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1 Introduction

This work is a follow-up to the article “On the Monadic Second-Order Transduction Hierarchy”
by Blumensath and Courcelle [1], in which classes of finite incidence structures are compared
and linearly ordered with the help of transductions. The framework monadic second-order logic
(MSO) will be also be used here. MSO has a great expressive power with the benefit of still having
decidability for certain theories, for example the infinite binary tree and some linear orders have
a decidable theory in MSO [6, 7].

The concept of a transduction is a transformation of relational structures by a list of formulae.
It can be described as a generalisation of three kinds of operations: the definition of a relational
structure inside another structure (like the definition of an interpretation in [8]), a copy oper-
ation creating multiple copies of the universe and extending the relations and the introduction
of additional unary predicates. In general transductions are not single valued, they could be re-
ferred to as non-deterministic. If all elements of a classA can be obtained by a transduction from
some element in a class B, then one can introduce a preorder A ⊑ B. In [1], one of the central
techniques used by Blumensath and Courcelle is the concept of tree width, which is based on the
tree decomposition of graphs. Their main result is a linear order with trees of height 1, 2, ... at
the lower end, followed by the class of all paths, then all binary trees and at the far end of the
hierarchy the class of all rectangular grids.

In this paper we want to consider one of the open problems mentioned in Blumensath and
Courcelle [1, Section 9], namely the treatment of infinite structures. To avoid unnecessary confu-
sion with the word “infinite”, we restrict ourselves to countable structures throughout this paper.
The techniques developed and presented in [1] can mostly be adapted to the new setting allowing
infinite structures. For example, the concept of a transduction is not limited to finite structures.
Unfortunately, the convenient and somewhat surprising result of a linear hierarchy is not achiev-
able by extending the setting to infinite structures, simply because some classes become incom-
parable. Naturally one starts at the lower end of the hierarchy, where we have trees of different
shapes and sizes. At the very bottom of the hierarchy we have the empty class, followed by the
class having only the tree with one vertex as a member. The next level is still quite intuitive, we
have the class of all finite trees of height two, namely the root having 1, 2, . . . children. At this
point linearity cannot be preserved, since we have the infinite tree of height two and all finite
trees of height three, side by side. Neither is an infinite tree obtainable by any transduction from
any finite tree, nor is an arbitrarily large finite tree of height three obtainable by a tree of lower
height. The question how classes of paths and grids fit into the new hierarchy is left open for
further analysis. Because our focus is largely on trees, we can find a more practical method of
comparing two classes of trees than transductions.
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Before we can produce any new results, we want to define all necessary notions and refer to a
few concrete statements of the article by Blumensath and Courcelle. In Chapter 3 we show that
we can use n-embeddings instead of transductions. There is an n-embedding from a classA into
a class B if there exists n < ω such that for all members A ∈ A there is a structure B ∈ B and a
homomorphism from A to B such that the preimage of every vertex in B has size of at most n.
This gives us amuch simpler criterion to show the relation between two classes. Note though, that
for example the class of trees with at most n vertices, is n-embeddable into the class consisting of
the tree having only the root.

For the classification of the different classes we introduce a few operations on classes of trees in
Chapter 4. We can identify the roots of two trees (A⊕B), simply consider the union of the classes
(A ∪ B) or extend trees at their leaves by elements from another class. These operations yield a
toolkit of which we can assemble and name certain classes of trees. Much work will be required
to show that between two classes, there can be no class in between in the hierarchy. This process
is quite technical, but due to the introduction of n-embeddings still feasible. We would like to
establish general patterns of the hierarchy, which occur repetitively as we will see in Theorem
5.10. The main target of this work is now to give a precise and complete picture of the lower part
of the class hierarchy which is done in Chapter 5 and presented in a diagram where the “greatest”
class is the class of infinite trees of height three.
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2 Preliminaries

2.1 Basic Definitions

First we define the most important notions used in the following sections. Then we present a
couple results of [1], which are required in some of the proofs. This includes the main theorem
stating the linear order of classes we have discussed in the introduction. We will omit the proofs
for these results and refer to [1] for a complete outline.

Definition 2.1.

1. For some setD, the set of all finite sequences of elements ofD is denoted byD<ω. We define
the prefix relation ⪯ on D<ω by:

x ⪯ y ∶⇔ y = xz, for some z ∈ D<ω .

2. A set T is called a tree domain if the following holds: T ⊆ D<ω and T is prefix closed, i.e if
the sequence xy ∈ T then x ∈ T .

3. The tuple T = (T , ⪯) is called order tree if T is a tree domain and ⪯ is the prefix relation.
The empty sequence ● is called root, ⪯-maximal elements are the leaves. The set of all leaves
of T is denoted by L(T). Elements having some successor are called inner elements.

4. A successor tree (T , edg) is also defined on a tree domain T , together with the binary re-
lation ⟨x , y⟩ ∈ edg if y = xd for some d ∈ D. If ⟨x , y⟩ ∈ edg, we call x the immediate
predecessor of y and analogously y an immediate successor of x.

5. For an order treeT , we call x a predecessor of y if we have x ⪯ y and analogously y a successor
of x. In a successor tree x is a predecessor of y if there is a path v0, v1, . . . originating from
the root where x = vi and y = v j for i < j. Conversely for i > j we call x a successor of y.

6. The level of an element v is the number of its predecessors. We denote it by ∣v∣.The height of
a tree is the least ordinal α [5, Chapter 6.2] such that, for all vertices v, we have ∣v∣ < α. Thus
the empty tree has height zero, the height of the tree constructed in Example 2.2 below is 4.

7. We can expand trees of both types to a coloured tree by the addition of unary predicates
P0, . . . , Pm−1. Every vertex is permitted to have from zero up to m colours. The class of
m-coloured trees is denoted by TREEm.

8. The infimum of the vertices u and v is:

u ⊓ v ∶= the unique x ∈ T such that x ⪯ u, x ⪯ v and ∀z ∈ T(z ⪯ u ∧ z ⪯ v ⇒ z ⪯ x),

denoting the largest common prefix of u and v, or equivalently the maximal element of the
intersection of the paths originating from the root to u or v respectively.
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9. For a vertex v, we define the subtree Tv rooted at v as the subtree of T consisting of all
vertices u with v ⪯ u.

Every vertex of the tree is represented by its unique path from the root. Hence each vertex has
a unique immediate predecessor. It is quite simple (see Example 2.6 below) to obtain a successor
tree from an order tree and vice versa, but they are not isomorphic, since in an order tree with
root r, it holds for all vertices x, that r ⪯ x, but clearly ⟨r, x⟩ ∈ edg is not true for all x in a successor
tree.

Example 2.2. Let D ∶= {a, b, c}. Then the set of all (finite) sequences of elements of D is:

D<ω = {●, a, b, c, aa, ab, ac, ba, bb, bc, aaa, aab, . . .}

A valid prefix closed tree domain T ⊂ D<ω would be

T ∶= {●, a, b, c, aa, bc, aac},

producing the following tree:

●

a

aa

aac

b

bc

c

Definition 2.3.

1. Monadic second-order logic (MSO) is an extension of first-order logic by adding set variables
and the ability to quantify over those variables.

2. The quantifier rank qr(φ) of a MSO-formula φ is the nesting depth of quantifiers in φ. If
no quantifiers occur in φ, it is called quantifier-free.

3. Themonadic theory of rank m of a structureA is the set of MSO-formulae φ with quantifier
rank at most m such that A is a model of φ.

MThm(A) ∶= {φ ∈MSO ∣ A ⊧ φ, qr(φ) ≤ m}.

For a tuple ā ∈ A, MThm(A, ā) denotes the theory of the expansion (A, ā) and is called the
type of ā.

If not explicitly stated otherwise, we assume all formulae to be MSO-formulae and to be nor-
malised in the following way: all first-order variables are replaced by set-variables, followed by
the statement that their size is one. For example ∃x(x ≤ c) is normalised to ∃X(∣X∣ = 1 ∧ X ≤ c)
where

∣X∣ = 1 ∶= ∀Y∀Z(Y ⊂ X ∧ Z ⊂ X ⇒ Z = Y).
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By formally eliminating first-order variables concepts like the quantifier rank become more
straightforward, since there is no need to distinguish between first- and second-order quantifi-
cation. For better readability we allow ourselves to write down formulae consisting of first-order
variables, while referring to its normalised variant.

The next important concept is the transduction. For instance, it can be used to transform order
trees into successor trees and vice versa. It is an operation on a relational structure A, producing
a new structure τ(A), or more precisely, a set of new structures. A transduction can be seen as a
composition of three basic operations.

Definition 2.4.

1. The k-fold copy-operation maps a structure A to

copyk(A) = ⟨A⊕⋯⊕A, ∼, P0, . . . , Pk−1⟩ .

Elements of τ(A) are of the form ⟨a, i⟩ , for a ∈ A, i < k. The unary predicates Pi form a
partition into the k components of τ(A), since they contain all vertices of the i-th compo-
nent.

Pi ∶= {⟨a, i⟩ ∣ a ∈ A} and ⟨a, i⟩ ∼ ⟨b, j⟩ ∶⇔ a = b

2. The expansion operator expm mapsA to the set of all possible expansions [4, Chapter 3.4] by
m unary predicates Q0, . . . ,Qm−1 ⊆ A. exp0 is the identity. Note that the operator cannot
be seen as a function in the strict sense, since it is many-valued in general.

3. A basic transduction τ0 is an operation on A described by a list of formulae

⟨χ, δ(x), φ0(x̄), . . . , φs−1(x̄)⟩

called the definition scheme of τ0. If a structure satisfies the formula χ, i.e. A ⊧ χ, then τ0
produces a new structure:

τ0(A) ∶= ⟨D, R0, . . . , Rs−1⟩

where the new domain D is obtained by all elements a ∈ A satisfying δ(a):

D ∶= {a ∈ A ∣ A ⊧ δ(a)}

and Ri are the relations defined by the formulae φi(x̄):

Ri ∶= {ā ∈ Dar(R i) ∣ A ⊧ φi(ā)} .

Here, ar(Ri) denotes the arity of the relation Ri . However, ifA does not satisfy χ, the image
of A under τ0 is not defined.

4. A transduction τ is a composition of the three operations defined above, each of them is
permitted to be the identity: τ = τ0 ○ expm ○ copyk . If copyk is the identity, i.e. if k = 1, τ is
called noncopying, otherwise it is referred to as k-copying.
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Lemma 2.5. The transitive closure of a relation R can be defined in MSO by the formula

φ(u, v) ∶= ∀X(Xu ∧ ∀x∀y(Xx ∧ Rxy → Xy)→ Xv)

or in words, every set which contains u and is closed under the relation R also contains v. We will
use (u, v) ∈ R∗ as an abbreviation for the above MSO-formula.

Proof. See [2, Section 1.3.1]

Example 2.6. We want to construct a noncopying transduction τ, such that the image of a suc-
cessor tree is an order tree with the same height and shape. We use the abbreviation edg∗(x , y)
for ⟨x , y⟩ ∈ edg∗. First define

χ ∶= ∀x∀y ((edg∗(x , y) ∧ edg∗(y, x))⇒ x = y)

ruling out all structures containing a cycle. For all trees T it holds: T ⊧ χ. Since we want all of
the tree domain to be kept, we put

δ(x) ∶= (x = x),

then all vertices satisfy this statement trivially: T ⊧ δ(x). Next we define the new order relation
by

φ(x , y) ∶= (x , y) ∈ edg∗.

The basic transduction τwith definition scheme ⟨χ, δ(x), φ(x , y)⟩ is now transforming successor
trees into order trees.

In the following we will often consider the incidence structure Ain instead of the structure
A itself. The same concept is extended to classes, i.e. for a class A we consider the incidence
structures of all its members, denoted byAin.

2.2 Known Results on the Transduction Hierarchy

Definition 2.7. Let A = ⟨A, R0, . . . , Rm−1⟩ be a relational structure, r be the maximal arity of the
relations Ri . We define the incidence structure Ain:

Ain ∶= ⟨A⊍ E , PR0 , . . . , PRm−1 , in0, . . . , inr−1⟩ .

It can be seen as a representation of A, where the domain is extended by new elements, one for
each tuple in a relation.

E ∶= R0 ∪⋯ ∪ Rm−1.

The new relations are unary and binary. The former are used to distinguish the type of relation,
the latter to describe the membership of the elements of the regular domain to each other:

PR i ∶= {c̄ ∈ E ∣ c̄ ∈ Ri} ,
ini ∶= {(a, c̄) ∈ A× E ∣ ∣c̄∣ > i and a = ci} .

The class of all incidence structure with signature Σ is STRin[Σ].

Remark 2.8. There exist transductions such that τ(Ain) = A and, under certain restrictions,
(compare [1, Section 3]), also in the opposite direction σ(A) = Ain.
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Definition 2.9. Let A = (A, R0, . . . , Rn−1) be a structure. Then:

1. The Gaifman graph of A is the undirected graph

Gf(A) ∶= ⟨A, edg⟩

with the same domain A and with the edge relation containing all pairs of elements being
contained in a tuple of any Ri :

edg ∶= {(u, v) ∣ u ≠ v and there is some c̄ ∈ Ri with u, v ∈ c̄}.

2. A strict tree decomposition of A is a pair (T ,D) where T is a tree domain (sometimes re-
ferred to as the index tree) and D = (Uv)v∈T is a family of possibly empty subsets of A such
that:

• For every a ∈ A it holds that {v ∈ T ∣ a ∈ Uv} is nonempty and connected.
• For every tuple c̄ ∈ Ri , there is some index v ∈ T with c̄ ⊆ Uv .
• If u is a predecessor of v in T , then Uv ∖Uu ≠ ∅.
• If z ∈ T is not the root, the subgraph ofGf(A) induced by the subset ⋃

v∈Tz
Uv∖ ⋃

v∈T∖Tz
Uv

is connected.

3. The height of a tree decomposition (T ,D) is the height of T , its width is defined as

wd(T ,D) ∶= sup
v∈T
(∣Uv ∣ − 1) .

4. The n-depth tree-width twdn(A) of A is the minimal width of a tree decomposition of A,
whose index tree T has height at most n.

Definition 2.10.

1. A minor of a graph is a subgraph obtained by first deleting some vertices and edges and
then contracting some of the remaining edges. Every graph is its own minor [3, Section
1.7]. IfA is a class of graphs, Min(A) denotes the class of all minors of graphs inA.

2. A hypergraph is a pair of two disjoint sets (V , E), where V is the set of vertices and E ⊆
℘(V) the set of hyperedges, i.e. edges that can connect any number of vertices.

3. Let A be a class of hypergraphs. We denote by STDn(A) the class of all successor trees of
height at most n, that are an index tree of some strict tree decomposition of a member of
A.

Lemma 2.11. [1, Section 5]There exists a transduction τ with τ(Gin) = Min(G), for every graph
G.

Proof. Any minor H of G can be obtained by deleting some vertices, edges and then contracting
some edges. We can encode H with the help of four sets: the vertices being deleted, the edges
being deleted, the edges being contracted and the vertices which are kept, i.e. one vertex of each
contracted subgraph. With those sets as parameters it is possible to define H inside of Gin by
MSO-formulae.
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Theorem 2.12 (Excluded PathTheorem [1]). For each path P, there exist numbers k, n < ω such
that

P ∉Min(G) implies twdn(G) < k, for every graph G.

Proof. See [1].

Lemma 2.13 (Lemma 5.2 [1]). For every signature Σ and every number k < ω, there exists a trans-
duction τk ∶ TREE0 → STRin[Σ] that maps an order-tree T to the class of all incidence structures
Ain such that the corresponding Σ-structure A has a tree decomposition of width at most k with
underlying tree T.

Proof. See [1].

Theorem 2.14 (Theorem 5.4 [1]). For each constant n < ω, there exists a transduction τn mapping
a graph G to the class of all (underlying trees of ) strict tree decompositions of G of height at most n.

Proof. See [1].

Definition 2.15 (Definition 6.3 [1]). We consider the following subclasses of STR[{edg}]. (All
trees below are considered to be successor-trees.)

1. Tn ∶= {m<n ∣ m < ω} is the set of all complete m-ary trees of height n.

2. Tbin is the class of all binary trees.

3. Tω is the class of all trees.

4. P is the class of all paths.

5. G is the class of all rectangular grids.

Definition 2.16.

1. LetA,B be classes of structures with common signature. We defineA ⊑ B if there exists a
transduction τ such that for all members A ∈ A we have Ain ∈ τ(Bin) for some B ∈ B.

2. A ≡ B ifA ⊑ B and B ⊑ A.

3. A ⊏ B ifA ⊑ B and B ⋢ A.

4. A ⊲ B ifA ⊏ B and there is no class C withA ⊏ C ⊏ B.

Theorem 2.17 (Theorem 6.4 [1]). We have the following hierarchy:

∅ ⊲ T0 ⊲ T1 ⊲ . . . ⊲ Tn ⊲ . . . ⊏ P ⊲ Tω ≡ Tbin ⊲ G .

For every signature Σ, every class C ⊆ STR[Σ] is ≡-equivalent to some class in this hierarchy.

Proof. See [1].
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3 From Transductions to n-Embeddings

In this chapter we want to find an alternative for transductions which is capable of comparing
two classes of trees. This is possible because we limit ourselves to classes of trees with bounded
height. The main result will be Theorem 3.7 stating that whenever all elements of a class A can
be described via some transduction inside an element of B, there exists an n-embedding from
the structure in A to the structure in B. The other direction is also true: whenever we have an
n-embedding from A to B, we can find a transduction describing A inside B. Here, we need
to mimic the n-embedding via some transduction and then finding suitable relations and unary
predicates. For the first claim, more work will be done, which is not surprising at all, since a
transduction is a far more general object than an n-embedding. The plan is as follows: for a given
transduction τ one creates a rearrangement σ of τ, whose “inverse function” is the desired n-
embedding.

At the end of the chapter, in Proposition 3.8, we prove a nice result on classes of hypergraphs.
Suppose the class of all finite paths is not transducible in a class of hypergraphsA, i.e. P /⊑ A.This
implies that there exists a finite path which cannot be described by any transduction evaluated at
an element of A. Then A is equivalent in the sense of transductions to the class of all successor
trees of height at most n that are an index tree of some strict tree decomposition of a member of
A. This means that we can express a class of hypergraphs having no trees as members in terms of
a class of trees of bounded height under certain restrictions.

Proposition 3.1. For every transduction τ and every constant d < ω, there exists a transduction σ
with the following properties:

• σ(T) ≅ τ(T), for all structures T.

• If T is an order tree such that τ(T) is a graph where every vertex has indegree at most d, then
for every pair of vertices ⟨u, i⟩ and ⟨v , k⟩ of σ(T) that are connected by an edge we have u ⪯ v
or v ⪯ u in T.

Before we are able to prove the proposition, we need some preparational lemmata.

Definition 3.2. Let τ be am-copying transduction, a constant n < ω and {ψi(x , y))i<m} a family
of formulae. Then we define a new (n + nm)-copying transduction σ , called a rearrangement of
τ induced by {ψi(x , y))i<m} as follows:
Let P l

i , for i < n, l < m, be the new parameters of σ . If a given input structureT does not satisfy
the following conditions, we set σ(T) ∶= τ(T):

• T = (T , ⪯) is an order-tree.
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• ψi(x , y) defines a function fi ∶ T → T such that ∣ f −1i (w)∣ ≤ n, for all w ∈ T .

• For every w ∈ T and i < m, each element of f −1i (w) belongs to exactly one of the sets
P0
i , . . . , P

n−1
i .

If T satisfies these conditions, we set σ(T) ∶= π(τ(T)), where π is the isomorphism mapping
⟨u, i⟩ ∈ τ(T) to

π(⟨u, i⟩) =
⎧⎪⎪
⎨
⎪⎪⎩

⟨u, i⟩ if fi(u) = u
⟨ fi(u),m + l⟩ if fi(u) ≠ u and l < m is the unique index such that u ∈ P l

i .

Let τ be an m-copying transduction and T = (T , ⪯) an order tree and let (φik(x , y))i ,k<m be
the formulae defining the edge relation in τ(T). For i < m and u ∈ T , we define the functions

fi(u) ∶=⊓{u ⊓ v ∣ u ⪯̸ v , v ⪯̸ u and T ⊧ φik(u, v) for some k < m} .

Note that the image could possibly be empty for some u, in this case we set fi(u) ∶= u. Clearly
the functions are MSO-definable on order trees. For a better understanding of the function fi ,
consider Example 3.3 below.

Example 3.3. Consider the following order tree T, the vertices are labelled in a different way in
comparison to Example 2.2 for better readability:

r

a

b

c d

e

f g

h

u j

k

For simplicity reasons, we assume that τ is noncopying and that τ(T) is an order tree, where
the immediate successors of each vertex having exactly two successors are interchanged. Then
τ(T) looks as follows:

r

h

e

d c

b

g f

a

j u

k

Now we want to compute f0(u): we know from the definition, that we need to consider all
candidates for v which are not ⪯-related to u but whose image is an immediate successor of τ(u).
The only candidate for this is k, whose infimum with respect to u, is h. Hence f0(u) = h.
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One could describe the working principle of the functions as follows: for each new relation
Ri only vertices v which are successors of u in the new produced structure are considered. Of
those vertices, the ones being in ⪯-relation with u in T are withdrawn and then the infimum of
the remaining vertices is given as result. If fi(u) = u, that could mean u has no successor in τ(T)
or that they are all in ⪯-relation with u.

Lemma 3.4. Let τ be an m-copying transduction and T = (T , ⪯) an order tree such that τ(T) is
a graph where every vertex has indegree at most d. Let φik(x , y) be the formulae defining the edge
relation of τ(T). Let w ∈ T and let r be the maximal quantifier rank of the φik . For every type p of
quantifier rank r, there are at most d(d + 1) vertices u ⪰ w such that

fi(u) = w and MThr(Tz , u) = p,

where z is the immediate successor of w with z ⪯ u.

⋮

w

⋮ z0

⋮

u0

z1

⋮

u1

⋮

Proof. For a contradiction suppose that they are at least d(d + 1)+ 1 vertices u0, . . . , ud(d+1) with
the same image under fi . We distinguish two cases:

1. There is an immediate successor z of w such that Tz contains more than d of these ver-
tices, say u0, . . . , ud ∈ Tz . Since we have that fi(u0) = w, there is by the definition of fi
some v ∈ T ∖ Tz and some k < m such that T ⊧ φik(u0, v). By assumption it holds that
MThr(Tz , u j) =MThr(Tz , u0) for j ≤ d. Therefore, T ⊧ φik(u0, v) implies T ⊧ φik(u j , v)
for 0 ≤ j ≤ d. Hence, the vertex ⟨v , k⟩ of τ(T) has indegree at least d + 1. A contradiction.

2. For every immediate successor z of w the subtree Tz contains at most d of these vertices.
Then there are distinct immediate successors z0, . . . , zd+1 and vertices ul0 , . . . , uld+1 with
z j ⪯ ul j . For simplicity, assume that l j = j, for all j. As in case 1, there is a vertex v ∈ T ∖Tz0
and k < m such that T ⊧ φik(u0, v). There is at most one index j with v ∈ Tz j . W.l.o.g.
assume that j = d + 1. For 1 ≤ j ≤ d it follows that

MThr(Tz0 , u0) =MThr(Tz j , u j) ⇒ T ⊧ φik(u j , v),

leading to the same contradiction as above.

Now we are able to prove the proposition.
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Proof of Proposition 3.1. It follows from Lemma 3.4, that there is a uniform bound for the size of
the preimage f −1i (w) for all tree vertices w ∈ fi(T), this bound is d(d + 1) times the number of
types p with quantifier rank r.

Let σ be the rearrangement of τ induced by the functions ( fi)i defined above. We claim that σ
has the desired properties. Let u, v be vertices such that in σ(T) there is an edge between ⟨u, i⟩
and ⟨v , k⟩. Distinguish four cases:

i , k < m ∶ Both ⟨u, i⟩ and ⟨v , k⟩were not moved from their position in τ(T). Hence u, v are fixed
points of fi and fk respectively and thus either u ⪯ v or v ⪯ u holds in T.

i < m, k ≥ m ∶ The vertex ⟨v , k⟩ was moved into a new copy of T, whereas ⟨u, i⟩ is still at its
original position. There is some x ≠ v such that fk−m(x) = v and T ⊧ φi(k−m)(u, x). Since
fi(u) = u we have x ⪯ u or u ⪯ x. Hence, v ≺ x implies v ⪯ u or u ⪯ v.

i ≥ m, k < m ∶ The vertex ⟨u, i⟩ was moved into a new copy of T, whereas ⟨v , k⟩ is still at its
original position. There is some x ≠ u such that fi−m(x) = u and T ⊧ φ(i−m)k(x , v). By
definition of fi−m it follows that x ⪯ v, v ⪯ x or x ⊓ v ⪰ u. Since u ≺ x this implies that
u ⪯ v or v ⪯ u.

i , k ≥ m ∶ Both vertices were moved to new copies of T. There are vertices x ≠ u and y ≠ v
such that fi−m(x) = u, fk−m(y) = v and T ⊧ φ(i−m)(k−m)(x , y). Note that y ⪯ x or
u = fi−m(x) ⪯ y. In both cases v ⪯ y implies that u ⪯ v or v ⪯ u.

Lemma 3.5. For every transduction τ and every number n < ω there exists a transduction σ with
the following property: We have σ(T) ≅ τ(T), for every structure T. Furthermore, if T = (T , ⪯)
and τ(T) are both order-trees and τ(T) is of height of at most n then,

⟨u, i⟩ ⪯ ⟨v , k⟩ in σ(T) ⇒ u ⪯ v in T. (3.1)

Proof. Suppose that τ is m-copying and let φik(u, v) be the formulae defining the order relation
⪯ between the vertices ⟨u, i⟩ and ⟨v , k⟩ in τ(T). Note that in an order tree of height n, each vertex
has at most n + 1 predecessors. Hence, using Proposition 3.1 with d ∶= n + 1, we may assume that,
for every pair of vertices ⟨u, i⟩ ⪯ ⟨v , k⟩ ∈ τ(T) we have u ⪯ v or v ⪯ u in T. For i < m and u ∈ T ,
we define

fi(u) ∶=⊓{v ⪯ u ∣ T ⊧ φik(u, v) for some k < m} .

These functions give the infimum of all vertices ⪰ ⟨u, i⟩ in τ(T) which are ≺ u in T.
If fi(u) = v, we have that ⟨u, i⟩ ⪯ ⟨v , k⟩ for some k < m. We can find a bound for the size of

the preimage ∣ f −1i (v)∣ as follows: by assumption τ is m-copying and the resulting tree has height
at most n, implying that the path from the root to ⟨v , k⟩ has at most m(n + 1) distinct vertices.
So we can bound the preimage by this number: ∣ f −1i (v)∣ ≤ m(n + 1). The rearrangement σ of τ
induced by ( fi)i has the desired properties.
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Definition 3.6.

1. Let S = (S , ⪯) and T = (T , ⪯) be order trees. We define an n-embedding to be a homo-
morphism h ∶S→ T such that ∣h−1(u)∣ ≤ n for all u ∈ T .

2. Let A and B be trees. We write A↪n B if there exists an n-embedding of A into B.

3. Let A,B be classes of trees. Define A ≤n B if for all A ∈ A there exists some B ∈ B such
that A↪n B.

Theorem 3.7. Let A and B be classes of order trees such that the height of trees in A and B is
bounded by m < ω. ThenA ⊑ B if and only ifA ≤n B for some number n < ω.

Proof. (⇐)We construct a transduction τ such that, for every B ∈ B,

{A ∣ A↪n B} ⊆ τ(B).

Given B ∈ B, we encode an n-embedding h ∶ A ↪n B as follows: for each vertex v ∈ B,
we fix an enumeration q0(v), q1(v), . . . of h−1(v). Furthermore, we denote by prel(v) the l-th
predecessor of v, i.e. the unique vertex u ∈ B such that there exists a path of length l from u to v.
We use the following unary predicates to encode h:

Pk ∶= {v ∈ B ∣ ∣h−1(v)∣ = k},
Rikl ∶= {v ∈ B ∣ there exist an edge in A from qi(prel(v)) to qk(v)}.

We can recover A from these predicates by the transduction τ defined by the formulae

δi(x) ∶=⋁
k≥i

Pk(x),

φik(x , y) ∶= ⋁
l<m
(Rikl(y) ∧ x = prel(y)) .

(⇒) Let τ be a transduction such that we have A ∈ τ(B) and the height of A and B is at most
m. We construct a transduction σ as in Lemma 3.5. Then we have A ∈ σ(B). Suppose then σ is
n-copying. Then the map sending ⟨u, k⟩ to u is an n-embedding.

Proposition 3.8. Let A be a class of hypergraphs, P the class of all finite paths. If P ⋢ A then
A ≡ STDn(A) for some n < ω.

Proof. P ⋢ A implies that for every transduction τ there is some pathP ∈ P such thatP ∉ τ(A).
By Lemma 2.11 we know that P is hence not contained in Min(A). The Excluded PathTheorem
implies that twdn(A) < ∞, for some n. Thus we can conclude with the help of Lemma 2.13 and
Theorem 2.14 thatA ≡ STDn(A).

14



4 Classes of Trees with Bounded Height

From now on, all classes of trees considered have bounded height. In this chapter we define some
operations on classes of trees which are a foundation for building all the classes we need to have a
complete lower part of the transduction hierarchy. We also want to see, what the properties of our
newly defined operations are, starting with associativity, commutativity and so on. Furthermore,
we define a classA to be directed, which means thatA⊕A ⊑ A or in words: the operation⊕ ap-
plied to any two elements ofA produces only structures which can be described via transduction
in terms of some A ∈ A, or roughly speaking ⊕ gives us nothing new.
At the end of the chapter we achieve a nice result telling us something of the structure which

classes form together with the relation ⊑. Theorem 4.22 states that the class relation ⊑ forms a
distributive join-semilattice on the ≡-equivalence classes of all structures. The join of two classes,
or more precisely, two representatives of equivalence classes, is simply their union.

Definition 4.1. LetA,B be classes of trees.

1. For treesA andBwe defineA⊕B to be the tree obtained by identifying the roots ofA,B,
i.e. one merges the two roots into one vertex which then has the combined immediate
successors from both former roots. For B = ∅, we set A⊕∅ ∶= A. We define

A⊕ B ∶= {A⊕B ∣ A ∈ A, B ∈ B}.

2. Let A be a tree, L = L(A) and (Bv)v∈L a sequence of trees. A ← (Bv)v∈L denotes the tree
obtained by replacing each leaf v ∈ L of A by the tree Bv . If the sequence is constant, i.e.
for all v ∈ L we have Bv =B0 then the resulting tree is denoted by A↢B0.

3. We defineA ⋅B to be the set of all trees of the formA← (Bv)v∈L forA ∈ A and a sequence
(Bv)v∈L in B where L is the set of leaves of A, i.e.

A ⋅ B ∶= {A← (Bv)v∈L ∣ A ∈ A,Bv ∈ B}.

4. DefineA ∶ B to be the set of all trees ofA ⋅ B where the sequence (Bv)v∈L is constant, i.e.

A ∶ B ∶= {A↢B ∣ A ∈ A,B ∈ B}.

5. We say the classA is directed, ifA⊕A ⊑ A.

From now on we will mostly deal with A ≤n B, because n-embeddings are easier to handle
than transductions. However, the results will be stated in the formA ⊑ B which is permissible by
Theorem 3.7.
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Lemma 4.2. For classes A,B we have that A ⊆ B implies A ⊑ B. If for every A ∈ A there is some
B ∈ B such that A ⊆B it also follows thatA ⊑ B.

Proof. For the first implication we simply use the identity map for a 1-embedding, for the second
statement the inclusion map 1-embeds every A ∈ A into some B ∈ B.

Definition 4.3.

1. For 0 < m ≤ ω we denote complete m-ary trees of height 2 by ⟦m⟧ ∶= m<2, with the special
case ⟦0⟧ ∶= ●.

2. We denote the product of such trees by ⟦m0, ...,mn−1⟧ ∶= ⟦m0⟧ ↢ . . . ↢ ⟦mn−1⟧ and thus
we have ⟦mn⟧ = m<(n+1).

3. We denote the class of finite trees with height two by
Φ ∶= {⟦m⟧ ∣ m < ω}.

4. The class containing the countably infinite tree with height two is denoted by Ω ∶= {⟦ω⟧}.

5. We denote the tree having one vertex, i.e. only the root, by ●. The class consisting only of
this tree is denoted by 1.

6. For all n < ω we define Φn ∶= Φ ⋅ . . . ⋅ Φ, where Φ0 ∶= 1. Ωn is defined analogously.

Example 4.4. The class Ωn contains only one element, which is denoted by ⟦ωn⟧. The class Φn

contains elements like ⟦kn⟧, for all k < ω, but also other trees.

4.1 Laws for the Operations {⊕,∪, ⋅, ∶}

LetA,B, C ,D be classes of trees.

Lemma 4.5. The operations ∪ and ⊕ are associative and commutative. The neutral element of ∪ is
the empty class ∅, the neutral element of ⊕ is 1. Both operations are monotone with respect to ⊑, i.e.
we have for ⋆ ∈ {∪,⊕}

A ⋆ (B ⋆ C) = (A ⋆ B) ⋆ C ,

A ⋆ B = B ⋆A (4.1)

and
A ⊑ B implies C ⋆A ⊑ C ⋆ B andA ⋆ C ⊑ B ⋆ C .

Proof. Commutativity and the neutral element being the empty class are obvious. Associativity
and monotonicity of ⊕ follow directly from Definition 4.1, for ∪ it is again obvious.

Lemma 4.6. The operation ⋅ is associative and monotone in the second argument with respect to ⊑.
IfA ⊑ B then C ⋅A ⊑ C ⋅ B (but not in generalA ⋅ C ⊑ B ⋅ C). The neutral element is 1.
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Proof. Consider classes A,B with A ≤n B. Let C ← (Ai)i∈L(C) be an element of C ⋅A. We want
to find an element of C ⋅ B into which C ← (Ai)i∈L(C) can be n-embedded. For each subtree Ai
we know that there is some Bi ∈ B such that Ai ↪n Bi . We construct the desired n-embedding
of C ← (Ai)i∈L(A) into C ← (Bi)i∈L(B)as an identity for the common initial segment extended
by these n-embeddings for the additional subtrees Ai into the corresponding Bi .

For associativity let D0 ∶= (A ⋅ B) ⋅ C and D1 ∶= A ⋅ (B ⋅ C) and let D ∈ D0. Then D is of the
form

(A← (Bi)i∈L(A))← (C j) j∈L(A←Bi)

for some A ∈ A, Bi ∈ B and C j ∈ C. Now we want to show that this tree is a member of D1. Its
initial segment is A. We define a sequence of elements of B ⋅ C by first taking the initial segments
to beBi and extend them by the sequences (C j) j∈L(Bi), i.e. Bi ← (C j) j∈L(Bi), such that eachBi
is extended by the same tree as above. Since

L (A← (Bi)i∈L(A)) = ⋃
i∈L(A)

L(Bi)

we have equality:
D = A← (Bi ← (C j) j∈L(Bi))i∈L(A)

and A← (Bi ← (C j) j∈L(Bi))i∈L(A) is an element ofD1. The converse direction is analogous.
Since A↢ ● = A we haveA ⋅ 1 = A.

Lemma 4.7. The operation ∶ is monotone with respect to ⊑, i.e. if we haveA ⊑ B then C ∶A ⊑ C ∶B
andA ∶ C ⊑ B ∶ C. Furthermore it is associative and has 1 as neutral element.

Proof. The first statement of monotonicity is proven analogously to Lemma 4.6. For the second
statement let A ↢ C ∈ A ∶ C. Now choose some B ∈ B such that A ↪n B. Let h be the corre-
sponding n-embedding. For all leaves v ∈ L(B) we have that ∣h−1(v)∣ ≤ n. Hence we can extend
h such that it maps C to itself in such a way that it is a valid n-embedding (A↢ C)↪n (B↢ C).
The proof for associativity is analogous to the proof of Lemma 4.6, as well as the neutral element

being 1.

Lemma 4.8. A ∪ B ⊑ A⊕ B ⊑ A ∶ B ⊑ A ⋅ B, for nonempty classesA,B andA ≠ {∅}.

Proof. We proof each statement separately:

1. Let A ∈ A ∪ B. W.l.o.g. we assume A ∈ A. Since B is nonempty, there is some B ∈ B. By
Lemma 4.2, we have A↪1 A⊕B implying the claim.

2. Let A ⊕ B ∈ A ⊕ B for some elements A ∈ A and B ∈ B with A ≠ ∅. We consider
T ∶= A ↢ B ∈ A ∶ B. Now we know that A ↪n T. B can be 1-embedded to one of the
copies of itself in T. Hence we have that (A ⊕B) ↪n (A ↢ B). Suppose that ∅ ∈ A and
let B ∈ B. Then B = ∅⊕B ∈ A⊕ B and B↪1 A↢B for any A ∈ A with A ≠ ∅.

3. We have thatA ∶ B ⊆ A ⋅ B, so we simply apply Lemma 4.2.
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Lemma 4.9. sup{A,B} = A ∪ B.

Proof. Obviously it holds that A,B ⊑ A ∪ B. Now let C be a class such that A,B ⊑ C. Hence
there is some n < ω such that every member of A and B is n-embeddable into some element of
C implying thatA ∪ B ⊑ C.

Lemma 4.10. A ∪ B ≡ A⊕ B implies thatA ⊑ B or B ⊑ A.

Proof. Assume that A ⊕ B ≤n A ∪ B and A ⋢ B. Since A ⋢ B there is at least one A0 ∈ A such
that A0 ↪̸n B for every B ∈ B. A ⊕ B ≤n A ∪ B implies that, for every B ∈ B, there is some
C ∈ A ∪ B such that A0 ⊕B ↪n C. Thus, A0 ↪n C and B ↪n C. Since the former implies that
C ∉ B it follows that C ∈ A. Hence, for every B ∈ B there is some C ∈ A with B ↪n C. Thus we
can conclude that B ⊑ A.

Lemma 4.11. A ∪ B ∪ C ≡ A ∪ B if and only if C ⊑ A ∪ B.

Proof. (⇐) Suppose that C ≤n A∪B. For every C ∈ C there is some D ∈ A∪B with C↪n D. Set

C0 ∶= {C ∈ C ∣ ∃A ∈ A with C↪n A},
C1 ∶= {C ∈ C ∣ ∃B ∈ B with C↪n B}.

Then C = C0 ∪ C1 and C0 ≤n A, C1 ≤n B. By monotonicity of ∪, this implies C ⊑ A ∪ B. Again by
monotonicity, it follows thatA ∪ B ∪ C ⊑ A ∪ B.
(⇒) C ⊑ A ∪ B ∪ C ⊑ A ∪ B.

Lemma 4.12. IfA is nonemptyA⊕ B ≡ A implies B ⊑ A. The converse is true ifA is directed.

Proof. (⇒)We have B ⊑ A⊕ B ⊑ A.
(⇐) IfA is directed and B ⊑ A thenA⊕ B ⊑ A⊕A ≡ A.

Lemma 4.13.

1. A⊕ (B ∪ C) = (A⊕ B) ∪ (A⊕ C).

2. A ∪ (B ⊕ C) ⊑ (A ∪ B)⊕ (A ∪ C).

3. (A ∪ B) ⋅ C = (A ⋅ C) ∪ (B ⋅ C).

4. (A ⋅ B) ∪ (A ⋅ C) ⊑ A ⋅ (B ∪ C).

5. (A ∪ B) ∶ C = (A ∶ C) ∪ (B ∶ C).

6. (A ∶ B) ∪ (A ∶ C) = A ∶ (B ∪ C).

Proof. All statements follow directly from the definition and Lemma 4.2.

We shall denote the disjoint union by ⊔.

Lemma 4.14. (A⊕ B) ⋅ C = (A ⋅ C)⊕ (B ⋅ C) ifA and B do not contain ●.
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Proof. (⊆) Let (A⊕B)← (Ci)i∈L(A⊕B) ∈ (A⊕B)⋅C. IfA,B ≠ ●, then L(A⊕B) = L(A)⊔L(B).
We split the sequence (Ci)i∈L(A⊕B) into two disjoint parts (C j) j∈L(A) and (Ck)k∈L(B). Then

(A⊕B)← (Ci)i∈L(A⊕B) = A← (C j) j∈L(A) ⊕B← (Ck)k∈L(B).

(⊇) Here the procedure is similar, this time we join the two sequences extending arbitrary A

and B to show that it is a member of (A⊕ B) ⋅ C.

Lemma 4.15. (A ⊕ B) ∶ C ⊑ (A ∶ C) ⊕ (B ∶ C) if A and B do not contain ●. If C is directed also
(A⊕ B) ∶ C ⊒ (A ∶ C)⊕ (B ∶ C) holds.

Proof. The first statement is proven analogously to Lemma 4.14, the only difference is that all
sequences are constant.
Let C be directed and letA ∈ A,B ∈ B andC0,C1, ∈ C. Consider the element (A↢ C0)⊕(B↢

C1). Now find some element C ∈ C such that C0 ⊕ C1 ↪n C. We use this n-embedding to show
that (A↢ C0)⊕ (B↢ C1)↪n (A⊕B)↢ C.

Lemma 4.16. If the classesA and B are directed, thenA⊕ B is directed.

Proof. Let A0 ⊕B0 and A1 ⊕B1 ∈ A ⊕ B. By assumption there exists A2 ∈ A and B2 ∈ B such
that A0 ⊕A1 ↪n A2 and B0 ⊕B1 ↪n B2 implying that A0 ⊕B0 ⊕A1 ⊕B1 ↪n A2 ⊕B2.

Lemma 4.17. If the classes C andD are directed, we have thatA∪B ⊑ C∪D impliesA⊕B ⊑ C⊕D.

Proof. A ∪ B ⊑ C ∪D and Lemma 4.16 imply

A⊕ B ⊑ (C ∪D)⊕ (C ∪D) ⊑ (C ⊕ C) ∪ (C ⊕D) ∪ (D ⊕D) ⊑ C ⊕D.

Lemma 4.18. If the class C is directed and we haveA ⊑ C and B ⊑ C thenA⊕ B ⊑ C holds.

Proof. A,B ⊑ C impliesA⊕ B ⊑ C ⊕ C ≡ C.

Corollary 4.19. LetA,B classes. For all directed classes C such thatA∪B ⊑ C ⊑ A⊕B it follows
that C ≡ A⊕ B.

Proof. The statement follows directly from Lemma 4.18.

Corollary 4.20. IfA∪B is directed we haveA ⊑ B or B ⊑ A and thusA∪B ≡ B orA∪B ≡ A.

Proof. By Corollary 4.19 we haveA⊕ B ≡ A ∪ B. Hence the claim follows by Lemma 4.10.

Definition 4.21.

1. A join-semilattice L is a partially ordered set, such that for every non-empty finite subset
there exists a least upper bound. If a and b are elements of L, we denote their supremum
(or join) by a ∨ b.

2. A join-semilattice L is distributive if the following holds: for all a, b, c ∈ L such that c ≤ a∨b
there exist elements a0, b0 ∈ L with a0 ≤ a and b0 ≤ b such that c = a0 ∨ b0.
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Theorem 4.22. The relation ⊑ defines the structure of a distributive join-semilattice with zero on
the ≡-equivalence classes of all structures.

Proof. The join of two classes is their union, (see Lemma 4.9). The empty class is the zero element
of this join. That ⊑ defines a partial ordering on its equivalence classes is obvious. It remains to
show distributivity: let A,B, C be classes such that C ⊑ A ∪ B. We divide the class C such that
C = CA ∪ CB with CA ⊑ A and CB ⊑ B, as in the proof of Lemma 4.11.
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5 Hierarchy of Classes of Trees with
Bounded Height

Nowwe have arrived at the hierarchy of classes of trees.The pattern for each statement will always
be the same: first we showA ⊑ B for some classesA,B which is mostly done by applying a lemma
of the fourth chapter. Then we want to have B /⊑ A since otherwise we would end up withA ≡ B
instead of a further step in the hierarchy. The hardest part of most of the proofs is to show that
the hierarchy is complete, i.e. there is no class C in betweenA ⊲ B, which is not ≡-equivalent to
A or B. This is done by a case distinction. We found two new classes in the process. As already
announced in the introduction, we will have a theorem at the end comprising all propositions of
the forthcoming chapter into one diagram.

Lemma 5.1. Φ ⊑ Ω.

Proof. For every ⟦m⟧ ∈ Φ we have that ⟦m⟧ ⊂ ⟦ω⟧. Hence we can apply Lemma 4.2.

Lemma 5.2. For every n < ω the following statements hold:

1. Φn ⊑ Φn+1.

2. Φn ⊑ Φn ∪Ω.

3. Φn ∪Ω ⊑ Φn+1 ∪Ω.

Proof.

1. 1 ⊑ Φ implies Φn = Φn ⋅ 1 ⊑ Φn ⋅Φ = Φn+1.

2. ∅ ⊑ Ω implies Φn ∪ ∅ ⊑ Φn ∪Ω.

3. By (1) Φn ⊑ Φn+1 implies Φn ∪Ω ⊑ Φn+1 ∪Ω.

Lemma 5.3. The classes Φn and Ωn are directed, for all n < ω.

Proof. Let A,B ∈ Φn. There exists m < ω such that every vertex in A or B has at most m
successors. Thus A,B ⊆ ⟦mn⟧ and hence A⊕B ⊆ ⟦(2m)n⟧ proves the claim

For Ωn the proof is even easier, since for all n < ω we have that ⟦ωn⟧⊕ ⟦ωn⟧ = ⟦ωn⟧.

Lemma 5.4. If a class C contains at least one infinite tree, then Ω ⊑ C.

Proof. Let C ∈ C be infinite. Since the root of C has infinitely many successors we can embed ⟦ω⟧
into C by mapping its root to the root of C.
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Corollary 5.5. The ⊑-minimal class of infinite structures is the class Ω.

Proof. The claim follows directly from Lemma 5.4.

Lemma 5.6. For n < ω we have Φn+1 /⊑ Ωn.

Proof. Assume Φn+1 ⊑ Ωn. Then there exists k < ω such that Φn+1 ≤k Ωn, hence for all m < ω
we have ⟦mn+1⟧ ↪k ⟦ωn⟧. For m = k, we find an l < ω such that ⟦kn+1⟧ ↪k ⟦ln⟧. We construct
a sequence v0, . . . , vn+1 of vertices of ⟦kn+1⟧ such that vi is mapped to a vertex of level at least i.
For i = n + 1, this leads to the desired contradiction.

We start with v0 = ●. For the inductive step, suppose that we have already defined v0, . . . , vi .
Let wi be the image of vi and let u0, . . . , uk−1 be the immediate successors of vi . By assumption
∣wi ∣ ≥ i. There are at most k − 1 successors u j that are mapped to wi . Hence, there is some j < k
such that u j is a proper successor of vi . In particular, ∣u j∣ ≥ i + 1. We set vi+1 ∶= u j.

Proposition 5.7. Φn ⊲ Φn+1.

Proof. We have Φn ⊑ Φn+1 from Lemma 5.2. The strictness follows directly by Lemma 5.6 which
implies Φn+1 /⊑ Φn.
Assume there exists a class C with Φn ⊑ C ⊑ Φn+1. If C contains an infinite element, we would

have by Lemma 5.4 that Ω ⊑ Φn+1 which is a contradiction. Hence all trees of C are finite and
Theorem 2.17 gives that C ≡ Φn or C ≡ Φn+1.

Proposition 5.8. If 1 ≤ n < ω then Φn ⊲ Φn ∪ Ω and Φn ⊏ C ⊑ Ωn for some class C implies
Φn ∪Ω ⊑ C ⊑ Ωn.

Proof. If C contains only finite trees, then Theorem 2.17 implies Φn+1 ⊑ C contradicting Lemma
5.6. Thus C contains an infinite element, so we have by Lemma 5.4 that Ω ⊑ C yielding the asser-
tion.

Proposition 5.9. For all n < ω it holds: Φn ∪Ω ⊲ Φn+1 ∪Ω.

Proof. The ⊑-relation is implied by Proposition 5.7. Strictness follows by Lemma 5.6.
Let C be a class with Φn ∪Ω ⊑ C ⊑ Φn+1 ∪Ω. Suppose that C ≤k Φn+1 ∪Ω and define

C∞ ∶= {A ∈ C ∣ A↪k ⟦ω⟧},
Cfin ∶= C ∖ C∞.

Then C∞ ≤k Ω and Cfin ≤k Φn+1. Furthermore, Ω ⊑ C implies that C contains an infinite tree.
This tree must be in C∞. Hence, C∞ ≠ ∅ and Ω ⊑ C∞. Furthermore Cfin ⊑ Φn+1 implies that Cfin
only contains finite trees. ByTheorem 2.17 it follows that Cfin ⊑ Φn or Cfin ≡ Φn+1. Consequently,
we have C = C∞ ∪ Cfin ⊑ Ω ∪Φn or C = C∞ ∪ Cfin ≡ Ω ∪Φn+1.

Theorem 5.10. We get for all n < ω the following hierarchy where the edges denote the ⊲-relation:
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(5.7) (5.8)

(5.8) (5.9)

Φn

Φn+1 Φn ∪ Ω

Φn+1 ∪ Ω

Proof. The hierarchy follows directly from the propositions the labels of the edges are referring
to.

Note that for n = 1 we have Φ ∪Ω ≡ Ω, which follows directly from Lemma 4.2.

Proposition 5.11. For any number n < ω the following holds: (Ω ⊕ Φn) ∪ Φn+1 ⊲ Ω ⊕ Φn+1.

Proof. Wehave (Ω⊕Φn)∪Φn+1 ⊑ Ω⊕Φn+1 sinceΦn ⊑ Φn+1 impliesΩ⊕Φn ⊑ Ω⊕Φn+1 and 1 ⊑ Ω
implies Φn+1 = 1 ⋅Φn+1 ⊑ Ω⊕Φn+1. For the strictness claim assume Ω⊕Φn+1 ⊑ (Ω⊕Φn)∪Φn+1.
Hence, Φn+1 ⊑ Ω ⊕ Φn+1 ⊑ Ω ⊕ Φn ⊑ Ωn in contradiction to Lemma 5.6.

Assume there is a class C with (Ω ⊕ Φn) ∪ Φn+1 ⊑ C ⊑ Ω ⊕ Φn+1. We divide C into its infinite
and finite parts: C = C∞ ⊔ Cfin. Since C∞ contains an infinite element we have by Corollary 5.4
that Ω ⊑ C∞.
Suppose that Cfin ≤l Ω ⊕Φn+1. For all C0 ∈ Cfin we have some A0 ∈ Ω ⊕Φn+1 with ψC0 ∶ C0 ↪l

A0. Obviously ψC0(C0) is finite and has height at most n + 1. Thus there is a vertex in ψC0(C0)

having a maximal number of successors, say mC0 < ω many. Hence we can l-embed C0 into
⟦mn

C0
⟧ and we get Cfin ⊑ Φn+1.

Now choose k < ω such that for all C ∈ C∞ there is a k-embedding φC ∶ C↪k ⟦ω⟧⊕A for some
A ∈ Φn+1. Set

D ∶= {DC ∣DC = φ−1C (A) for C ∈ C∞ and φC ∶ C↪k ⟦ω⟧⊕A}.

Then by definitionD contains only finite elements and we haveD ≤k Φn+1 and alsoD ≤1 C∞. We
distinguish two cases which is sufficient by Proposition 5.7:

D ≡ Φn+1 ∶ Then we haveΦn+1 ≤m C∞, for somem < ω. Since ⟦ω⟧↪1 C, for all C ∈ C∞, it follows
that Ω ⊕ Φn+1 ≤m+1 C..

D ⊑ Φn ∶ Then C∞ ⊑ Ω ⊕ Φn and further we have C∞ ⊑ (Ω ⊕ Φn) ∪ Φn+1. Together with
Cfin ⊑ Φn+1 we conclude that C ⊑ (Ω ⊕ Φn) ∪Φn+1.

Proposition 5.12. Ω ⊕ Φ2 ⊲ Ω ∶ Φ.

Proof. First we show that Ω ⊕ Φ2 ⊑ Ω ∶ Φ. Let ⟦ω⟧⊕A ∈ Ω ⊕ Φ2. Then there exists some m < ω
such that A ⊑ ⟦m2⟧. Since ⟦ω⟧⊕ ⟦m2⟧ ⊂ ⟦ω,m⟧ it follows that A↪1 ⟦ω⟧⊕ ⟦m2⟧↪1 ⟦ω,m⟧.

For the strictness claim, assumeΩ ∶Φ ≤n Ω⊕Φ2.Then for allm < ω there exists l < ω such that
⟦ω,m⟧↪n ⟦ω⟧⊕⟦l2⟧. The tree ⟦ω,m⟧ has infinitely many inner vertices, whereas ⟦ω⟧⊕⟦l2⟧ has
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only finitely, precisely l , inner vertices. If m > n we have the following situation: All but finitely
many inner vertices of ⟦ω,m⟧ are mapped to vertices of level 1 by an n-embedding. In particular
there is an inner vertex v that is mapped to a leaf x of level 1. Then all successors of v are also
mapped to x. Hence, the preimage of x contains at least m + 1 > n vertices. A contradiction.
Finally, suppose that there is a classΩ⊕Φ2 ⊑ C ⊑ Ω ∶Φ. For everyC ∈ C, we fix an n-embedding

hC ∶ C ↪n TC into some tree TC ∈ Ω ∶ Φ. We can choose hC such that it maps the root of C to
the root of TC. Furthermore, we can modify hC (by rearranging the vertices that are mapped to
vertices of level 1) such that it satisfies the following conditions:

(a) There are no vertices x , y ∈ C with x /≤ y and y /≤ x such that hC(x) = hC(y) and ∣hC(x)∣ = 1.

(b) For every vertex x ∈ C with ∣hC(x)∣ = 2, there is some y < x with ∣hC(y)∣ = 1.

Let SC ⊆ TC be the image of hC. We distinguish two cases:

1. First, suppose that there is some constant k < ω, such that every tree SC has only finitely
many vertices on level 1 with more than k successors. Then each SC can be (k + 1)-
embedded into some tree from Ω ⊕ Φ2. Hence, C ≤n {SC ∣ C ∈ C} ≤k+1 Ω ⊕ Φ2 implies
C ≤n(k+1) Ω ⊕ Φ2.

2. It remains to consider the case that, for every k < ω, there is some tree SC with infinitely
many vertices on level 1 with more than k successors. Let Tk = ⟦ω, k⟧ ∈ Ω ∶ Φ. We select
C ∈ C such thatSC has infinitelymany vertices v0, v1, . . . on level 1 with at least k successors.
For each n < ω, choose distinct successors un1, . . . , unk of vn. Let xn ∶= min{h−1C (vn)} and
choose vertices ynk ∈ h−1C (unk). By the choice of hC, we have xn ≤ ynk for all k. Hence,
the subtree of C consisting of the root and the vertices xn , yn1, . . . , ynk , for all n < ω, is
isomorphic to Tk . Therefore, Tk ↪1 C. It follows that Ω ∶Φ ≤1 C.

Before we prove the next ⊲-relation, we remind ourselves that Φ ∶Ω = Φ ⋅Ω, since Ω contains
only ⟦ω⟧. In such a case, we will always use the ∶-relation, i.e. Φ ∶Ω in this example.

Lemma 5.13. Let C be a class of trees. If, for every k < ω there exists Ck ∈ C with k distinct vertices
v1, . . . , vk having infinitely many successors, then Φ ∶Ω ⊑ C.

Proof. For each m < k it holds that ⟦m,ω⟧↪1 Ck and thus we have Φ ∶Ω ⊑ C.

Lemma 5.14. Let C be a class of trees with C ⊑ Φ ∶ Ω. If there is some k < ω such that every tree
C ∈ C has at most k vertices with infinitely many successors then C ⊑ Φ2 ⊕Ω.

Proof. Suppose that C ≤n Φ ∶ Ω and let C ∈ C. There is some m < ω such that C ↪n ⟦m,ω⟧. Let
S ⊆ ⟦m,ω⟧ be the image of this n-embedding. By assumption onC,S contains atmost k vertices
on level 1 with infinitely many successors. Let S∞ ⊆ S be the set of these vertices together with
their successors and the root. Then S∞ ↪k+1 ⟦ω⟧. Let Sfin ⊆ S be the tree consisting of all
vertices of S ∖S∞ and the root. Then Sfin is a finite tree of height at most 2. Hence, there is
some l < ω such that Sfin ⊆ ⟦l2⟧. It follows that

C↪n S↪k+1 ⟦ω⟧⊕ ⟦l2⟧.
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Lemma 5.15. Φ ∶Ω ⋢ Ω ⋅Φ.

Proof. Suppose that Φ ∶ Ω ≤n Ω ⋅ Φ. Then there exist numbers mi < ω, for i < ω, such that
⟦n,ω⟧ ↪n ⟦ω⟧ ← (⟦mi⟧)i<ω. There is at least one vertex v of level 1 that is not mapped to the
root by this n-embedding. Let u be its image. We obtain a contradiction since v has infinitely
many successors, while u has only finitely many.

Proposition 5.16. Ω ⊕ Φ2 ⊲ Φ ∶Ω.

Proof. Wefirst show thatΩ⊕Φ2 ⊑ Φ ∶Ω holds. Let ⟦ω⟧⊕A ∈ Ω⊕Φ2, then there existsm < ω such
that A ⊆ ⟦m2⟧. Now we observe that ⟦ω⟧⊕ ⟦m2⟧ ↪1 ⟦m + 1,ω⟧. Hence ⟦ω⟧⊕A ↪1 ⟦m + 1,ω⟧.
Strictness follows directly from Lemma 5.15 since Ω ⊕ Φ2 ⊑ Ω ⋅ Φ.

Now we assume that there is some class C with Ω⊕Φ2 ⊑ C ⊑ Φ ∶Ω. Suppose that C ≢ Φ ∶Ω. By
Lemma 5.13 it follows that there is some k < ω such that C does not contain a tree with k vertices
each having infinitely many successors. Hence, it follows by Lemma 5.14 that C ⊑ Ω ⊕ Φ2.

Proposition 5.17. Ω ∶Φ ⊲ Ω ∶Φ ∪Φ ∶Ω.

Proof. The ⊑-relation holds trivially by Lemma 4.2. For strictness assume thatΩ ∶Φ∪Φ ∶Ω ⊑ Ω ∶Φ.
Then, Φ ∶Ω ⊑ Ω ∶Φ ⊑ Ω ⋅Φ. This contradicts Lemma 5.15.

Now let C be a class with Ω ∶Φ ⊑ C ⊑ Ω ∶Φ ∪Φ ∶Ω. Distinguish two cases:

1. For all k < ω there is a tree Ck ∈ C with at least k distinct vertices having infinitely many
successors. By Lemma 5.13 we haveΦ ∶Ω ⊑ C. SinceΩ ∶Φ ⊑ C it follows thatΦ ∶Ω∪Ω ∶Φ ⊑ C.

2. There is a number k < ω such that all C ∈ C have at most k vertices with infinitely many
successors. Suppose that C ≤n Ω ∶ Φ ∪Φ ∶Ω. Let

C0 ∶= {A ∈ C ∣ A /↪n B for all B ∈ Ω ∶ Φ}.

Then C0 ≤n Φ ∶Ω and C∖C0 ≤n Ω ∶Φ. Then by Lemma 5.14 we see that C0 ⊑ Φ2⊕Ω ⊑ Ω ∶Φ.
Hence, C ⊑ Ω ∶Φ.

Proposition 5.18. Φ ∶Ω ⊲ Ω ∶Φ ∪Φ ∶Ω.

Proof. The ⊑-relation is obvious by Lemma 4.2. For its strictness, suppose Ω ∶ Φ ≤n Φ ∶ Ω. Then
for eachm < ω there exists k < ω such that ⟦ω,m⟧↪n ⟦k,ω⟧. Since ⟦k,ω⟧ has only finitely many
level 1 vertices, infinitely many vertices of ⟦ω,m⟧ in level 1 have to be mapped to level 2 vertices.
Their m successors have to be mapped to the same vertex, for m > n this is a contradiction.
Let C be a class with Φ ∶Ω ⊑ C ⊑ Ω ∶Φ ∪ Φ ∶Ω. Distinguish two cases:

1. For all k < ω there is a tree Ck ∈ C with infinitely many distinct vertices having at least k
successors. Then we have form < k that ⟦ω,m⟧↪1 Ck , and thus Ω ∶Φ ⊑ C. Since Φ ∶Ω ⊑ C
it follows that Φ ∶Ω ∪Ω ∶Φ ⊑ C.
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2. There is a number k < ω such that all C ∈ C have only finitely many vertices, say nC < ω,
with more than k successors. We can 1-embed the subtrees of those vertices into ⟦nC,ω⟧.
All other vertices have less than k successors, thus their subtrees can be (k + 1)-embedded
into ⟦ω⟧. Hence, C↪k+2 ⟦nC,ω⟧ and we have C ⊑ Φ ∶Ω.

Definition 5.19. A tree A contains a strictly increasing sequence (vn)n<ω, if there are distinct ver-
tices v1, v2, . . . such that for all i < ω the vertex vi has at least i successors.

Lemma 5.20. Let C be a class of trees. If there is someC ∈ C containing a strictly increasing sequence
(vn)n<ω then Ω ⋅Φ ≤1 C.

Proof. Let A ∈ Ω ⋅ Φ and enumerate its level 1 vertices w1,w2, . . .. Let ki be the number of suc-
cessors of wi . For each i, let li be the least index such that li ≥ ki and li > li−1. We can 1-embed
the subtree rooted at wi into the subtree rooted at vl i . In this way we obtain A ↪1 C implying
Ω ⋅ Φ ≤1 C.

Corollary 5.21. Let C be a class of trees. If for all C ∈ C all level 1 vertices have finitely many
successors, we have C ≤1 Ω ⋅ Φ.

Proof. Let C ∈ C and enumerate its level 1 vertices w1,w2, . . .. Let ki be the number of successors
of wi . Then C↪1 ⟦ω⟧← (⟦ki⟧)i<ω.

Lemma 5.22. For all k, n < ω,

⟦ω⟧← (⟦m⟧)m<ω /↪n ⟦ω, k⟧⊕ ⟦k,ω⟧.

Proof. Suppose that there exists an n-embedding ⟦ω⟧ ← (⟦m⟧)m<ω ↪n ⟦ω, k⟧ ⊕ ⟦k,ω⟧. Since
⟦ω, k⟧⊕⟦k,ω⟧ has infinitely many level 1 vertices, we can assume that level 1 vertices are mapped
to an equal level. Thus at most kn level 1 vertices aremapped into a subtree of ⟦k,ω⟧.The remain-
ing level 1 vertices are mapped to a vertex of ⟦ω, k⟧. Hence, all but finitely many of the subtrees
⟦m⟧ are mapped to copies of ⟦k⟧. This leads to a contradiction for m > nk.

Lemma 5.23. Let C ⊑ Ω ⋅Φ be a class such that, for every C ∈ C, there is a finite number nC < ω such
that every vertex of C has either infinitely many successors or at most nC successors. Then C ⊑ Ω ∶Φ.

Proof. Let C ∈ C and h ∶ C↪k ⟦ω⟧← (⟦mi⟧)i<ω be a k-embedding. We may assume that hmaps
vertices of level 1 to vertices of the same level, since there are infinitely many vertices at this level.
Let Cfin ⊆ C be the set of all vertices of C with at most nC successors and let C∞ be the set of all
vertices with infinitely many successors. Then C = Cfin ∪ C∞. Note that h(Cfin) is isomorphic to
a subforest of ⟦ω, nC⟧, while h(C∞) ⊆ ⟦ω⟧← (⟦mi⟧)i<ω implies that h maps every vertex of C∞
to the root. It follows that h(C) is isomorphic to a subtree of ⟦ω, nC⟧. Hence, C↪k ⟦ω, nC⟧.

Proposition 5.24. Ω ∶Φ ⊲ Ω ⋅Φ.

Proof. Lemma 4.2 implies Ω ∶Φ ⊑ Ω ⋅Φ. Strictness is implied by Lemma 5.22.
Let C be a class with Ω ∶Φ ⊑ C ⊑ Ω ⋅Φ. Distinguish the following cases:
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1. There is some C ∈ C containing a strictly increasing sequence (vn)n<ω. Then Lemma 5.20
implies Ω ⋅Φ ≤1 C.

2. For all C ∈ C there is some nC < ω such that every vertex has either less than nC or infinitely
many successors. Lemma 5.23 implies that C ⊑ Ω ∶Φ.

Proposition 5.25. Ω ⋅Φ ⊲ Ω ⋅Φ ∪Φ ∶Ω.

Proof. Since Ω ⋅ Φ ⊂ Ω ⋅ Φ ∪ Φ ∶ Ω, the ⊑-relation is trivially true. For its strictness, suppose
Ω ⋅Φ ∪Φ ∶Ω ⊑ Ω ⋅ Φ implying Φ ∶Ω ⊑ Ω ⋅ Φ, which is a contradiction to Lemma 5.15.
Now let C be a class such that Ω ⋅Φ ⊑ C ⊑ Ω ⋅ Φ ∪ Φ ∶Ω. Distinguish two cases:

1. For all k < ω there is a tree Ck ∈ C with at least k distinct vertices having infinitely many
successors. By Lemma 5.13 we haveΦ ∶Ω ⊑ C. SinceΩ ⋅Φ ⊑ C it follows thatΩ ⋅Φ∪Φ ∶Ω ⊑ C.

2. There is a number k < ω such that all C ∈ C have at most k vertices with infinitely many
successors. Suppose that C ≤n Ω ⋅ Φ ∪Φ ∶Ω. Let

C0 ∶= {A ∈ C ∣ A /↪n B for all B ∈ Ω ⋅ Φ}.

Then C0 ≤n Φ ∶Ω and C ∖ C0 ≤n Ω ⋅Φ.

By Lemma 5.14 we have C0 ⊑ Ω ⊕ Φ2 ⊑ Ω ⋅Φ. Hence, C ⊑ Ω ⋅Φ.

Proposition 5.26. Ω ∶Φ ∪Φ ∶Ω ⊲ Ω ⋅Φ ∪Φ ∶Ω.

Proof. The ⊑-relation follows directly from Proposition 5.24. For the strictness, assume Ω ⋅ Φ ∪
Φ ∶Ω ≤n Ω ∶Φ∪Φ ∶Ω implying directly Ω ⋅Φ ≤n Ω ∶Φ∪Φ ∶Ω. Let A ∶= ⟦ω⟧← (⟦m⟧)m<ω. From
Lemma 5.22 we know that for all k, n < ω we have A /↪n ⟦ω, k⟧. Thus there is a number m < ω
such that A↪n ⟦m,ω⟧. Since A has infinitely many level 1 vertices, almost all of them have to be
mapped to the leaves of ⟦m,ω⟧. Because the number of successors a vertex of level 1 has is not
bounded in A, we have a contradiction.
Let C be a class with Ω ∶Φ ∪Φ ∶Ω ⊑ C ≤n Ω ⋅ Φ ∪ Φ ∶Ω. Distinguish two cases:

1. C contains a tree with a strictly increasing sequence. By Lemma 5.20 we have Ω ⋅ Φ ⊑ C.
Hence Ω ∶Φ ∪Ω ⋅Φ ⊑ C.

2. C does not contain a tree with a strictly increasing sequence. Hence, for eachC ∈ C there is a
constant nC < ω such that all vertices have either less than nC or infinitely many successors.
We split the class C as follows:

C0 ∶= {C ∈ C ∣ C↪n ⟦m,ω⟧ for m < ω},
C1 ∶= C ∖ C0.

Then C0 ⊑ Φ ∶ Ω and C1 ⊑ Ω ⋅ Φ. Since Lemma 5.23 implies that C1 ⊑ Ω ∶ Φ, it follows that
C = C0 ∪ C1 ⊑ Φ ∶Ω ∪Ω ∶Φ.
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Lemma 5.27. Let C be a class with C ≤n Ω ∶ Φ ⊕ Φ ∶Ω. If there is a constant k < ω such that every
C ∈ C has at most one of the following properties, then C ⊑ Ω ∶ Φ ∪ Φ ∶Ω holds:

(a) There are infinitely many vertices having more than k successors.

(b) There are more than k vertices having infinitely many successors.

Proof. First we note, that for each C ∈ C there is some nC < ω such that nC vertices have infinitely
many successors. Otherwise both (a) and (b) would be fulfilled which is not permitted. Fix an
n-embedding h ∶ C↪n ⟦ω,m⟧⊕ ⟦m,ω⟧.
Suppose that C does not satisfy (b). Since there are at most k vertices with infinitely many

successors, we may assume that n ≥ k and that h maps these vertices to the root of ⟦ω,m⟧. Now
we show that there is a constant pC < ω such that all other vertices have at most pC successors.
This implies that C ↪n ⟦ω,m + pC⟧. Assume the contrary, i.e. for each l < ω there is a vertex
having at least l successors, but only finitelymany.Thus some strictly increasing sequence (vi)i<ω
would be included in C. By Lemma 5.22 only finitely many vertices vi can be mapped by h into
⟦ω,m⟧. Furthermore, h can only map vi to a vertex of ⟦m,ω⟧ of level 2 for i ≤ n. Hence, all vi
with i > n have to be mapped to a vertex of level at most 1. Since there are only finitely many such
vertices, we obtain a contradiction..

Finally, suppose that C does not satisfy (a), say C has only nC < ω vertices with more than k
successors. We split C as follows: C0 contains all vertices of C having more than k successors.
Then we have that h(C0) ↪1 ⟦nC,ω⟧ and thus C0 ↪n ⟦nC,ω⟧. Let C1 contain all remaining
vertices of C. Then it holds h(C1)↪k+1 ⟦ω⟧ which implies C1 ↪k+1 ⟦1,ω⟧. Altogether we get that
C↪n+k+1 ⟦nC + 1,ω⟧.

If we combine cases (a) and (b) we conclude that C ⊑ Ω ∶ Φ ∪ Φ ∶Ω.

Proposition 5.28. Ω ∶Φ ∪Φ ∶Ω ⊲ Ω ∶Φ ⊕ Φ ∶Ω.

Proof. We have Ω ∶ Φ ∪ Φ ∶ Ω ⊑ Ω ∶ Φ ⊕ Φ ∶ Ω by Lemma 4.8. Propositions 5.17 and 5.18 imply
Ω ∶Φ /⊑ Φ ∶Ω and Φ ∶Ω /⊑ Ω ∶Φ. Hence, strictness follows by Lemma 4.10.
Let C be a class with Ω ∶ Φ ∪Φ ∶Ω ≤n C ≤n Ω ∶Φ ⊕ Φ ∶Ω. Distinguish two cases:

1. For all k < ω there is some Ck ∈ C with at least k vertices having infinitely many successors
and infinitely many vertices having at least k successors. Then form < k we have ⟦ω,m⟧⊕
⟦m,ω⟧↪1 Ck and thus Ω ∶Φ ⊕ Φ ∶Ω ≤1 C.

2. There is a constant k < ω such that every C ∈ C has at most one of the following properties:

(a) There are infinitely many vertices having more than k successors.
(b) There are more than k vertices having infinitely many successors.

Lemma 5.27 implies directly C ⊑ Ω ∶Φ ∪Φ ∶Ω.

Lemma 5.29. Φ ∶Ω ⋢ Ω ⋅Φ
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Proof. Assume Φ ∶Ω ≤n Ω ⋅Φ. Then we have ⟦n+ 1,ω⟧↪n A for someA ∈ Ω ⋅Φ. All members of
Ω ⋅Φ have the property, that only the root has infinitely many successors. Since ⟦n+1,ω⟧ has n+1
level 1 vertices having infinitelymany successors, at least one of them, call it v0, cannot bemapped
to the root, thus it is mapped to a level 1 or 2 vertex. In both cases infinitely many successors of
v0 have to be mapped to the same vertex. A contradiction.

Proposition 5.30. Ω ⋅Φ ∪Φ ∶Ω ⊲ Ω ⋅ Φ ∪ (Ω ∶Φ ⊕ Φ ∶Ω).

Proof. The ⊑-relation follows immediately by Lemma 4.2. Ω ∶ Φ ⊕ Φ ∶ Ω ⋢ Φ ∶ Ω is implied by
Proposition 5.28 and Ω ∶Φ ⊕ Φ ∶Ω ⋢ Ω ⋅Φ is implied by Lemma 5.29.

Let C be a class with Ω ⋅Φ ∪Φ ∶Ω ≤n C ≤n Ω ⋅Φ ∪ (Ω ∶Φ ⊕ Φ ∶Ω). We divide C into:

C0 ∶= {C ∈ C ∣ C↪n A for some A ∈ Ω ⋅Φ},
C1 ∶= C ∖ C0.

Then C0 ⊑ Ω ⋅ Φ and C1 ⊑ Ω ∶ Φ ⊕ Φ ∶ Ω. Distinguish the following cases:

1. There is a constant k < ω such that every C ∈ C1 has at most one of the following properties:

(a) There are infinitely many vertices having more than k successors.
(b) There are more than k vertices having infinitely many successors.

Lemma 5.27 implies directly C1 ⊑ Ω ⋅Φ ∪Φ ∶Ω and thus we have C ⊑ Ω ⋅Φ ∪Φ ∶Ω.

2. For all k < ω there is some Ck ∈ C1 with at least k vertices having infinitely many successors
and infinitely many vertices having at least k successors. Then form < k we have ⟦ω,m⟧⊕
⟦m,ω⟧ ↪2 Ck and thus Ω ∶ Φ ⊕ Φ ∶ Ω ≤2 C1. Since by hypothesis Ω ⋅ Φ ⊑ C, we have
Ω ⋅Φ ∪ (Ω ∶ Φ ⊕ Φ ∶Ω) ⊑ C.

Proposition 5.31. Ω ⋅Φ ∪ (Ω ∶ Φ ⊕ Φ ∶Ω) ⊲ Ω ⋅ Φ ⊕ Φ ∶Ω.

Proof. The ⊑-relation follows immediately by Lemma 4.2. Strictness follows by Lemma 4.10.
Now let C be a class with Ω ⋅Φ ∪ (Ω ∶Φ ⊕ Φ ∶Ω) ⊑ C ⊑ Ω ⋅Φ ⊕ Φ ∶Ω. Distinguish two cases:

1. For each number k < ω there is Ck ∈ C with at least k vertices having infinitely many
successors and containing a strictly increasing sequence (vn)n<ω. LetA ∈ Ω ⋅Φ andm < ω.
A ⊕ ⟦m,ω⟧ is 2-embeddable into Ck for k > m since there are m vertices with infinitely
many successors in Ck and any sequence of vertices with finitely many successors can also
be 1-embedded as seen in Lemma 5.20. Thus we have Ω ⋅Φ ⊕ Φ ∶Ω ≤2 C.

2. There is some k < ω such that all elements C ∈ C that contain a strictly increasing sequence
have at most k vertices with infinitely many successors. Let C ∈ C and h ∶ C↪n A⊕ ⟦m,ω⟧
for somem < ω,A ∈ Ω ⋅Φ andS ∶= h(C). First, assume thatC contains a strictly increasing
sequence. By Corollary 5.21 there is some B ∈ Ω ⋅ Φ such that S ∩A ↪1 B. Furthermore,
we have S ∖A↪k ⟦ω⟧. Therefore, S↪k+1 B, which implies C↪n(k+1) B.

It remains to consider the case that C does not contain a strictly increasing sequence. Let
C∞ ⊆ C consist of those verticesmapped by h to ⟦m,ω⟧ and letCfin consist of those vertices
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that are mapped by h to A. Then C = Cfin ⊕ C∞. Furthermore, Cfin does not contain an
increasing sequence. Hence, there is a number l < ω such that every vertex of Cfin with
finitely many successors has at most l successors. It follows that h(Cfin) is isomorphic to a
subtree of ⟦ω, l⟧. Therefore, h(C) ↪1 ⟦ω, l⟧ ⊕ ⟦m,ω⟧, which implies that C ↪n ⟦ω, l⟧ ⊕
⟦m,ω⟧.

Proposition 5.32. Ω ∶ Φ ⊕ Φ ∶Ω ⊲ Ω ⋅Φ ∪ (Ω ∶ Φ ⊕ Φ ∶Ω).

Proof. The ⊑-relation follows from Lemma 4.2. Strictness is implied by Lemma 5.22.
Now let C be a class with Ω ∶Φ ⊕ Φ ∶Ω ≤n C ≤n Ω ⋅Φ ∪ (Ω ∶Φ ⊕ Φ ∶Ω). We split C into:

C0 ∶= {C ∈ C ∣ C↪n A for some A ∈ Ω ∶Φ ⊕ Φ ∶Ω},
C1 ∶= C ∖ C0.

Then C0 ⊑ Ω ∶ Φ ⊕ Φ ∶Ω and C1 ⊑ Ω ⋅Φ. Distinguish the following cases:

1. C1 contains a tree with a strictly increasing sequence. By Lemma 5.20 we have Ω ⋅ Φ ⊑ C1.
Hence Ω ⋅Φ ∪ (Ω ∶Φ ⊕ Φ ∶Ω) ⊑ C.

2. C1 does not contain a tree with a strictly increasing sequence. Hence, for each C ∈ C1 there
is a constant nC < ω such that all vertices have either less than nC or infinitely many suc-
cessors. Then Lemma 5.23 yields C1 ⊑ Ω ∶ Φ and thus C ⊑ Ω ∶ Φ ⊕ Φ ∶Ω.

Proposition 5.33. Ω ⋅Φ ⊕ Φ ∶Ω ⊲ Ω2.

Proof. The ⊑-relation follows immediately by Lemma 4.2. For the strictness property, suppose
Ω2 ≤n Ω ⋅ Φ ⊕ Φ ∶ Ω. Then there is m < ω and A ∈ Ω ⋅ Φ such that ⟦ω2⟧ ↪n A ⊕ ⟦m,ω⟧. Every
vertex of ⟦ω2⟧ of level 1 is mapped to a vertex with infinitely many successors. Since A⊕ ⟦m,ω⟧
has only finitely many such vertices, there are infinitely many level 1 vertices that are mapped to
the same vertex. A contradiction.
Now let C be a class such that Ω ⋅Φ ⊕ Φ ∶Ω ⊑ C ⊑ Ω2. Distinguish two cases:

1. There is some C ∈ C with infinitely many vertices having infinitely many successors. Then
we have ⟦ω2⟧↪1 C and thus Ω2 ≤1 C.

2. All elements C ∈ C have finitely many vertices, say nC < ω, having infinitely many suc-
cessors. Let C ∈ C and h ∶ C ↪n ⟦ω2⟧ and S ∶= h(C). By assumption: S is isomorphic
to a subtree of A ⊕ ⟦nC,ω⟧, for some A ∈ Ω ⋅ Φ. Hence, C ↪n A ⊕ ⟦nC,ω⟧. Therefore,
C ≤n Ω ⋅ Φ ⊕ Φ ∶Ω.

Nowwe can state themain theorem of this paper compressing the results of the current chapter
into a picture showing the lower end of the transduction hierarchy of the classes of trees.
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Theorem 5.34. We have the following hierarchy where the edges denote the ⊲-relation:

∅

{∅}

1

Φ

Φ2 Ω

Φ2 ∪ Ω

Ω ⊕ Φ2

Ω ∶ Φ Φ ∶ Ω

Ω ∶ Φ ∪ Φ ∶ ΩΩ ⋅ Φ

Ω ⋅ Φ ∪ Φ ∶ Ω Ω ∶ Φ ⊕ Φ ∶ Ω

Ω ⋅ Φ ∪ (Ω ∶ Φ ⊕ Φ ∶ Ω)

Ω ⋅ Φ ⊕ Φ ∶ Ω

Φ3

Φ3 ∪ Ω

Ω2

(5.7)

(5.7)

(5.7)

(5.8)

(5.8)

(5.8)

(5.9)

(5.9)

(5.11)

(5.12) (5.16)

(5.17) (5.18)
(5.24)

(5.25) (5.26)
(5.27)

(5.30)

(5.31)

(5.32)

(5.33)
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