and g is
given by a nondeterministic B-Muller automaton. The function g from above is given by a
parity automaton without weight function. Such an automaton can trivially be converted
into a B-Muller automaton. Hence, to complete the proof it remains to find an S-Muller
automaton recognising f . This can be done in the same way as in the proof of Theorem 4.28
of [28], where the author shows how to transform an alternating B-Büchi automaton into
a nondeterministic one. This proof uses game-theoretic techniques. One key argument is
the fact that the games, which correspond to the automata in question, are positionally
determined. To adapt the proof to our case, one needs positional determinacy for games
whose winning condition is a disjunction between an unboundedness condition and a parity
condition. This can be shown as in Proposition 7.14 of [6], which treats winning conditions
consisting of a conjunction of a boundedness condition and a Rabin condition. One further
step of adaptation consists in the construction of a so-called ‘history-deterministic’ automaton
that checks whether a given positional strategy is winning. For finite words, the underlying
translation of nondeterministic automata into history-deterministic ones can be found in an
unpublished note (cf. Lemma 58 of [5]) on the author’s web-page.

Using the results of the previous sections we can reduce the boundedness problem
for MSO on ternary trees to Theorem 7.3. To do so, we construct a weighted automaton
computing the rank of a proposal (T, h, s, v). In order to use (T, h, s, v) as input for a tree
automaton, we encode it as a labelled directed tree with root v. The labelling contains
information about the unary predicates in τ , the histories, and the synchronisation. As
there is only a finite number of types, there is a uniform bound on the length of histories
and we only need finitely many labels.

First we show that the set of all proposals is regular.

Lemma 7.4. Given a formula ϕ, we can effectively construct a parity automaton A recog-
nising the set of all proposals for ϕ.

Proof. Let n be the quantifier rank of ϕ. It is sufficient to show that the set of proposals
can be defined in MSO. Being a locally consistent annotated tree can be expressed even
in FO since it is a purely local property.

For global consistency, note that we can encode a section c by a tuple of unary predi-
cates C̄ (the precise number depends on the maximal length of a history) such that there
is an FO-formula ϑi(v) stating that C̄ encodes the section at v, i. Thus, the section at v, i
is MSO-definable and the corresponding tiling is MSO-interpretable. In this tiling it is of
course possible by means of MSO to determine the MSO-type (of quantifier rank at most n)
of a subtree. Consequently, we can express the global consistency of the tiling and, hence,
also the global consistency of the annotated tree.

As the set of jumps can be inferred from the tree labelling, it is easy to check whether
there is a jump at the root (v ∈ ϕ∞).

It remains to consider jump-consistency, that is, it remains to define ϕ∞(T) (where T is
the first component of the prospective proposal). As ϕ is positive in X, this can be achieved
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by
ψ(x) := ∀X[∀y(ϕ(X, y)→ Xy)→ Xx] .

Lemma 7.5. Given a formula ϕ, we can effectively construct a weighted parity automaton A
such that

(1) L(A) is the set of proposals of finite rank;
(2) if P is a proposal and r < ω its rank, then 1

2 log r ≤ wA(P ) ≤ r.

Proof. Let n be the quantifier rank of ϕ and let A1 be the automaton from Lemma 7.4.
We will construct the desired automaton A as a product of A1 and a weighted parity
automaton A2, where the weight function of A is that of A2.

Recall that the rank of a proposal P = (A, h, s, v) is the minimal number of jumps on
a dependency chain from the jump at v to some base jump. By this minimality condition
we can restrict our attention to chains without cycles. Each dependency in the chain, say
from u on u′, corresponds to a path in the section at u, i for a suitable i. By minimality
again, we only need to consider pairwise disjoint paths, one for each dependency in the chain.
(If two paths intersected, we could form a new path witnessing the dependency of some
former jump in the chain to a latter one. This could be used to shorten the dependency
chain.) These paths can be concatenated to form a single path in the annotated tree. For a
dependency path p and a tree node u, we say that u is active if there is at least one jump
on p in the subtree rooted at u.

Since the tree is ternary, we can encode dependency paths by a tuple of unary predicates.
We first construct a weighted parity automaton A3 that takes as input a proposal together
with such a path. It checks that the path follows the synchronisation (except for the jumps),
and that it is indeed a single path. Furthermore, A3 is such that from its state at a node u
one can deduce whether u is active. We define the weight function of A3 such that all
transitions have weight 0 or 1, where we assign a weight of 1 if at least two children of the
current node are active or if there is a jump at the current node.

For a dependency path p in a proposal P , let us compare its number r of jumps with
the weight computed by A3. Let % be any accepting run of A3 on the input (P, p). We claim
that 1

2 log r ≤ wA3(%) ≤ r.
For the second inequality, let β be a branch of P which realizes the maximum for %,

that is, wA3(%) = wA3(%, β). With each node u ∈ β such that wA3(%(u)) = 1 we associate a
jump in p as follows: if there is a jump at u, we just take this jump. Otherwise, u has at
least two active children, so it has at least one active child not in β. We take some jump
from the subtree rooted at that child. It is clear that, for different u ∈ β, we have chosen
different jumps. Hence, r ≥ wA3(%, β) = wA3(%).

For the other inequality, we construct a branch β as follows: the branch starts at the
root and, whenever we have constructed β up to some node u which is not a leaf, we extend β
with a child u′ of u such that the number of jumps on p in the subtree rooted at u′ is at least
as large as the respective number for any other child of u. Let us trace this number along β.
Initially, it is r. It never increases and, whenever it decreases, the respective transition has
weight 1 by construction of A3. As we always descend into the fattest subtree, the number
cannot decrease indefinitely: if it is m for some node, it is at least m−1

3 for its child (recall
that the original undirected tree is ternary, so the directed tree has branching at most 3,
and even at most 2 apart from the root). A very rough analysis gives that, if r ≥ 4k, then
at least k decreasing steps occur on β. Hence, wA3(%) ≥ wA3(%, β) ≥ 1

2 log r.
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Finally, we obtain the desired automaton A2 from A3 by nondeterministically guessing
the extra component p. To see that the product automaton A has the claimed properties,
let P be an input for A. If P is a proposal of finite rank, then it is in particular a
proposal. Hence, A1 accepts P . As the rank is finite, there is some dependency path p
for P . Therefore, A3 accepts (P, p) and A2 accepts P . Consequently, also A accepts P .
For the converse, assume that A accepts P . Then P is a proposal since A1 accepts P .
Furthermore, there is some p such that A3 accepts (P, p). Thus, p is a dependency path
in P and P has finite rank. Now, assume that P is a proposal of rank r and let p be a
dependency path in P with r′ jumps. Let % be the accepting run of A3 on (P, p) and let
%′ be the corresponding accepting run of A on P . For each accepting run of A on P there
is such a p by construction of A. If p is such that wA(%′) is minimal, then we can deduce
1
2 log r ≤ 1

2 log r′ ≤ wA3(%) = wA(%′) = wA(P ). If, on the other hand, p is such that r′ is
minimal, we obtain wA(P ) ≤ wA(%′) = wA3(%) ≤ r′ = r.

Combining our results we obtain a proof of the following theorem.

Theorem 7.6. The boundedness problem for MSO on the class of all ternary trees is
decidable.

Proof. Given an MSO-formula ϕ, we construct the weighted automaton A from Lemma 7.5.
By Proposition 6.5, it follows that ϕ is bounded if, and only if, A is limited. The latter we
can decide with the help of Theorem 7.3.

Part II. Ramifications

The boundedness problem has long been of interest both in classical model theory and
in the study of the algorithmic properties of various fragments, which in turn is partly
motivated by applications in computer science. The seminal result in the classical model
theory of the boundedness problem is the theorem of Barwise and Moschovakis [2] (see
Theorem 8.1 below); the main interest in boundedness as a decision problem, on the other
hand, stems from an interest in Datalog query optimisation as highlighted in the first
positive and negative results in [14, 20]. In both contexts, the natural emphasis was on
(not necessarily monadic) monotone inductions based on first-order formulae or formulae
in specific fragments of first-order logic. Even in the study of rather weak fragments of
first-order logic, undecidability of the boundedness problem turned out to be the rule,
decidability the rare exception.

In this second part we link our new results to the wider setting of the boundedness
problem. After a short introduction to this wider setting, we employ some rather more
traditional tools from model theory, like transfer results and interpretations, to generalise
the technical core results of Part I and to reap a number of further specific decidability
results. Some of these answer key open questions raised in the more traditional setting,
concerning, for instance, decidability of boundedness for the guarded fragment or for the
modal µ-calculus.

To this end, we first review the shift in perspective from boundedness for syntactically
restricted fragments of FO to boundedness over restricted classes of structures; a shift that
was first explicitly proposed in [23] where boundedness for otherwise unconstrained monadic
FO is treated over the class of acyclic structures. The class A of acyclic structures consists
of those structures whose Gaifman graph is acyclic.
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Theorem ([23]). The boundedness problem for monadic least fixed points of arbitrary
X-positive FO-formulae over the class of all acyclic relational structures, BDD1(FO,A), is
decidable.

The interest here was due to the observation that reductions to settings involving tree-
like structures seem to be a common theme in most decidability results for boundedness. On
the other hand, availability of grid-like structures can be widely used to show undecidability
of boundedness issues via reductions from tilings [22]. This suggested a rough dichotomy to
explain the borderline for decidability of (monadic) boundedness problems for fragments of
FO. On the positive side, our present results bring this approach to fruition in the much
wider and unifying setting of MSO. Part of this success draws on the above-mentioned
change of perspective, which allows us to re-chart the relevant fragments with a decidable
boundedness problem into a taxonomy of relevant classes of structures to which we can lift
and extend our decidability results from Part I.

We link the more traditional approach to the boundedness problem to this new perspec-
tive in the following section: in particular, we discuss some of the more prominent fragments
that have featured in the quest for decidability of boundedness so far, and review key results
from that tradition.

In Sections 9 and 10 we discuss the natural model-theoretic techniques that can be
used to translate and extend our results: transfer properties and reductions (Section 9)
and interpretations (Sections 10). In view of the above discussion this yields results both
in terms of applicability of our key result to wider classes of structures, and in terms of
decidability results for new fragments.

Proviso. In this part all vocabularies are (finite and) purely relational.

8. Boundedness in the classical setting

The key result concerning boundedness from classical model theory is the following.

Theorem 8.1 (Barwise–Moschovakis [2]). The following are equivalent for least fixed points
based on any X-positive ϕ(X, x̄) ∈ FO:

(1) ϕ is bounded.
(2) ϕ∞ is uniformly FO-definable.
(3) ϕ∞(A) is FO-definable in each A.

The classical proof is based on compactness arguments and works with ℵ0-saturated
models for the crucial implication from (3) to (1). It is immediate that this argument
relativises to natural fragments of FO. For formulae ϕ from some such fragment of FO we
may replace FO-definability by definability in the fragment if that fragment has the natural
closure properties that render the finite stages definable; for truly natural fragments like
those to be considered below, however, FO-definability will imply definability within the
fragment by classical preservation theorems.

While these considerations offer some guidelines as to what the right candidates L ⊆ FO
for decidable BDD(L) might be, our results from Part I take us beyond the limitations of FO
and compactness – which also means that boundedness becomes divorced from definability
of the fixed point.
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We start this section with a brief review of some logics and fragments that feature
prominently in connection with the boundedness problem – be it in classical results or in new
results flowing from our main theorem. These may be grouped into three main categories:

Existential/universal fragments: certain limited, purely existential/purely universal fragments
FO+(∃∗) ⊆ FO and FO−(∀∗) ⊆ FO: these are the natural candidates for a decidable monadic
boundedness problem BDD1(L) in terms of quantifier prefix classes L ⊆ FO (cf. the classical
decision problem, [4]). For decidability of the boundedness problem extra restrictions on the
polarities of the given relations, which are statically used in the fixed-point recursion, and
on equality, are necessary. See Section 8.1 below.

Modal fragments: the modal fragments of first-order and monadic second-order logic: basic
modal logic ML ⊆ FO and its monadic fixed-point extension Lµ ⊆ MSO, the bisimulation
invariant fragments of FO and MSO, respectively. See Section 8.2 below.

Guarded fragments: the corresponding but more general guarded fragments: the basic
guarded fragment GF ⊆ FO and its fixed-point extension µGF ⊆ GSO. These correspond
to the fragments of FO and guarded second-order logic GSO, respectively, that are invariant
under guarded bisimulation. With these logics we also extend the scope of our discussion
beyond monadic fixed points. See Section 8.3 below.

In relation to BDD(L) or BDD(L, C) it is useful to have in mind the following observation,
which severely limits the expectations regarding decidability but also points to natural
candidates.

Observation 8.2. Assume that BDD(L) is non-trivial in the sense that there are unbounded
formulae ϕ ∈ L. Then simple closure properties of L – as for instance closure under monadic
relativisation and under conjunctions – imply that the satisfiability problem SAT(L) reduces
to the boundedness problem BDD(L). An analogous reduction applies w.r.t. to restricted
classes of models, i.e., for SAT(L, C) and BDD(L, C) provided C also satisfies some simple
closure requirements – as for instance closure under disjoint unions and trivial expansions
by unary predicates.

We sketch one typical argument to this effect. Fix some ϕ(X,x) ∈ L that is unbounded.
Then a sentence ψ ∈ L is unsatisfiable if, and only if, the formula ϕ(X,x)Q ∧ψP is bounded;
here ϕ(X,x)Q and ψP stand for the relativisations to two distinct unary predicates P and Q,
which do not occur in either formula. Clearly, unsatisfiability of ψ implies that ϕ(X,x)Q∧ψP
is unsatisfiable and hence has closure ordinal 0. Conversely, if ψ is satisfiable, then structures
obtained as the disjoint union of a P -coloured model of ψ and a Q-coloured part show
ϕ(X,x)Q ∧ ψP to be unbounded. The basic idea can be modified to suit various other
situations. For instance, for modal logic, where disjoint unions are not the right choice, one
could look at boundedness for ϕQ ∧ ♦(P ∧ ψP ) to decide satisfiability of ψ.

We turn to the above-mentioned groups of logics.

8.1. Purely existential and universal fragments. FO+(∃∗)[τ ] ⊆ FO[τ ] is the fragment
of positive, purely existential prenex first-order formulae (with equality), where for BDD
we also allow (positive occurrences of) monadic second-order variables. Dually, we let
FO−(∀∗)[τ ] ⊆ FO[τ ] be the fragment of prenex universal first-order formulae that are
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negative in all relation symbols from the underlying relational vocabulary τ and equality,
but of course we allow positive occurrences of monadic second-order variables.

The first interest in boundedness as a decision problem concerned the query language
Datalog corresponding to the evaluation of systems of least fixed points of relational Horn
clauses of the form

Xx̄← ∃ȳ
∧
i αi(x̄, ȳ)

with relational atomic formulae αi. This Horn clause translates into

ϕ(X, x̄) = ∃ȳ
∧
i αi(x̄, ȳ) ∈ FO+(∃∗)

in our framework. In this connection the first decidability results were obtained in [8], and
also the strict limitations for this decidable case became apparent [14, 20].

Theorem 8.3.

(a) The monadic boundedness problem BDD1(FO+(∃∗)) is decidable [8].
(b) Boundedness for binary least fixed points in FO+(∃∗) is undecidable; so is boundedness

even for monadic least fixed points in the extension of FO+(∃∗) that allows negated
equalities (or negative and positive occurrences of some of the static relations) [14, 20].

As for BDD1(FO−(∀∗)), whose decidability was established in [25], it should be noted that
the fragment FO−(∀∗) is strictly dual to FO+(∃∗); but as duality of fixed points links
least to greatest fixed points, trivial dualisation of the Datalog result would just cover
boundedness for greatest fixed points over FO−(∀∗). Indeed, the techniques employed in [25]
for decidability of BDD1(FO−(∀∗)) owe more to a reduction inspired by the guarded fragment
(see Section 8.3 below) and also do not seem to carry over directly to BDD1(FO+(∃∗)) or
vice versa.

Theorem 8.4 ([25]). BDD1(FO−(∀∗)) is decidable, and both the restriction to monadic least
fixed points and the polarity restriction built into FO−(∀∗) are necessary for decidability.

W.r.t. polarity restrictions on the static predicates in τ , it should be noted that, as long
as we consider the class of all τ -structures, it does not matter which polarity is prescribed,
since we can replace each predicate by its complement to switch between polarities (this
does not carry over from to BDD(L) to BDD(L, C) unless C is closed under predicate
complementation). What does matter, even over the class of all τ -structures, however, is
whether we allow some predicates to appear both positively and negatively in ϕ.

8.2. Logics of modal character. For a relational vocabulary τ consisting of only unary
and binary relation symbols, ML[τ ] ⊆ FO[τ ] stands for the modal fragment of first-order
logic. ML[τ ] is obtained as the closure of monadic atomic formulae (where we also allow
monadic second-order variables besides unary relation symbols in τ) in a single free first-order
variable under boolean connectives and modal quantification of the form

ψ(x) = ∃y(Rxy ∧ ϕ(y)) and, dually, ψ(x) = ∀y(Rxy → ϕ(y))

for any ϕ(y) ∈ ML[τ ] and binary relation symbol R ∈ τ .
The modal µ-calculus Lµ[τ ] is obtained as the natural fixed-point extension of ML[τ ]

through additional closure under least fixed points: if ϕ(X,x) ∈ Lµ[τ ] is positive in X, then
ψ(x) = µXϕ ∈ Lµ[τ ] defines the least fixed-point ϕ∞.
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Our definition of ML is the usual embedding of basic modal logic into FO by means of
the standard translation ϕ 7→ ϕ∗, which translates the modal formula �Rϕ into (�ϕ)∗(x) =
∀y(Rxy → ϕ∗(y)). By van Benthem’s classical result in [27], ML[τ ] provides equivalent
syntax for exactly those first-order formulae in a single free element variable whose semantics
is preserved under bisimulation equivalence. In this sense ML is the bisimulation invariant
(read: modal) fragment of first-order logic. (For these and other basic facts in the model
theory of modal logic compare e.g. [15]).

We have similarly translated the µ-calculus in a manner that in particular turns it into
a fragment of MSO. In fact Lµ is the modal fragment of MSO, in just the sense that ML is
the modal fragment of FO, by an important result of Janin and Walukiewicz [21].

For us it will be important that ML ⊆ Lµ ⊆ MSO and that ML and Lµ are preserved
under bisimulation, which entails the tree-model property. Decidability of BDD1(ML) was
first shown in [24]; note, however, that although that paper shows more generally that
it is decidable for an arbitrary formula of Lµ whether it is equivalent to any formula in
plain modal logic (of which BDD1(ML) is a special case, by the modal variant of the
Barwise–Moschovakis Theorem), it does not deal with BDD1(Lµ).

As will be reviewed in Section 9.1 below, decidability of BDD1(ML) and BDD1(Lµ) can
be essentially attributed to the tree-model property stemming from bisimulation invariance.
Decidability of BDD1(Lµ) is new here; see Corollary 11.5 below. This result obviously
implies the result of [24] concerning decidability of BDD1(ML) (but not as far as the problem
of equivalence of a given Lµ-formula to some ML-formula is concerned).

Theorem 8.5. BDD1(Lµ) and hence BDD1(ML) ⊆ BDD1(Lµ) are decidable.

8.3. Guarded logics. The guarded fragment GF ⊆ FO of first-order logic extends the idea
of the local, relativised quantification of modal logic to the setting of higher-arity relations.
Since its inception in [1] the guarded fragment and its extensions have been shown to mirror
many of the nice model-theoretic properties of modal logic in this more general setting. Just
like ML and its fixed-point extension Lµ, GF as well as its fixed-point extension µGF are
decidable for satisfiability, cf. [1, 16, 18]. Their roles as the guarded bisimulation invariant
fragments of FO and a suitable guarded second-order logic are strictly analogous to those
of ML and Lµ as bisimulation invariant fragments of FO and MSO: GF ⊆ FO captures
precisely those FO definable properties that are preserved under guarded bisimulation [1],
and similarly for µGF ⊆ GSO w.r.t. the natural guarded second-order logic GSO, [17].
Like ML, GF still has the finite model property, and both GF and µGF have a generalised
tree-model property [16, 18], which implies in particular that every satisfiable formula of
µGF[τ ] is satisfiable in a model whose tree-width is bounded by the width of τ (maximal
arity of relations in τ). But note that µGF does not have the finite model property, in fact
this is already true of the extension of Lµ that admits modal operators along backward edges
(inverse or past modalities). GF has long been considered a good candidate for decidability
of BDD(GF).

Let us define these logics and the concept of guardedness in more detail. A subset of a
τ -structure A is called guarded if it is a singleton set or a set of the form { a | a ∈ ā } for
some ā ∈ RA, R ∈ τ . Clearly the cardinality of guarded subsets in τ -structures is bounded
by the width of τ . A tuple is guarded if the set of its components is contained in some
guarded subset. A subset W ⊆ Ar is called a guarded relation over A if all tuples ā ∈W are
guarded in A.
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Syntactically, a guard for variables x̄ is an atomic formula α(x̄) ∈ FO[τ ] (relational atom
or equality) in which precisely the variables x ∈ x̄ occur (as free variables).

Guarded quantification is relativised first-order quantification of the form

∃ȳ(α(x̄) ∧ ϕ(x̄)) and, dually, ∀ȳ(α(x̄)→ ϕ(x̄)) ,

where α is an atom (viz., a guard for x̄), free(ϕ) ⊆ free(α) = {x | x ∈ x̄ } and ȳ is any tuple
of (distinct) variables from free(α).

Definition 8.6. (a) GF[τ ] ⊆ FO[τ ], the guarded fragment of first-order logic, is obtained as
the closure of atomic FO[τ ]-formulae under boolean connectives and guarded quantification.
We stress that, even if we admit a second-order variable X, X may not be used as a guard
for quantificational purposes.

(b) Guarded fixed-point logic µGF is the natural extension of GF that is additionally
closed under the formation of least fixed points over X-positive formulae. Note again that
second-order variables, which may occur free or bound in formulae of µGF[τ ], must not be
used as guards.

(c) Also define strictly guarded formulae of these logics to be those formulae whose free
first-order variables are explicitly guarded: ϕ(x̄) is strictly guarded if it can only be satisfied
by guarded assignments to x̄ (a syntactic normal form can be obtained with the help of the
GF-formula gdd(x̄) below). We denote these restrictions as GF∗ ⊆ GF and µGF∗ ⊆ µGF.

It is clear that ML ⊆ GF∗ and Lµ ⊆ µGF∗. We also note in passing that there is, for
every finite τ and arity r, a GF∗[τ ]-formula gdd(x1, . . . , xr) that uniformly defines the set of
all guarded r-tuples in τ -structures A:

{ ā ∈ Ar | (A, ā) |= gdd(x̄) } = { ā ∈ Ar | ā guarded in A } .
Clearly these formulae can be used to restrict arbitrary relations to their guarded parts.

For strictly guarded formulae we thus obtain a normal form of

gdd(x̄) ∧ ϕ(x̄)

where x̄ is the tuple of all the free first-order variables of ϕ.

For guarded second-order logic there are several formalisations, which were shown to be
equally expressive in the absence of free second-order variables in [17]. As we shall see as a
consequence of Theorems 8.8 and 8.9 below, this equivalence breaks down if free second-order
variables (for the generation of non-monadic least fixed points) are admitted.

Specifically, one can define GSO as the extension of either GF or FO by second-order
quantifiers ranging over guarded relations. This can be enforced syntactically by means
of the formulae gdd(x̄) that uniformly define the sets of all guarded r-tuples; alternatively
one can stick with ordinary second-order syntax and modify the semantics to admit just
guarded relations as instantiations for second-order variables (guarded semantics). The
equivalence between these two definitions according to [17] breaks down in the presence of
free second-order variables of arity greater than 1, since such variables are not allowed to
serve as guards. Therefore, we introduce two variants of guarded second-order logic. As we
shall see below, the corresponding boundedness problems are different: one is decidable for
arbitrary fixed points, while the other one is only decidable for monadic fixed points.

Definition 8.7. Guarded second-order logic GSO[τ ] is the extension of FO[τ ] by quantifi-
cation over guarded relations. We denote by GGSO[τ ] the fragment of GSO[τ ] where all
first-order quantifications are guarded.
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Again, we denote by GSO∗ and GGSO∗ the respective fragments of strictly guarded
formulae, in which the tuple of free first-order variables is explicitly guarded.

Clearly GF ⊆ µGF ⊆ GGSO ⊆ GSO. Similar inclusions hold for the corresponding
strict fragments. Furthermore, MSO ⊆ GSO since monadic relations are guarded (by the
equality predicate). We shall see that the restriction to least fixed points that are guarded –
i.e., fixed points of formulae in the starred logics – is the right counterpart, in the guarded
world, for monadic fixed points. For the boundedness problem, moreover, we shall have
reductions from BDD(GF) to BDD(GF∗) and from BDD(GGSO) to BDD(GGSO∗), see
Section 10.1.

The guarded fragment GF as well as its fixed-point extension µGF are preserved
under guarded bisimulation, the infinitary game equivalence associated to the restricted
quantification pattern of guarded quantification. Guarded bisimulation equivalence plays
a role for guarded logics that is analogous to the role of ordinary bisimulation for modal
logics. In fact, just as modal logic is the bisimulation-invariant fragment of first-order
logic [27], so GF corresponds to the fragment of first-order logic that is invariant under
guarded bisimulation [1]; and just as Lµ is the bisimulation-invariant fragment of monadic
second-order logic [21], so µGF corresponds to the fragment of GSO that is invariant
under guarded bisimulation [17]. Note that, despite its name, GSO is not invariant under
guarded bisimulation. The model theory and crucial algorithmic properties of GF and µGF
are discussed in [16] and [18]. For both logics, much of their well-behavedness is due to
invariance under guarded bisimulation equivalence, and, consequently, the ‘generalised tree-
model property’ [16]: by means of a natural process of guarded tree unfolding, any structure
can be transformed into a guarded bisimilar structure that admits a tree-decomposition
based on guarded subsets. Hence any satisfiable formula of GF or µGF has a model which is
guarded tree-decomposable so that its tree-width is bounded by the width of the underlying
vocabulary.

Because of its vicinity to the modal fragment, GF has been a promising candidate for
decidability of boundedness, even not just for monadic least fixed points. Approaches to
BDD(GF) along those lines that worked for ML and even for FO−(∀∗) – viz., the use of
invariance under guarded bisimulation and the guarded version of the Barwise–Moschovakis
theorem – have not been successful. Our present techniques do indeed yield decidability of
BDD(GF), see Corollary 11.5, and thus settle a major open problem in the classical context.
As we do not rely on either compactness or locality criteria in our approach, we do get a
much stronger result in Theorem 11.4, concerning the decidability of BDD(GSO∗,Wk), the
boundedness problem for least fixed points over GSO∗-formulae over the class of all relational
structures of tree-width up to k. This decidability is even uniform w.r.t. tree-width, so that
both the X-positive GSO∗-formula and the tree-width parameter k may be regarded as
input to a single algorithm.

Theorem 8.8. The following are decidable: BDD(GF), BDD(µGF), BDD(GGSO,Wk),
BDD(GSO∗,Wk), BDD1(GSO,Wk).

The transfer and reduction techniques to be discussed below immediately show that
decidability for BDD(GF∗) and BDD(µGF∗) are an immediate consequence of decidability
for BDD(GSO∗,Wk). These results essentially invoke the generalised tree-model property of
GF.
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As far as undecidability results are concerned, we have the following fundamental result,
which follows from the proof given in [14].

Theorem 8.9. BDD(FO,P) is undecidable, where P is the class of all finite paths.

Corollary 8.10. BDD(GSO,Wk) is undecidable.

In the same way, we obtain undecidability of BDD(L, C) for every logic L ⊇ FO and class
C ⊇ P in which the class of all finite paths is L-definable. Examples include boundedness
of MSO over the class of all trees, over the class of all finite trees, or over the class of all
structures of tree-width k.

The fragments discussed so far are closed under (at least) positive boolean connectives
and relativisation to unary predicates. They are also closed under the substitution operation
used in defining the finite stages of fixed points. So Observation 8.2 applies to all of them
and highlights the role of FO+(∃∗), FO−(∀∗), ML, Lµ, GF and µGF as natural candidates
for decidability of BDD(L). For FO, MSO and GSO on the other hand, not BDD(L) but at
best BDD(L, C) for suitably restricted classes C can be decidable.

9. Transfer properties for BDD

Model-theoretic transfer results involving special, restricted classes of models are often useful.
Key examples are provided by the finite model property or the tree-model property, which,
as transfer results for satisfiability, can be useful towards establishing decidability of SAT(L).
The following introduces a similar notion in connection with the boundedness problem. The
most far-reaching among these properties, which in the light of our key result yields the
strongest decidability consequences for the boundedness problem, is the bounded-tree-width
property. We first define a general notion of transfer, then several concrete specialisations
that we need in the sequel.

Definition 9.1. A logic L allows C-to-C′ transfer for BDD if, for all ϕ ∈ L, ϕ is bounded
over C iff it is bounded over C′ : BDD(L, C) = BDD(L, C′).

A logic L has the C-property for BDD if it allows transfer from the class of all structures
to C ; i.e., if BDD(L) = BDD(L, C).

Let Wk stand for the class of all relational structures of tree-width up to k ; similarly Tk
stands for the class of tree models of branching degree up to k.

In accordance with the above, we say that L has the tree-width-k property for BDD for
some concrete bound k if BDD(L) = BDD(L,Wk). In a similar spirit, one could consider
transfer properties from the class of all tree models to the class of k-branching tree models,
for concrete bounds k. In both cases, however, our decidability arguments require just a
computable dependence of the width parameter on the input ϕ ∈ L, rather than a uniform
constant bound. This motivates the following.

Definition 9.2. We say that L has the bounded-tree-width property for BDD if, for some
computable function f , ϕ ∈ L is bounded iff ϕ is bounded over Wf(ϕ) (transfer to models of
bounded tree-width).

Similarly, L has the bounded-branching property for BDD over trees if, for some com-
putable function f , ϕ ∈ L is bounded over the class of all tree models iff it is bounded over
Tf(ϕ) (transfer to tree models of bounded branching).
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In all natural cases a C-model property (transfer for SAT(L)) implies a C-property for
BDD. This is clearly the case if L is closed under the kind of substitution used to define the
finite stages and under boolean connectives. In that case, the finite stages ϕα for α < ω and
the finite stage increments ϕα+1 ∧ ¬ϕα are definable by formulae in L and ϕ is unbounded
iff all these formulae are satisfiable.

Concerning the finite model property for BDD, note that (even for fragments L ⊆ FO)
it does not imply decidability of BDD(L): one still would need to check satisfiability for
each member of the infinite family ϕα+1 ∧ ¬ϕα (albeit just in finite models).

9.1. Transfer results for classical fragments. We collect some transfer results for the
fragments and logics discussed in the last section.

Observation 9.3.

(a) FO+(∃∗), FO−(∀∗), ML, Lµ and GF have the finite model property for BDD just as for
SAT.

(b) ML and Lµ have the tree-property for SAT and BDD; ML even allows transfer to finite
tree-models of bounded branching.

(b) FO+(∃∗), FO−(∀∗), ML, Lµ, GF and µGF all have the bounded-tree-width property for
SAT and BDD. Among these, the modal logics ML, Lµ even allow transfer to tree
models of bounded branching; FO+(∃∗), FO−(∀∗), GF and µGF allow transfer to models
of bounded tree-width, in the case of FO+(∃∗), FO−(∀∗), GF even to finite models of
bounded tree-width.

More specifically, the necessary tree-width k in (c) can be bounded by the width of the
underlying vocabulary τ in the modal and guarded cases, and (for a rough bound) by the
size of the given formula ϕ in the case of FO+(∃∗), FO−(∀∗).

Most of these statements follow from corresponding properties for SAT(L), which are
well known from the literature (cf. in particular Observation 8.2 above). The bounded-tree-
width property for BDD in the case of GF and µGF is a direct consequence of preservation
of these logics under guarded bisimulation. Guarded tree-unfoldings [16, 17] of arbitrary
models yield models possessing a tree decomposition whose bags are guarded subsets, hence
of width bounded by the width of τ . For the assertions concerning the fragments FO+(∃∗)
and FO−(∀∗), which are not closed under negation, we prove the following lemma.

Lemma 9.4. FO+(∃∗)[τ ] and FO−(∀∗)[τ ] allow transfer for BDD1 to finite models of
bounded tree-width.1

Proof. We explicitly treat the case of FO+(∃∗); the argument for FO−(∀∗) is strictly analo-
gous.

For X-positive ϕ(X,x) ∈ FO+(∃∗)[τ ] and finite α < ω, the stage increment ϕα+1(A) r
ϕα(A) is uniformly definable by a conjunction of a purely existential formula ϕα+1(x) ∈
FO+(∃∗)[τ ] and a purely universal formula in FO−(∀∗)[τ ] equivalent to the negation of ϕα(x).
Formulae of this kind are known to have the finite model property:2 from an arbitrary model
(A, a) of some conjunction of a prenex ∃∗-formula ψ1(x) and a prenex ∀∗-formula ψ2(x), one
obtains a finite model by restricting A to a together with any chosen instantiation for the

1Here tree-width can be bounded by the size of the given prenex formula ϕ(X,x); a better bound would
be the tree-width of the quantifier-free kernel formula.

2They fall in particular within the Bernays–Schönfinkel class of prenex FO-formulae with quantifier prefix
∃∗∀∗, cf. [4], but a more direct argument suffices here.
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existentially quantified variables in ψ1 ; this restriction still satisfies ψ1, and as an induced
substructure of (A, a) |= ψ2 it also still satisfies the universal formula ψ2.

To obtain suitable (finite) models of bounded tree-width, though, we need to consider
the stronger preservation properties of the formulae ϕα(x) ∈ FO+(∃∗)[τ ], and to some extent
use the polarity constraints in FO+(∃∗) and FO−(∀∗). The following argument also makes
an interesting connection with GF.

Let w.l.o.g. ϕ be of the form

ϕ(X,x) = ∃ȳ
∨
i

(
ρi(x, ȳ) ∧

∧
j∈si

Xyj
)

where ȳ = (y1, . . . , yk), the ρi are conjunctions of relational τ -atoms (not involving X),

and si ⊆ {1, . . . , k}. For any τ -structure A let Â be its expansion to a τ̂ -structure by new

relations Ri of arity k + 1, with Ri defined by ρi. In Â, ϕ is equivalent to the GF∗-formula

ϕ̂(X,x) = ∃ȳ
∨
i

(
Rixȳ ∧

∧
j∈si

Xyj
)
.

An analogous equivalence obtains for formulae ϕα(x) ∈ GF[τ ] and ϕ̂α(x) ∈ GF[τ̂ ]
defining the finite stages w.r.t. ϕ and ϕ̂.

Obviously ∧
i

∀x∀ȳ
(
Rixȳ → ρi(x, ȳ)

)
|= ∀x

(
ϕ̂α(x)→ ϕα(x)

)
, (∗)

where the formula on the left-hand side is in GF[τ̂ ]. Note, however, that implications of the
form ∀x∀ȳ

(
ρi(x, ȳ)→ Rixȳ

)
, which would be needed towards the equivalence between ϕα

and ϕ̂α cannot in general be expressed in GF.
Let Â∗ be a guarded bisimilar unfolding of Â. Its tree-width is bounded by the maximum

of the width of τ and k + 1. We also write A∗ for the τ -reduct of Â∗. Let π : Â∗ → Â be
the projection from the unfolding onto the base structure; π is a homomorphism inducing
the natural guarded bisimulation between Â∗ and Â. Preservation of GF[τ̂ ] under guarded
bisimulations implies that, for all α < ω,

Â∗, a |= ϕ̂α iff Â, π(a) |= ϕ̂α.

Since A, π(a) |= ϕα implies Â, π(a) |= ϕ̂α and, therefore, also Â∗, a |= ϕ̂α, it follows with
(∗) above that A, π(a) |= ϕα implies A∗, a |= ϕα.

In the opposite direction, since the ϕα, as existential positive formulae, are preserved
under homomorphisms, the implication A∗, a |= ϕα ⇒ A, π(a) |= ϕα is straightforward.
Therefore, for all a ∈ A∗ and all α < ω,

A∗, a |= ϕα iff A, π(a) |= ϕα,

whence ‖ϕ‖A = ‖ϕ‖A∗ . Hence ϕ is bounded iff it is bounded over structures whose tree-width
is bounded by the maximum of the width of τ and k+1. In order to get back to finite models
of bounded tree-width, we may apply the simple argument from above to find a finite induced
substructure within some (A∗, a) that still satisfies the corresponding ∃∗/∀∗-conjunction
ϕα+1(x) ∧ ¬ϕα(x).
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9.2. Transfer for MSO over trees. At the level of MSO we obtain a bounded-branching
property for BDD1 over trees. The availability of transfer at least down to countable
branching is essential to make a connection via interpretations with our core result that was
formulated over ternary trees.

Proposition 9.5. MSO has a countable branching property for monadic BDD1 over trees.

This statement follows immediately from Proposition 9.8 below, whose proof relies on
the availability of tree automata for MSO and involves, as a key step, a Löwenheim–Skolem
property for MSO-theories of trees. We employ a certain kind of tree automata introduced
by Walukiewicz [29].

Definition 9.6. An MSO-automaton is a tuple A = 〈Q,Σ, q0, δ,Ω〉 with a finite set of
states Q, an input alphabet Σ, an initial state q0, a parity function Ω : Q → ω, and a
transition function δ : Q × Σ → MSO that, given a state q and a letter c, returns an
MSO-formula δ(q, c) over the signature {Pq | q ∈ Q }.

Such an automaton takes a Σ-labelled directed tree t = (T,E, λ) as input. A run of A
on t is a function % : T → Q with %(r) = q0 for the root r of (T,E) such that

〈Uv, P̄ 〉 |= δ(q, λ(v)) , for all v ∈ T ,
where the universe Uv of the structure is the set of all children of v and the unary predicates
are Pp := %−1(p)∩Uv. The run % is accepting if, and only if, for all infinite branches v0v1 . . .
of (T,E)

lim inf
n→∞

Ω(%(vn)) is even.

The language recognised by A is the set L(A) of all trees t such that there exists an accepting
run of A on t.

Over trees these automata have the same expressive power as monadic second-order
logic.

Theorem 9.7 (Walukiewicz [29]). A class C of directed trees is definable by an MSO-
sentence ϕ if, and only if, it is recognised by some MSO-automaton A.

We use MSO-automata to prove the following Löwenheim-Skolem theorem.

Proposition 9.8. For every tree structure T there exists a countable tree structure T0 ⊆ T
with the same MSO-theory.

Proof. We prove the proposition for directed trees. Then the corresponding claim for
undirected trees follows. Suppose that T is a directed tree with root r. Let us call a
substructure T0 ⊆ T a subtree of T if T0 is a tree and it contains the root r.

To prove the claim, we construct a countable subtree T0 ⊆ T such that every MSO-
automaton accepting T also accepts T0. Since every MSO-formula is equivalent (on trees)
to an MSO-automaton and since MSO is closed under complement, it follows that T and T0

have the same MSO-theory.
To construct T0 we proceed as follows. For every MSO-automaton A that accepts T

and every vertex v ∈ T , we fix a countable set SA(v) ⊆ T of children of v such that the
following holds:

(∗) Every subtree T0 ⊆ T such that

v ∈ T0 implies SA(v) ⊆ T0

is accepted by A.
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Let us call a subtree T0 SA-closed if v ∈ T0 implies SA(v) ⊆ T0. We take for T0 the minimal
subset of T containing the root r that is SA-closed for every A accepting T. The subtree T0

induced by T0 is countable and has the desired property.
To define SA we fix an accepting run % of A on T. Let v ∈ T be a vertex with label c

and let U be the set of children of v in T . For each state q ∈ %(v), % induces a structure
〈U, P̄ 〉 satisfying the transition formula δ(q, c). For every state p ∈ Q, we select a set
Xq
p ⊆ Pp = %−1(p)∩U as follows. If Pp is countable, we set Xq

p := Pp. Otherwise, we choose
an arbitrary countably infinite subset Xp ⊆ Pp. Then we set

SA(v) :=
⋃
q∈Q

⋃
p∈Q

Xq
p .

We claim that, for every SA-closed subtree T0 ⊆ T, the restriction of % to T0 is an
accepting run of A on T0. Obviously, every infinite branch of T0 is an infinite branch of T
and, hence, satisfies the parity condition. So we only need to check that the transition
formulae hold at each vertex. Let v ∈ T be a vertex with label c and with set of children U ,
and let 〈U, P̄ 〉 be the structure induced by %. Since % is a run, we have

〈U, P̄ 〉 |= δ(%(v), c) .

Note that the structure 〈U, P̄ 〉 has only unary relations. There is a well-known Ehrenfeucht-
Fräıssé argument showing that an MSO-sentence of quantifier rank m cannot distinguish two
such structures 〈U, P̄ 〉 and 〈U ′, P̄ ′〉, provided that each quantifier-free 1-type is realised the
same number of times in both structures, or it is realised at least 2m times in each structure.

By definition of SA(v), it follows that, for all subsets U0 ⊆ U containing SA(v), the
structures

〈U, P̄ 〉 and 〈U0, P̄ |U0〉
have the same MSO-theory. Consequently,

〈U0, P̄ |U0〉 |= δ(%(v), c) .

In particular, this is the case for U0 := U ∩ T0. Therefore, % � T0 is a run.

Remark 9.9. If, instead of the full MSO-theory, we are only interested in the preservation
of a single MSO-sentence, the construction of the theorem yields a tree that is finitely
branching.

Proof of Proposition 9.5. Clearly, if an MSO-formula ϕ(X,x) is bounded over the class of
all trees, it is also bounded over the class of all countable trees. Conversely, suppose that
ϕ(X,x) is unbounded over arbitrary trees. Then we can find, for every α < ω, a tree Tα
satisfying the formula ψα := ∃x[ϕα+1(x) ∧ ¬ϕα(x)]. By the above proposition, we can
choose Tα to be countably branching. Hence, ϕ(X,x) is also unbounded over the class of all
countably branching trees.

10. Interpretations and reductions

In the preceding section we have considered transfer of BDD(L, C) from one class C to a
subclass C0 ⊆ C. In this section we will study more general reductions of BDD(L, C) to
BDD(L′, C′) where both the logic L and the class C may change.
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10.1. A reduction for GF. We start by reducing BDD(GGSO, C) to BDD(GGSO∗, C).
The following normal form for GGSO-formulae is used in the proof of the proposition below.

Lemma 10.1. Let ϕ(R̄,X, x̄) be a GGSO-formula with free second-order variables R̄, X and
free first-order variables x̄ that is positive in X. We can effectively construct GGSO-formulae
ψ0
i , ψ1

i , for i < n, such that

ϕ(R̄,X, x̄) ≡
∨
i<n

[
ψ0
i (X, x̄) ∧ ψ1

i (R̄,X, x̄)
]
,

where

• the formulae ψ0
i are quantifier-free and positive in X,

• the formulae ψ1
i are positive in X and such that X only appears in subformulae of the

form ∀ȳϑ and ∃ȳϑ.

Furthermore, if ϕ is a GF-formula, then so are the formulae ψ0
i , ψ

1
i , i < n.

Proof. We may assume that ϕ is in negation normal form. The claim follows by induction
on the structure of ϕ. All other cases being trivial, we present only the case of second-order
quantifiers.

Hence, let us assume that ϕ = QZϑ, for Q ∈ {∀, ∃}. By inductive hypothesis, we may
assume that

ϑ =
∨
i<n

[ψ0
i (X, x̄) ∧ ψ1

i (R̄, Z,X, x̄)]

with ψ0
i and ψ1

i as in the statement of the lemma. In case of an existential quantifier, we
are done since

∃Zϑ ≡
∨
i<n

[ψ0
i (X, x̄) ∧ ∃Zψ1

i (R̄, Z,X, x̄)] .

For a universal quantifier, note that

∀Zϑ = ∀Z
∨
i<n

[
ψ0
i (X, x̄) ∧ ψ1

i (R̄, Z,X, x̄)
]

≡ ∀Z
∧
σ∈2n

∨
i<n

ψ
σ(i)
i

≡
∧
σ∈2n

∀Z
[ ∨
i∈σ−1(0)

ψ0
i ∨

∨
i∈σ−1(1)

ψ1
i

]
≡
∧
σ∈2n

[ ∨
i∈σ−1(0)

ψ0
i ∨ ∀Z

∨
i∈σ−1(1)

ψ1
i

]
.

Hence, the claim follows by another application of the distributive law.

Proposition 10.2. For every formula ϕ(X, x̄) ∈ GGSO[τ ], we can effectively construct a
formula ϕg(X, x̄) ∈ GGSO∗[τ ] such that ϕ(X, x̄) is bounded if, and only if, ϕg(X, x̄) is.

Furthermore, if ϕ is a GF-formula, then so is ϕg.

Proof. By the lemma we may assume that the formula ϕ(X, x̄) has the form

ϕ(X, x̄) =
∨
i<n

[
χi(X, x̄) ∧ ψi(X, x̄)

]
,
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where the formulae χi are quantifier-free and in the formulae ψi every occurrence of X is in
a subformula of the form ∀ȳϑ and ∃ȳϑ.

Note that any occurrence of an atom Xȳ that is in the scope of some (guarded!) first-
order quantification may be replaced by the formula Xgȳ := Xȳ ∧ gdd(ȳ) without changing
its semantics. Therefore,

ϕ(X, x̄) ≡
∨
i<n

[
χi(X, x̄) ∧ ψi(Xg, x̄)

]
,

where ψi(X
g, x̄) := ψi(X

g/X, x̄) is the formula obtained from ψi by replacing X by its
guarded restriction Xg without affecting the semantics. In the following a superscript g is
always used to indicate syntactic and/or semantic restriction to the guarded part.

The fixed-point induction of ϕ(X, x̄) is closely related to the fixed-point induction of
the strictly guarded formula

ϕg(X, x̄) := gdd(x̄) ∧ ϕ(X, x̄) ≡
∨
i<n

[
gdd(x̄) ∧ χi(X, x̄) ∧ ψi(Xg, x̄)

]
.

Since ϕg implies ϕ and both formulae are positive in X, it follows that the stages
of ϕg are included in those for ϕ. In fact, it follows by a simple induction on α that
(ϕg)α(A) = (ϕα(A))g. Consequently, we have

‖ϕg‖A ≤ ‖ϕ‖A and (ϕ∞(A))g = (ϕg)∞(A) .

If we can show that there exists a constant n < ω, depending only on ϕ, such that, for
all structures A,

‖ϕ‖A ≤ ‖ϕg‖A + n ,

then it follows that ϕ is bounded if, and only if, ϕg is bounded.
To find the constant n, we consider the auxiliary formula

ξ(Z,X, x̄) :=
∨
i<n

[
χi(X, x̄) ∧ ψi(Z, x̄)

]
in vocabulary τ ∪{Z} (with a new second-order variable Z of the same arity r as X, which is
regarded as a parameter) and we consider its fixed-point induction in the expansion (A, P0)
of A where Z is interpreted by the relation P0 := (ϕg)∞(A). We claim that

‖ϕ‖A ≤ ‖ϕg‖A + ‖ξ‖(A,P0) .

Let γ := ‖ϕg‖A. We have shown above that P0 = (ϕg)γ(A) ⊆ ϕγ(A). Using monotonicity,
it follows by a simple induction on α that

ϕα(A) ⊆ ξα(A, P0) ⊆ ϕγ+α(A) .

The first inclusion implies that ϕ∞(A) ⊆ ξ∞(A, P0) while the second inclusion implies that
ξ∞(A, P0) ⊆ ϕ∞(A). Setting β := ‖ξ‖(A,P0), it follows that

ϕ∞(A) = ξβ(A, P0) ⊆ ϕγ+β(A) ⊆ ϕ∞(A) .

Hence, ‖ϕ‖A ≤ γ + β, as desired.
We have shown that, for every structure A,

‖ϕg‖A ≤ ‖ϕ‖A ≤ ‖ϕg‖A + ‖ξ‖(A,P0) .

To conclude the proof it remains to prove that ‖ξ‖(A,P0) is uniformly bounded. Note that
ξ treats Z as a static parameter, and only involves its fixed-point variable X outside the
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scope of any quantifiers. It follows that ξ is trivially bounded (with a bound that is given
by the number of quantifier-free r-types in vocabulary τ ∪ {Z}).

Hence we may restrict attention to fixed points over strictly guarded formulae. This
means that BDD(GGSO) reduces to BDD(GGSO∗). Let us remark that a corresponding
result for GSO fails.

An argument analogous to the above also applies to µGF: according to [17], every
µGF-formula is equivalent to one where every fixed-point operator is applied to a strictly
guarded formula. For µGF-formulae of this form, a variant of Lemma 10.1 holds. This is all
we need for the proof of Proposition 10.2. Consequently, BDD(µGF) reduces to BDD(µGF∗).

10.2. MSO-interpretations in trees. In the first part we have obtained the decidability
of BDD1(MSO, T3). In this section, we use model-theoretic interpretations to reduce the
decidability of BDD1(MSO,Wk) to this problem.

Definition 10.3. Let σ and τ be relational signatures.
(a) A definition scheme for an MSO-interpretation from σ to τ is a list

I =
〈
χ, δ(x), ε(x, y), (ϕR(x̄))R∈σ

〉
of MSO[τ ]-formulae where χ is a sentence, δ(x) has one free variable, ε(x, y) has two, and
the number of free variables of ϕR(x̄) equals the arity of the relation symbol R.

(b) The operation defined by a definition scheme I maps τ -structures A to σ-structures
I(A). A τ -structure A such that A |= χ, δ[A] 6= ∅ and such that ε defines an equivalence
relation ∼ on δ[A], is mapped to the σ-structure B with universe

B := { [a]∼ ∈ A/∼ | A |= δ(a) }
and, for each n-ary relation R ∈ σ, the relation

RB := { [ā]∼ ∈ An/∼ | A |= ϕR(ā) } .
For any other τ -structure A, we let I(A) be undefined.

(c) An MSO-interpretation is an operation defined by a definition scheme I. If C is a
class of τ -structures, we set

I(C) := { I(A) | A ∈ C such that I(A) is defined } .

For the proof of Proposition 10.5 below, let us recall the following well-known lemma.
We include a proof, so that we may refer to a precise format of the formulae ψI later.

Lemma 10.4 (Interpretation Lemma). Let I =
〈
χ, δ(x), ε(x, y), (ϕR(x̄))R∈σ

〉
be an MSO-

interpretation. For every MSO[σ]-formula ψ, there exists an MSO[τ ]-formula ψI such that,
for all τ -structures A and every tuple ā in A, we have

A |= ψI(ā) iff I(A) is defined, A |= δ(ai) for all i, and

I(A) |= ψ([ā]∼) .

If ψ is positive in a predicate X and the formula ϕX(x̄) from I is positive in a predicate Y ,
then ψI is also positive in Y .
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Proof. First, we define a formula ψ∗ by induction on ψ as follows:

(Rc̄)∗ := ∃z̄
[∧

i ε(zi, ci) ∧ ϕR(z̄)
]
, (∃yϑ)∗ := ∃y[δ(y) ∧ ϑ∗] ,

(c= d)∗ := ε(c, d) , (∀yϑ)∗ := ∀y[δ(y)→ ϑ∗] ,

and the translation · ∗ commutes with boolean operations and set quantifiers.
Then we can set

ψI := χ′ ∧
∧
i

δ(xi) ∧ ψ∗

where the conjunction is over all free variables of ψ and χ′ := χ ∧ η is the conjunction of χ
with a formula η stating that ε defines an equivalence relation on δ.

Proposition 10.5. Let I be an MSO-interpretation and C a class of τ -structures. If
BDD1(MSO, C) is decidable then so is BDD1(MSO, I(C)).

Proof. We use the same notation as in the proof of Lemma 10.4. Suppose that I =
〈χ, δ, ε, (ϕR)R〉 and let ψ(x,X) be a formula over the signature σ ∪ {x,X}. We extend the
notation ϑ∗ from above to formulae containing a free set variable X by treating X as a
relation defined by the formula Xx, i.e., we set

(Xc)∗ := ∃z[ε(z, c) ∧Xz] .
Let A ∈ C be a structure such that I(A) is defined. Note that Lemma 10.4 implies that

A |= ∀x∀y
[
ε(x, y)→ (ϑ∗(x)↔ ϑ∗(y))

]
, for every formula ϑ(x) .

For formulae ϑ(x) and ψ(X,x), it follows by induction on the structure of ψ that

A |= ∀x
[
δ(x)→

(
(ψ[ϑ/X])∗ ↔ ψ∗[ϑ∗/X]

)]
.

A simple induction on α yields

A |= ∀x
[
δ(x)→

(
(ψα)∗ ↔ (ψ∗)α

)]
.

Since A |= χ′, it follows by the definition of the mapping ϑ 7→ ϑI that, for every α < ω, we
have

I(A) |= ∀x(ψα+1 ↔ ψα)

iff A |= ∀x(ψα+1 ↔ ψα)I

iff A |= χ′ ∧ ∀x
[
δ(x)→ ((ψα+1)∗ ↔ (ψα)∗)

]
iff A |= ∀x

[
(χ′ ∧ δ(x) ∧ (ψα+1)∗)↔ (χ′ ∧ δ(x) ∧ (ψα)∗)

]
iff A |= ∀x

[
(χ′ ∧ δ(x) ∧ (ψ∗)α+1)↔ (χ′ ∧ δ(x) ∧ (ψ∗)α)

]
iff A |= ∀x

[
(χ′ ∧ δ(x) ∧ ψ∗)α+1 ↔ (χ′ ∧ δ(x) ∧ ψ∗)α

]
iff A |= ∀x[(ψI)α+1 ↔ (ψI)α

]
.

Consequently, ψ is bounded over I(C) if and only if ψI is bounded over C.
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Corollary 10.6. Let C be a class of τ -structures and ψ an MSO-formula. If BDD1(MSO, C)
is decidable then so is BDD1(MSO, Cψ) where

Cψ := {A ∈ C | A |= ψ } .

Proof. We can use the interpretation I = 〈χ, δ, ε, (ϕR)〉 with

χ := ψ , ε(x, y) := x= y ,

δ(x) := x=x , ϕR(x̄) := Rx̄ .

For the application to boundedness below we will need the following interpretation results.
First, let us consider classes of trees. The proof of the following lemma is straightforward.
For (a) and (b), we use the usual first-child/next-sibling encoding of a tree, while for (c) we
use a marking of the root, which can be used to recover the orientation of the edges since
we can express reachability in MSO.

Lemma 10.7. There exist MSO-interpretations mapping

(1) the class T3 of all ternary trees to the class Tℵ0 of all countable trees;
(2) the class of all finite ternary trees to the class of all finite trees;
(3) the class of all undirected trees to the class of all directed trees.

Next, we study structures of bounded tree-width.

Definition 10.8. Let τ be a relational vocabulary and A a τ -structure. A tree-decomposition
of A is a 2A-labelled directed tree D = (T,E, λ) satisfying the following conditions:

•
⋃
t∈T λ(t) = A.

• For all relation symbols R ∈ τ of arity n and all tuples (a1, . . . , an) ∈ RA, there is some
t ∈ T such that a1, . . . , an ∈ λ(t).
• For all a ∈ A, the set { t ∈ T | a ∈ λ(t) } is connected in (T,E).

The width of D is maxt∈T |λ(t)| − 1. The tree-width of A is the minimum width of a tree
decomposition of A.

Lemma 10.9. For every k < ω and all relational vocabularies τ , there exists an MSO-
interpretation mapping the class of all trees to the class Wk[τ ] of all relational τ -structures
of tree-width at most k, and the class of all finite trees to the class of all finite structures
from Wk[τ ].

Proof. For finite trees, such an interpretation was first given by Courcelle and Engelfriet [10],
but using a slightly different notion of an interpretation. We give a detailed proof, since the
precise version needed here does not appear in the literature.

We start by explaining how we can encode a structure A ∈ Wk[τ ] into a tree. Then we
will construct an interpretation I performing the inverse translation. Let A be a τ -structure
of tree-width at most k and let D = (T,E, λ) be a tree decomposition of A of width at
most k. It is no restriction to assume that no λ(v) is empty and that there is some injective
function ι : A → T with a ∈ λ(ι(a)), for all a. For every v ∈ T , we fix an enumeration

cv0, . . . , c
v
`v

of λ(v) where 0 ≤ `v ≤ k and a = c
ι(a)
0 for all a ∈ A. We obtain a tree structure

by turning (T,E) into an undirected tree expanded by the following monadic relations:

• a unary predicate R containing only the root;
• unary relations Ei,j , for 0 ≤ i, j ≤ k, containing those v ∈ T such that v has a parent u

and cvi = cuj ;
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• unary predicates PC, for every τ -structure C with universe C = {0, . . . , `}, for some
0 ≤ ` ≤ k, where PC contains those v ∈ T such that C is isomorphic to the substructure of
A induced by λ(v) via the isomorphism i 7→ cvi .

The interpretation I = 〈χ, δ(x), ε(x, y), (ϕR(x̄))R∈τ 〉 that reverses this encoding is defined
as follows. The formula χ states that

• R is a singleton, unless the universe is empty;
• for all 0 ≤ i, i′, j, j′ ≤ k with i 6= i′ and j 6= j′, Ei,j is disjoint from Ei,j′ and from Ei′,j ;
• the PC are disjoint;
• if v ∈ PC and 0 ≤ i, j ≤ k are such that i ≥ |C|, then there is no u ∈ T with (v, u) ∈ Ei,j

or (u, v) ∈ Ej,i.
For all 0 ≤ i, j ≤ k, there is an MSO-formula εi,j(x, y) which defines the set of pairs (v, u)
such that cvi = cuj . We set

δ(x) := x=x and ε := ε0,0 .

Finally, for each relation symbol R ∈ τ of arity r, we define

ϕR(x1, . . . , xr) :=
∨

0≤i1≤k
· · ·

∨
0≤ir≤k

∨
C

(i1,...,ir)∈RC

∃y
[ ∧

1≤j≤r
ε0,ij (xj , y) ∧ PCy

]
.

11. Decidability results for boundedness

Using the reduction techniques of the previous sections we obtain a wealth of decidability
results. We start with BDD1(MSO, T ) and BDD1(MSO,Wk).

Proposition 11.1. The monadic boundedness problem for MSO over the class of all trees
is decidable.

Proof. By Proposition 9.8, an MSO-formula is bounded over the class of all trees if, and
only if, it is bounded over the class of all countable trees. Hence, it is sufficient to prove
that BDD1(MSO, Tℵ0) is decidable. By Lemma 10.7, there exists an MSO-interpretation I
mapping T3 to Tℵ0 . Hence, the decidability of BDD1(MSO, Tℵ0) follows by Proposition 10.5
and Theorem 7.6.

Theorem 11.2. For every k < ω and all relational vocabularies τ , BDD1(MSO,Wk[τ ]), the
monadic boundedness problem for MSO over the class Wk[τ ] of all relational τ -structures of
tree-width at most k is decidable.

Proof. With the help of Lemma 10.9 and Proposition 10.5 we can reduce BDD1(MSO,Wk[τ ])
to BDD1(MSO, T ). The latter is decidable by Proposition 11.1.

Corollary 11.3. BDD1(FO+(∃∗)), BDD1(FO−(∀∗)), and BDD1(ML) are decidable.

Proof. For each of these logics, Observation 9.3 provides a transfer result to (finite) structures
of bounded tree-width.
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Using similar techniques as above, one can extend Theorem 11.2 to the extension of
MSO by counting quantifiers, to guarded second-order logic GSO, and to simultaneous fixed
points. Instead of replacing MSO by a stronger logic, one can also replace tree-width by
clique-width.

We only give a sketch of the proof. Let us denote by MSO + C and GSO∗ + C the
extension of the respective logic by predicates of the form |X| < ℵ0 and |X| ≡ k (mod m),
where X is a second-order variable and k,m < ω. A simultaneous fixed point is defined
by a system of formulae ϕ0(X̄, x̄0), . . . , ϕn−1(X̄, x̄n−1) with first-order variables x̄i and
n second-order variables X0, . . . , Xn−1.

Theorem 11.4. For every k < ω, the boundedness problem for simultaneous (GSO∗ + C)-
fixed points over the class of all relational structures of tree-width at most k is decidable.

Sketch. Since structures of tree-width at most k are sparse, we can find, for every (GSO∗+C)-
formula, an equivalent (MSO + C)-formula (see [9, 3]). Therefore, the boundedness problem
reduces to the boundedness of simultaneous (MSO + C)-fixed points on that class. Using
the interpretation argument from above, we can reduce it further to the boundedness
for simultaneous (MSO + C)-fixed points on the class of all ternary trees. On ternary
trees, MSO + C collapses to MSO. Therefore, we only need to decide boundedness for
simultaneous MSO-fixed points. Finally, using again an interpretation argument we can
replace a simultaneous fixed point by an ordinary one (by making several copies of each
vertex of the tree, one for each component of the simultaneous fixed point).

Corollary 11.5. The following problems are decidable: BDD(GF), BDD(µGF), BDD1(Lµ),
BDD(GGSO,Wk), and BDD1(GSO,Wk).

Proof. By Observation 9.3, GF and µGF have the bounded-tree-width property for BDD.
Hence, BDD(GF) and BDD(µGF) reduce to BDD(GF,Wk) and BDD(µGF,Wk), respec-
tively, which in turn are subsumed by BDD(GGSO,Wk). According to Proposition 10.2,
BDD(GGSO,Wk) reduces to BDD(GGSO∗,Wk) which is decidable by Theorem 11.4.

For BDD1(GSO,Wk) note that, singletons being always guarded, every GSO-formula
ϕ(X,x) with a single free first-order variable x belongs to GSO∗. Hence, BDD1(GSO,Wk)
reduces to BDD1(GSO∗,Wk) and the claim follows again from Theorem 11.4.

Part III. Complexity Results

12. Complexity

In connection with our decision procedures we have not been specific about the algorithmic
complexities involved. The fact that we have to deal with X-positive n-types as basic data
has a major impact on all upper bounds that can be derived from our approach. Space
expn(Θ(|τ |)) is necessary to even store such a type (expn denotes the n-fold application of
the exponentiation operation, that is, a tower of height n). Overall it is straightforward to

check that, on input ϕ, our decision procedure runs in time expqr(ϕ)+O(1)(|ϕ|).
We now provide a corresponding lower bound, even for monadic boundedness for first-

order logic over just finite trees. Note that, for most natural fragments of MSO, one can
obtain a lower bound from the complexity of the satisfiability problem of the fragment. For
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instance, BDD1(ML) is Pspace-hard since satisfiability for ML is Pspace-complete. For
first-order logic over finite words with order, as well as over finite trees without order, we
can similarly derive lower bounds from corresponding bounds for the satisfiability problem.

Theorem 12.1. (a) The boundedness problem BDD1(FO,P) for first-order logic over the

class of finite words with order, is complete for DSPACE(exppoly(n)(1)).
(b) The boundedness problem BDD1(FO, Tfin) for first-order logic over the class of all

finite trees is hard for DTIME(exppoly(n)(1)).

Part (a) follows from the corresponding result for SAT(FO,P); see [26] for a proof and
exposition. Part (b) is a consequence of the following complexity bound for SAT(FO, Tfin);
although this is based on standard techniques, we include a proof since this complexity
bound does not seem to appear in the literature.

Proposition 12.2. SAT(FO, Tfin) is hard for DTIME(exppoly(n)(1)) under polynomial time
reductions.

Proof. We show that SAT(FO, Tfin) is hard for NTIME(exppoly(n)(1)), which is the same

as DTIME(exppoly(n)(1)). We use the following tiling problem, which is complete for

NTIME(exppoly(n)(1)) (see [19] for an overview): given a set D of tiles, two relations
H,V ⊆ D×D, and a natural number n (in unary encoding), determine whether there exists
a tiling of the (expn(1)× expn(1))-grid, i.e., a function τ : expn(1)× expn(1)→ D such that

(τ(x, y), τ(x+ 1, y)) ∈ H and (τ(x, y), τ(x, y + 1)) ∈ V , for all x, y .

For the reduction, we set N := expn(1). One can show that the problem remains

complete for NTIME(exppoly(n)(1)) even if we require for convenience that there are at
most N tiles. Thus, we can represent tiles by numbers less than N . We construct a
formula ψ that is satisfied by some finite tree if, and only if, there exists a tiling of the
(N ×N)-grid.

We use an encoding of numbers by directed trees introduced in [13] (see also [11]) where
numbers from {0, . . . , N − 1} are encoded by trees of height at most n. The encoding is
such that there are first-order formulae ϕN (x), ϕmin(x), ϕmax(x), ϕ=(x, y) and ϕsuc(x, y),
which can be constructed in time polynomial in n, with the property that

• a vertex v in a tree T satisfies ϕN (x) if the subtree rooted at v encodes a number from
{0, . . . , N − 1};
• a vertex v satisfies ϕmin(x) or ϕmax(x) if the subtree rooted at v encodes the number 0 or
N − 1, respectively;
• the formulae ϕ=(x, y) and ϕsuc(x, y) similarly define equality and the successor relation

for numbers encoded in the subtrees rooted at x and y.

We use this encoding to represent triples of numbers as follows. The triple (x, y, z) is encoded
by a tree of the form

Tx Ty Tz

where Tx, Ty, and Tz are the trees representing x, y, and z, respectively. Then, a tiling can
by represented by a set of triples (x, y, z), where x and y are coordinates and z is the tile at
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position (x, y). The respective set of trees is turned into a single tree by making all these
triples children of a new root.

To axiomatise the representation of a valid tiling, we use a formula ψ based on the
formulae ϕN , ϕmin, ϕmax, ϕsuc, and ϕ= from above. The formula ψ expresses the following:

• All children of the root encode triples of numbers.
• There is some triple (x, y, z) with x = y = 0.
• Each triple has a neighbour to the right, unless the x-coordinate already is N − 1. The

tiles of the triple and its neighbour match.
• Similarly, there is a neighbour above.
• Each position occurs at most once.

Such a formula ψ is constructible in time polynomial in n and the size of the tile set.
Clearly, directed tree models of ψ correspond to valid tilings of an (N ×N)-grid. Hence,
ψ is satisfiable by such a tree if, and only if, such a tiling exists.

To work inside the class Tfin, we need to replace the directed trees by undirected ones.
Observe that every model of ψ is a tree of height at most n+ 3. Hence, we can uniquely
mark the root by attaching a path of length n+ 4 to it. It is easy to modify ψ to work with
such undirected trees instead.

Corollary 12.3. The following boundedness problems are DTIME
(
exppoly(n)(1)

)
-complete:

(1) BDD1(FO, Tfin) where Tfin is the class of all finite trees.
(2) BDD1(MSO, T ) where T is the class of all trees.
(3) Boundedness for simultaneous (GSO∗ + C)-fixed points over the class of structures of

bounded tree-width.

Proof. (1) follows from Proposition 12.2. As (2) reduces to (3), for which we already
have a trivial non-elementary upper bound, it is sufficient to provide a lower bound for
BDD1(MSO, T ). As we have seen, BDD1(FO, Tfin) reduces to BDD1(MSO, T3), which in
turn reduces to BDD1(MSO, T ). Hence, the lower bound follows from (1).

This lower bound shows that, for many cases, our algorithm is best possible. Of course,
there are important fragments of MSO to which the lower bound is not applicable. For
instance, the following upper bounds are known from the literature:

Theorem 12.4.

(1) BDD1(ML) is in Exptime [24].
(2) BDD1(FO+(∃∗)) is in 2-Exptime [8].

Since it is not the main concern of this article, we leave the exact complexity of
BDD1(ML), BDD1(Lµ), BDD1(FO+(∃∗)), BDD1(FO−(∀∗)), BDD(GF), and BDD(µGF)
open.
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[18] Erich Grädel and Igor Walukiewicz. Guarded Fixed Point Logic. In Proceedings of 14th IEEE Symposium

on Logic in Computer Science LICS ‘99, Trento, pages 45–54, 1999.
[19] David Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable. Annals of

Discrete Mathematics, 24:51–72, 1985.
[20] Gerd Hillebrand, Paris Kanellakis, Harry Mairson, and Moshe Vardi. Undecidable boundedness problems

for datalog programs. The Journal of Logic Programming, 25:163–190, 1995.
[21] David Janin and Igor Walukiewicz. On the expressive completeness of the propositional µ-calculus w.r.t.

monadic second-order logic. In Proceedings CONCUR ’96, pages 263–277, 1996.
[22] Phokion Kolaitis and Martin Otto. On the boundedness problem for fragments of first-order logic.

unpublished draft.
[23] Stephan Kreutzer, Martin Otto, and Nicole Schweikardt. Boundedness of monadic FO over acyclic struc-

tures. In ICALP 2007, Proc. 34th International Colloquium on Automata, Languages and Programming,
number 4596 in LNCS, pages 571–582, 2007.

[24] Martin Otto. Eliminating recursion in the µ-calculus. In STACS 1999, Proc. 16th Annual Symposium on
Theoretical Aspects of Computer Science, number 1563 in LNCS, pages 531–540, 1999.

[25] Martin Otto. The boundedness problem for monadic universal first-order logic. In Proc. 21th IEEE
Symposium on Logic in Computer Science, LICS 2006, pages 37–46, 2006.

[26] Klaus Reinhardt. The complexity of translating logic to finite automata. In E. Grädel, W. Thomas, and
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