
Department of Mathematics

Bachelorthesis

Linear Rank-Width and Interpretations

Claire Tabea Ott

June 13, 2016

Supervisor: Dr. Achim Blumensath

Second Supervisor: Prof. Martin Otto





Abstract In this paper we prove the theorem stating that a class G of finite graphs has

bounded linear rank-width if and only if there is an MSO interpretation τ and a class

I of coloured linear orders such that G = τ(I). For this proof we define linear rank-

and clique-width and show that they are bounded over the same classes of graphs. We

use compatible colourings and encodings to show the sufficiency of bounded linear rank-

width and MSO theories for its necessity.
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Introduction

There are several notions of graph-widths whose origin is closely related with the analysis

of graph algorithms.

Robertson and Seymour introduced path-width in the first article of their graph-minor

project in 1983 using path-decompositions of finite graphs [9]. They defined tree-width

in the project’s third article the following year using tree-decompositions, such that path-

width is the linearized variant of tree-width [10]. Courcelle and Engelfriet showed later

the equivalence of bounded tree-width and the existence of a guarded second-order inter-

pretation in a tree [4]. Since hierarchical decompositions of graphs are useful for defining

graphs with good algorithmic properties, Courcelle and Olariu introduced clique-width

to broaden the class of graphs for which for example NP complete problems have linear

complexity [6]. They used another form of graph-decomposition which builds a graph

using a defined set of operations. Oum and Seymour explored branch-width and its rela-

tion to clique-width and introduced rank-width in the process [8]. Linear rank-width was

first introduced by Ganian and is a linearized variant of the rank-width, like path-width

is of tree-width. It was introduced to obtain a class of graphs with better algorithmic

properties than the classes of bounded rank- or tree-width [7].

The central theorem of this thesis states that a class G of finite graphs has bounded

linear rank-width if and only if there is an MSO interpretation τ and a class I of coloured

linear orders such that G = τ(I). It is therefore analogue to the sentence of Courcelle

and Engelfriet.

The first chapter of this thesis introduces some basic notions of Monadic Second-

Order Logic and graphs. Here we will also define the used linear rank- and clique-width.

We will use linear clique-width for the following proof since it is equivalent to linear

rank-width with respect to boundedness.

6



7

The second chapter contains the proof of the main theorem. We will prove this the-

orem using compatible colourings and encodings of graphs for the sufficiency and MSO

theories for the necessity of bounded linear rank-width.



Chapter 1

Definitions

In this chapter we will introduce Monadic Second-Order Logic and MSO interpretations.

This chapter also deals with graphs and their orders. We will define linear rank- and

clique-width and prove that one is bounded if and only if the other one is.

1.1 Basic definitions

I will first recall some basic definitions.

Definition 1.1. The logic used in this thesis is Monadic Second-Order Logic (MSO). It

extends First-Order Logic by set quantifiers.

Definition 1.2. An MSO interpretation τ : Σ → Γ, is a mapping between structures of

relational signatures Σ and Γ. It is defined by a definition scheme 〈δ(x), (ϕR(x̄))R∈Γ〉.

Let A = 〈A,R1, . . . , Rn〉 be a Σ-structure. Then τ(A) := 〈δA, (ϕA
R)R∈Γ〉 is a Γ-

structure whose universe is defined by δA := {a ∈ A |A |= δ(a)} and whose relations

are ϕA
R := {ā |A |= ϕR(ā)}.

Definition 1.3. A graph G is a structure 〈V,E〉 whose universe V contains the vertices

and whose binary relation E ⊆ V × V defines the edges.

Definition 1.4. An ordered graph is a structure 〈V,E,≤〉, where V is the universe, E the

edge relation and ≤ a linear ordering on the vertices in V .

8



1.2. NOTIONS OF GRAPH-WIDTH 9

From here on, the symbol≤ will always denote a linear ordering. For two sets S1 and

S2 we define S1 ≤ S2 := (∀x ∈ S1)(∀y ∈ S2)[x ≤ y].

Definition 1.5. We define a partition of the graph G = 〈V,E〉 as two non-empty sets of

vertices X and Xc with X ∩Xc = ∅, X ∪Xc = V . A cut of an ordered graph 〈V,E,≤〉
is a partition which also satisfies X ≤ Xc.

We denote with x+ the cut of a given graph G with x as the biggest element of X ,

therefore the cut after x, and with x− the cut with x as the smallest element of Xc, hence

the cut before x.

The notation pre(x) (suc(x)) denotes the predecessor (successor) of x. So the follow-

ing are true:

(pre(x) = a)⇔ (a ≤ x ∧ a 6= x ∧ ∀z[a ≤ z ∧ z ≤ x→ (z = a ∨ z = x)]),

(suc(x) = a)⇔ (a ≥ x ∧ a 6= x ∧ ∀z[a ≥ z ∧ z ≥ x→ (z = a ∨ z = x)]).

x− x+

pre(x) x suc(x)

Figure 1.1: Cuts before and after x.

1.2 Notions of graph-width

In this section, we will introduce several definitions of linear rank- and clique-width and

their correlation. We only discuss finite graphs, so we only need linear rank-width for

finite graphs. The following definitions originate from [3] and [5].

Definition 1.6. A linear decomposition of a graph G is a linear order ≤ on V .

Definition 1.7. Let G be a graph. The adjacency matrix MG[X,Xc] of a partition

(X,Xc) is the mapping M : X ×Xc → {0, 1} defined as

M(x, y) :=

1 if (x, y) ∈ E

0 if (x, y) /∈ E
.
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Definition 1.8. For a graph G = 〈V,E〉, the rank-width of a cut (X,Xc) is defined as

rwd(G, X) := rk(MG[X,Xc]) where rk(M) is the rank of M .

The rank-width of a linear decomposition ≤ is

rwd(G,≤) = sup{rwd(G, X) | (X,Xc) is a cut of G with decomposition ≤}

and the linear rank-width of G is

lrwd(G) = min{rwd(G,≤) | ≤ is a decomposition of G}.

In the same way, we define the clique-width of a graph.

Definition 1.9. The clique-width cwd(G, X) of a graph G = 〈V,E〉 and a cut (X,Xc) is

the number of pairwise distinct rows of MG[X,Xc].

For the decomposition ≤ we define the clique-width as

cwd(G,≤) = sup{cwd(G, X), cwd(G, Xc) | (X,Xc) is a cut of G with decomposition ≤}.

The linear clique-width of G is then defined as

lcwd(G) = min{cwd(G,≤) | ≤ is a decomposition}.

Lemma 1.10. For every finite graph G = 〈V,E〉 we have lcwd(G) ≤ |V |.

Proof. This is clear, since the adjacency matrix cannot have more rows than vertices.

Lemma 1.11. For every finite graph G = 〈V,E〉 we have lrwd(G) ≤ lcwd(G) ≤
2lrwd(G).

Proof. First we show that lrwd(G) ≤ lcwd(G).

The rank of a matrix is defined as the number of linearly independent rows (or

columns). Since linearly independent rows are in particular distinct, rwd(G, X) ≤
cwd(G, X) holds for every cut (X,Xc) of G. Let≤ be a decomposition of G of minimal

cwd. It follows that lrwd(G) ≤ rwd(G,≤) ≤ cwd(G,≤) = lcwd(G).

Now we show that lcwd(G) ≤ 2lrwd(G).

Let (X,Xc) be a cut and S be the set of linearly independent rows of MG[X,Xc].

Hence, rwd(G, X) = |S|. The maximum number of pairwise distinct rows of M is the

number of linear combinations of elements of S. Since we are working in the field with
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two elements, there are at most 2|S| of them. Therefore cwd(G, X) ≤ 2rwd(G,X) holds

for every cut of any partition ≤ and so we have cwd(G,≤) ≤ 2rwd(G,≤). Let ≤ be a

decomposition of minimal rwd, then lcwd(G) ≤ cwd(G,≤) ≤ 2rwd(G,≤) = 2lrwd(G).

Corollary 1.12. The linear rank-width of a graph is finite if and only if its clique-width

is finite.

Corollary 1.13. For a graph G and a linear decomposition ≤ we have

rwd(G,≤) ≤ cwd(G,≤) ≤ 2rwd(G,≤).



Chapter 2

Linear rank-width and MSO
interpretations

This chapter deals with the relation between the linear rank-width of a graph and MSO

interpretations. The following lemmas and theorems discuss graphs of bounded linear

rank-width. Since we have shown that a graph’s linear rank-width is bounded if and only

if its linear clique-width is, we will use the more convenient linear clique-width for the

proof of the following theorem.

Theorem 2.1. Let G be a class of finite graphs. Then the following are equivalent:

1. G has bounded linear rank-width,

2. There is an MSO interpretation τ and a class I of coloured linear orders such that

G = τ(I).

2.1 MSO interpretations of graphs with bounded width

Before proving the sufficiency of bounded linear rank-width, we will introduce compati-

ble colourings and their encodings. A family of colourings (χC)C of a graph G = 〈V,E〉
assigns for every cut C a colour χC(v) ∈ [k] to each node v ∈ V .

Definition 2.2. Let G = 〈V,E〉 be a graph. A family (χC)C of colourings χC : V → [k]

for every cut C is compatible with a decomposition 〈V,≤〉 if for all cuts C = (X,Xc)

12



2.1. MSO INTERPRETATIONS OF GRAPHS WITH BOUNDED WIDTH 13

and D = (Y, Y c) with X ⊂ Y and all a, a′ ∈ X, b, b′ ∈ Xc

χC(a) = χC(a′) and χC(b) = χC(b′)⇒ (〈a, b〉 ∈ E ⇔ 〈a′, b′〉 ∈ E)

and

χC(a) = χC(a′)⇒ χD(a) = χD(a′)

and for b, b′ ∈ Y c

χD(b) = χD(b′)⇒ χC(b) = χC(b′).

C

a

0

a′

0

b

1

c

0

c′

0

d

1

Figure 2.1: a and a′ have the same colour 0, hence they have the same edges over C. The

same holds for c and c′.

Lemma 2.3. cwd(〈V,≤〉) ≤ k if and only if there exists a compatible family of colourings

(χC)C with k colours.

Proof. (⇒): Let cwd(〈V,≤〉) ≤ k and let C = (X,Xc) be a cut of V . Then the cor-

responding adjacency matrix M [C] has at most k different columns or rows. We now

number the different rows and columns by elements of [k] and let χC map a node x to

the number of its row or column. We can use the same colours for the rows and columns,

consequently χC is a colouring of the cut C using k colours. For a and a′ in X ∈ C and

b and b′ in Xc ∈ C we get

χC(a) = χC(a′) and χC(b) = χC(b′)

=⇒ the rows for a and a′ and the columns for b and b′ in M [C] are equal

=⇒ (〈a, b〉 ∈ E ⇔ 〈a′, b′〉 ∈ E).

For another cut D = (Y, Y c) wit X ⊂ Y we get

χC(a) = χC(a′) =⇒ the rows for a and a′ in M [C] are equal

=⇒ the rows for a and a′ in M [D] are equal

=⇒ χD(a) = χD(a′).
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The reverse holds for the columns of M and b, b′ ∈ Y c. Consequently (χC)C is a com-

patible colouring of G. Since we can use the same colours in different cuts, the number

of colours needed is the maximum number of colours used in one cut. Therefore a com-

patible colouring (χC)C with k colours exists whenever cwd(〈V,≤〉) ≤ k.

(⇐): Let (χC)C be a compatible colouring for 〈V,≤〉 with k colours and let C be

a cut. Nodes that are assigned the same colour by χC act in the same way with respect

to the edges across the cut. Therefore the corresponding rows/columns of the adjacency

matrix are the same. So, any adjacency matrix of the graph can have at most k different

rows/columns and k is an upper bound for cwd(〈V,≤〉).

Now we introduce a single colouring function η : V → Φ encoding a compatible

colouring (χC)C : V → [k]. This function η contains for every node v ∈ V information

about its own colour in the cuts v− and v+, changes of the other nodes’ colours from the

cut v− to v+ or v+ to v− and the set of connected colours over the cut v+.

Definition 2.4. Let (χC)C : V → [k] be a family of colourings. We define the encoding

η(x) = 〈c−, c+,
←−
h ,
−→
h , γ〉 where:

• c− := χx−(x) is the initial colouring of x in the cut left of x,

• c+ := χx+(x) is the initial colouring of x in the cut right of x,

• the colour-change function
−→
h is defined by

−→
h (χx−(y)) := χx+(y) for all y ≤ x,

• the colour-change function
←−
h is defined by

←−
h (χx+(z)) := χx−(z) for all x ≤ z,

• the binary relation γ ⊆ [k]× [k] defines the connected colours in the cut x+ defined

by γ := {〈χx+(y), χx+(z)〉 | 〈y, z〉 ∈ E, y ≤ x < z}.

For an encoding η and a vertex x we will denote the components of η(x) by

η(x) = 〈c−x , c+
x ,
←−
hx,
−→
hx, γx〉.

By the second condition in the definition of a compatible colouring it is possible to

find an encoding η for every compatible colouring (χC)C .

Definition 2.5. An encoding η is valid for a linear order 〈V,≤〉 if for every y, z ∈ V with

y < z it holds that the existence of an x with y ≤ x < z and

〈
−→
h x(
−→
h pre(x) . . . (

−→
h suc(y)(c

+
y ))),

←−
h suc(x) . . . (

←−
h pre(z)(c

−
z ))〉 ∈ γx
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implies the same holds for all x with y ≤ x < z.

Lemma 2.6. Let G = 〈V,E〉 be a graph and (χC)C a compatible colouring of G. The

encoding η of (χC)C is valid.

Proof. Let y, x, z ∈ V with y ≤ x < z and

〈
−→
h x(
−→
h pre(x) . . . (

−→
h suc(y)(c

+
y ))),

←−
h suc(x) . . . (

←−
h pre(z)(c

−
z ))〉 ∈ γx.

For v ∈ V with y ≤ v < z we have

〈
−→
h x(
−→
h pre(x) . . . (

−→
h suc(y)(c

+
y ))),

←−
h suc(x) . . . (

←−
h pre(z)(c

−
z ))〉 ∈ γx

=⇒ 〈χx+(y), χx+(z)〉 ∈ γx
=⇒ 〈y, z〉 ∈ E

=⇒ 〈χv+(y), χv+(z)〉 ∈ γv
=⇒ 〈

−→
h v(
−→
h pre(v) . . . (

−→
h suc(y)(c

+
y ))),

←−
h suc(v) . . . (

←−
h pre(z)(c

−
z ))〉 ∈ γv.

So η is valid.

It is also possible to derive a compatible colouring from a valid encoding.

Lemma 2.7. Let I = 〈V,≤〉 be a linear order. For every valid encoding η there exist an

edge relation E and a compatible family (χC)C of colourings for 〈V,E,≤〉 such that η is

an encoding of (χC)C .

Proof. Let η be a valid encoding. Suppose that η(x) = 〈c−x , c+
x ,
←−
hx,
−→
hx, γx〉.

We define (χC)C as follows. Let χx+(x) := c+
x and χx−(x) := c−x . For y < x we

define

χx+(y) :=
−→
h x(
−→
h pre(x) . . . (

−→
h suc(y)(c

+
y )))

and for x < z

χx−(z) :=
←−
h x(
←−
h suc(x) . . . (

←−
h pre(z)(c

−
z ))).

In this manner we can construct a colouring χC for every cut C. Finally, we set

E := {〈y, z〉 ∈ V × V | y < z and 〈χx+(y), χx+(z)〉 ∈ γx for some y ≤ x < z}.

We will now show that (χC)C is compatible.
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Let x, a, a′, b, b′ ∈ V with a, a′ ≤ x < b, b′, satisfying χx+(a) = χx+(a′) and

χx+(b) = χx+(b′). Then

〈a, b〉 ∈ E

=⇒ ∃a ≤ z < b s.t. 〈χz+(a), χz+(b)〉 ∈ γz
η is valid
=⇒ 〈χx+(a), χx+(b)〉 ∈ γx
=⇒ 〈χx+(a′), χx+(b′)〉 ∈ γx
=⇒ 〈a′, b′〉 ∈ E.

Let a, a′ ≤ x < y ∈ V , then

χx+(a) = χx+(a′)

=⇒ χy+(a) =
−→
h y(
−→
h pre(y) . . . (

−→
h suc(x)(χx+(a))))

=
−→
h y(
−→
h pre(y) . . . (

−→
h suc(x)(χx+(a′)))) = χy+(a′).

The same holds for a, a′ ≥ x > y ∈ V . Ergo (χC)C is compatible.

y+ x−

x− x+

x+ z−

y

c+
y

a x b z

←−
h x(
←−
h b(c

−
z ))

y

−→
h a(c

+
y )

a x b z

←−
h b(c

−
z )

y

−→
h x(
−→
h a(c

+
y ))

a x b z

c−z

Figure 2.2: The downward and upward colourchanges of y and z.

Now we can use a compatible colouring and its encoding to find an interpretation τ

yielding the graph G.

Lemma 2.8. There exists an interpretation τ such that if (χC)C is compatible with

〈V,E,≤〉 and η : V → Φ encodes (χC)C , then τ(〈V,≤, η〉) = G.
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Proof. We will first introduce some MSO formulae.

ϕ<d (x, y) determines for x < y whether the colour χx+(y) of y in the cut x+ is d. The

formula states that there are sets Zc for each colour c such that Zc contains exactly the

nodes v such that y has colour c in the cut v+.

ϕ<d (x, y) := ∃(Zc)c∈[k]

[∧
c 6=d

Zc∩Zd = ∅∧Zc−y (pre(y))∧∀z.
∧
c∈[k]

(Zcz → Z←−
hz(c)

(pre(z)))∧Zdx
]

ϕ>d (x, y) determines in a similar way for x > y whether the colour χx−(y) of y in the cut

before x is d.

ϕ>d (x, y) := ∃(Zc)c∈[k]

[∧
c 6=d

Zc∩Zd = ∅∧Zc+y (suc(y))∧∀z.
∧
c∈[k]

(Zcz → Z−→
hz(c)

(suc(z)))∧Zdx
]

x

←−
h suc(x)(

←−
h pre(y)(c

−
y )) = d

suc(x)

←−
h pre(y)(c

−
y )

pre(y)

c−y

y

Figure 2.3: Every node v is assigned the colour of y in the cut v+.

ψ(x, y) is a formula stating whether or not x and y are connected by an edge, that is

〈x, y〉 ∈ E.

ψ(x, y) :=
∨

〈c,d〉∈γx+

[x < y ∧ c+
x = c ∧ ϕ<d (x, y)] ∨

∨
〈c,d〉∈γx−

[x > y ∧ c−x = d ∧ ϕ>c (x, y)].

We will now give the interpretation τ and show that τ(〈V,≤, η〉) = G. Let I =

〈V,≤, η〉 and G = 〈V,E〉. We define δ(V ) := true. Hence the universe is δI := {v ∈
V | I |= δ(v)} = V . And we define ϕE(x, y) := ψ(x, y) where ψ(x, y) is defined as

above. As a result ϕI
E := {〈x, y〉 | 〈x, y〉 ∈ E}. Since η encodes a compatible colouring

(χC)C of G, the set of edges defined by ϕI
E is the set of edges E of G and therefore

τ(〈V,≤, η〉) = G.

Now we can prove that bounded linear rank-width is sufficient for the existence of an

interpretation.

Proof. Let G be a class of finite graphs with lrwd(G) ≤ k for every G ∈ G. Let τ

be the interpretation from Lemma 2.5. There is a linear order ≤ for every G such that

rwd(G,≤) ≤ k and in consequence cwd(G,≤) ≤ 2k. With Lemma 2.4 follows the
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existence of a compatible colouring (χC)C of V with 2k colours. Let η be an encoding

of (χC)C . Let I denote the class of these coloured linear orders. Then τ(〈V,≤, η〉) = G,

for every G ∈ G and thus G = τ(I).

2.2 MSO interpretation implies finite linear rank-width

For proving the second direction of the theorem, we will use MSO theories. First we will

recall some standard definitions and facts which can also be reviewed in eg. [1].

Definition 2.9. The m-theory of a Σ-structure A is the set

Thm(A) := {ϕ(χ) | qr(ϕ) ≤ m,A |= ϕ}

of all formulae of quantifier rank qr(ϕ) at most m satisfied by A.

Two Σ-structures A and B are called m-equivalent if they have the same m-theory:

A ≡m B⇔ Thm(A) = Thm(B).

We need to prove some properties of m-theories before using them as a compatible

colouring. The following two lemmas and their proofs are taken from [1].

Lemma 2.10. Let Σ be a finite signature and m < ∞. Up to logical equivalence, there

are only finitely many m-theories over the signature Σ.

Proof. First we will use induction to prove that up to logical equivalence there are only

finitely many Σ-formulae of quantifier rank m with k parameters.

Start: m = 0

For m = 0 a formula is quantifier-free and can be written in disjunctive normal

form. There are only finitely many atomic formulae and negated atomic formulae using

k parameters, because Σ is finite, and thus the number of possible conjunctions of these

is finite up to logical equivalence. It follows that there are only finitely many disjunctions

of these conjunctions and so the number of formulae in disjunctive normal form is finite.

Step: m > 0

Hypothesis: The number of formulae with quantifier rank smaller than m is finite.

Every formula of quantifier-rank at most m consists of boolean combinations of atomic
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formulae and formulae of the form ∃xψ or ∃Xψ, where ψ has quantifier-rank smaller than

m. With the induction hypothesis, the number of such formulae is finite and therefore the

number of possible disjunctive normal forms of the boolean combinations is finite, too.

Every Σ-theory of quantifier rank m with k parameters is a subset of the set S of Σ-

formulae of quantifier rankmwith k parameters. Since |S| <∞, there are only 2|S| <∞
possible pairwise distinct subsets, and consequently different Σ-theories.

Definition 2.11. Let A = 〈A,≤A〉 and B = 〈B,≤B〉 be orders. Their ordered sum

is A ⊕ B := 〈A t B,≤A⊕B〉 with x ≤A⊕B y if and only if (x, y ∈ A, x ≤A y) or

(x, y ∈ B, x ≤B y) or (x ∈ A, y ∈ B).

Lemma 2.12. For orders A = 〈A,≤A〉, A′ = 〈A′,≤A′〉, B = 〈B,≤B〉 and B′ =

〈B′,≤B′〉 the following holds:

A, ā ≡m A′, ā′ and B, b̄ ≡m B′, b̄′ =⇒ A⊕B, āb̄ ≡m A′ ⊕B′, ā′b̄′.

Proof. We will use induction over m.

Start: m = 0

Every quantifier-free formula is a boolean combination of atomic formulae. By sym-

metry, it is sufficient to prove that

A⊕B |= ϕ(ā, b̄) implies A′ ⊕B′ |= ϕ(ā′, b̄′),

for every atomic formula ϕ(x̄, ȳ).

Let ϕ = x ≤ y and A ⊕B |= ϕ(c, d), then either c = ai, d = aj and A |= ai ≤ aj ,

c = bi, d = bj and B |= bi ≤ bj or c = ai, d = bj holds. In the first case we have

A |= ai ≤ aj with A, ā ≡0 A
′, ā′

=⇒ A′ |= a′i ≤ a′j

=⇒ A′ ⊕B′ |= a′i ≤ a′j

=⇒ A′ ⊕B′ |= ϕ(ā′, b̄′).

The second case can be shown in the same way. For c = ai, d = bj we trivially have

A′ ⊕B′ |= a′i ≤ b′j.



20 CHAPTER 2. LINEAR RANK-WIDTH AND MSO INTERPRETATIONS

Step: m > 0

Hypothesis: The claim holds for formulae of quantifier rank smaller m.

Suppose A, ā ≡m A′, ā′ and B, b̄ ≡m B′, b̄′. We want to show that A ⊕ B, āb̄ ≡m
A′ ⊕B′, ā′b̄′. It is sufficient to prove that for every parameter c (first-order or monadic

second-order) of A⊕B, there is a parameter c′ of A′⊕B′ such that A⊕B, āb̄c ≡m−1 A
′⊕

B′, ā′b̄′c′. If c is a first-order parameter we may assume by symmetry that c ∈ A. Since

A, ā ≡m A′, ā′, we can find a c′ ∈ A′ with A, āc ≡m−1 A
′, ā′c′. Since B, b̄ ≡m−1 B

′, b̄′ it

follows by induction hypothesis that A⊕B, āb̄c ≡m−1 A
′ ⊕B′, ā′b̄′c′.

If c is a set parameter, we will split c into its A and B components. We can find

parameters c′ ⊆ A′ and d′ ⊆ B′ such that

A, āc|A ≡m−1 A
′, ā′c′,

B, b̄c|B ≡m−1 B
′, b̄′d′.

With the induction hypothesis we get

A⊕B, āb̄c ≡m−1 A
′ ⊕B′, ā′b̄′(c′ ∪ d′).

Therefore A⊕B, āb̄ ≡m A′ ⊕B′, ā′b̄′ holds.

We will use m-theories to define a colouring (χC)C for a graph G = τ(I).

Lemma 2.13. Let τ = 〈δ(x), ϕE(x, y)〉 be an MSO interpretation where ϕE has quan-

tifier rank m. The colouring (χC)C for C := (X,Xc), x ∈ X and y ∈ Xc where

χC(x) := Thm(I|X , x) and χC(y) := Thm(I|Xc , y) is a compatible colouring for the

graph G = τ(I).

Proof. Let C = (X,Xc), x, x′ ∈ X and y, y′ ∈ Xc. Then the following holds:

χC(x) = χC(x′), χC(y) = χC(y′)

=⇒ I|X , x ≡m I|X , x′ and I|Xc , y ≡m I|Xc , y′

=⇒ I|X ⊕ I|Xc , xy ≡m I|X ⊕ I|Xc , x′y′

=⇒ I |= ϕE(x, y)⇔ I |= ϕE(x′, y′)

=⇒ 〈x, y〉 ∈ E ⇔ 〈x′, y′〉 ∈ E
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Let D = (Y, Y c) be a cut with X ⊂ Y , then

χC(x) = χC(x′)

=⇒ I|X , x ≡m I|X , x′

=⇒ I|X ⊕ I|Y \X , x ≡m I|X ⊕ I|Y \X , x′

=⇒ I|Y , x ≡m I|Y , x′

=⇒ χD(x) = χD(x′).

In the same way we can show χC(y) = χC(y′) ⇒ χD(y) = χD(y′) for Y ⊂ X . Hence

(χC)C is a compatible colouring.

We can use these lemmas to prove the necessity of finite linear rank-width in Theorem

2.1.

Proof. Let I be a class of coloured linear orders and τ = 〈δ(x), ϕE(x, y)〉 an MSO in-

terpretation such that G = τ(I). For each graph G ∈ G we define a compatible colouring

(χC)C as shown in Lemma 2.13. So every colour of (χC)C is an MSO theory of quan-

tifier rank m with one parameter. Since G has a finite signature, by Lemma 2.10, there

are only finitely many such theories. It follows that there is a k ∈ N such that the com-

patible family of colourings (χC)C of every graph G ∈ G has at most k colours and by

Lemma 2.3 every graph G ∈ G has cwd(〈V,≤〉) ≤ k. Therefore G has bounded linear

rank-width.



Conclusion

We proved the central theorem of this thesis which states that a class G of finite graphs has

bounded linear rank-width if and only if there is an MSO interpretation τ and a class I
of coloured linear orders such that G = τ(I). For the actual proof, we used linear clique-

width instead of linear rank-width, since they are equivalent concerning boundedness.

We defined compatible colourings of graphs and their encodings and linked their ex-

istence with finite linear clique-width. We used the encoding η to define an interpretation

τ of a given class of graphs and showed the sufficiency of finite linear rank-width.

We introduced m-theories and some of their properties including the boundedness of

their quantity if m <∞. We then showed the necessity of finite linear rank-width, using

m-theories to define a compatible colouring.
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