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Chapter 1IntrodutionStarting with the famous haraterisation of Nptime by Fagin in 1974, �nitemodel theory has grown into a �eld of its own with many appliations to om-puter siene, espeially in omplexity theory where it turned out that thereis a lose orrespondene between omplexity lasses and ertain logis. Butalso the investigation of query languages in database theory and the design ofmodel-heking algorithms for automati veri�ation was strongly inuened by�nite model theory.In reent years the need of a theory overing not only �nite but also in�-nite strutures beame apparent in those �elds. For instane, urrently model-heking of systems with in�nite state spae an be performed only in some veryrestrited ases whih do not over most real-world problems. Another exampleare geometrial databases where|for operations like intersetion|it is moreonvenient to treat geometri shapes as (in�nite) sets of points instead of usingparametrised basi shapes.Of ourse, only restrited lasses of strutures are meaningful for suh anapproah. In order to be able to proess an in�nite struture by algorithmimeans it must possess a �nite enoding, and the operations being performedmust be reursive.In this thesis we will investigate several lasses of possibly in�nite struturesmeeting those requirements. The general idea is to use �nite automata to presenta given struture. Eah element of the struture is enoded by one or severalwords. The language of all valid enodings is required to be regular, and foreah relation, inluding equality, an automaton is onstruted whih aepts atuple of words i� the orresponding tuple of elements is in the relation. Insteadof normal �nite automata one an also use automata over !-words, trees, et.,leading to several di�erent lasses of automati strutures. In eah ase, suhstrutures an be enoded by a list of automata and proessed using well-knownautomata onstrutions|whih, in partiular, inlude boolean operations andprojetion so that we are able to evaluate �rst-order formulae.These onepts were introdued by Cannon and Thurston [ECH+92℄ in grouptheory|where they, e.g., solved word problems using automata|, and subse-quently generalised to arbitrary strutures by Khoussainov and Nerode [KN95℄.This thesis will extend the results of the later fousing on model theoreti issues.Automati groups will hardly be mentioned.One fundamental result is that eah of the investigated lasses ontains a1



2 1. Introdutionomplete struture, i.e., a struture C suh that any struture A is a member ofthe given lass if and only if there is an interpretation of A in C.The outline of this thesis is as follows. We start in Chapter 3 with the de�-nition of automati presentations using languages of, respetively, �nite words,!-words, trees, and !-trees. We prove some of their basi properties suh aslosure under �rst-order interpretations, and study deidability and omplex-ity of queries on automati strutures. We show that �rst-order queries aree�etively omputable and that their results are again automati, while slightlystronger logis already beome undeidable, and we present some restritedases in whih the omplexity is aeptable.The fundamental haraterisation of automati strutures in terms of �rst-order interpretations whih makes many methods from logi available to us isgiven in the following hapter. For eah lass we present a struture C suhthat some struture A belongs to the lass if and only if there is a �rst-orderinterpretation of A in C.In Chapter 5 we take a loser look at the lasses of strutures de�ned so far,determine their hierarhy, and investigate the losure under Feferman-Vaughtlike produts. In order to prove that some struture is not automati we developmethods based on the alulation of bounds on the length of the enoding ofelements.Chapter 6 is devoted to purely logial questions. It is shown that the Com-patness Theorem fails if the lass of models is restrited to automati ones,and an axiomatisation is given for the struture (N;+; jp) whih plays an im-portant role for the haraterisation of automati strutures. We also onstruta non-standard model of this axiom system.In the �nal hapters we onsider restrited types of presentations. Chap-ter 7 deals with the ase of presentations over a unary alphabet whih yieldsan interesting sublass of automati strutures with many pleasant theoretialproperties and omplexity results whih are low enough for pratial applia-tions.The last hapter investigates another way to enode the input whih turnsout to yield a muh weaker lass, and the restrition to star-free and loallythreshold testable languages.I would like to thank Erih Gr�adel for his guidane while I wrote this thesis,and Eri Rosen for his valuable omments.



Chapter 2Formal Languages andLogi2.1 Formal LanguagesRegular languages. We assume that the reader is familiar with the funda-mental notions of formal language theory. For an introdution see [HU79, Eil74,RS97℄, readers with a bakground in logi are referred to [EF95, Chapter 5℄.An overview of !-languages is given in [Tho90℄. We use the following onven-tions regarding automata. A �nite automaton is a tuple A = (Q;�;�; q0; F )with set of states Q, input alphabet �, initial state q0, set of �nal states F ,and transition relation � � Q � � � Q. A �nite !-automaton is a tupleA = (Q;�;�; q0;F ) with set of states Q, input alphabet �, initial state q0,transition relation� � Q���Q, and Muller aeptane onditionF �P(Q),where some !-word is aepted i� the set of states appearing in�nitely often insome run is a member of F . We all an automaton deterministi i� for everyq 2 Q and a 2 � there is at most one q0 2 Q suh that (q; a; q0) 2 �.For L;W � �� we denote the left- and right-quotient byW�1L := fx j 9y 2 W : yx 2 L g;LW�1 := fx j 9y 2 W : xy 2 L g:De�nition 2.1. Let L � ��. The Nerode-ongruene �L is de�ned byx �L y : i� x�1L = y�1L:Clearly, �L is a right-ongruene, i.e., x �L y =) xz �L yz. By the Myhill-Nerode Theorem, �L is of �nite index if and only if L is regular. In this ase theindex is equal to the number of states of the minimal deterministi automatonfor L.Reall that the lass of regular languages is losed under(i) boolean operations: union, intersetion, and omplement,(ii) onatenation and star,(iii) homomorphisms and inverse homomorphisms, and(iv) left- and right-quotients. 3



4 2. Formal Languages and LogiAn important tool to show non-regularity whih will frequently be used inthe following is thePumping Lemma. Let L � �� be regular. There exists a onstant m suhthat for all words uvw 2 �� with jvj � m there exists a fatorisation v0v1v2of v with v1 6= " suh thatuvw 2 L i� uv0vk1v2w 2 L for all k 2 N:When investigating !-languages one frequently uses topologial tehniques.�! is equipped with the produt topology where � is taken as disrete spae.In this topology open sets are of the form W�! for some W � ��. All regular!-languages are ontained in B(GÆ), the boolean losure of the seond level ofthe Borel hierarhy, i.e., every regular language an be written as a booleanombination of ountable intersetions TiWi�! with W0;W1; : : : � ��.De�nition 2.2. Let � be a �nite alphabet and �x a linear ordering < of �.The lexiographi ordering �l and the alphabeti ordering �a indued by < arede�ned asx �l y : i� y = xy0; or x = zax0 and y = zby0 for somez; x0; y0 2 ��; and a; b 2 � with a < b;and x �a y : i� jxj < jyj or jxj = jyj and x �l y:Convolution. The operation of onvolution plays a entral role in the follow-ing. Ordinary �nite automata take single words as their input. When repre-senting relations of arity greater than one by automata one needs a model withseveral inputs. In order to avoid having to de�ne a new type of automaton weintrodue an operation whih enodes several words into one word in suh a waythat the automaton reading the new word has aess to the original ones.De�nition 2.3. Let � be a �nite alphabet with � =2 �. The onvolution ofx0; : : : ; xn�1 2 �� with xi = xi0 � � �xili is de�ned asx0 
 � � � 
 xn�1 := 24 x000...x0(n�1)0 35 : : :24 x00l...x0(n�1)l 35 2 (� �[ f�g)nwherex0ij := (xij if j � li;� otherwise; l := maxfl1; : : : ; lng:For L; L0 � �� we de�neL
 L0 := fx
 y j x 2 L; y 2 L0 g;L
n := L
 � � � 
 L (n times):Remark. Regular languages are losed under onvolution.For notational onveniene we introdue the following funtions to translatebetween produt and onvolution. Let R � (��)n and L � (��)
n.fold(R) := fx0 
 � � � 
 xn�1 j (x0; : : : ; xn�1) 2 R g;unfold(L) := f (x0; : : : ; xn�1) j x0 
 � � � 
 xn�1 2 L g:



2.1. Formal Languages 5Trees. We reall some basi de�nitions regarding tree languages (see [GS97℄,[Tho90℄).De�nition 2.4. Let � be a �nite alphabet. A �nite binary tree over � is amapping t : dom(t) ! � where dom(t) � f0; 1g� is �nite and satis�es thefollowing losure ondition: wi 2 dom(t) for some w 2 f0; 1g� and i 2 f0; 1gimplies w 2 dom(t) and wj 2 dom(t) for all j < i.A binary !-tree over � is a mapping t : dom(t)! � with dom(t) = f0; 1g�.The set of all �nite trees is denoted by T� , the set of all !-trees by T!� .To avoid umbersome de�nitions we use the following notation in this se-tion. Let t 2 T�. By ta we denote the !-tree de�ned asta(x) := (t(x) if x 2 dom(t);a otherwise:The notion of onvolution readily generalises to trees.De�nition 2.5. The onvolution of �nite or in�nite trees t0; : : : ; tn�1 over �is de�ned as(t0 
 � � � 
 tn�1)(x) := ((t0)�(x); : : : ; (tn�1)�(x)) 2 T(�[f�g)nwhere dom(t0 
 � � � 
 tn�1) := dom(t0) [ � � � [ dom(tn�1).A (bottom-up) tree automaton is a tuple A = (Q;�;�; F ) with set ofstates Q, input alphabet �, set of �nal states F , and transition relation� � Q�� � (Q [ f�g)� (Q [ f�g):A run of A on some input tree t 2 T� is a tree % 2 TQ satisfying the followingonditions:(i) dom(t) = dom(%),(ii) %(") 2 F , and(iii) (%(x); t(x); %�(x0); %�(x1)) 2 � for all x 2 dom(t).A (top-down) !-tree automaton is a tuple A = (Q;�;�;Q0;F ) with set ofstates Q, input alphabet �, set of initial states Q0, Muller aeptane ondi-tion F , and transition relation � � Q���Q�Q. A run of A on some inputtree t 2 T!� is a tree % 2 T!Q satisfying the following onditions:(i) %(") 2 Q0,(ii) eah path through % satis�es the Muller-ondition F , and(iii) (%(x); t(x); %(x0); %(x1)) 2 � for all x 2 dom(t).The tree language T (A) reognised by some (!-)tree automaton A is the setof trees, respetively !-trees t for whih there is a run of A on t.



6 2. Formal Languages and Logi2.2 LogiFor an introdution to mathematial logi, see for example [EFT94℄. We reallsome basi notions.A signature � is a set of relation and funtion symbols eah of whih isequipped with an arity. Constants are regarded as funtions of arity 0. FO[� ℄is the set of all �rst-order formulae using only relation and funtions symbolsfrom � (and equality). A �-struture A = (A;RA0 ; : : : ; fA0 ; : : : ) onsists of aset A, alled the universe of A, and of one relation RA for eah relation symbol Rin � and one funtion fA for eah funtion symbol f in � . For '(x) 2 FO wede�ne'A := f a 2 Ar j A j= '(a) g:First-order formulae are lassi�ed aording to their quanti�er-pre�x. Thelass �k ontains all formulae whose prenex normal form has k alternations be-tween existential and universal quanti�ers and starts with an existential quanti-�er. Similarly, the prenex normal form of an �k-formula begins with a universalquanti�er, and �k denotes the lass �k \ �k.Besides FO[� ℄ we onsider several other logis in the following (see [EF95℄).MSO and SO are monadi seond-order and seond-order logi whih permitquanti�ation over sets and relations of arbitrary arity, respetively. FO(9!)extends FO by the quanti�er \there are in�nitely many," whereas FO(DTC)introdues the deterministi transitive losure operator DTC.Let A be a struture and � an assignment, i.e., a mapping of variables toelements of A. We de�ne for ' 2 FO(DTC)(A; �) j= [DTCx;y '(x; y; z)℄(a; b)i� there are 0; : : : ; n with n � 1 suh that 0 = a, n = b and, for all i < n,i+1 is the unique tuple with�A; �[x=i; y=i+1℄� j= ':Finally, FO(#) is the extension of �rst-order logi by variables of a seondsort ranging over ardinal numbers up the the ardinality of the universe andthe ardinality operator # whih is de�ned as�#x'(x)�(A;�) := ��� a 2 A �� (A; �[x=a℄) j= '	��:De�nition 2.6. Let L be a logi, � = fR0; : : : ; Rrg a relational signature wherethe arity of Rj is rj , A a �-struture, and B a � -struture. A k-dimensionalL-interpretation of A in B is a tupleI = �h; Æ(x); "(x; y); 'R0(x0; : : : ; xr0�1); : : : ; 'Rr (x0; : : : ; xrr�1)�satisfying the following onditions:(i) Æ, ", 'R0 ; : : : , 'Rr 2 L and eah eah tuple x onsists of k variables,(ii) h : ÆB ! A is surjetive,(iii) B j= "(b0; b1) i� h(b0) = h(b1) for all b0, b1 in ÆB, and(iv) B j= 'Rj (b0; : : : ; brj�1) i� (h(b0); : : : ; h(brj�1)) 2 RAj for all b0; : : : ; brj�1in ÆB.



2.2. Logi 7Thus, an interpretation I of A in B de�nes an isomorphi opy of A in B.If there is some L-interpretation of A in B we write A �L B. If both A �L Band B �L A we say A and B are mutually interpretable and write A
L B.Example. A standard example is the interpretation of the rationals (Q;+; �)in the integers (Z;+; �). Frations p=q are represented by the pair (p; q). Allpairs with non-zero seond omponent enode a rational number. Therefore theuniverse is de�ned byÆ(x0; x1) := x1 6= 0:Two pairs (p; q) and (p0; q0) are equal if p=q = p0=q0. Thus we set"(x0; x1; y0; y1) := x0 � y1 = y0 � x1:Addition and multipliation an be de�ned the usual way.'+(x; y; z) := "(z0; z1; x0 � y1 + y0 � x1; x1 � y1);'�(x; y; z) := "(z0; z1; x0 � y0; x1 � y1):A stronger notion than interpretability is given by the de�nition of a redut .A is an L-redut of B if both have the same universe and eah relation of A isL-de�nable in B. A and B are de�nitional L-equivalent , A =L B, if both, A isan L-redut of B and vie versa.The following result shows that when dealing with in�nite strutures oneeasily rosses the boundary to undeidability.Proposition 2.7. The FO(DTC)-theory of (N; s) is undeidable where s is thesuessor funtion.Proof. We show how to de�ne addition and multipliation in (N; s). Hene,using FO(DTC)-formulae it is possible to interpret Arithmeti in (N; s) whosetheory is undeidable.z = x+ y : i� [DTCuv;u0v0 u0 = su ^ v0 = sv℄(0y; xz)z = x � y : i� [DTCuv;u0v0 u0 = su ^ v0 = v + x℄(00; yz)In partiular, in any lass of strutures ontaining (N; s) there are strutureswith undeidable FO(DTC)-theory. Thus, if one is interested in logis withreursion, i.e., transitive losure or �xed point logis, one should look at lasseswith very simple in�nite strutures or strutures with dense orderings. All butone of the lasses we onsider in the following ontain (N; s).



8 2. Formal Languages and Logi



Chapter 3Automati Presentationsand Queries3.1 Automati PresentationsThe idea of representing possibly in�nite strutures by �nite automata an bemade preise as follows. We enode the elements of the struture by wordsover some alphabet. In order to determine whether a tuple (a0; : : : ; an�1) be-longs to some relation R we take the tuple (w0; : : : ; wn�1) of words enoding(a0; : : : ; an�1) and test whether the onvolution w0 
 � � � 
wn�1 is aepted bythe automaton representing R.De�nition 3.1. Let � = fR0; : : : ; Rrg be a �nite relational signature, rj thearity of Rj , and let A = (A;RA0 ; : : : ; RAr ) be a � -struture.d = (�;�; LÆ; L"; LR0 ; : : : ; LRr)is an automati presentation of A if the following onditions are satis�ed:(i) LÆ � ��, L" � (��)
2, and LRj � (��)
rj for j � r, are regularlanguages.(ii) � : LÆ ! A is surjetive andx0 
 x1 2 L" i� �(x0) = �(x1);x0 
 � � � 
 xrj�1 2 LRj i� ��(x0); : : : ; �(xrj�1)� 2 RAjfor all j � r.Note the similarity between the de�nitions of an automati presentationand an interpretation. We will see in Chapter 4 that basially an automatipresentation is an interpretation in a �xed struture.If regular languages of !-words, trees, or !-trees are used instead of word lan-guages we speak of !-automati, tree-automati, and !-tree-automati presen-tations, respetively. The lasses of � -strutures possessing a presentation of oneof the above de�ned types is denoted by AutStr[� ℄, !-AutStr[� ℄, TAutStr[� ℄, and!-TAutStr[� ℄, respetively. Furthermore we use abbreviations like [T℄AutStr[� ℄meaning AutStr[� ℄ or TAutStr[� ℄. 9



10 3. Automati Presentations and QueriesIf the signature � ontains funtions, an automati presentation of some� -struture A is a presentation of its relational variant where eah funtion isreplaed by its graph.Example. (1) An important example of a struture with an automati presenta-tion is Presburger Arithmeti (N;+). Eah number n 2 N is enoded the stan-dard way as binary number without leading zeros, but in reversed order, i.e.,with the least signi�ant digit �rst. A presentation is d = (�; f0; 1g; LÆ; L"; L+)with �(b0 � � � bl) := Pi�l bi2i; L" := �[ 00 ℄ ; [ 11 ℄	�;LÆ := f0; 1g�1 [ f0g; L+ := L(A+):A+ is an automaton whih ompares its input digit by digit and remembers thearry at every step. Formally, A := �f0; 1g; f0; 1;�g3; �; 0; f0g� with� := � (i; (a; b; ); j) �� a+ b+ i = 2j +  (ounting � as 0)	:(2) Natural andidates for strutures with automati presentation are thoseonsisting of words. (But note that the free monoid|with at least two genera-tors|does not have suh a presentation as we will see in Setion 5.1.) Let � besome alphabet and onsider the struture (��; (Da)a2� ;�) whereDaxy : i� x = uav for some u; v 2 �� with juj = jyj ;x � y : i� jxj � jyj :It an be presented as d = (id; �;��; L"; (La)a2� ; L�) withL" := � � aa � �� a 2 � 	�;La := � � b � �� b;  2 � 	� � a� � � � b� � �� b 2 � 	�;L� := � � ab � �� a; b 2 � 	�� ��b � �� b 2 � 	�:De�nition 3.2. Let A 2 AutStr be a struture with automati presentationd = (�;�; LÆ; L"; LR0 ; : : : ; LRr). Denote by �d : A ! N the funtion mappingeah element of A to the length of its shortest enoding.�d(a) := minf jxj j �(x) = a gLet us start with some basi observations about automati presentations.First, a binary alphabet is always suÆient.Lemma 3.3. Let A 2 [!-℄[T℄AutStr. Then A has a presentation over a binaryalphabet.Proof. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be a presentation of A. If j�j = 1 wean simply add some symbol to �. Otherwise, let � = fa0; : : : ; an�1g. Considerthe family of homomorphisms hm : (�m)� ! (f0; 1gm)� de�ned byhm(ai0 ; : : : ; aim�1) := (bin(i0); : : : ; bin(im�1))where bin(i) is the binary enoding of i of �xed length dlog2 ne. As all wordsbin(ik), k < m, in the de�nition above have the same lengthd0 := (� Æ h�1; f0; 1g; h1(LÆ); h2(L"); hr0(LR0); : : : ; hrr(LRr ))is a presentation of A of the required form.



3.1. Automati Presentations 11The next result turns out to be vital in many irumstanes|espeiallywhen applying the Pumping Lemma as it guarantees that all pumped wordsenode di�erent elements. The ase of AutStr is due to Khoussainov andNerode [KN95℄.Theorem 3.4. Every A 2 [T℄AutStr has an injetive automati presentation.Proof. (AutStr) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be a presentation of A 2AutStr. Fix an ordering of � and onsider the alphabetial ordering � of ��indued by it. This ordering is reognisable by an automaton. In order tode�ne an injetive presentation we pik from eah set ��1(a) the least wordwith respet to � and obtain the injetive presentationd0 = (�;�; L0Æ; L"; LR0 ; : : : ; LRr)where the languageL0Æ := fx 2 LÆ j 8y 2 LÆ : x
 y 2 L" ! x � y gis regular.(TAutStr) We have to de�ne a well-ordering on the set of �nite trees whihis reognisable by an automaton. Then the rest of the proof is idential to thease above. Thus we set t0 � t1 if either(i) dom(t0) 6= dom(t1) and the leftmost position in the symmetri di�ereneof dom(t0) and dom(t1) belongs to dom(t1) or(ii) dom(t0) = dom(t1) and at the leftmost position x where t0 and t1 di�erwe have t0(x) < t1(x).This relation an be reognised by an automaton as follows. It guesses whihase applies and the position of the di�erene, and heks that to the left of thisposition both trees are idential.In the ase of !-AutStr all we an do at the moment is to lassify the setsof !-words enoding the same element.Lemma 3.5. Let d be an !-automati presentation of A and let a 2 A. Theset of all !-words enoding a belongs to B(GÆ), the boolean losure of the seondlevel of the Borel hierarhy.Proof. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr). Take any !-word w enoding a.The funtion �w : �! ! (�!)
2 = (� � �)! de�ned by �w(x) := x 
 w isontinuous. As every regular !-language is in B(GÆ), and sine the inverse ofa ontinuous funtion leaves levels of the Borel hierarhy invariant, we obtain��1(a) = ��1w (L") 2 B(GÆ).We end this setion with some simple remarks about how to onstrut au-tomati strutures from other ones.Lemma 3.6. Every automati presentation of a struture A 2 [T℄AutStr ane�etively be extended to a presentation of (A;�) 2 [T℄AutStr for some well-ordering �.



12 3. Automati Presentations and QueriesProof. (AutStr) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an injetive presentationof A. De�nea � b : i� ��1(a) � ��1(b)where � is some �xed alphabetial ordering of ��.(TAutStr) Take the well-ordering de�ned in the proof of Theorem 3.4.Lemma 3.7. (i) If A 2 [T℄AutStr then (A; a) 2 [T℄AutStr for any tuple a of�nitely many elements of A.(ii) Let A 2 !-AutStr with presentation d. If there is some ultimately peri-odi !-word enoding a 2 A then (A; a) 2 !-AutStr.Proof. (i) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an injetive presentation of A.For eah a 2 A one an onstrut an automaton whih reognises the singleword ��1(a).(ii) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) and a be enoded by uv!. Then thepresentation of a isLa := fw 2 �! j w 
 uv! 2 L" g = �1�L" \ (�2)�1(uv!)�;where �i is the projetion on the ith omponent.Proposition 3.8. [T℄AutStr is losed under �nite variations of some relation.Proof. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an injetive presentation of someA = (A;R0; : : : ; Rr) 2 [T℄AutStr. We have to show that A0 = (A;R00; : : : ; R0n) isalso in [T℄AutStr where R0j and Rj di�er only in �nitely many tuples. Construtd0 = (�;�; LÆ; L"; L0R0 ; : : : ; L0Rr)with L0Rj := LRj nX�j [X+j whereX�j := ��1(Rj nR0j) and X+j := ��1(R0j nRj)are �nite sets. Therefore L0Rj is also regular.3.2 First-Order QueriesAfter having de�ned automati presentations the question arises what an bedone with them. The most fundamental operation on strutures is the evaluationof a query, i.e., we are given a formula '(x) and ask whih elements a of thestruture A satisfy '. Formally, we want to ompute 'A from A and '. Inase of automati strutures this operation is not only e�etive but|due to theextensive losure properties of regular languages|the enoding of the resultingset is also regular.For ease of notation we use regular expressions instead of automata on-strutions in the de�nition below and in most other plaes. But in an atualimplementation one will usually work with automata whih are easier to handlealgorithmially.



3.2. First-Order Queries 13De�nition 3.9. Let � = fR0; : : : ; Rrg be a �nite relational signature, rj thearity of Rj , and A a � -struture with presentationd = (�;�; LÆ; L"; LR0 ; : : : ; LRr):We de�ne the funtion �dn : FO[� ℄ ! P(L
nÆ ) whih maps formulae ' all ofwhose variables are among fx0; : : : ; xn�1g to a presentation of the setf (a0; : : : ; an�1) j A j= '(a) g:From this set an enoding of 'A an be obtained by removing the omponentsof those variables whih do not appear free in '. The orresponding funtion isdenoted �d (without the index n).To selet and permute the omponents of a word we de�ne the auxiliarymapping�m;n(i0;k0):::(il�1;kl�1) :P�(��)
m�!P�(��)
n�whih takes a language L to the setfw0 
 � � � 
 wn�1 j 9u0 
 � � � 
 um�1 2 L : uij = wkj for all j < l g;i.e., omponent ij is moved to position kj . �m;n(i0;k0):::(il�1;kl�1) preserves regularitysine it an be de�ned as�m;n(i0;k0):::(il�1;kl�1)(L) := (��)
n \ ���n;lk0:::kl�1��1 Æ ��m;li0:::il�1���L(�m)��where �n;li0:::il�1 :P((�n)�)!P((�l)�) denotes the projetion with�n;li0:::il�1�(a0; : : : ; an�1)� = (ai0 ; : : : ; ail�1):In the above de�nition we had to add the fator (�m)� beause the other|unspei�ed|omponents may be longer that those from L.Using this funtion, �d an be de�ned in terms of �dn by�d(') := �n;k(i0;0):::(ik�1;k�1)��dn(')�if the free variables of ' are xi0 ; : : : ; xik�1 .Finally, �dn is de�ned per indution on '. For atoms we simply return theorresponding language of the presentation after moving the omponents intothe right position.�dn(Rjxi0 : : : xirj�1) := L
nÆ \ �rj ;n(0;i0):::(rj�1;irj�1)�LRj�;�dn(xi = xj) := L
nÆ \ �2;n(0;i)(1;j)�L"�:Boolean onnetives are handled by the orresponding set operations.�dn(:') := L
nÆ n �dn(');�dn(' _  ) := �dn(') [ �dn( ):Finally, for the existential quanti�er we erase the omponent of the variable inquestion.�dn(9xi') := L
nÆ \ �n;n(0;0):::(i�1;i�1)(i+1;i+1):::(n�1;n�1)��dn(')�:



14 3. Automati Presentations and QueriesOf ourse, we have to show that the above onstrution is orret.Proposition 3.10. Let A 2 [!-℄[T℄AutStr have the automati presentation d.For all formulae ' 2 FO it holds that ���d(')� = 'A.Proof. Per indution on the struture of ' prove that�(�dn(')) = f a 2 An j (A; a) j= ' gwhere n is hosen large enough suh that the indies of all variables xi appearingin ' are below n. As an example we prove the ase of ' = Rxixj .(�) Letw0 
 � � � 
 wn�1 2 �dn(Rxixj) = L
nÆ \ �2;n(0;i)(1;j)(LR):Then w0; : : : ; wn�1 2 LÆ, and wi 
 wj 2 LR. Thus, ��(wi); �(wj )� 2 R and(A; �(w0) : : : �(wn�1)) j= Rxixj :(�) If on the other hand (A; a) j= Rxixj for some a 2 An with enodingsw0; : : : ; wn�1 2 LÆ, then (ai; aj) 2 R and thus wi 
 wj 2 LR. Hene,w0 
 � � � 
 wn�1 2 L
nÆ \ �2;n(0;i)(1;j)(LR) = �dn(Rxixj):In the ase of word and tree languages we are able to do a bit more.Proposition 3.11. For A 2 [T℄AutStr the funtion � an be extended to for-mulae of FO(9!).Proof. Let d be an injetive presentation of A. De�ne�dn(9!xi') := L
nÆ \ �n;n(0;0):::(i�1;i�1)(i+1;i+1):::(n�1;n�1)��dn(')W�1k �:where k is the index of the Nerode-ongruene of the language �dn(') andWk := "
i�1 
�k 
 "
n�i:We give the indution step in the proof that���dn(9!xn�1')� = f a 2 An j there are in�nitely many a 2 A suh thatA j= '(a0; : : : ; an�2; a) g:(�) Fix values a0; : : : ; an�2. If there are in�nitely many values an�1 for xn�1satisfying ' there exists suh an element an�1 2 A with �d(an�1) � k +maxf�d(a0); : : : ; �d(an�2)g. Thus(a0; : : : ; an�2; an�1) 2 ���dn(') \ (��)
n("
n�1 
�k)�:Let x be the pre�x of ��1(an�1) of length �d(an�1)� k. Then��1(a0)
 � � � 
 ��1(an�2)
 x 2 �dn(')�"
n�1 
�k��1;whih implies that (a0; : : : ; an�2; a) 2 ���dn(9!xn�1')� for all a 2 A.



3.2. First-Order Queries 15(�) If on the other hand there are elements (a0; : : : ; an�1) 2 ���dn(9!xn�1')�then there is some an�1 2 A with��1(a0)
 � � � 
 ��1(an�2)
 ��1(an�1) 2 �dn(') \ (��)
n("
n�1 
�k):When applying the Pumping Lemma to the suÆx of length k of this word we getin�nitely many words of the form ��1(a0)
� � �
��1(an�2)
x whih di�er onlyin x as the suÆx does not ontain any symbols from the �rst n� 1 arguments.Sine the presentation is injetive eah x enodes a di�erent element and thusthere are in�nitely many an�1 2 A with (a0; : : : ; an�2; an�1) 2 'A.As the de�nition of �d is e�etive we obtain the followingCorollary 3.12.(i) The FO(9!)-theory of any struture in [T℄AutStr is deidable.(ii) The FO-theory of any struture in !-[T℄AutStr is deidable.Its importane lies in the fat that it yields one of the two methods known tothe author to prove that a struture is not automati. If the �rst-order theoryof some struture A is undeidable then A annot be automati.Example. As the �rst-order theory of Arithmeti (N;+; �) is undeidable it doesnot have an automati presentation, i.e., (N;+; �) =2 [!-℄[T℄AutStr.A seond important onsequene of Proposition 3.10 is the following resultwhih yields a notion of redution of one automati struture to another.Proposition 3.13.(i) [T℄AutStr is losed under (k-dimensional) FO(9!)-interpretations.(ii) !-[T℄AutStr is losed under (k-dimensional) FO-interpretations.Proof. We just give the proof for AutStr. Let I = (h; Æ; "; 'R0 ; : : : ; 'Rr ) be ak-dimensional FO(9!)-interpretation of A in B. LetdB = (�B; �B; LBÆ ; LB" ; LBS0 ; : : : ; LBSs)be a presentation of B. We onstrut an automati presentation dA of A. SetdA := (�A; �A; LAÆ ; LA" ; LAR0 ; : : : ; LARr)where �A := ��B [ f�g�k;�A(x) := h��B��0(x)�; : : : ; �B��k�1(x)��;LAÆ := (LBÆ )
k \ �dBk (Æ);LA" := (LAÆ )
2 \ �dB2k (");LARj := (LAÆ )
rj \ �dBrjk('Rj ):



16 3. Automati Presentations and QueriesSome immediate onsequenes are summarised inCorollary 3.14. [!-℄[T℄AutStr is losed under(i) expansions by de�nable relations,(ii) fatorisations by de�nable ongruenes,(iii) substrutures with de�nable universe, and(iv) �nite powers.Before getting ones hopes too high, here is a warning that even some of thesimplest model theoreti onstrutions do not work for automati strutures.Lemma 3.15. There is a struture A suh that every redut of A has an au-tomati presentation but A itself is not automati.Proof. Consider A := (N;+; 2), the natural numbers with addition and squaringfuntion. Sine multipliation is de�nable in A its �rst-order theory is undeid-able and therefore A =2 [!-℄[T℄AutStr. What about the reduts? (N) obviouslyhas an automati presentation, and we already know that (N;+) 2 AutStr. Apresentation of (N; 2 ) an be onstruted as follows. LetM := N n f k2 j k 2 N gbe the set of non-squares. Every natural number n 2 N n f0; 1g an uniquelybe written as n = m2k for some m 2 M and k 2 N. Hene, we an enode nby (m; k). The squaring funtions ats as (m; k) 7! (m; k+1) on this enoding.Therefore we set d := (�; f0; 1; a; bg; LÆ; L"; L2) where�(0) := 0; LÆ := f0; 1g [ a�b�;�(1) := 1; L" := � �  � ��  2 f0; 1; a; bg	�;�(ambk) := l2km ; L2 := �� 00 � ; � 11 �	 [ � aa �� � bb �� ��b � ;and l0; l1; : : : is an enumeration of M .Lemma 3.16. [!-℄[T℄AutStr is not losed under arbitrary substrutures.Proof. Consider A := (N; <; P ) with P := 2N. This struture is learly auto-mati. Let X � N be any non-reursive set, and onstrut the substrutureB � A with universeB := f 2n j n 2 X g [ f 2n+ 1 j n =2 X g:Then B = (B;<jB ; P jB) �= (N; <;X). But Th(B) annot be deidable for,otherwise, X would be reursive.3.3 Extensions of First-Order LogiWe have seen that automati strutures are quite well behaved with regard to�rst-order logi. What about stronger logis? Possible appliations of automatistrutures inlude automati veri�ation where the most important problemis Reahability, and databases where one usually wants to have some sortof reursion. Thus it is natural to onsider transitive losure and �xed-pointextensions of �rst-order logi. Unfortunately, even slightly stronger logis thanFO, respetively FO(9!), are already undeidable.



3.3. Extensions of First-Order Logi 17Proposition 3.17.(i) [!-℄[T℄AutStr ontains strutures with undeidable FO(DTC1)-theory.(ii) [!-℄[T℄AutStr is not losed under expansion by FO(DTC1)-de�nable rela-tions.Proof. This result follows immediately from Proposition 2.7 and the losure of[!-℄[T℄AutStr under �nite powers. Nevertheless we give an expliit proof whihstrengthens the laim to formulae suh that in all subformulae of the form[DTCx;y  (x; y)℄(x; y) the only free variables appearing in  are x and y.Presburger Arithmeti (N;+) is automati. We de�ne multipliation usingtransitive losure.x � y = z : i� [DTCxyz;x0y0z0 x0 = x ^ y0 + 1 = y ^ z0 = z + x℄(xy0; x0z)If automati strutures were losed under deterministi transitive losure therewould be an automati presentation of Arithmeti (N;+; �) in ontradition tothe example above.The expression above uses a 3-dimensional DTC-operator. We an replaeit by a 1-dimensional one if we take the struture onsisting of PresburgerArithmeti together with its third power, i.e., (N [ N3 ;+; �0; �1; �2) where+ � N � N � N is the graph of addition and �i � N3 � N is the projetionon the ith oordinate.Proposition 3.18. For strutures in [!-℄[T℄AutStr, Reahability is unde-idable.Proof. Let M = (Q;�; �;�; q0; F ) be a Turing mahine. We onstrut anautomati presentation of its on�guration graph. A on�guration (q; w; p) isenoded by the word w0qw1 with w = w0w1 and jw0j = p. The transition rela-tion `M is learly reognisable by an automaton as it depends only on the �niteregion of the word around the position of the state symbol. If Reahabil-ity were deidable there would be an algorithm deiding the halting problem.W.l.o.g. assume M has an unique aepting state qf and lears its tape beforeaepting. Then, given M and an input x, we ould onstrut the presenta-tion of its on�guration graph and hek whether the aepting on�gurationis reahable from the starting on�guration, i.e., whether (qf ; "; 0) is reahablefrom (q0; x; 0).Proposition 3.19.(i) [!-℄[T℄AutStr ontains strutures with undeidable FO(#)-theory.(ii) [!-℄[T℄AutStr is not losed under expansion by FO(#)-de�nable relations.Proof. Consider the automati struture (N �[N2 ;+; �0; �1) where + � N�N�Nis the graph of addition and �i � N2 �N is the projetion on the ith oordinate.Multipliation an be de�ned asx � y = z : i� #v(v < z) = #v9u1u2(�0vu1 ^ �1vu2 ^ u1 < x ^ u2 < y)with the abbreviationx < y : i� 9z(x+ z = y) ^ x 6= y:Therefore there is a FO(#)-interpretation of Arithmeti in this struture andthe undeidability follows.



18 3. Automati Presentations and Queries3.4 Complexity of QueriesAfter having seen what an be done with automati strutures we now studythe omplexity of those operations. (For an introdution to omplexity theorysee [HU79, Pap94, Imm98℄.) We investigate the following fundamental problems.The most basi one is the model-heking problem: Given a � -struture A, aformula ' 2 FO[� ℄, and a tuple of parameters a in A, deide whether A j= '(a)does or does not hold.A generalisation is the query-evaluation problem: Given a presentation dand a formula ', ompute �d(').The omplexity of both problems an be investigated under three pointsof view. First one an hold the formula �xed and ask how the omplexitydepends on the input struture. If the omplexity is measured in this way wespeak of struture omplexity . On the other hand one an �x the struture andmeasure the dependeny on the formula. This leads to the notion of expressionomplexity . Finally, one an look at the so alled ombined omplexity whereboth parts may vary.Of ourse, statements about omplexity are only meaningful if the enodingof the input is spei�ed. A presentation d is given by a mapping � and severalregular languages. � is a purely semanti objet whih is not part of the inputof an algorithm. There are various ways to enode regular languages, but therepresentation whih an be handled by algorithms most easily uses automata.Therefore in this setion we assume that d is given by a list of deterministiautomata. Furthermore we only onsider presentations using binary alphabets.Deterministi automata are hosen beause boolean operations on theman be performed in polynomial time whereas negation of nondeterministi au-tomata may ause an exponential blowup. If the input is restrited to positiveformulae the results below hold for presentations given by nondeterministi au-tomata as well.We use the following notations for the size of the input. For a presentation d,jdj denotes the maximal size of the automata belonging to d, and we use �d(a)as an abbreviation for the maximum of �d(ai) for all i.Our �rst result is rather disouraging. A funtion is said to be non-elemen-tary if it annot be bounded from above by a funtion of the form22���2n okfor �xed k.Proposition 3.20. The expression omplexity of the model-heking problemis non-elementary.Proof. The laim follows immediately from the fat that Np := (N;+; jp) isautomati wherea jp b : i� a is a power of p and a j b;sine the theory of Np has non-elementary omplexity (see [Gr�a90℄).Let us hope that in some restrited ases the omplexity is less devastating.We begin by taking a loser look at the simulation of automata.



3.4. Complexity of Queries 19Lemma 3.21. Given a deterministi automaton A = (Q;�; Æ; q0; F ) and aword w 2 ��, to hek whether w 2 L(A) is inDtime�O�jwj jQj log jQj�� and Dspae�O�log jQj+ log jwj��:Proof. We use the following algorithm:Input: Æ, F , wq := q0i := 0m := jwjwhile i < m doa := w[i℄q := Æ(q; a)i := i+ 1endreturn q 2 FThe spae used onsists of the urrent state, the input position, and thelength of the input.In order to minimise the time needed to aess the urrent symbol of theword w we slightly modify the above algorithm suh that it opies w to a separatework tape �rst. Then we an leave the head of that tape on the urrent symboland do not need to go bak and forth between the two parts of the input.Therefore the �rst and last line of the loop an be performed in onstant time.The seond line requires a lookup in Æ whih an be done by sanning Æ untilthe state q is found. This takes O(jÆj log jQj) = O(jQj log jQj) steps. The loopis exeuted jwj times.The initialisations take time O(jwj). To hek whether q 2 F the algorithmsans the enoding of F and looks for q. This needs time O�jF j log jQj� =O�jQj log jQj�. Putting everything together, we obtain the desired bound.Lemma 3.22. Given a nondeterministi automaton A = (Q;�;�; q0; F ) anda word w 2 ��, to hek whether w 2 L(A) is inDtime�O�jwj j�j jQj log jQj�� and Dspae�O�jQj+ log jwj��:Proof. We use the following algorithm:Input: �, F , wP := fq0gfor i = 0; : : : ; jwj � 1 doa := w[i℄P 0 := ;forall (q; a; q0) 2 � doif q 2 P then P 0 := P 0 [ fq0gP := P 0endreturn P \ F 6= ;



20 3. Automati Presentations and QueriesThe spae used onsists of the urrent set of states, the input position, andthe length of the input.If the sets are implemented using arrays of bits, the statements in the body ofthe loop use time O�jQj� for erasing P 0; O�jQj log jQj� for testing the onditionin the if -statement; and O�jQj log jQj� for the updates of P 0 and P .To hek whether there was a suessful run takes time O�jQj�. Therefore,the overall time used is as given above.When onsidering the struture omplexity of a problem, the automata ofthe presentation are �xed. Therefore we also look at the non-uniform version ofthe membership problem for regular languages.Lemma 3.23. Let L � f0; 1g� be regular. The problem to determine, given aword w 2 f0; 1g�, whether w 2 L, is in Alogtime.Proof. Our alternating log-time algorithm is based on the haraterisation ofa regular language L via its syntati monoid M(L). It is well known that alanguage L is regular if and only if there is some �nite monoid M(L), a subsetP �M(L), and a homomorphism �L : f0; 1g� !M(L) suh that L = ��1L (P ).Let w = a0 � � � an�1 and ei := �L(ai) for i < n. Thusa0 � � � an�1 2 L i� e0 � � � en�1 2 P:The algorithm starts by guessing e0 � � � en�1 and veri�es its guess by reursivelydetermining the values of e0 � � � en=2�1 and en=2 � � � en�1.Input: a0 � � � an�1existentially guess m 2 Prepeat dlogne timesexistentially guess m0, m1 2M(L)if m 6= m0m1 then return falseuniversally hoose i 2 f0; 1gappend i to the index tapem := miendread the symbol a whose number is stored on the index tapereturn �L(a) = mSo far, we only dealt with relational signatures as funtions an easily bereplaed by their graphs. But to do so we need to introdue additional quan-ti�ers whih is not possible if we want to investigate quanti�er-free formulae.When studying quanti�er-free formulae with funtions we need an algorithm toompute the value of a funtion whose graph is given by some automaton.Lemma 3.24 (Epstein et al. [ECH+92℄). Given a tuple w of words over �,and an automaton A = (Q;�; Æ; q0; F ) reognising the graph of a funtion f ,the alulation of f(w) is inDtime�O�jQj2 log jQj (jQj+ jwj)�� andDspae�O�jQj log jQj+ log jwj��:



3.4. Complexity of Queries 21Proof. The following algorithm simulates A on input w0
� � �
wn�1
x wherex is the result that we want to alulate. For every position i of the input, theset Qi of states whih an be reahed for various values of x is determined. Atthe same time the sets Qi and Qi+1 are onneted by edges Ei labelled by thesymbol of x by whih the seond state ould be reahed. When a �nal state isfound, x an be read o� the graph.We use the following funtion to ompute Qi+1 and Ei from Qi and theinput symbol a.Step(Q; a)Q0 := ;E := ;forall q 2 Q doforall  2 � doq0 := Æ(q; a)if q0 =2 Q0 thenE := E [ f(q; ; q0)gQ0 := Q0 [ fq0gendendreturn (Q0; E)If E is realised as an array ontaining, for every q 2 Q, the values q0 and  suhthat (q0; ; q) 2 E, this funtion needs spae O�jQj log jQj� and timeO�jQj (jQj log jQj+ jQj log jQj)� = O�jQj2 log jQj�:We use two slightly di�erent algorithms for the time and spae omplexitybounds. The �rst one simply omputes all set Qi and Ei and determines x. Theseond one reuses spae and keeps only one set Qi and Ei in memory. Thereforeit has to start the omputation from the beginning in order to aess old valuesof Ei in the seond part.In the �rst version the funtion Step is invoked jxj times, and the seondpart is exeuted in time O�jxj jQj log jQj�.The spae needed by the seond version onsists of storage for Q, E, andthe ounters i and k. Hene, O(jQj+ jQj log jQj+ log jxj) bits are used.Sine A reognises a funtion the length of x an be at most jQj+ jwj (seeProposition 5.1 for a detailed proof). This yields the given bounds.Input: A = (Q;�; Æ; q0; F ), wQ0 := fq0gi := 0while Qi \ F = ; doif i < jwj thena := w[i℄elsea := �(Qi+1; Ei) := Step(Qi; a)i := i+ 1end
Input: A = (Q;�; Æ; q0; F ), wQ := fq0gi := 0while Q \ F = ; doif i < jwj thena := w[i℄elsea := �(Q;E) := Step(Q; a)i := i+ 1end



22 3. Automati Presentations and Querieslet q 2 Qi \ Fwhile i > 0 doi := i� 1
let (q0; ; q) 2 Eix[i℄ := q := q0endreturn x

let q 2 Q \ Fwhile i > 0 doi := i� 1Q := fq0gfor k = 0; : : : ; i� 1 doif k < jwj thena := w[k℄elsea := �(Q;E) := Step(Q; a)endlet (q0; ; q) 2 Ex[i℄ := q := q0endreturn xObviously, the formula is responsible for the high omplexity of the model-heking problem. So we onsider restrited lasses of formulae. It turns out thatmodel-heking and query-evaluation for quanti�er-free and existential formulaeare still|to some extent|tratable.Proposition 3.25. (i) Let � be a relational signature. Given the presentation dof a struture A 2 AutStr[� ℄, a tuple a in A, and a quanti�er-free formula'(x) 2 FO[� ℄, the model-heking problem for (A; a; ') is inDtime�O�j'j�d(a) jdj log jdj�� andDspae�O�log j'j+ log jdj+ log�d(a)��:(ii) The struture omplexity of the model-heking problem for quanti�er-free formulae is Logspae-omplete with regard to FO-redutions.(iii) The expression omplexity is Alogtime-omplete with regard to deter-ministi log-time redutions.Proof. (i) In order to hek whether A j= '(a) holds, we need to know the truthvalue of eah atom appearing in '. Then, all what remains is to evaluate aboolean formula whih an be done inDtime�O�j'j�� andAtime�O�log j'j�� �Dspae�O�log j'j�� (see [Bus87℄). The truth value of an atom Rx an be al-ulated by simulating the orresponding automaton on those omponents of awhih belong to the variables appearing in x. Aording to the lemma abovethis an be done in time O��d(a) jdj log jdj)� and spae O�log jdj+ log�d(a)�.For the time omplexity bound we perform this simulation for every atom,store the outome, and evaluate the formula. Sine there are at most j'j atomsthe laim follows.To obtain the spae bound we annot store the value of eah atom. Thereforewe use the Logspae-algorithm to evaluate ' and, every time the value ofan atom is needed, we simulate the run of the orresponding automaton on aseparate set of tapes.



3.4. Complexity of Queries 23(ii) We redue the Logspae-omplete problem DetReah, of reahabilityby deterministi paths, (see e.g. [Imm98℄) to the model-heking problem. Givena graph G = (V;E; s; t) we onstrut the automaton A = (V; f0g; �; s; ftg) with� := f (u; 0; v) j u 6= t; (u; v) 2 E and there is no v0 6= v with(u; v0) 2 E g[ f(t; 0; t)g:That is, we remove all edges originating at verties with out-degree greaterthan 1 and add a loop at t. Then there is a deterministi path from s to t in Gi� A aepts some word 0n i� 0jV j 2 L(A). Thus,(V;E; s; t) 2 DetReah i� B j= P0jV jwhere B = (B;P ) is the struture presented by (�; f0g; f0g�; L(A)).A loser inspetion reveals that the above transformation an be de�ned in�rst-order logi.(iii) The third part follows immediately from Lemma 3.23 and the fat thatthe evaluation of boolean formulae is Alogtime-omplete (see [Bus87℄).It was remarked above that for quanti�er-free formulae the question whetherfuntions are allowed does make a di�erene.Proposition 3.26. (i) Let � be a signature ontaining funtions. Given thepresentation d of a struture A 2 AutStr[� ℄, a tuple a in A, and a quanti�er-free formula '(x) 2 FO[� ℄, the model-heking problem for (A; a; ') is inDtime�O�j'j jdj2 log jdj �j'j jdj+ �d(a)��� andDspae�O�j'j �j'j jdj+ �d(a)�+ jdj log jdj��:(ii) The struture omplexity of the model-heking problem for quanti�er-free formulae with funtions is in Nlogspae.(iii) The expression omplexity is Ptime-omplete with regard to �logm -re-dutions.Proof. (i) Our algorithm proeeds in two steps. First the values of all funtionsappearing in ' are alulated starting with the innermost one. Then all fun-tions an be replaed by their values and a formula ontaining only relationsremains whih an be evaluated as above.We need to evaluate at most j'j funtions. If they are nested the result anbe of length j'j jdj+ �d(a). Thus, by Lemma 3.24, we need spaeO�jdj log jdj+ log�j'j jdj+ �d(a)��for the evaluation of a funtion, spaeO�j'j �j'j jdj+ �d(a)��to store the results, and spaeO�log j'j+ log jdj+ log�j'j jdj+ �d(a)��for the �nal evaluation of '. This yields the bound given above.



24 3. Automati Presentations and QueriesThe evaluation of j'j funtions takes timeO�j'j jdj2 log jdj (j'j jdj+ �d(a))�;the evaluation of ' timeO�j'j �j'j jdj+ �d(a)� jdj log jdj�:(ii) It is suÆient to present a nondeterministi log-spae algorithm for eval-uating a single �xed atom ontaining funtions. The algorithm simultaneouslysimulates the automata of the relation and of all funtions on the given input.Components of the input orresponding to values of funtions are guessed non-deterministially. Eah simulation only needs ounters for the urrent state andthe input position whih both use logarithmi spae.(iii) Let M be a p(n) time-bounded deterministi Turing Mahine for somepolynomial p. A on�guration (q; w; p) of M an be oded as word w0qw1 withw = w0w1 and jw0j = p. Using this enoding both the funtion f mapping oneon�guration to its suessor and the prediate P for on�gurations ontainingaepting states an be reognised by automata. We assume that f() =  foraepting on�gurations . Let q0 be the starting state of M . Then M aeptssome word w if and only if the on�guration fp(jwj)(q0w) is aepting if andonly if A j= Pfp(jwj)q0w where A = (A;P; f) is automati. Hene, the mappingtaking w to the pair q0w and Pfp(jwj)x is the desired redution whih an learlybe omputed in logarithmi spae.Proposition 3.27. (i) Let � be a �xed relational signature. Given the presenta-tion d of a struture A 2 AutStr[� ℄, a tuple a in A, and a formula '(x) 2 �1[� ℄,the model-heking problem for (A; a; ') is inNtime�O�j'j jdj�d(a) + jdjO(j'j)�� andNspae�O�j'j (jdj+ log j'j) + log�d(a)��:(ii) The struture omplexity of the model-heking problem for �1-formulaeis Nptime-omplete with regard to �pT-redutions.(iii) The expression omplexity is Pspae-omplete with regard to �logm -redutions.Proof. (i) As above we an run the orresponding automaton for every atomappearing in ' on the enoding of a. But now there are some elements of theinput missing whih we have to guess. Sine we have to ensure that the guessedinputs are the same for all automata, the simulation is performed simultaneously.Input: d, a, ' = 9y0 � � � 9yk�1 (x; y)Let Ai = (Qi; �; Æi; 0; Fi), for i < n, be the automata belongingto the atoms of '.q := (0; : : : ; 0)m := �d(a)for i = 0; : : : ;m� 1 dob := a[i℄guess  2 �kfor j = 0; : : : ; n� 1 do qj := Æj(qj ; b)end



3.4. Complexity of Queries 25repeat at most jQ0 � � � � �Qn�1j timesguess  2 �kfor j = 0; : : : ; n� 1 do qj := Æj(qj ;� � � ��)endevaluate ' with values determined by qThe algorithm needs the following spae:� for eah atom the number of the relation and the numbers of the variables:O(j'j log j'j),� P and P 0: O(j'j jdj) (note that � is �xed),� i and m: O(log�d(a)), and� b and : O(j'j).The initialisation an be performed in time O�j'j+�d(a)�. The while-loopis exeuted �d(a) times. Its body requires O�j'j + j'j jdj� = O�j'j jdj� steps.The body of the repeat-loop uses time O�j'j jdj�. Therefore the total time isO�j'j+ �d(a) + �d(a) j'j jdj+ j'j jdj jdjj'j�= O�j'j jdj �d(a) + jdjO(j'j)�:(ii) We redue the Nptime-omplete non-universality problem for nondeter-ministi automata over a unary alphabet (see [MS73, HRS76℄), given suh anautomaton hek whether it does not reognise the language 0�, to the givenproblem. This redution is performed in two steps. First the automaton mustbe simpli�ed and transformed into a deterministi one, then we onstrut anautomati struture and a formula '(x) suh that '(a) holds for several valuesof a if and only if the original automaton reognises 0�. As the model-hekinghas to be performed for more than one parameter this yields not a many-to-onebut a Turing-redution.Let A = (Q; f0g; �; q0; F ) be a nondeterministi �nite automaton over thealphabet f0g. We onstrut an automaton A0 suh that there are at most twotransitions outgoing at every state. This is done be replaing all transition formsome given state by a binary tree of transitions with new states as internalnodes. Of ourse, this hanges the language of the automaton. Sine in A everystate has at most jQj suessors, we an take trees of �xed height k := dlog jQje.Thus, L(A0) = h(L(A)) where h is the homomorphism taking 0 to 0k. Note thatthe size of A0 is polynomial in that of A.A0 still is nondeterministi. To make it deterministi we add a seond om-ponent to the labels of eah transitions whih is either 0 or 1. This yields an au-tomaton A00 suh that A aepts the word 0n i� there is some word y 2 f0; 1gknsuh that A00 aepts 0kn 
 y.A00 an be used in a presentation. Let d = (�; f0; 1g; f0; 1g�; L(A00)) be thepresentation of some fRg-struture B. ThenB j= 9y R0kny i� 0kn 
 y 2 L(A00) i� 0n 2 L(A):It follows thatL(A) = 0� i� B j= 9y R0kny for all n < 2 jQj :



26 3. Automati Presentations and QueriesThe part ()) is trivial. To show (() let n be the least number suh that0n =2 L(A). By assumption n � 2 jQj. But then we an apply the PumpingLemma and �nd some n0 < n with 0n0 =2 L(A). Contradition.(iii) LetM be a p(n) spae-bounded Turing mahine for some polynomial p.As above we enode on�gurations as words, but this time we append enoughspaes to inrease their length to p(n) + 1. Let L` := f 0
 1 j 0 ` 1 g be thetransition relation of M . The run of M on input w is enoded as sequene ofon�gurations separated by some marker #. L` an be used to hek whethersome word x represents a run ofM . Let y be the suÆx of x obtained by removingthe �rst on�guration. The word x
 y has the form0 # 1 #1 # 2 # � � � # s�1 # s# s # :Thus x enodes a valid run i� x
 y 2 LT whereLT := �L` h## i��(�� 
 "):Clearly, the language LF of all runs whose last on�guration is aepting isregular. Finally, we need two additional relations. Both, the pre�x relation �and the shift s are regular where s(ax) := x for a 2 � and x 2 ��. Therefore,the struture A := (A; T; F; s;�) is automati, and it should be lear thatw 2 L(M) i� A j= 'w�q0w�k�jwj#�;where k := p(jwj) and'w(x) := 9y0 � � � 9yk+1�î�k syiyi+1 ^ x � y0 ^ Ty0yk+1 ^ Fy0�:'w(x) states that there is an aepting run y0 ofM starting with on�guration x.y1; : : : ; yk+1 are used to remove the �rst on�guration from y0, so we an use Tto hek whether y0 is valid.Clearly, the mapping of w to 'w and q0w�k�jwj# an be omputed in log-arithmi spae.Proposition 3.28. (i) Let � be a relational signature. Given the presentation dof a struture A 2 AutStr[� ℄ and a quanti�er-free formula '(x) 2 FO[� ℄, thelanguage �d(') an be omputed in time O�jdjO(j'j)� and spae O�j'j log jdj�.In partiular, the struture omplexity is in Logspae and the expressionomplexity in Pspae.(ii) This result is optimal in the sense that there exist presentations d andformulae ' suh that the output is of size O�jdjO(j'j)�.Proof. (i) Use the na��ve algorithm:Input: d, '(x0; : : : ; xl�1)Let Ai = (Qi; �; Æi; 0; Fi), for i < n, be the automata belongingto the atoms of '.forall q 2 Q0 � � � � �Qn�1 doforall a 2 �l dofor j = 0; : : : ; n� 1 do q0j := Æj(qj ; a)output \ Æ(q; a) = q0 "end



3.4. Complexity of Queries 27forall q 2 Q0 � � � � �Qn�1 doif ' with values determined by q evaluates to true thenoutput \ q 2 F "The laim follows as jQ0 � � � � �Qn�1j = O(jdjO(j'j)).(ii) Let d be a presentation of a struture with a single unary relation Rwhih is represented by the languageL := fuuv j juj = n g:Let A be a minimal automaton reognising L. It has2n+1 � 1 + 2n � 1 + 1 = 3 � 2n � 1states (2i states for i � n to store the pre�x of length i, 2i states for i < n tostore the remaining suÆx of length i, and one failure state). De�ne ' as'(x0; : : : ; xk�1) := Rx0 ^ � � � ^ Rxk�1:Sine the run of the resulting automaton on all omponents is independent it iseasy to see that at least (32n � 2)k + 1 states are needed (the failure state anbe shared).Proposition 3.29. Let � be a relational signature. Given the presentation dof a struture A 2 AutStr[� ℄ and a formula '(x) 2 �1[� ℄, the language �d(')an be omputed in time O�2jdjO(j'j)� and spae O�jdjO(j'j)�.In partiular, the struture omplexity is in Pspae and the expression om-plexity in Expspae.Proof. Analogous to above with the state-spae P(Q1 � � � � �Qn).The omplexity results of this setion are summarised in the following table.Struture-Complexity Expression-ComplexityModel-Cheking �0 Logspae-omplete Alogtime-omplete�0 + fun Nlogspae Ptime-omplete�1 Nptime-omplete Pspae-ompleteQuery-Evaluation �0 Logspae Pspae�1 Pspae Expspae



28 3. Automati Presentations and Queries



Chapter 4Complete StruturesWe have seen that [!-℄[T℄AutStr is losed under FO-interpretations. Those in-terpretations an be regarded as redutions in the sense of omplexity theory.A natural question is whether [!-℄[T℄AutStr ontains any omplete strutureswith regard to this redution, i.e., strutures A suh that all other struturesin [!-℄[T℄AutStr an be interpreted in A. The following theorem gives an aÆr-mative answer. (The strutures Np, Rp, Pp, and P!p are de�ned below.)Theorem 4.1. Let A be a �-struture.(i) A 2 AutStr[� ℄ i� A �FO Np for some/all p � 2.(ii) A 2 !-AutStr[� ℄ i� A �FO Rp for some/all p � 2.(iii) A 2 TAutStr[� ℄ i� A �FO Pp for some/all p � 2.(iv) A 2 !-TAutStr[� ℄ i� A �FO P!p for some/all p � 2.The proof will take the rest of this hapter. We will show for eah type oflanguage (�nite words, trees, et.) that there are strutures A with presentationsof this type whose universe onsists of (an enoding of) �� for some alphabet �suh that a subset of A is FO-de�nable if and only if its enoding is regular.4.1 Word LanguagesLogial de�nability of regular languages of �nite words was investigated alreadyin the 60's by B�uhi, Trakhtenbrot and others. We present one lassial result(see [BHMV94℄ for an overview). The strutures we are looking at areNp := (N;+; jp) and W(�) := (��; (�a)a2� ;�; el);where + is addition, p 2 N n f0; 1g, andx jp y : i� 9n; k 2 N : x = pn and y = kx;�a(x) := xa;x � y : i� 9z : xz = y;el(x; y) : i� jxj = jyj :First we show that both are equivalent. Thus we an hoose whihever �ts outmomentary needs. While Np is more onvenient to work with, W(�) is muh29



30 4. Complete Struturesloser to formal languages thereby simplifying some proofs. Atually, in thissetion we will only be onerned with Np, but in the ase of !-languages anadapted version of W(�) will save a lot of work.Proposition 4.2 (f. [Gr�a90℄). Nj�j 
FO W(�).Proof. W.l.o.g. assume � = Zp := f0; : : : ; p� 1g for some p > 1.(W(Zp) �FO Np) Let valp(w) denote the value of the word w 2 Z�p viewed asa p-adi number with the least signi�ant digit �rst. We annot just map everyword w 2 Z�p to valp(w), for w may end with zeros whih would be disarded.Therefore we enode words w 2 Z�p by the number valp(w1).We introdue some abbreviations. In order to aess the digits of a numberwe de�nedigk(x; y) := 9s9t(x = s+ k � y + t ^ t < y ^ p � y jp s)whih says that the digit of x at position y is k. Powers of p an be de�ned byPpx := x jp x. The last digit of x is haraterised byend(x; z) := Ppz ^ z � x < 2 � z:The desired interpretation of W(�) in Np isÆ(x) := 9z end(x; z);"(x; y) := x = y;'�a (x; y) := 9z(end(x; z) ^ y = p � z + a � z + (x� z));'�(x; y) := 9zhend(x; z) ^8z0�z0 < z ! k̂<p(digk(x; z0)$ digk(y; z0))�i;'el(x; y) := 9z(end(x; z) ^ end(y; z)):(Np �FO W(Zp)) Here, every word w an simply be seen as p-adi enodingof the number valp(w). Again, we de�ne some abbreviations. The length ofwords an be ompared with jxj � jyj : i� 9z(el(x; z) ^ z � y). The digit ofvalp(x) at position jyj isdigk(x; y) := 9z(jzj = jyj ^ �kz � x):In ase k = 0 we have to onsider the ase jyj � jxj as well.dig0(x; y) := 9z(jzj = jyj ^ �kz � x) _ jyj � jxjThe universe of the interpretation onsists of all words. Two words are equal ifthey have the same digits.Æ(x) := true;"(x; y) := 8z k̂<p(digk(x; z)$ digk(y; z)):x jp y holds i� x = 0 � � � 010 � � � and y = 0 � � � 0y0.'jp(x; y) := 9z[dig1(x; z) ^ 8z0(jz0j 6= jzj ! dig0(x; z0))^ 8z0(jz0j < jzj ! dig0(y; z0))℄:



4.1. Word Languages 31Addition is slightly more involved. LetA := � (a; b; ; d; d0) �� a+ b+ d = d0p+ ; a; b;  2 Zp; d; d0 2 f0; 1g	be the set of digits valid for addition. '+(x; y; z) says that there is some word uenoding the arry suh that at all positions the digits of x, y, z, and u are in A.'+(x; y; z) := 9u�8v(dig0(u; v) _ dig1(u; v))^ 8v _(a;b;;d;d0)2A (diga(x; v) ^ digb(y; v) ^ dig(z; v)^ digd(u; v) ^ digd0(u; �0v))�:As the universe of W(�) is �� one an ask whih languages are de�nablein W(�). We want to use Np instead, so we have to use some sort of enoding.Sine numbers may have arbitrarily many leading zeros we an take 0 as theblank symbol � used by the onvolution.The following result was �rst proved by B�uhi in 1960 where it is stated in adi�erent but equivalent way using weak monadi seond-order logi. In the formbelow it was �rst proved by Bruy�ere. A detailed overview is given in [BHMV94℄.Theorem 4.3. R � Nn is FO-de�nable in Np if and only if fold(val�1p (R)) isregular.Proof. ()) We onstrut an automati presentation of Np using the p-adienoding. Let d := �valp;Zp; LÆ; L"; L(A+); Ljp� whereLÆ := Z�p;L" := �� ii � �� i 2 Zp	�;Ljp := � 00 �� �� 1i � �� i 2 Zp	�� 0i � �� i 2 Zp	�;and A+ := �f0; 1g;Z3p; �; 0; f0g� just needs to keep trak of the arry.� := � (i; (a; b; ); j) �� pj +  = a+ b+ i	(() Let A = (Q;Znp; �; q0; F ) be an automaton reognising fold(val�1p (R)).W.l.o.g. assume Q = Zmp for some m and q0 = (0; : : : ; 0). We prove the laim byonstruting a formula  A(x) 2 FO stating that there is a suessful run of Aon some word w 2 fold(val�1p (x))). By assumption, if A aepts one suh wordit aepts all words regardless of the number of leading zeros. The run of Ais enoded by a tuple (q0; : : : ; qm�1) 2 Nm of numbers suh that the digits ofq0; : : : ; qm�1 at some position equal k0; : : : ; km�1 i� the automaton is in state(k0; : : : ; km�1) when sanning the input symbol at that position. Additionally,we have to �nd a position s to the right of all positions arrying non-zero digitsthat we an take as length of the input.  A(x) has the form A(x0; : : : ; xn�1) := 9q0 � � � 9qm�19s[ADM(x; q; s) ^ START(x; q; s) ^RUN(x; q; s) ^ ACC(x; q; s)℄;where the admissibility ondition ADM(x; q; s) states that s is some positiongreater than eah xi, START(x; q; s) says that the �rst state is 0, ACC(x; q; s)that the last one is �nal, and RUN(x; q; s) ensures that all transitions are orret.



32 4. Complete StruturesWe use the abbreviation Syma(x; z) := Vi digai(xi; z) stating that the digitsof x at position z are a. ADM(x; q; s) must express that s is a power of p whihis greater than any of the xi.ADM(x; q; s) := Pps ^ î<nxi < sSTART(x; q; s) and ACC(q; x; s) simply say that the �rst symbol of q is 0 andthat the last symbol of q is in F , respetively.START(x; q; s) := Sym0:::0(q; 1)ACC(x; q; s) := _k2F Symk(q; s)Finally, RUN(x; q; s) states that at every position a valid transition is used.RUN(x; q; s) := 8z�Ppz ^ z < s! _�2�Trans� (x; q; s)�where Trans� (x; q; z) desribes a single transition � .Trans(k;a;k0)(x; q; z) := Symk(q; z) ^ Syma(x; z) ^ Symk0(q; p � z)Using this theorem twie we an transform every formula ' into an automaton Aand bak to  A. Hene, in Np every formula ' is equivalent to a formula of theform  A for some automaton A. We all  A the automaton normal form of '.Corollary 4.4. In Np every FO(9!)-formula is equivalent to some �2-formu-la.Proof. Let  A be the automaton normal form of the given formula. We have toount its quanti�er nesting. 0 and 1 an be de�ned asDEF(0; 1) := 0 + 0 = 0^ 8x8y(x+ y = 1! (x = 0 ^ y = 1) _ (x = 1 ^ y = 0))whih is in �1. Furthermorex < y 2 �1; ADM 2 �1; ACC 2 �1;digk(x; y) 2 �1; START 2 �1; RUN 2 �2:Therefore, if  A is written as9q9s9091[DEF ^ADM ^ START ^ RUN ^ ACC℄we see that  A 2 �3. In order to obtain the stronger laim we have to rewriteRUN to some �1-formula. This an be done by expressing that all invalidtransitions do not our instead of listing all valid transitions.RUN0(x; q; s) := 8z�Ppz ^ z < s! �̂ =2�:Trans� (x; q; s)� A, as onstruted above, is in �2. Sine we an take A to be deterministi,an equivalent de�nition is8q8s8081[DEF^ADM ^ START ^ RUN0 ! ACC℄whih is in �2.



4.1. Word Languages 33The last orollary an be strengthened to give an expliit bound on the num-ber of quanti�ers whih depends only on the number of free variables appearingin the formula. For w 2 f9;8g� let [w℄ denote the lass of all �rst-order formulaewhih are equivalent to some FO-formula with the quanti�er pre�x w.Corollary 4.5. In Np every FO(9!)-formula '(x0; : : : ; xn�1) is in [91083n+10℄and in [8793n+10℄.Proof. We use the same idea as in the previous orollary but have to enodethe run in only one variable q. Let A = �Q;Znp; �; f0g; fm � 1g� be a non-deterministi automaton belonging to ' with states Q = f0; : : : ;m � 1g. Westore only every (m+1)th state in q. Thus we an use m+1 digits of q for eahstate k 2 Q. We enode k as sequene 1k+10m�k. Note that there is always atleast one 1 and one 0. First, we de�ne a generalisation of digk(x; y) to sequenesof digits.digsk0:::kr�1(x; y) := 9s9t�x = s+ �Pi<r piki� � y + t^ t < y ^ pr � y jp s� 2 [93℄Furthermore, we have DEF 2 [82℄ and, using thatx < y � 9z(x+ z = y ^ x 6= y) � 8z(y + z 6= x) 2 [9℄ \ [8℄;we obtainSTART(x; q; s) := digs10m(q; 1) 2 [93℄;ACC(x; q; s) := digs1m0(q; s) 2 [93℄:ADM has to ensure that q is of the right form.ADM(x; q; s) :=Pps ^ î<nxi < s^ :9z_�digw(q; z) �� jwj = m+ 1 and w is not a fator of1i+10m�i1j+10m�j for all i; j < m	 2 [84℄:In order to de�ne RUN we need a formula desribing the e�et of a sequene ofm+ 1 transitionsTrans(k;a0:::am;k0)(x; q; z) :=digs1k+10m�k (q; z) ^ digs1k0+10m�k0 (q; pm+1 � z)^ î<n digs(a0)i:::(am)i(xi; z) 2 [93n+6℄;and a formula de�ning those positions where the enoding of a state startsPOS(q; z) := Ppz ^ _w2f0;1gm�1 digs1w0(q; z) 2 [93℄:



34 4. Complete StruturesLet �m+1 denote the set of all tuples (k; a0 : : : am; k0) 2 Q�Zm+1p �Q desribingsequenes of m+ 1 transitions permitted by �. SettingRUN(x; q; s) := 8z�POS(q; z)! ^� =2�m+1 :Trans� (x; q; z)� 2 [83n+10℄we obtain9q9s9091[DEF ^ ADM ^ START ^ RUN ^ ACC℄ 2 [94939383n+10℄;8q8s8081[DEF^ADM ^ START ^ RUN! ACC℄ 2 [848393n+10℄:4.2 !-LanguagesIn this and the following setions we repeat the program of the last one for,respetively, !-, tree, and !-tree languages. In the ase of !-languages thestrutures orresponding to Np and W(�) areRp := (R;+;�; jp; 1) and W!(�) := (��!; (�a)a2� ;�; el);where +, �, and 1 have their usual meaning, p 2 N n f0; 1g, andx jp y : i� 9n; k 2 Z : x = pn and y = kx;�a(x) := (xa if x 2 ��;x if x 2 �!;x � y : i� 9z : xz = y;el(x; y) : i� jxj = jyj :Again, the �rst step is to prove their equivalene. In order to simplify onediretion we additionally introdue the struture R+p := (R�0 ;+; jp; 1).What makes matters slightly more ompliated in the ase of reals is thefat that some real numbers have two enodings. For instane, in base 10 thenumbers 0:999 : : : and 1:000 : : : are the same. The �rst ase is alled the lowenoding, the seond the high enoding.Proposition 4.6. Rp 
FO R+p 
FO W!(Zp).Proof. (Rp �FO R+p ) The interpretation represents non-negative numbers x 2 Rby the pair (0; x) and non-positive numbers x by (1;�x).Æ(x) := x0 = 0 _ x0 = 1;"(x; y) := (x0 = y0 ^ x1 = y1) _ (x1 = 0 ^ y1 = 0);'1(x) := x0 = 0 ^ x1 = 1;'jp(x; y) := x0 = 0 ^ x1 jp y1;'�(x; y) := (x0 = 1 ^ y0 = 0) _ (x1 = 0 ^ y1 = 0)_ (x0 = 0 ^ y0 = 0 ^ 9z(x1 + z = y1))_ (x0 = 1 ^ y0 = 1 ^ 9z(y1 + z = x1)):



4.2. !-Languages 35To de�ne addition we have to handle eah ombination of signs separately.'+(x; y; z) := (x0 = 0 ^ y0 = 0 ^ z0 = 0 ^ x1 + y1 = z1)_ (x0 = 1 ^ y0 = 1 ^ z0 = 1 ^ x1 + y1 = z1)_ (x0 = 0 ^ y0 = 1 ^ z0 = 0 ^ x1 = y1 + z1)_ (x0 = 1 ^ y0 = 0 ^ z0 = 1 ^ x1 = y1 + z1)_ (x0 = 1 ^ y0 = 0 ^ z0 = 0 ^ y1 = x1 + z1)_ (x0 = 0 ^ y0 = 1 ^ z0 = 1 ^ y1 = x1 + z1)(R+p �FO W!(Zp)) We represent a number Pimipi (in high enoding) bythe pair (m0 : : :mr;m�1m�2 : : : ) and de�ne, using the same abbreviations asin the previous setion,Inf(x) := 8y(x � y ! x = y); " : 8x(" � x);Fin(x) := :Inf(x); 0! : Inf(0!) ^ 8x dig0(0!; x):The universe of the interpretation onsists of all pairs whose frational part doesnot end with (p� 1)!.Æ(x) := Fin(x0) ^ Inf(x1) ^ :9y8z(jzj > jyj ! digp�1(x1; z))Two pairs are equal if their frational parts are idential and their integer partsdi�er only by the number of initial zeros."(x; y) := x1 = y1 ^ 8z k̂<p(digk(x0; z)$ digk(y0; z))'1(x) := "(x; (�1"; 0!))For x jp y we have to hek whether x is an integer or less than 1, and handleboth ases separately.'jp(x; y) := [x1 = y1 = 0! ^  1jp(x0; y0)℄ _ [x0 � 0! ^  2jp(x1; y1)℄ 1jp(x; y) := 9z�dig1(x; z) ^ 8z0(jz0j 6= jzj ! dig0(x; z0)) ^8z0(jz0j < jzj ! dig0(y; z0))� 2jp(x; y) := 9z�dig1(x; z) ^ 8z0(jz0j 6= jzj ! dig0(x; z0)) ^8z0(jz0j > jzj ! dig0(y; z0))�Unsurprisingly, addition is the most ompliated part. Again there has to be anumber u enoding the arry.'+(x; y; z) := 9u[Æ(u) ^ 8v(dig0(u0; v) _ dig1(u0; v))^ 8v(dig0(u1; v) _ dig1(u1; v))^  1+(x; y; z; u) ^  2+(x; y; z; u)℄ 1+ and  2+ handle, respetively, the integer and frational part of the addition



36 4. Complete Struturesand hek whether eah digit is orret using the set A de�ned above. 1+(x; y; z; u) := 8v _(a;b;;d;d0)2A �diga(x0; v) ^ digb(y0; v) ^ dig(z0; v)^ digd(u0; v) ^ digd0(u0; �0v)� 2+(x; y; z; u) := 8v _(a;b;;d;d0)2A� diga(x1; v) ^ digb(y1; v) ^ dig(z1; v)^ digd(u1; v)^ [9s(jvj = jsj+ 1 ^ digd0(u1; s)) _(v = " ^ digd0(u0; "))℄�(W!(Zp) �FO Rp) Finite words m1 : : :mr 2 Z�p are enoded by the numberp�r+1 + rXi=1mip�i + 2 2 [2; 3℄:We annot just map in�nite words m1m2 : : : 2 Z!p to Pimip�i 2 [0; 1℄ be-ause, e.g., the words 0(p� 1)! and 10! would be mapped to the same number.Therefore we hoose the enoding as�Xi mip�i 2 [�1; 1℄suh that numbers in [0; 1℄ enode the word orresponding to their high enodingand numbers in [�1; 0℄ enode words orresponding to the low enoding of theirabsolute value. This results in most words having two enodings. SetLastDigit(x; y) := y jp x ^ p � y 6 jpx;Inf(x) := �1 � x � 1;Fin(x) := 2 � x � 3 ^ 9y(LastDigit(x; y) ^ p � y jp x� y);Ambig(x) := Inf(x) ^ :9y LastDigit(x; y):We obtain the interpretationÆ(x) := Inf(x) _ Fin(x);"(x; y) := x = y _ [Ambig(x) ^Ambig(y) ^ x = �y℄;'�i (x; y) := [Inf(x) ^ "(x; y)℄ _[Fin(x) ^ Fin(y) ^ 9z(LastDigit(x; z) ^ LastDigit(y; z=p)^ y = x� z + i � z + z=p)℄;'el(x; y) := [Inf(x) ^ Inf(y)℄ _[Fin(x) ^ Fin(y) ^ 9z(LastDigit(x; z) ^ LastDigit(y; z))℄;'�(x; y) := "(x; y)_ �Fin(x) ^ 9z�LastDigit(x; z) ^ [(Inf(y) ^  1�(x; y; z)) _(Fin(y) ^  2�(x; y; z))℄��; 1�(x; y; z) := [(0 � y _Ambig(y)) ^ 0 � jyj � (x � z) < p � z℄ _[y < 0 ^ :Ambig(y) ^ 0 < jyj � (x� z) � p � z℄; 2�(x; y; z) := 9z0(LastDigit(y; z0) ^ 0 � (y � z0)� (x � z) < p � z):



4.3. Tree Languages 37This time we useW!(�), mainly beause the onstrution of an !-automatipresentation of Rp is quite involved. (See [BRW98℄ for a similar result.)Theorem 4.7. R � (�!)n is FO-de�nable in W!(�) if and only if fold(R) is!-regular.Proof. W.l.o.g. assume � = Zp for some p > 1.()) SetZp� := Zp �[ f�g; id := �[ ii ℄ �� i 2 Zp	; id� := �[ ii ℄ �� i 2 Zp�	:The desired presentation of W!(�) isd := �id;Zp�; LÆ; L"; (L�i)i<p; L�; Lel�whereLÆ := Z�p�! [Z!p ; L� := L
2Æ \ �id! [ id����i � �� i 2 Zp�	!�;L" := L
2Æ \ id!�; L�i := L
2Æ \ �id! [ id� ��i � ��� �!�;Lel := (Z2p)! [ (Z2p)� ��� �! :(() The proof is analogous to the one above. Let A = (Q;Znp; �; 0;F )with Q = Zmp be a Muller-automaton whih reognises fold(R). We onstrut aformula  A de�ning R. A(x0; : : : ; xn�1) := 9q0 � � � 9qm�1[ADM(q; x) ^ START(q; x) ^RUN(q; x) ^ ACC(q; x)℄with Inf(x) := 8y(x � y ! x = y);Syma(x; z) := î digai(xi; z);ADM(q; x) := ^i<m Inf(qi) ^ î<n Inf(xi);START(q; x) := Sym0(q; ");RUN(q; x) :=8z _(k;a;k0)2�(Symk(q; z) ^ Syma(x; z) ^ Symk0(q; �0z));ACC(q; x) := _F2F� k̂2F 8z9z0(jz0j > jzj ^ Symk(q; z0))^ k̂ =2F :8z9z0(jz0j > jzj ^ Symk(q; z0))�:4.3 Tree LanguagesLet R be a ring and M a monoid. The semiring RhhMii of formal power seriesover M onsists of all maps r : M ! R. We write (r;m) for the value of m



38 4. Complete Struturesunder r. Addition, produt, and Hadamard produt are de�ned as(r1 + r2;m) := (r1;m) + (r2;m);(r1 � r2;m) := Xm1�m2=m(r1;m1) � (r2;m2);(r1 � r2;m) := (r1;m) � (r2;m):Note that the produt is unde�ned if the sum diverges. We denote by RhMithe semiring of formal polynomials over M , i.e., power series r with (r;m) = 0for all but a �nite number of m.In this setion we onsider the struturesPp := �ZphfX;Y g�i;+;�; �X; � Y � and Tp := (T;+; �; s0; s1)where, for p 2 N n f0; 1g, Pp is the semiring of formal polynomials in two non-ommuting variables with addition, Hadamard produt and right-multipliationby the variables, andT := � t 2 T!Zp �� t�1(i) is �nite for all i 6= 0	;(t1 + t2)(x) := t1(x) + t2(x) for all x 2 f0; 1g�;(t1 � t2)(x) := t1(x) � t2(x) for all x 2 f0; 1g�;(sit)(x) := t(xi) for i 2 f0; 1g:Proposition 4.8. Pp =FO Tp.Proof. Note that eah tree t : dom(t)! Zp an be regarded as a formal polyno-mial in Zphf0; 1g�i. Hene, both strutures are nearly isomorphi but for the def-inition of si and �X , where the arguments are reversed. s0t = r i� r �X = t.We enode eah t 2 T� as tree in Tp by marking its frontier with 1's.Formallyode(t) :=8><>:t(x) if x 2 dom(t);1 if x =2 dom(t); x = yi; i 2 f0; 1g and y 2 dom(t);0 otherwise:Theorem 4.9. Let R � (T�)n. ode(R) is FO-de�nable in Tj�j if and only iffold(R) is reognisable.Proof. ()) A presentation of Tp is given byd := �id;Zp; TZp; L(A"); L(A+); L(A�); L(As0); L(As1)�where A" := �fq0g;Z2p; �"; fq0g�;A� := �fq0g;Z3p; ��; fq0g�;Asi := �fq0; : : : ; qp�1g;Z2p; �i; fq0; : : : ; qp�1g�



4.3. Tree Languages 39for � 2 f�;+g and i 2 f0; 1g with�" := �(q0; (a; a); q; q0) �� a 2 Zp; q; q0 2 fq0;�g	;�� := �(q0; (a1; a2; a1 � a2); q; q0) �� a1; a2 2 Zp; q; q0 2 fq0;�g	[ �(q0; (a;�; a� 0); q; q0); (q0; (�; a; 0� a); q; q0) ��a 2 Zp; q; q0 2 fq0;�g	;�0 := �(qa; (a; b); qb; q) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1;�g	[ �(qa; (a;�);�; q) �� a 2 Zp; q 2 fq0; : : : ; qp�1;�g	;�1 := �(qa; (a; b); q; qb) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1;�g	[ �(qa; (a;�); q;�) �� a 2 Zp; q 2 fq0; : : : ; qp�1;�g	:(() First we de�ne some auxiliary formulae. The 0-tree is de�ned by 0+0 =0. The m-fold produt of some tree t is0t := 0; mt := t+ � � �+ t:In order to aess the nodes of a tree we use trees ontaining a single nodelabelled by 1.SingleNonZero(t) := 8s_i<p t � s = it;SingleOne(t) := SingleNonZero(t) ^ 9=ps(t � s = s):The root isRoot(t) := SingleOne(t) ^ s0t = 0 ^ s1t = 0;and the suessors of some node are de�ned bySu0(s; t) := SingleOne(s) ^ SingleOne(t) ^ s0t = s;Su1(s; t) := SingleOne(s) ^ SingleOne(t) ^ s1t = s;Su(s; t0; t1) := Su0(s; t0) ^ Su1(s; t1):Additionally, we need a formula haraterising those trees all of whose nodesare either labelled with 1 and posses at least one hild also labelled with 1, orare labelled with 0Inf(t) := 8r[SingleOne(r)! (t � r = r _ t � r = 0)℄^ 8r8s08s1[Su(r; s0; s1)! (t � r = 0 _ t � s0 6= 0 _ t � s1 6= 0)℄;and a formula de�ning those positions of a tree whose suessors all are labelledwith 0Box(s; t) := �s � t = 0 ^ 9r(Inf(r) ^ r � t = t ^ r � s = 0)�_ �s � t = t ^ 8v( Su0(t; v) _ Su1(t; v)!9r(Inf(r) ^ r � v = v ^ r � s = 0))�:



40 4. Complete StruturesWe onstrut a formula stating that the tree automaton A = (Q;Znp; �; F )with Q = Zmp aepts some tuple (t0; : : : ; tn�1) 2 TnZp. A(t0; : : : ; tn�1) := 9q0 � � � 9qm�1[RUN(q; t) ^ ACC(q; t)℄whereSyma(x; r) := ^i : ai 6=�(xi � r = air ^ :Box(xi; r)) ^ ^i : ai=�Box(ti; r);RUN(q; t) :=8r8s08s1�Su(r; s0; s1)!_(k;a;k0;k1)2��Symk(q; r) ^ Syma(t; r) ^ Symk0(q; s0) ^ Symk1(q; s1)��;ACC(q; t) := 9r�Root(r) ^ _k2F Symk(q; r)�:4.4 !-Tree LanguagesThis last setion holds no surprises. A bored reader may skip it without missinganything. The strutures areP!p := �ZphhfX;Y g�ii;+;�; �X; � Y � and T!p := (T!Zp;+; �; s0; s1)where, p 2 N n f0; 1g, Pp is the semiring of formal power series in two non-ommuting variables with addition, Hadamard produt and right-multipliationby the variables, and(t1 + t2)(x) := t1(x) + t2(x) for all x 2 f0; 1g�;(t1 � t2)(x) := t1(x) � t2(x) for all x 2 f0; 1g�;(sit)(x) := t(xi) for i 2 f0; 1g:Proposition 4.10. P!p =FO T!p .Proof. same as above.Theorem 4.11. R � (T!�)n is FO-de�nable in T!j�j if and only if fold(R) isreognisable.Proof. ()) The desired presentation of T!p isd := �id;Zp; T!Zp; L(A"); L(A+); L(A�); L(As0); L(As1)�where A" := �fq0g;Z2p; �"; fq0g; fq0g�;A� := �fq0g;Z3p; ��; fq0g; fq0g�;Asi := �fq0; : : : ; qp�1g;Z2p; �i; fq0; : : : ; qp�1g;P(fq0; : : : ; qp�1g)�



4.4. !-Tree Languages 41for � 2 f�;+g and i 2 f0; 1g with�" := �(q0; (a; a); q0; q0) �� a 2 Zp	;�� := �(q0; (a1; a2; a1 � a2); q0; q0) �� a1; a2 2 Zp	;�0 := �(qa; (a; b); qb; q) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1g	;�1 := �(qa; (a; b); q; qb) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1g	:(() Using the same auxiliary formulae as in the ase of �nite trees weonstrut a formula stating that the !-tree automaton A = (Q;Znp; �;Q0;F )with Q = Zmp aepts some tuple (t0; : : : ; tn�1) 2 (T!Zp)n. A(t0; : : : ; tn�1) := 9q0 � � � 9qm�1[START(q; t) ^ RUN(q; t) ^ ACC(q; t)℄whereSyma(x; r) := î xi � r = air;START(q; t) := 9r�Root(r) ^ _k2Q0 Symk(q; r)�;RUN(q; t) :=8r8s08s1�Su(r; s0; s1)!_(k;a;k0;k1)2��Symk(q; r) ^ Syma(t; r) ^ Symk0(q; s0) ^ Symk1(q; s1)��;ACC(q; t) :=_F2F� k̂2F 8r[Inf(r)! 9s(SingleOne(s) ^ r � s = s ^ Symk(q; s)℄^ k̂ =2F :8r[Inf(r) ! 9s(SingleOne(s) ^ r � s = s ^ Symk(q; s)℄�:



42 4. Complete Strutures



Chapter 5Classes of AutomatiStruturesWe are now ready to investigate the four lasses of automati strutures. Af-ter developing tools to obtain negative results and looking at the losure of[!-℄[T℄AutStr under ertain produts we will determine the relationship betweenthem.5.1 Growth Rates and Length SequenesSo far, our only tool to prove that some struture is not automati was to showthat its theory is undeidable. In this setion we develop another method whihunfortunately is only appliable in ase of AutStr. The arguments used are slightgeneralisations of a result of Khoussainov and Nerode [KN95, Lemma 4.5℄.When trying to show that a struture has no automati presentation onesu�ers from the lak of knowledge about how elements are enoded. If suhinformation were available one ould use standard tehniques from formal lan-guage theory to prove non-regularity. So far, the best we an do is to givebounds on the length of the enoding of some element.Proposition 5.1 (impliit in [KN95, Lemma 4.5℄). Let A 2 AutStr, d an in-jetive presentation of A, and let f : An ! A be a funtion of A. Then thereis a onstant m suh that for all a 2 An�d(f(a)) � m+maxf�d(a0); : : : ; �d(an�1)g:Proof. As d is injetive there is a single word w enoding the value of f(a). Letmbe the number of states in the automaton reognising the graph of f . Supposethat w is more than m symbols longer than the enoding of eah argument.Then the automaton reognises a word of the form((� �[ f�g)n ��)�(f�gn ��)m+1:As there has to be a repetition of states in the suÆx of this word the automatonreognises in�nitely many words with the same pre�x. But this pre�x ompletelyontains the arguments of the funtion so the image of a has in�nitely manyrepresentations. Contradition. 43



44 5. Classes of Automati StruturesCorollary 5.2. Let A 2 AutStr, d an injetive presentation of A, and letR � An+k be a relation of A suh that for all a 2 An the number of b 2 Akwith (a; b) 2 R is �nite. Then there is a onstant m suh that for all (a; b) 2 Rmaxf�d(b0); : : : ; �d(bk�1)g � m+maxf�d(a0); : : : ; �d(an�1)g:Proof. De�ne the funtion f : An ! A byf(a) =  : i� 9b(Rab ^ \ appears in b")^ 8b�Rab! î<k �d(bi) � �d()�:By assumption on R f is well-de�ned, and it should be lear that there is someautomaton reognising the graph of f . Therefore the result follows from thepreeding proposition.In the ase of Presburger Arithmeti Proposition 5.1 seems to indiate thatwe do not have muh hoie with regard to the enoding.Lemma 5.3. For any automati presentation d of Presburger Arithmeti wehave �d(n) 2 �(log n).Proof. The lower bound immediately follows from the fat that there are onlyj�jn strings of length n over �. To prove the upper bound we show by indutionon n that�d(n) � mdlog2 ne+ �d(1)where m is the onstant from the previous lemma.(n = 1) �d(1) � mdlog2 1e+ �d(1).(n > 1) Set k = dlog2 ne. Then n = 2k�1 + (n � 2k�1) and we obtain fromthe previous lemma and the indution hypothesis�d(n) = �d(2k�1 + (n� 2k�1))� m+maxf�d(2k�1); �d(n� 2k�1)g� m+m(k � 1) + �d(1)= mdlog2 ne+ �d(1):Corollary 5.2 an be paraphrased suh that it yields lower bounds.Corollary 5.4. Let A 2 AutStr, d an injetive presentation of A, and letf : An ! A be a funtion of A suh that for all b 2 A the set f�1(b) is �nite.Then there is a onstant m suh that for all a 2 An�d(f(a)) � maxf�d(a0); : : : ; �d(an�1)g �m:Proof. The relation R := f (b; a) j f(a) = b g satis�es the onditions of theorollary above.



5.1. Growth Rates and Length Sequenes 45The above results deal with a single appliation of a funtion or relation. Inthe remaining part of this setion we will study the e�et of applying funtionsiteratively, that is, we will onsider some de�nable subset of the universe andalulate upper bounds on the length of the enodings of elements in the sub-struture generated by it. First we need bounds for the (enodings of) elementsof some de�nable subsets.Lemma 5.5. Let A be a struture in AutStr with presentation d, and let B bean FO(9!)-de�nable subset of A. Then �d(B) is a �nite union of arithmetialprogressions.Proof. Denote by L the regular language representing B and let h : �� ! f1g�be the projetion with h(a) := 1 for all a 2 �. Then h(L) is regular, too, andf jxj j x 2 L g = f jxj j x 2 h(L) g:As h(L) is a regular language over an unary alphabet the laim follows (see,e.g., [Eil74, Proposition V.1.1℄).Before proeeding we apply this lemma to our favourite example, PresburgerArithmeti.Lemma 5.6. Let (N;+; P ) 2 AutStr for some unary prediate P , and let k1 <k2 < � � � be an enumeration of P . There exists a onstant  suh that ki � 2i.Proof. Fix a presentation d of (N;+; P ). Obviously, the set P is de�nable in thisstruture. By the preeding lemma, there is a onstantm suh that �d(ki) � mifor all i, and beause of �d(ki) 2 �(log ki) there is some  suh that1 log2 ki � �d(ki) � mi =) ki � 2mi:The example (N;+; Pp) 2 AutStr shows that this result is optimal, wherePp is the set of all powers of p.In the proess of generating a substruture we have to ount the number ofappliations of funtions. This is made preise byDe�nition 5.7. Let A 2 AutStr with presentation d, let f0; : : : ; fr be �nitelymany operations of arity r0; : : : ; rr, respetively, and let E = fe1; e2; : : : g besome subset of A with �d(e1) � �d(e2) � � � � . Then Gn(E), the nth generationof E, is de�ned asG1(E) := fe1g;Gn(E) := Gn�1(E) [ feng [ � fi(a) �� a 2 Grin�1(E); i � r 	:Putting everything together we obtain the following important result. Thease of �nitely generated substrutures already appeared in [KN95℄.Proposition 5.8. Let A 2 AutStr with injetive presentation d, let f0; : : : ; frbe �nitely many operations of A, and let E be some de�nable subset of A. Thenthere is a onstant m suh that�d(a) � mn for all a 2 Gn(E):In partiular, jGn(E)j � j�jmn+1 where � is the alphabet of d.



46 5. Classes of Automati StruturesProof. Aording to Proposition 5.1 and Lemma 5.5 there are onstants m0 andm0; : : : , mr with �d(en) � m0n;�d(fi(a0; : : : ; ari�1)) � mi +maxf�d(a0); : : : ; �d(ari�1)gfor i � r. Set m := maxfm0;m0; : : : ;mrg. We prove the laim by indutionon n.(n = 1) G1(E) = fe1g and �d(e1) � m0 � m.(n > 1) Let a 2 Gn(E). There are three possible ases. If a 2 Gn�1(E) thenthe indution hypothesis yields�d(a) � m(n� 1) < mn:If a = en then�d(a) � m0n � mn:If a = fi(a0; : : : ; ari�1) for some a 2 Grin�1(E) and i � r then�d(a) = �d(fi(a0; : : : ; ari�1))� mi +maxf�d(a0); : : : ; �d(ari�1)g� mi +m(n� 1) (by ind. hyp.)� m+m(n� 1) = mn:Remark. Clearly, the laim remains valid if we replae some of the generatingfuntions by relations whih satisfy the onditions of Corollary 5.2.We give two appliations. Obviously, in free strutures you an onstrutmany di�erent elements by few appliations of funtions. Therefore it shouldnot be surprising that the free monoid is not automati.Example. LetM be a trae monoid with at least two non-ommuting generatorsa and b. ThenM =2 AutStr. In partiular, (��; �; ") =2 AutStr for any non-unaryalphabet �.Proof. We show by indution on n thatfa; bg�2n � Gn+1(a; b):For n = 1 we have fa; bg � fa; aa; bg = G2(a; b), and for n > 1Gn+1(a; b) = �uv �� u; v 2 Gn(a; b)	� �uv �� u; v 2 fa; bg�2n�1 	= fa; bg�2n:Therefore, jGn(a; b)j � 22n and the laim follows.Example. Let A be any struture in whih a pairing funtion f an be de�ned.Then A =2 AutStr.



5.1. Growth Rates and Length Sequenes 47Proof. Let a, b be distint elements of A. All words w 2 fa; bg� of lengthjwj = 2n an be oded in A using appliations of f nested n levels deep. Forinstane, the word abaa of length 22 an be represented as f(f(a; b); f(a; a)).Let (w) be the ode of w. Consider the generations of fa; bg. We have� (w) �� w 2 fa; bg2n 	 � Gn+1(a; b):whih implies that jGn+1(a; b)j � 22n as the oding is injetive.The above proposition an be generalised to the ase of an in�nite numberof de�nable generating funtions.De�nition 5.9. Let L � ��. By �(L) we denote the index of the Nerode-ongruene of L. Analogously, if d is an automati presentation and ' 2 FO wede�ne �(') := �(�d(')).Lemma 5.10. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an automati presenta-tion. �(' _  ) � �(')�( ) �(:') � �(LÆ)�(')�(' ^  ) � �(')�( ) �(9y'(x; y)) � 2�(')Proof. To prove the �rst three inequations we show that �(L1�L2) � �(L1)�(L2)for regular languages L1, L2, and � 2 f[;\; ng. Let A1 and A2 be the minimaldeterministi automata reognising L1 and L2. Then, after hoosing the rightset of �nal states, the produt automaton A1 � A2 reognises L1 � L2.To onstrut an automaton for �d(9y') we take the minimal deterministiautomaton for ', remove the omponents orresponding to y from the labels ofevery transition, and mark as �nal states all states from whih, in the originalautomaton, a �nal state an be reahed by using only transitions whose labelsontain � in the omponents orresponding to y. Sine in general this yieldsa nondeterministi automaton we have to apply the subset onstrution whihmay ause an exponential blowup of the state-spae.Example. The question whether (Q;+) is automati is open. If we assume that(Q;+) has an automati presentation d, then there is a onstant m suh thatfor all n, q0; : : : ; ql, k0; : : : ; kl 2 N�d� nqk00 � � � qkll � � �d(1) +mdlog2 ne+ lXi=0 ki2mlog22 qi :Proof. Set m := �(x+y = z). As in the ase of Presburger Arithmeti for n 2 Nwe obtain the bound�d(n) � mdlog2 ne+ �d(1):It remains to show that �(y = x=q) � 2mlog22 q for �xed q 2 N. Let fi0; : : : ; irgbe the set of digits of the binary enoding of q whih are 1. Then, y = x=q or,equivalently, x = q � y an be de�ned as9x1 � � � 9xr�19y1 � � � 9yblog2 q�y1 = y + y ^ ĵ yj+1 = yj + yj^ ĵ>1 xj = xj�1 + yij ^ x1 = yi0 + yi1 ^ x = xr�1 + yir�:



48 5. Classes of Automati Strutures(yi ontains 2iy, xi is used to alulate the sum of those yi needed.) We obtainthe following bound�(x = q � y) � 2mblog2 q�r � 2mlog22 qproving our laim.5.2 Appliations and ExamplesIn this setion the tools developed in the previous one are used to investigatewhether some strutures do or do not have automati presentations. We startwith some simple appliations to linear orders, equivalene and permutationstrutures.Lemma 5.11. Let A = (A;<;R0; : : : ; Rr) 2 AutStr be a struture with a dis-rete linear order < and an injetive presentation d. Denote by s the suessorfuntion of <. Then there is some onstant m suh that for all a 2 A and n 2 Z�d(sna) � �d(a) + jnjm:Proof. Immediately from Proposition 5.1 as s and s�1 are de�nable.Lemma 5.12. Let A = (A;<0; <1; R0; : : : ; Rr) 2 AutStr be a struture withtwo disrete linear orders. Denote the suessor funtions of <0 and <1 bys0 and s1, respetively. There is some onstant m suh that for all a 2 A andn 2 Z���d(sn0a)� �d(sn1a)�� � �d(a) + jnjm:Proof. Take m as maximum of the onstants from the previous lemma for<0 and <1.Lemma 5.13. Let A = (A;<;R0; : : : ; Rr) 2 AutStr be a struture with a well-ordering < and an injetive presentation d. Then there exists a onstant m suhthat for every a 2 A�d(b) � �d(a) +m for all b � a:Proof. Sine for every a 2 A the set f b 2 A j b � a g is �nite we an applyCorollary 5.2.Lemma 5.14. If f : N ! N is de�nable in Np and � � A�A is an equivalenerelation with f(n) lasses of size n for all n 2 N and with r � ! lasses ofardinality �0 then the struture A := (A;�) has an automati presentation.Proof. We show that A �FO Np. The kth element of the mth lass of size n isenoded by the tuple (n;m; k) and the kth element of the mth in�nite lass isenoded by (0;m; k). The interpretation is de�ned asÆ(x) := (x0 > 0 ^ x1 < fx0 ^ x2 < x0) _ (x0 = 0 ^ x1 < r);(if r = ! then x1 < r � true)"(x; y) := x0 = y0 ^ x1 = y1 ^ x2 = y2;'�(x; y) := x0 = y0 ^ x1 = y1:



5.2. Appliations and Examples 49Lemma 5.15. Let A = (A;�) 2 AutStr where � is an equivalene relationand let d be an injetive presentation of A. Then there is a onstant m suhthat for all �nite equivalene lasses [a℄����d(a)� �d(a0)�� � m for all a0 2 [a℄�:Proof. Let d = (�;�; LÆ; L"; L�) and let m be the index of the Nerode-ongru-ene of L�. If there are x, y 2 �� suh thatx
 y 2 L� and jyj � jxj+mthen, aording to the Pumping Lemma, there are in�nitely many y0 2 �� withx
 y 2 L�. Contradition.Lemma 5.16. Let A = (A;�) 2 AutStr where � is an equivalene relation.Let n0 < n1 < � � � be an enumeration of the ardinalities of the �nite �-lasses.Then ni 2 2O(i).Proof. Let d = (�;�; LÆ; L"; L�) be an injetive presentation of A. Considerthe set F de�ned by'(x) := :9!y(x � y):Aording to Lemma 5.5 there is a subset fa1; a2; : : : g � F suh that, for someonstant m0, �d(ai) = m0i. Let m be the onstant from the preeding lemmaand set k := bm=m0+ 1. Then ai 6� ai+k and�d([aik ℄�) � m0i � (bm=m0+ 1) +m � (m+m0)(i+ 1)=) ��[aik℄��� � 2O(i):As �j[aik ℄�j�i is a subsequene of (ni)i the laim follows.Lemma 5.17. Let f : N ! N be de�nable in Np. Then (A; �) 2 AutStr whereA is ountable and � is a permutation of A with f(n) orbits of size n and anarbitrary number of in�nite orbits.Proof. For simpliity, we onstrut an interpretation of (A; �) in (Z;+; jp).Clearly, f is also de�nable in this struture. Let r � ! be the number ofin�nite orbits. We enode the kth element of the mth orbit of size n as (k;m; n)and the elements of the mth in�nite orbit as (k;m; 0) for k 2 Z. Thus, we de�neÆ(x) := (x2 > 0 ^ 0 � x0 < x2 ^ 0 � x1 < fx2) _ (x2 = 0 ^ x1 < r);"(x; y) := x0 = y0 ^ x1 = y1 ^ x2 = y2;'�(x; y) := x1 = y1 ^ x2 = y2 ^ (x2 > 0 ^ x0 + 1 < x2 ^ y0 = x0 + 1_ x2 > 0 ^ x0 + 1 = x2 ^ y0 = 0_ x2 = 0 ^ y0 = x0 + 1):



50 5. Classes of Automati StruturesReduts of Arithmeti. We start by deriving limits on the possible presen-tations of Presburger Arithmeti. Reall from Lemma 5.3 that �d(n) 2 �(log n).Proposition 5.18. Let (N;+; f) 2 AutStr for f : N ! N.(i) f(n) 2 nO(1) and n1+" =2 O(f(n)) for all " > 0.(ii) If f(n) 2 O(n1�") for some " > 0 then f(n) is bounded.(iii) Let k1 < k2 < � � � be an enumeration of f�1(n) for some n. There existsa onstant  suh that ki � 2i.Proof. (i) Fix a presentation d of (N;+; f). By Proposition 5.1 there is a on-stant m suh that for all n 2 N�d(f(n)) � �d(n) +m:Applying f several times, we obtain�d(fk(n)) � �d(n) + km:Beause of �d(n) 2 �(log n) there are onstants 0 and 1 suh that for largeenough n 10 log2 fk(n) � �d(fk(n)) � �d(n) + km � 1 log2 n+ km=) fk(n) � 20kmn01 :Thus f(n) 2 nO(1).Suppose that nr 2 O(f(n)) for some r > 1, i.e., f(n) > nr for some  andall suÆiently large n. Thus,fk(n) > r � � � rk�1nrk = (rk�1)=(r�1)nrk :Choosing rk > 01 we get a ontradition to fk(n) � 20kmn01 for large n.(ii) Let f(n) be unbounded. Theng(n) := minf k j f(k) � n gis well-de�ned and monotone. Sine g is FO-de�nable in (N;+; f) the struture(N;+; g) has an automati presentation as well, and n1+" =2 O(g(n)) for all " > 0by (i).Suppose f(n) 2 O(nr) for some r < 1. Then f(n) < nr for some  and allsuÆiently large n. Thus,f(n) < nr =) n = g(f(n)) < g(nr) =) �1n1=r � g(n)in ontradition to n1=r =2 O(g(n)).(iii) Sine the set f�1(n) is de�nable the laim immediately follows fromLemma 5.6.So far, the only redut of Arithmeti we looked at was the additive one. Nowwe turn to Skolem Arithmeti (N; �) and the divisibility poset (N; j).Proposition 5.19. (N; j) =2 AutStr.



5.2. Appliations and Examples 51Proof. Suppose (N; j) 2 AutStr. We de�ne the set of primesPx : i� x 6= 1 ^ 8y(y j x! y = 1 _ y = x);the set of powers of some primeQx : i� 9y(Py ^ 8z(z j x ^ z 6= 1! y j z));and a relation ontaining all pairs (n; pn) where p is a prime divisor of nSxy : i� x j y ^ 9=1z(Qz ^ :Pz ^ z j y ^ :z j x):The least ommon multiple of two numbers islm(x; y) = z : i� x j z ^ y j z ^ :9u(u 6= z ^ x j u ^ y j u ^ u j z):For every n 2 N there are only �nitely many m with (n;m) 2 S. ThereforeS satis�es the onditions of Corollary 5.2. Consider the set generated by Pvia S and lm, and let (n) := jGn(P )j be the ardinality of Gn(P ). If (N; j) isin AutStr then (N; j; P;Q; S) 2 AutStr and (n) 2 2O(n) by Proposition 5.8. LetP = fp1; p2; : : : g. For n = 1 we have G1(P ) = fp1g. Generally, Gn(P ) onsistsof(1) numbers of the form pk11 ,(2) numbers of the form pk22 � � � pknn , and(3) numbers of a mixed form.In n steps we an reate(1) p1; : : : ; pn1 (via S),(2) (n� 1) numbers with k1 = 0, and(3) (n� 2)� 1 numbers of a mixed form for every 0 < k1 < n (via lm).All in all we obtain(n) � n+ (n� 1) + (n� 1)((n� 2)� 1)= (n� 1) + (n� 1)(n� 2) + 1� n(n� 2) (as (n� 1) > (n� 2))� n(n� 2) � � � 3(1) (w.l.o.g. assume that n is odd)= n(n� 2) � � � 3� ((n+ 1)=2)!2 2
(n log n):Contradition.The importane of the following orollary lies in the fat that it is possible toonstrut a tree-automati presentation of Skolem Arithmeti (f. Setion 5.3)whih implies that AutStr 6= TAutStr.Corollary 5.20. (N; �) =2 AutStr.Proof. (N; j) �FO (N; �).



52 5. Classes of Automati StruturesExample. If we replae divisibility by the prediate ? de�ned byx ? y : i� x and y have no ommon divisorsthe resulting struture (N;?) is automati.Proof. We onstrut an interpretation (N;?) �FO Np. A number n is enodedby the pair (k;m) where the ith digit of k is 1 i� the ith prime divides n and theseond omponent enumerates all numbers with the same set of prime divisors.Thus, (k;m) ? (k0;m0) holds i� there is no position at whih both k and k0arry the digit 1. We obtain the interpretationÆ(x) := 8z(Ppz ! dig0(x0; z) _ dig1(x0; z));"(x; y) := x0 = y0 ^ x1 = y1;'?(x; y) := :9z(dig1(x0; z) ^ dig1(y0; z)):Proposition 5.21. (N;+;?) =2 AutStr.Proof. The set of primes an be de�ned asPx : i� x > 1 ^ 8y(y < x! x ? y):We start by onstruting a funtion mapping numbers x to the least primegreater than x.fx = y : i� y > x ^ Py ^ :9z(x < z < y ^ Pz):Let g(x) := fx � ffx. Sine g(x) > x2, the laim follows if we an de�ne g in(N;+;?). We use the auxiliary relation Mxy whih holds i� fx and ffx arethe only prime divisors of y. Thus, g(x) returns the least suh y.Mxy : i� :(y ? fx) ^ :(y ? ffx)^ 8z[:(y ? z)! :(z ? fx) _ :(z ? ffx)℄;g(x) = y : i� y > ffx ^Mxy ^ :9z[ffx < z < y ^Mxz℄:5.3 Composition of StruturesGeneralised Produts. We begin our investigation of the losure propertiesof automati strutures with Feferman-Vaught like produts (see [Tho97a, Zei94,Hod93℄). A generalised produt|as it is de�ned below|is a generalisation of adiret produt, a disjoint union, and an ordered sum. Hene, we will be able toprove losure under all of these operations with just one|unfortunately quitetehnial|theorem.The relations of the new struture are de�ned in terms of the types of theomponents of its elements.De�nition 5.22. Let � be a �nite relational signature, A a � -struture, anda 2 An. For k 2 N� we de�ne the k-type T k(A; a) of (A; a) asT "(A; a) := �' 2 FOn[� ℄ �� ' is atomi, (A; a) j= '	;T km(A; a) := �T k(A; ab) �� b 2 Am 	:



5.3. Composition of Strutures 53The set T k(n) of all k-types with n parameters isT "(n) := �' 2 FOn[� ℄ �� ' is atomi	;T km(n) :=P(T k(n+m)):For eah type there exists a so-alled Hintikka-formula de�ning the tuples ofthis type (see [EF95℄ for the de�nition).In order to understand the next de�nition let us �rst look at how a diretprodut and an ordered sum an be de�ned using types.Example. (1) Let A := A0 � A1 where Ai = (Ai; Ri), for i 2 f0; 1g, and R is abinary relation. The universe of A is A0 � A1. Some pair (a; b) belongs to Ri� (a0; b0) 2 R0 and (a1; b1) 2 R1. This is equivalent to the ondition that the"-types of a0b0 and of a1b1 both inlude the formula Rx0x1.(2) Let A := A0 + A1 where Ai = (Ai; <i), for i 2 f0; 1g, and <0, <1 arepartial orders. The universe of A is A0 �[ A1 �= A0 � f�g [ f�g � A1, and wehave a < b i� a = (a0;�); b = (b0;�) and a0 <0 b0;or a = (�; a1); b = (�; b1) and a1 <1 b1;or a = (a0;�); b = (�; b1):Again, the ondition ai <i bi an be expressed using "-types.De�nition 5.23. Let � = fR0; : : : ; Rrg be a �nite relational signature, rj thearity of Rj , and r̂ := maxfr0; : : : ; rrg. Let n 2 N and (Ai)i2I be a sequene of� -strutures, and let I be an arbitrary relational �-struture with universe I .Fix for eah k � r̂ an enumeration f�k0 ; : : : ; �ktkg of T "(n+ k) and set�k := � �[ fD0; : : : ; Dk�1g �[ fTml j m � k; l � tm g:The �k-expansion I(b) of I belonging to a sequene b 2 �Qi2I(Ai �[ f�g)�k isgiven byDI(b)l := � i 2 I �� (bl)i 6= �	;(Tml )I(b) := � i 2 I �� f j j (bj)i 6= � g = fj0; : : : ; jm�1g andT "(Ai; (bj0)i : : : (bjm�1)i) = �ml 	:Then C := (I; D; �0; : : : ; �r) with D � B I and �j 2 FO[�rj ℄ de�nes thegeneralised produt C(Ai)i2I := (A;R0; : : : ; Rr) of (Ai)i2I whereA := [d2DYi2I �di�f�g; Ai�; Ri := f b 2 Ari j I(b) j= �i g;and �b(a0; a1) := ab.Example. (ontinued)(1) For the diret produt of A0 � A1 we would setI := (I) with I = f0; 1g;D := f(1; 1)g;� := _l2LT 2l 0 ^ _l2LT 2l 1;where L is the set of "-types ontaining the formula Rx0x1.



54 5. Classes of Automati Strutures(2) In this ase we would setI := (I) with I = f0; 1g;D := f(1; 0); (0; 1)g;� := �D00 ^D10 ^ _l2LT 2l 0� _ �D01 ^D11 ^ _l2LT 2l 1� _ (D00 ^D11);where L is the set of "-types ontaining the formula x0 < x1.Theorem 5.24. Let � = fR0; : : : ; Rrg be a �nite relational signature, and K alass of �-strutures ontaining all �nite �-strutures and a struture C whihis omplete for K with regard to many-dimensional FO-interpretations.Let I be a �nite relational �-struture, (Ai)i2I a sequene of strutures inK ,and C = (I; D; �) a generalised produt. Then C(Ai)i2I 2 K , and an interpre-tation C(Ai)i2I �FO C an be onstruted e�etively from the interpretationsAi �FO C and I �FO C.Proof. W.l.o.g. let I = f0; : : : ; jI j � 1g and assume that C ontains onstants0 and 1. We have to onstrut an interpretation of A := C(Ai)i2I in C. Letrj be the arity of Rj . Consider ni-dimensional interpretationsIi := �hi; Æi(xi); "i(xi; yi); 'i0(xi0; : : : ; xir0�1); : : : ; 'ir(xi0; : : : ; xirr�1)�of Ai in C. We represent an element a of A by an (jI j+ n0 + � � �+ njIj�1)-tuplex := �d; x0; : : : ; xjIj�1�where d 2 D determines whih omponents are empty and xi enodes theith omponent of a. The desired interpretation is onstruted as follows.I := �h; Æ(x); "(x; y); '0(x0; : : : ; xr0�1); : : : ; 'r(x0; : : : ; xrr�1)�whereh(d; x0; : : : ; xjIj�1) := ��d0��; h0(x0)�; : : : ; �djIj�1��; hjIj�1(xjIj�1)��;Æ(d; x0; : : : ; xjIj�1) := _2D�d =  ^ ^i : i=1 Æi(xi)�;and "(d; x0; : : : ; xjIj�1; e; y0; : : : ; yjIj�1) := d = e ^ ^i<jIj�di = 1! "i(xi; yi)�:In order to de�ne 'j we onsider an interpretationII := �hI ; ÆI(x); "I(x; y); 'I0(x0; : : : ; xs0�1); : : : ; 'Is(x0; : : : ; xss�1)�of I in C. Sine I is �nite suh an interpretation exists. Let �j := �IIj bethe formula de�ning Rj . Note that �j ontains additional relations Dl and Tmlwhih are not in �. Thus �j is a sentene over the signature � extended by thesymbols Dl and Tml for appropriate l and m. We have to be replae them inorder to obtain a de�nition of 'j . Let x0; : : : ; xrj�1 be the parameters of 'jwherexk = (dk; x0k; : : : ; xjIj�1k )



5.3. Composition of Strutures 55for k < rj . Dl an be de�ned byDli := (dl)i = 1:To de�ne Tml onsider the Hintikka-formula #ml (x0; : : : ; xrj�1) de�ning the or-responding type and setTml i := (#ml )Ii(xi0; : : : ; xirj�1):Note that those de�nitions are only valid beause i ranges over a �nite set.'j an now be de�ned as �j with Dl and Tml replaed by the above de�nitions.Obviously, all steps in the onstrution above are e�etive.Corollary 5.25. [!-℄[T℄AutStr is e�etively losed under �nitary generalisedproduts.As promised we immediately obtain losure under several types of omposi-tions.Corollary 5.26. Let � = fR0; : : : ; Rrg be a �nite relational signature, I a �niteset, and A and Ai, i 2 I, �-strutures with automati presentation. Then thereexist automati presentations of(i) the diret produt Qi2I Ai of (Ai)i2I ,(ii) the disjoint union �Si2IAi of (Ai)i2I , and(iii) the !-fold disjoint union ! � A of A.Proof. (i) We haveQi2I Ai = C(Ai)i2I for C := (I; D; �0; : : : ; �r) with I := (I),D := f(1; : : : ; 1)g, and�j := 8i _l : Rjx2�rjl T rjl i:(ii) We have �Si2IAi = C(Ai)i2I for C := (I; D; �) with I := (I) andD := f(1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g;�j := 9i�^l<rj Dli ^ _l : Rjx2�rjl T rjl i�:(iii) N = (!) has an automati presentation. We have ! � A = C(A;N) forC := (I; D; �) with I := (f0; 1g; 0; 1), D := f(1; 1)g, and�j := _l : Rjx2�rjl T rjl 0 ^ ^i0;i1<rj _l : xi0=xi12�rjl T rjl 1:Corollary 5.27. Let � = f<;R0; : : : ; Rrg be a �nite relational signature, I a�nite ordered set, and A and Ai, i 2 I, ordered �-strutures with automatipresentation. Then there exist automati presentations of(i) the ordered sum Pi2I Ai of (Ai)i2I and(ii) the !-fold ordered sum Pi2! A of A.



56 5. Classes of Automati StruturesProof. (i) We have Pi2I Ai = C(Ai)i2I for C := (I; D; �<; �) with I := (I;<)and D := f(1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g;�j := 9i�^l<rj Dli ^ _l : Rjx2�rjl T rjl i�;�< := 9i�D0i ^D1i ^ _l : x0<x12�2l T 2l i� _ 9i09i1(D0i0 ^D1i1 ^ i0 < i1):(ii) The struture N = (!;<) has an automati presentation. ConstrutC := (I; D; �<; �) with I := (f0; 1g; 0; 1), D := f(1; 1)g, and�j := _l : Rjx2�rjl T rjl 0 ^ ^i0;i1<rj _l : xi0=xi12�rjl T rjl 1;�< := � _l : x0<x12�2l T 2l 0 ^ _l : x0=x12�2l T 2l 1� _ _l : x0<x12�2l T 2l 1:Then Pi2! A = C(A;N).Weak Diret Powers. A ase not overed in the preeding setion are weakand !-fold diret powers. Clearly, for ardinality reasons [T℄AutStr annot belosed under !-fold diret powers, and even in the weak ase we obtain a negativeresult.Theorem 5.28. AutStr is not losed under weak diret powers.Proof. Presburger Arithmeti (N;+) possesses an automati presentation. Butits weak diret power is isomorphi to Skolem Arithmeti whih aording toCorollary 5.20 is not in AutStr.It turns out that tree presentations on the other hand are losed under weakpowers.Theorem 5.29.(i) TAutStr is losed under weak diret powers.(ii) !-TAutStr is losed under weak and !-fold diret powers.Proof. Let A 2 TAutStr with presentation d = (�;�; TÆ; T"; TR0 ; : : : ; TRr). Inorder to onstrut a tree-automati presentation of the weak diret power A�of A we enode a tuple (t0; : : : ; tn) of trees from TÆ by the tree t withdom(t) := f"; 0; : : : ; 0ng [ [i�n 0i1 dom(ti);t(0i) := 0;t(0i1x) := ti(x):Let B = (Q;�;�; F ) be a tree-automaton reognising one of the languagesTÆ, T", TR0 ; : : : , TRr . The tree-automaton B� for the orresponding languagein the presentation of A� is B� := (Q �[ fq0g; �;�0; fq0g) with�0 := � �[ � (q0; 0; q0; q); (q0; 0;�; q) �� q 2 F 	:The proofs of the other laims are analogous.
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Figure 5.1: Enoding of (t0; : : : ; tn)Example. (1) (N; �) 2 TAutStr as (N n f0g; �) �= (N;+)� via the isomorphismtaking (n0; n1; : : : ) to the number pn00 pn11 � � � where p0; p1; : : : is an enumerationof all primes.(2) Similarly, (Q>0 ; �) 2 TAutStr as (Q>0 ; �) �= (Z;+)�.5.4 The Class HierarhyFinally, we are able to ompare the various lasses of automati strutures.Theorem 5.30. [T℄AutStr � !-[T℄AutStr.Proof. We onstrut an interpretation Np �FO R+p .Æ(x) := 1 jp x; '+(x; y; z) := x+ y = z;"(x; y) := x = y; 'jp(x; y) := x jp y:Beause jRj > jNj there is no interpretation in the other diretion, hene theinlusion is proper.The ase of tree-automati presentations is analogous.Theorem 5.31.(i) AutStr � TAutStr(ii) !-AutStr � !-TAutStrProof. (i) We show that Np �FO Tp. We de�ne formulae whih state that theleft branh of a tree t is labelled 1, respetively, from the root or from somevertex r to some other vertex, and every other vertex is labelled 0.LeftPath(t) :=8r8s8s0(Su(r; s; s0)! (t � r = r _ t � r = 0) ^ (t � r = r ! t � s0 = 0)^ (t � r = 0! t � s = 0 ^ t � s0 = 0))LeftPathSuÆx(t; r) :=SingleOne(r)^ 9s19s2(LeftPath(s1) ^ LeftPath(s2)^ s1 � t = t ^ s2 � t = 0 ^ t+ s2 = s1 ^ s1 � r = r ^ s2 � r = 0^ 8v(Su0(v; r)! s2 � v = v))



58 5. Classes of Automati StruturesTo hek the digits at one position the following formula an be used. It statesthat the labels at the position r in the trees t0, t1, t2, and t3 are labelled x0, x1,x2, and x3, respetively, and the position r0 in t3 is labelled x03.Adda0a1a2a3a03(t0; t1; t2; t3; r; r0) := î<4 r � ti = air ^ r0 � t3 = a03r:A number n 2 N is enoded by a tree whose left branh is labelled with thedigits of n.Æ(t) := 9s(LeftPath(s) ^ s � t = t);"(t; t0) := t = t0;'jp(t; t0) := 9s(LeftPathSuÆx(s; t) ^ s � t0 = t0);'+(t0; t1; t0) := 9s�Æ(s) ^ 8r8r0�Su0(r; r0)!_(a;b;;d;d0)2AAddabdd0(t0; t1; t0; s; r; r0)��;where we used the set A of orret digits de�ned in Setion 4.1.The inlusion is proper, as (N; �) 2 TAutStr nAutStr.(ii) analogous.We have seen that, simply for ardinality reasons, !-[T℄AutStr n [T℄AutStris non-empty. The question ours whether ardinality is the only reason. A�rst step to answer this question isTheorem 5.32. Let A 2 !-AutStr be ountable. A 2 AutStr if and only if ithas an injetive !-automati presentation.Proof. ()) Let d be an injetive automati presentation of A. We obtain aninjetive !-automati presentation by hanging eah enoding x to x�! for somepadding symbol �.(() Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an injetive !-automati presen-tation of a ountable struture A. Then LÆ is ountable, too. As it is !-regularwe haveLÆ = [i�nUiV !ifor regular languages U0; : : : ; Un; V0; : : : ; Vn � ��. In this expression V0; : : : ; Vnan be hosen one-elementary as, otherwise, jV !i j � jf0; 1g!j = 2�0 > jLÆj.Thus,LÆ = [i�nUifvig!:We onstrut an automati presentation d0 = (�0; �0; L0Æ; L0"; L0R0 ; : : : ; L0Rr) of A.�0 := � �[ f0; : : : ; ng �0(ix) := �(xv!i )L0Æ := [i�n iUi L0" := (L0Æ)
2 \ � [ aa ℄ �� a 2 �0 	�



5.4. The Class Hierarhy 59Consider a B�uhi-automaton B = (Q; (� �[ f�g)rj ; �; q0; F ) reognising LRj ,and for l 2 f0; : : : ; ngrj and i0 < jvl0 j ; : : : ; irj�1 < jvlrj�1 j, denote by Rl{ the setof states from whih B aepts the word�si0(vl0)
 � � � 
 sirj�1(vlrj�1)�!where si is the yli shift by i letters to the leftsi(a0 � � � an) := ai � � � ana0 � � �ai�1:Let k := maxfjv0j ; : : : ; jvnjg and vi = vi0 � � � vi(jvij�1). The following automatonreognises L0Rj . Set B0 := �Q0; (�0 �[ f�g)rj ; �0; q00; F 0� whereQ0 := Q� f0; : : : ; ngrj � f0; : : : ; k � 1grj �[ fq00g;�0 := � �q00; l; (q0; l; 0)� �� l 2 f0; : : : ; ngrj 	[ � �(q; l; {); a; (q0; l; {0)� �� (q; b; q0) 2 � where, for s < rj ;(bs = as; i0s = is = 0; and as 2 �) or(bs = vlsis ; i0s = is + 1mod jvls j ; and as = �)	;F 0 := � (q; l; {) �� q 2 Rl{ 	:Intuitively, B0 determines from the �rst letter whih in�nite part the words ineah trak of the input have, and when the end of a word is reahed it simulatesthe work of B on the word v!i until the end of the whole input is reahed. Asthere are only �nitely many possible ways the in�nite parts are shifted relativeto eah other B0 an determine whether the input is aepted by B.Open Problem. Does every ountable A 2 !-AutStr possess an injetive presen-tation, or, equivalently, is every ountable A 2 !-AutStr already in AutStr?A �rst step in the investigation of this question isLemma 5.33. Let A 2 !-AutStr and let a 2 A be de�nable. Then in every !-automati presentation d of A there is an ultimately periodi !-word enoding a.Proof. Let '(x) be the formula de�ning a. The laim immediately follows fromthe fat that every non-empty regular !-language ontains an ultimately peri-odi word, and beause �d(') is non-empty.Open Problem. Does every A 2 !-AutStr in whih every element is de�nablebelong to AutStr?We have obtained the following hierarhy of lassesReStrTAutStrAutStrFinStr
DeTh!-TAutStr!-AutStroooooooo

oooooooo



60 5. Classes of Automati Strutureswhere FinStr is the lass of �nite, ReStr the lass of reursive, and DeThthe lass of strutures with deidable FO-theory, and where solid lines indi-ate proper inlusion. Examples for the proper inlusions FinStr � AutStr,TAutStr � ReStr, and !-TAutStr � DeTh are Presburger Arithmeti (N;+),full Arithmeti (N;+; �), and any set with ardinality greater than 2�0 , respe-tively.The following example, due to Eri Rosen, shows that ardinality is not theonly reason for the proper inlusion of !-TAutStr in DeTh.Lemma 5.34. DeTh n !-TAutStr ontains a ountable struture.Proof. The strutureD is onstruted via diagonalisation. Consider the lassKof graphs onsisting of �nite disjoint yles. Let (Ai)i2N be an enumeration ofall !-tree automati strutures in K . De�ne D as follows: D ontains one yleof length n i� An does ontain no suh yle. Obviously, D =2 !-TAutStr. Onthe other hand D 2 DeTh beause, for every ' 2 FO, whether ' 2 Th(D)depends only on the existene of yles up to a ertain length. This length anbe e�etively determined from the quanti�er rank of '. Beause of the e�etivesemantis of automati strutures the question whether a yle of length n existsan be answered by onstruting An.



Chapter 6Model TheoryWe turn bak to logi. After showing that the ompatness theorem fails forthe lass of automati strutures we will take a loser look at the theory of Np.6.1 CompatnessVery often, if one restrits the lass of models|say to �nite or reursive modelsor to onstraint databases|many important tools and results of lassi modeltheory fail. The most prominent example is ompatness. Unsurprisingly inautomati model theory it also does not hold.Theorem 6.1. The ompatness theorem fails for the lasses [!-℄[T℄AutStr.Proof. (Adapted from the proof for the ase of reursive strutures in [HH96℄.)Let A � N be any non-reursive set. De�ne� := f'<; 'Sg [ f'k j k 2 N gwhere'< := 8xyz(:x < x ^ (x < y ^ y < z ! x < z)^ (x < y _ x = y _ y < x))^ 9x:9y(y < x)^ 8x9y(x < y ^ :9z(x < z ^ z < y));(\< is a disrete linear order with least element.")'S := 8xy(Sxy $ (x < y ^ :9z(x < z ^ z < y)));(\S is the suessor relation with respet to <.")'k := 9x0 � � �xk�:9y(y < x0) ^ î<k Sxixi+1 ^  k(x)�; k := ^i2f0;:::;kg\AUxi ^ ^i2f0;:::;kgnA:Uxi:(\U = A \ f0; : : : ; kg") 61



62 6. Model TheoryThen every �nite subset �0 � � has the automati model (N; <; S; U) with theusual ordering and suessor relation, and U := A \ f0; : : : ;mg where m :=maxf k j 'k 2 �0 g.Suppose � has an automati model A. Then the following algorithm andeide A:Input: n' := 9x0 � � �xn�:9y(y < x0) ^ Vi<nSxixi+1 ^ Uxn�if A j= ' thenreturn trueelsereturn falseCorollary 6.2. There is no sound and omplete proof system for the set ofsentenes valid in [!-℄[T℄AutStr.Proof. We show that the existene of suh a system would imply the ompat-ness theorem. Assume there is a proof system suh that � `  i� � j=  .If � is unsatis�able then there is a proof of � ` false. In this proof only a�nite number of sentenes of � would be used. Therefore there is a �nite subset�0 � � with �0 ` false. By ompleteness this would imply �0 j= false. Thusthere is a �nite unsatis�able subset of �.6.2 Axiomatisation of Th(Np)We present an axiom system for Th(Np). In order to simplify the task we �rstonstrut one for the struture Sp := (N; <; sp; (Dk)k<p) whereDk := f (x; y) j y is a power of p and the digit of x at position y is k g;spx := p � x:Proposition 6.3. Np =FO Sp.The proof is straightforward. It follows that any axiom system for the theoryof one struture yields an axiomatisation of the other one.We have seen in Setion 4.1 that in Np every formula an be transformed intoautomaton normal form. This an be used to derive an axiom system of Th(Np)or, equivalently, one of Th(Sp).De�nition 6.4 (Axiom system of Th(Sp)). We introdue the following abbre-viations. The set P of Positions is de�ned as Px := D1xx. The least elementof < is denoted by 0, the next one by 1. Let A = (Zmp ;Znp; 0; �; F ) be a de-terministi automaton. The orresponding formula (see Setion 4.1) is de�nedas  A(x) := 9q9s[ADM ^ START ^ RUN ^ ACC℄



6.2. Axiomatisation of Th(Np) 63whereADM(x; q; s) := Ps ^ î<nxi < s;START(x; q; s) := Sym0(q; 1);RUN(x; q; s) := 8z�z < s ^ Pz ! _�2�Trans� (x; q; z)�;ACC(x; q; s) := _k2F Symk(q; s);Trans(k;a;k0)(x; q; z) := Symk(q; z) ^ Syma(x; z) ^ Symk0(q; spz);Syma(x; z) := î Daixiz:The axiom system onsists of:(P1) < is a disrete linear order with �rst but without last element.8x:x < x8x8y8z(x < y ^ y < z ! x < z)8x8y(x < y _ x = y _ y < x)8x9y(x < y ^ :9z(x < z ^ z < y))8x[9y y < x! 9y(y < x ^ :9z(y < z ^ z < x))℄9x8y x � y(P2) sp is monotone.8x(x > 0! spx > x)sp0 = 0(P3) The least element of P is 1, P is unbounded, and sp is the suessorfuntion on <jP .:P0 ^ P18x9y(x < y ^ Py)8x(Px! Pspx ^ :9z(Pz ^ x < z < spx))8x(Px ^ x > 1! 9y(Py ^ x = spy))(P4) Eah number has exatly one olour at every position and no olour atnon-positions.8x8y î 6=k(:Dixy _ :Dkxy)8x8y�Py $ _k<pDkxy�(P5) Numbers are uniquely identi�ed by their olouring.8x8y[x = y $ 8z(Pz ! SameDigit(x; z; y; z))℄where SameDigit(x1; z1;x2; z2) := Wk<p(Dkx1z1 ^Dkx2z2).



64 6. Model Theory(P6) Every number eventually has olour zero.8x9y(Py ^ 8z(Pz ^ z � y ! D0xz))(P7) Positions have the olouring 0 � � � 010 � � � .8x8y(Px ^ Py ^ x 6= y ! D0xy)(P8) De�nition of < and sp in terms of olours.8x8y�x < y $ 9z�Pz ^ _i<k(Dixz ^Dkyz)^ 8z0(z0 > z ! SameDigit(x; z0; y; z0))��8x8y k̂<p(Dkxy $ Dkspxspy)8x(9y(x = spy)$ D0x1)(P9) Every periodi olouring exists. For all numbers n 2 N n f0g and everyword w = a0 � � � an�1 2 Znp of length n we have the axiom8x8s8t9y�Ps ^ Pt ^ snps � t! 8z(z < s _ z > t! SameDigit(x; z; y; z))^ 8z(s � z ^ snpz � t! SameDigit(y; z; y; snpz))^ î<nDaiysips^ _i<n 9z�snpz = t ^ n̂k=iDakysk�ip z ^ i�1̂k=0Dakysn�(i�1)+kp z�^ 8z�s � z ^ s2np z � t! _i<n k̂<nDakysi+kp z��:(Intuitively, this axiom says that for every number x and all positionss and t of x there is some other number y whih di�ers from x only at thepositions between s and t. The part of y between s and t is periodi withperiod n, it starts with w, ends with some suÆx of w, and every intervalof length n in between ontains some yli permutation of w.)(P10) Every deterministi automaton has a unique run on eah input. For alln, m 2 N, m > 0 and all transition relations � � Zmp �Znp �Zmp of some�nite total deterministi automaton (Zmp ;Znp; �; 0; F )|i.e., for all q 2 Zmpand a 2 Znp there is exatly one q0 2 Zmp with (q; a; q0) 2 �|we have theaxiom8x8s9=1q[START(x; q; s) ^ RUN(x; q; s) ^ END(q; s)℄whereEND(q; s) := 8z(Pz ^ z > s! Sym0(q; z)):Note that we allow automata without input, i.e., n = 0. Suh automataare of the form A = (Zmp ;Z0p; �; 0; F ) where Z0p = f�g (� denotes theempty tuple), � � Zmp � Zmp �= Zmp � f�g � Zmp and L(A) is either f�gor ; depending on whether there is some q 2 F with (0; q) 2 TC(�).



6.2. Axiomatisation of Th(Np) 65(P11) The subset onstrution works. For all deterministi automata A and Bsuh that B reognises the set de�ned by 9y  A(xy) we have the axiom8x[9y A(xy)$  B(x)℄:Theorem 6.5. The axiom system (P1){(P11) is omplete.Proof. We show that (P1){(P11) imply that eah formula is equivalent to itsautomaton normal form using the minimal automaton. Therefore, if ' is asentene it has an automaton normal form  A with A = (f0g; f�g; �; 0; F )where � = f(0;�; 0)g and F is either f0g or ;. In the �rst ase (P1){(P11) j= ',in the other ase (P1){(P11) j= :'. Thus, (P1){(P11) is omplete.By (P1){(P3) the set of positions is some disrete linear order with �rstelement 1 and without last element. By (P4) every number an be seen asolouring of P whih by (P6) eventually beomes 0; by (P5) the olouring isunique.By (P7) and (P8), if z is a position then x < z i� D0xz0 for all positionsz0 � z. Let A be a deterministi automaton. Consider A(x) := 9q9s[ADM ^ START ^ RUN ^ ACC℄:By (P3) there is some s satisfying ADM and by (P10) there is a unique tuple qwhih, given s, satis�es START ^ RUN. Therefore  A holds if and only if theunique run of A on x ontains some �nal state somewhere after the last positionof x arrying a non-zero digit.Now we a ready to prove the equivalene of atomi formulae to their au-tomata. We start with equality. Let A= := �f0; 1g;Z2p; �=; 0; f0g� with�= := f (0; (a; a); 0) j a 2 Zpg [ f (0; (a; b); 1) j a 6= b g[ f (1; (a; b); 1) j a; b 2 Zpg:Beause of (P9) the olourings 00 � � � and 0 � � � 01 � � � 10 � � � exist. Therefore, by(P10) and (P6) the unique run of A on some x is of one of these forms. Ifx0 = x1 it an only be the former, and if x0 6= x1 it an only be the latter. ThusA aepts x if and only if x0 = x1.The other relations are handled similarly. De�neA< := �f0; 1g;Z2p; �<; 0; f1g�;ADk := �f0; 1; 2g;Z2p; �Dk ; 0; f1g�;Asp := �f0; : : : ; pg;Z2p; �sp ; 0; f0g�with �< := f (q; (a; b); 0) j a > b; q 2 f0; 1g g[ f (q; (a; b); 1) j a < b; q 2 f0; 1g g[ f (q; (a; a); q) j a 2 Zp; q 2 f0; 1g g;�sp := f (a; (b; a); b) j a; b 2 Zpg [ f (p; (a; b); p) j a; b 2 Zpg[ f (; (a; b); p) j b 6= ; a; b;  2 Zpg;



66 6. Model Theory�Dk := f (0; (a; 0); 0); (1; (a; 0); 1) j a 2 Zpg[ f(0; (k; 1); 1)g [ f (0; (a; 1); 2) j a 6= k g[ f (0; (a; b); 2) j b > 1; a; b 2 Zpg[ f (1; (a; b); 2) j b 6= 0; a; b 2 Zpg[ f (2; (a; b); 2) j a; b 2 Zpg:We have x0 < x1 i�, by (P8), there is some position z suh that the digitof x0 at z is greater than the digit of x1 at z and the digits of x0 and x1 are thesame at all greater positions. This is the ase i� in the run of A< on (x0; x1)the state at position spz is 1 and remains 1 until all non-zero digits of (x0; x1)are passed. Again, the last equivalene follows sine by (P9) suh a run existsand by (P10) it is unique. Therefore, x0 < x1 i�  A<(x0; x1).Similarly, Dkx0x1 i�, by (P9) and (P10), the run of ADk on (x0; x1) has theform 0 � � � 01 � � � 1. Therefore, Dkx0x1 i�  ADk (x0; x1).Finally, spx0 = x1 i�, by (P9) and (P19), the run of Asp on (x0; x1) has theform (x1; 0). Therefore, spx0 = x1 i�  Asp (x0; x1).It remains to prove that the equivalene is preserved when applying booleanonnetives and quanti�ers. Let Ai = (Zmip ;Znp; �i; 0; Fi), for i = 0, 1, be deter-ministi automata reognising some set of numbers. In partiular the aeptaneof Ai does not depend on the number of leading zeros.: A0 (x) holds i� the unique run q of A0 on x does not ontain a �nal stateafter the last non-zero position of x i�, by assumption, q ontains some non-�nalstate at suh a position i� A0 := (Zm0p ;Znp; �0; 0;Zm0p nF0) aepts x i�  A0(x)holds. A0 (x) _  A1(x) holds i� the unique run q0 of A0 on x or the run q1 of A1ontains a �nal state after the last non-zero position of x i� the run (q0; q1) ofA := (Zm0+m1p ;Znp; �; 0; F0 �Zm1p [ Zm0p � F1);with � de�ned omponentwise aording to �0 and �1, ontains a �nal stateat suh a position if A aepts x i�  A(x) holds.The ase of the existential quanti�er immediately follows from (P11).It remains to prove that eah automaton an be minimised. Let q be therun of some automaton A on input x. The run q0 of the minimal automaton Ban be obtained from q by mapping eah state to the orresponding state of B.(Note that minimising some automaton means merging equivalent states.) Ifq0 exists it follows by (P10) that  B �  A. Consider the automaton C whosestates are the states of B and whih on input q, after reading one symbol of qenters the orresponding state of the minimal automaton. Hene, the run of Con input q is 0q0. As 0q0 = spq0 (with obvious abbreviations) the existene of q0follows from (P8).6.3 Non-Standard ModelsThe axiom system of the previous setion an be used to onstrut non-standardmodels of Th(Sp) and Th(Np). Of ourse, we are mainly interested in non-standard models whih are automati, but so far the author has only been ableto onstrut a reursive one.



6.3. Non-Standard Models 67De�nition 6.6. ~Sp := (S;<; sp; (Dk)k) is the struture of \intermediately pe-riodi" (!+ �)-words where � = !�+! is the order type of the integers and theuniverse S onsists of all words w 2 Z!+�p suh that there are �nite words x, y,z 2 Z�p with w = xy!y!�z0!. The relations are de�ned the anonial way:x < y : i� x = uiv; y = u0kv for some u; u0; v; and i < k 2 Zp;Dkxy : i� x = ukv and y = 0juj10 � � � for some u; v;spx := 0x:Proposition 6.7. ~Sp is a reursive non-standard model of Th(Sp).Proof. ~Sp obviously satis�es (P1){(P9). Consider two runs q0, q1 of some de-terministi automaton A on input x. By de�nition there are deompositionsq0 = x0y!0 y!�0 z00! and q1 = x1y!1 y!�1 z10!:Clearly, the initial parts of both runs must be idential x0y!0 = x1y!1 . Thus,x0y!0 y!�0 = x1y!1 y!�1 and therefore q0 = q1 whih yields (P10). Analogously,(P11) holds beause, when reading the initial part of the input xy!y!�z0!,the set of reahable states must eventually beome periodi and this period ispreserved faithfully when rossing the in�nite gap.Sine the order types of Sp and ~Sp are di�erent, they annot be isomorphiand ~Sp is really non-standard.Eah element xy!y!�z of ~Sp an be stored as (x; y; z1; z2) 2 (Z�p)4 where z1is the part of z = z1z2 whih lies before position ! + !�. Obviously, using thisenoding all relations an be heked e�etively. Thus, ~Sp is reursive.From ~Sp one easily obtains a reursive non-standard model ~Np of Th(Np)by applying the interpretation Np �FO Sp.Open Problem. Is there an automati non-standard model of Th(Np)?Sine the order type of ~Np is ! + �� this problem is related to the questionwhether (Q;+) is automati.Lemma 6.8. If ~Sp as onstruted above is in AutStr then (Q;+; jp) 2 AutStrwhere + and jp are de�ned the anonial way.Proof. We proeed in several steps. First applying the interpretation of Npin Sp we obtain an automati non-standard model ~Np of Th(Np). Sine theset I of in�nite powers of p is FO(9!)-de�nable by'(x) := Ppx ^ 9!y y � x;the expansion ( ~N;+; jp; I) of ~Np is automati as well. Finally, we onstrut aninterpretation of (Q;+; jp; I) in this struture by identifying two elements of ~Nif their di�erene is �nite.Æ(x) := true; "(x; y) := 8z(Iz ! jx� yj < z):+ and jp are de�ned the obvious way.'+(x; y; z) := "(x+ y; z); 'jp(x; y) := Ix ^ x jp y:



68 6. Model TheoryOpen Problem. Are (Q;+) or (Q;+; jp) in [!-℄[T℄AutStr?Another partial answer to the �rst problem provides the following observa-tion.Proposition 6.9. If there exists an automati non-standard model A of Npthen A is not a redut of a non-standard model of Peano Arithmeti.Proof. It is a well known result of reursive model theory that in any non-standard model of Peano Arithmeti both addition and multipliation are notreursive (see e.g. [Sh98℄).



Chapter 7Unary PresentationsThe kind of automati presentations we have used so far have two main dis-advantages. While the FO-theories of automati strutures are deidable, theiromplexity an be non-elementary and more expressive logis like FO(DTC) arealready undeidable. The other problem is of a methodial nature. It seems tobe very diÆult to show that some struture is not automati and thus to giveexat haraterisations of the various lasses of automati strutures.In this hapter we will investigate a ertain restrited type of presentationsin the hope that stronger logis beome deidable, the omplexity of various op-erations dereases, or that at least more powerful theoretial tehniques beomeavailable.Our main method in the investigation of presentations was to alulatebounds on the length of enodings. In the speial ase of languages over aunary alphabet a word is ompletely determined by its length. Therefore, wetake a loser look at this ase.The lass of strutures A 2 AutStr[� ℄ possessing a unary automati presen-tations, i.e., a presentation over a unary alphabet, is denoted by 1AutStr[� ℄.Many of the basi properties proved in Chapter 3 for automati strutures|suh as the e�etive semantis for FO(9!)|remain valid for 1AutStr. Onenotable exeption is that 1AutStr is only losed under 1-dimensional FO(9!)-interpretations.7.1 Complete StrutureAgain, our aim will be to haraterise 1AutStr via a omplete struture. Thisstruture is N1 := �N;�; (n j x)n2N�, the natural numbers with ordering anddivisibility prediates or, equivalently,N01 := �N; s;�; 0; (x � k (mod n))k;n2N�where s is the suessor funtion, � is the natural order, and x � k (mod n)denotes those numbers whih are ongruent k modulo n.De�nition 7.1. Let x, y 2 Nn . De�neo(x) := f� 2 Sn j x�0 � � � � � x�(n�1) g;�(x) := �x�0; x�1 � x�0; : : : ; x�(n�1) � x�(n�2)� for some/all � 2 o(x):69
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 1��l;p is the equivalene relation de�ned byx �l;p y : i� o(x) = o(y) and �(x)i �l;p �(y)i for all i < n;where by abuse of notation �l;p denotes the equivalene relationx �l;p y : i� either x = y < l; or x; y � l and x � y (mod p):Our main lemma to prove the ompleteness of N1 is the following harateri-sation of regular languages. The general struture of automata over 1�
� � �
1�is depited in Figure 7.1. The inner loop of the seond automaton is labelledby [ 11 ℄, the outer loops by ��1 � and � 1� �, respetively.Lemma 7.2. L � (1�)
n is regular if and only if there are onstants l, p 2 Nsuh that for all x, y 2 Nn with x �l;p y it holds that1x0 
 � � � 
 1xn�1 2 L() 1y0 
 � � � 
 1yn�1 2 L:Proof. ()) Indution on n.(n = 1) L � f1g� is regular i� it is a �nite union of arithmetial progressions(see [Eil74, Proposition V.1.1℄).(n > 1) Let A = (Q; f1g; Æ; q0; F ) be a deterministi automaton reognis-ing L. For eah pair q 2 Q, R � Q denote by AqR the automaton AqR :=(Q; f1g; Æ; q; R), and let AiqR be the automaton obtained from AqR by erasingall transitions whose label has as ith omponent a �, and by removing theith omponent of all other labels. Then, if xi = maxfx0; : : : ; xn�1g we have1x0 
 � � � 
 1xn�1 2 L(A)i� 1x0 
 � � � 
 1xi�1 
 1xi+1 
 � � � 
 1xn�1 2 L(Aiq0fqg)for some q 2 Q suh that"
i�1 
 1�(x)n�1 
 "
n�i 2 L(AqF ):Let liq, piq 2 N be the onstants for L(Aiq0fqg) provided by the indution hypoth-esis and let ~liq , ~piq 2 N be the orresponding onstants for the languageL(AiqF ) \ (�i�1 � f1g ��n�i)�(as language over the unary alphabet f(�; : : : ;�; 1;�; : : : ;�)g). De�nel := max� liq ; ~liq �� i < n; q 2 Q	; p :=Yi;q piq ~piq:



7.1. Complete Struture 71Then we obtain for all x, y 2 Nn with x �l;p y that1x0 
 � � � 
 1xn�1 2 L(A)i� 1x0 
 � � � 
 1xi�1 
 1xi+1 
 � � � 
 1xn�1 2 L(Aiq0fqg)for i = o(x)(n� 1) and some q 2 Q suh that"
i�1 
 1�(x)n�1 
 "
n�i 2 L(AqF )i� 1y0 
 � � � 
 1yi�1 
 1yi+1 
 � � � 
 1yn�1 2 L(Aiq0fqg)for i = o(x)(n� 1) = o(y)(n� 1) and some q 2 Q suh that"
i�1 
 1�(y)n�1 
 "
n�i 2 L(AqF )i� 1y0 
 � � � 
 1yn�1 2 L(A):(() For eah �l;p-lass one an easily onstrut an automaton reognisingthis lass. As regular languages are losed under union the laim follows.For lak of a better name, we all the numbers l and p of the preedinglemma the loop onstants of L.De�nition 7.3. The loop onstants of a unary presentation d onsists of a pair(l; p) suh that l and p are loop onstants of every language of d. W.l.o.g. wealways assume that l < p.For R � Nn de�ne ode(R) := f 1x0 
 � � � 
 1xn�1 j (x0; : : : ; xn�1) 2 R g.Theorem 7.4. R � Nn is FO-de�nable in N1 if and only if ode(R) is regular.Proof. ()) N1 has a unary automati presentationd := ��; f1g; LÆ; L"; L�; (Ln)n�with �(1x) := x; LÆ := 1�; Ln := (1n)�;L" := � 11 �� ; L� := � 11 �� ��1 �� :(() If ode(R) is regular then it is a union of some �l;p-lasses where (l; p)are the loop onstants of ode(R). One suh lass an be de�ned (in N01) by theformula'(x) = ^i<n�1x�i � x�(i+1) ^  0(x�0) ^ ^i<n�1 i+1(x�(i+1) � x�i)where eah  i(x� y) is either of the form (x� y) := x� y = m �� x = smy�or  (x� y) := x� y � l ^ x� y � k (mod p)�� x � sly ^ _i<p(x � i+ k (mod p) ^ y � i (mod p))�:Hene, ode(R) an be de�ned by a disjuntion with one suh formula for eah�l;p-lass ontained in R.



72 7. Unary PresentationsAs a orollary we obtain the desired haraterisation of 1AutStr in terms ofa omplete struture.Corollary 7.5. A 2 1AutStr i� A �FO N1 via a 1-dimensional interpreta-tion.We will see below that 1AutStr is not losed under produts and hene undermany-dimensional interpretations. A more robust lass is obtained if we takethe losure ofN1 under many-dimensional FO-interpretations. This orrespondsto presentations where all languages are subsets of (1�)
k, for some k, insteadof 1�. In the following we only onsider 1AutStr, whih is simple enough topermit preise haraterisations of the strutures it ontains.7.2 Strutures with Unary PresentationThe following example shows that unary presentations are muh weaker thanthose with a binary alphabet.Example. Presburger Arithmeti (N;+) has no unary automati presentation.Proof. Suppose (N;+) has a unary presentation d. De�neNn := fm 2 N j �d(m) � n g n f0gand let mn := maxNn. Then jNn +mnj = jNnj, and sine �d(x) > n for allx =2 Nn there is some xn 2 Nn with�d(xn +mn) � �d(mn) + jNnj = maxf�d(mn); �d(xn)g+ jNnj :As jNnj is unbounded for n!1 we get a ontradition to Proposition 5.8.Proposition 7.6.(i) 1AutStr is not losed under produts.(ii) 1AutStr is losed under �nite disjoint unions and �nite ordered sums.Proof. (i) Consider (N; s), the s-redut of N01. We laim that (N2 ; s) := (N; s)�(N; s) has no unary presentation. LetM := f (n; 0); (0; n) 2 N2 j n 2 N g;whih is de�nable by '(x) := :9y(x = sy). Consider the sequene (Gn(M))nof generations of M . As hxis \ hyis = ; for all di�erent x, y 2M the size (n)of Gn(M) is equal to(n) = (n� 1) + n� 1 + 1 = (n� 1) + n = nXi=1 i = n(n� 1)=2:But, aording to Proposition 5.8, jGn(M)j � mn for some m beause in theunary ase there an be only one word of eah length.(ii) Let, for i 2 f0; 1g, Ai 2 1AutStr with presentationdi = (�i; f1g; LiÆ; Li"; LiR0 ; : : : ; LiRr):



7.2. Strutures with Unary Presentation 73De�ne the homomorphism h : f1;�g� ! f1;�g� by h(1) := 11, h(�) := ��.We identify h with its extension to 1
k (de�ned omponentwise). Then A0 �[A1has the presentation d := (�; f1g; LÆ; L"; LR0 ; : : : ; LRr) where�(1k) := (�0(1k=2) if k is even;�1(1(k�1)=2) if k is odd;LÆ := h(L0Æ) [ 1h(L1Æ);L" := h(L0") [ [ 11 ℄h(L1");LRj := h(L0Rj ) [ " 1...1#h(L1Rj ):That is, elements of A0 are mapped to even numbers, those of A1 to odd ones.In ase of the ordered sum we additionally de�neL� := h(L0�) [ � 11 �h(L1�)[ �� 11 � � 11 ������1 � ��1 ��� ��1 �[ �� 11 � � 11 ��� � 11 � � 1� � �� 1� � � 1� ���:Corollary 7.7. 1AutStr is not losed under many-dimensional FO-interpreta-tions.In the remainder of this setion we try to give preise haraterisations ofthose strutures having a unary presentation. The main work is done in thefollowing tehnial lemmas. Let f : A�An ! A. De�nef0(a; b) := a; f i+1(a; b) := f(f i(a; b); b):The set f�(a; b) := f fn(a; b) j n 2 N g is alled the f-hain of a (with parame-ters b).Lemma 7.8. Let (A; f) 2 1AutStr for some f : A! A. There are only �nitelymany disjoint in�nite f-hains.Proof. Let d be a unary presentation of (A; f) and let m be some onstantsuh that �d(f(a)) � �d(a) + m. Suppose there are in�nitely many in�nitef -hains f�(a0); f�(a1); : : : . Let k := maxf�d(ai) j i � m g. For eah i � m letbi 2 f�(ai) the element with minimal length �d(bi) � k. W.l.o.g. assume that�d(b0) < � � � < �d(bm). By minimality, �d(bm) < k +m. Thusk � �d(b0) < � � � < �d(bm) < k +m:Contradition.Lemma 7.9. Let d be a unary presentation of (A; f) where f : A � An ! A.The sequene��d(f i+1ab)� �d(f iab)�i2Nis eventually periodi for all a and b in A. Furthermore, the period an be hosento be independent of a and b.



74 7. Unary PresentationsProof. If fnab = fn+kab for some n and k the laim follows immediately. Oth-erwise, let (l; p) be the loop onstants of d. W.l.o.g. assume that l > �d(bj) forall parameters bj . Choose i0 large enough suh that �d(f iab) > l for all i � i0.We laim that�d(a) � �d(a0) (mod p) implies �d(fab)� �d(a) = �d(fa0b)� �d(a0)for all a, a0 2 A suh that �d(a), �d(a0), �d(fab), and �d(fa0b) are greaterthan or equal to l. The result follows sine the sequene (�d(f iab) mod p)i fori0 � i � i0+p must ontain at least one number twie. Hene by the laim, thepart in between is repeated in�nitely. Furthermore, we an hoose p! as periodwhih is independent of a and b.To prove the laim suppose by symmetry, �d(a) � �d(a0). Sine f is afuntion, either �d(a) � l < �d(fab) < �d(a) + l or �d(fab) < l. If �d(a) > land �d(fab) > l then(�d(a); �d(fab)) �l;p (�d(a) + ip; �d(fab) + ip)for all i > 0. Thus, if �d(a0) � �d(a) (mod p) then �d(a0) = �d(a) + ip forsome i. Therefore, �d(fa0b) = �d(fab) + ip, and�d(fa0b)� �d(a0) = �d(fab) + ip� �d(a)� ip = �d(fab)� �d(a):Lemma 7.10. Let A 2 1AutStr, f a unary funtion of A, and a some elementof A. Every presentation d of A an e�etively be extended to one of (A; R)where R := f (a; b) j b 2 f�(a) g.Proof. Let I be an interpretation of A in N1, and let d be the orrespondingpresentation. For notational simpliity we identify elements of A with theirenodings in N. We have to onstrut a formula '(x; y) for R.In a �rst step we de�ne a formula  a(y) desribing f�a for �xed a. If f�ais �nite  a(y) simply onsists of an enumeration of its elements. Otherwise, byLemma 7.9, there is a onstant q suh thatf i+1a� f ia = fq+i+1a� fq+iafor all i greater than some i0. (Reall that we identify a with �d(a).) Thus,fq+ia = f ia+� for some � whih is positive by in�nity of f�a. Hene, we anset  a(y) := _i�i0 y = f ia _ _i0<i�i0+q�y � f ia ^ y � f ia (mod �)�:In the seond step we onstrut '. Let (l; p) be the loop onstants of d.Choose the threshold m := l(p + 2). The f -hains of all elements less than mare de�ned by�(x; y) := _k<m�x = k ^  k(y)�:For eah k < p, the f -hains of all elements a � m + k (mod p) greaterthan m are handled by a single formula #k(x; y). Consider the f -hain of m+k.By the preeding lemma, there is some number ik suh that the sequene(f i+1(m+ k)� f i(m+ k))i



7.2. Strutures with Unary Presentation 75is periodi for i � ik. Denote the period by pk and let �k be the onstant suhthat fpk+i(m+ k) = f i(m+ k) +�k for i � ik. Note that(i) either a� l < fa < a+ l or fa < l;(ii) if a > l and fa > l then for all b � a with b � a (mod p) we have(a; fa) �l;p (b; b+ fa� a). Thus fb = fa+ b� a.Suppose that f i(m+ k) > l for all i � j. Then, by (ii),f i(m+ k + pn) = f i(m+ k) + pnfor i � j and all n � 0. By hoie of m and (i), we either have f i(m + k) > lfor i � p, or there is some j < p suh that f i(m + k) > 2l for i < j andf j(m+ k) < l.First onsider the seond ase. We havef i(m+ k + pn) = (f i(m+ k) + pn for i < j;f i(m+ k) for i � j;where the ase i � j follows beause of�f j�1(m+ k); f j(m+ k)� �l;p �f j�1(m+ k) + pn; f j(m+ k)�:Thus we an de�ne#k(x; y) := _i<j�y � x = f i(m+ k)� (m+ k)� _  fj(m+k)(y):Note that f i(m+ k)� (m+ k) is a onstant.Now assume f i(m+ k) > l for every i � p. Thenf i(m+ k + pn) = f i(m+ k) + pnfor all i � p. As the sequene (f i(m+k))i�p must ontain two elements whih areongruent modulo p, the �rst period appears before position p, i.e., ik+ pk � p.To de�ne #k(x; y) we onsider the following ases.If �k > 0 then f i(m+ k) > l for all i. Thus we de�ne#k(x; y) := _i<ik y � x = f i(m+ k)� (m+ k)_ _ik�i<ik+q �y � x � f i(m+ k)� (m+ k) ^y � x � f i(m+ k)� (m+ k) (mod �k)�:If �k = 0 then#k(x; y) := _i<ik+q y � x = f i(m+ k)� (m+ k):The most ompliated ase is �k < 0. We split the de�nition into two partsby hoosing some intermediate element  2 f�(m + k) with l <  < m. Theinitial part of the hain up to  is de�ned by#1k(x; y) := _i<ik y � x = f i(m+ k)� (m+ k)_ _ik�i<ik+pk �y � l ^ y � x � f i(m+ k)� (m+ k) ^y � x � f i(m+ k)� (m+ k) (mod �k)�;



76 7. Unary Presentationsand the �nal part by#2k(x; y) := 9z�l < z < m ^ #1k(x; z) ^ �(z; y)�:Thus #k(x; y) := #1k(x; y) _ #2k(x; y).Altogether we obtain'(x; y) := �(x; y) _ _k<p�x � m+ k (mod p) ^ x � m ^ #k(x; y)�:It should be lear that all onstants needed in the above onstrution anbe obtained e�etively.Unary funtions. Analogously to Proposition 5.18 we obtainProposition 7.11. Let (N; s; f) 2 1AutStr where s is the suessor funtionand f : N ! N.(i) There is a onstant  suh that f(n) � n+  for all n 2 N.(ii) If lim infn!1 f(n) =1 then there are onstants 0 and 1 suh thatn� 0 � f(n) � n+ 1for all but �nitely many n.Proof. (i) By the Lemma 7.9 applied to s, there is a onstant q suh that�d(si+10)� �d(si0) = �d(sq+i+10)� �d(sq+i0)for large enough i. Thus �d(sq+i0) = �d(si0) + � for some �. If f(n) � n isunbounded then for all m there is some n withf(n) > n+mq =) �d(f(n)) > �d(n) +m�+ rwhere r := minf�d(sn+i0)��d(sn0) j i < q g. But �d(f(n))��d(n) is bounded.Contradition.(ii) De�neg(n) := minf f(k) j k � n g; h(n) := maxf k j g(k) � n g:Both funtions are monotone. Suppose n� f(n) � n� g(n) is unbounded, i.e.,for all  there are n withn�  � g(n) =) h(n� ) � h(g(n)) � n:Thus, for all  there are n with h(n) � n+  in ontradition to (i).For strutures with a permutation a preise haraterisation is possible.Theorem 7.12 (Khoussainov, Rubin [KR99℄). Let f : A ! A be a bijetivefuntion. (A; f) 2 1AutStr if and only if(i) the ardinality of the �nite orbits of f is bounded and(ii) there are only �nitely many in�nite orbits of f .



7.2. Strutures with Unary Presentation 77Proof. (() Sine 1AutStr is losed under �nite unions and it ontains every�nite struture, we only need to prove the laim for strutures with one in�niteorbit and strutures with in�nitely many �nite orbits of the same size. For the�rst ase we onstrut an interpretation I = (h; Æ; "; 's) of (Z; s) in N1 whereh(n):= (2n if n � 0;�2n� 1 if n < 0;Æ and " are trivial, and's(x; y) := (2 j x ^ y = x+ 2) _ (2 - x ^ y + 2 = x) _ (x = 1 ^ y = 0):For the other ase onsider the struture (N; f) wheref(x) := (x+ 1 if n - (x+ 1);x+ 1� n otherwise;whih has in�nitely many orbits of size n. f an be de�ned in N1 byf(x) = y : i� (y = x+ 1 ^ n - y) _ (y + n� 1 = x ^ n j y):()) (i) By Lemma 7.9 there is a onstant q suh that�d(f i+1a)� �d(f ia) = �d(fq+i+1a)� �d(fq+ia)for all a 2 A and large enough i. Let � be a �nite orbit. For a 2 � this impliesfq+ia = f ia as � would be in�nite otherwise. Thus, j�j � q.(ii) Let � be an in�nite orbit and hoose some a 2 �. f�(a) � � is in�nite.Thus, eah in�nite orbit ontains an in�nite f -hain, of whih, by Lemma 7.8,there are only �nitely many.As an immediate orollary we obtain a haraterisation of strutures withan equivalene relation.Theorem 7.13 (Khoussainov, Rubin [KR99℄). Let � � A � A be an equiva-lene relation. (A;�) 2 1AutStr if and only if(i) the ardinality of the �nite �-lasses is bounded and(ii) there are only �nitely many in�nite �-lasses.Proof. (() Again, it is suÆient to prove the laim for strutures with onein�nite lass and strutures with in�nitely many lasses of the same size. Clearly,(A;A �A) 2 1AutStr, and for eah n > 1, the relationx � y : i� 9z(n j z ^ z � x < z + n ^ z � y < z + n)has in�nitely many lasses of size n.()) By Lemma 3.6 there is a well-ordering� suh that (A;�;�) 2 1AutStr.De�ne f : A! A byf(x) := (minf y j y � x ^ y > x g if suh a y exists;minf y j y � x g otherwise:Clearly, f is de�nable in (A;�;�). Thus, (A; f) 2 1AutStr. Sine the orbitsof f are exatly the �-lasses, the laim follows from the preeding theorem.



78 7. Unary PresentationsOrderings. Next we turn to linear orderings. Again, Khoussainov and Rubinobtained a preise haraterisation.Proposition 7.14. Let (A;�) 2 1AutStr be a linear order. Every set B � Asuh that there are in�nitely many elements of A between any two elements of Bis �nite.Proof. Let d be a unary presentation of (A;�) with loop onstants (l; p). Welaim that jBj < p(p + 2) + l. Otherwise, there are elements a0 < � � � < ap+1of B with �d(ai) � �d(aj) (mod p) and �d(ai) > l for all i, j. Denote by Ji theset of numbers k suh that the interval between ai and ai+1 ontains in�nitelymany elements a with �d(a) � k (mod p). There have to be two sets Ji, Jkwith Ji \ Jk 6= ;. Choose elements ai < b < ai+1 and aj <  < aj+1 with�d(b) � �d() � m (mod p) for some m 2 Ji \ Jk;�d(b); �d() > �d(ai+1) + l; �d(aj) + l:Then ��d(b); �d(ai+1)� �l;p ��d(); �d(aj)� but b � ai+1 and  > aj . Contra-dition.Theorem 7.15 (Khoussainov, Rubin [KR99℄). Let � be a linear order. (A;�)has a unary presentation if and only if it is a �nite sum of linear orders of type1, !, or !�.Proof. (() immediately follows from the losure of 1AutStr under �nite orderedsums. ()) Eah struture satisfying the ondition of the previous propositionan be written as suh a sum.Corollary 7.16 (Khoussainov, Rubin [KR99℄). Let � be an ordinal. (�;�) hasa unary presentation if and only if � < !2.Graphs. A graph is in 1AutStr i� it has a ertain \ladder struture."Theorem 7.17. Let G = (V;E) be a graph. G 2 1AutStr if and only if thereare �nite graphs H, H0 and a partition (A;B0; B1; : : : ) of V suh that the fol-lowing onditions hold.(i) GjA �= H and GjBi �= H0 for all i.(ii) The edges between A and Bi do not depend on i for i � 1, and the edgesbetween Bi and Bk do not depend on i and k for ji� kj > 1. Formally,let A = fa0; : : : ; ar�1g, Bi = fbi0; : : : ; bis�1g.(ak; bil) 2 E i� (ak; bjl ) 2 E for all i; j � 1;(bik; bjl ) 2 E i� (bi0k ; bj0l ) 2 E for all i� j; i0 � j0 > 1 ori� j; i0 � j0 < �1;(bik; bi+1l ) 2 E i� (bjk; bj+1l ) 2 E for all i; j:Proof. ()) Fix a presentation d of G with loop onstants (l; p). SetA := f v 2 G j �d(v) < l g;Bi := f v 2 G j pi+ l � �d(v) < p(i+ 1) + l g:



7.2. Strutures with Unary Presentation 79Eah ondition an easily be veri�ed. For example, to prove the �rst item ofondition (ii) let a 2 A, bi 2 Bi, and bj 2 Bj . Then(�d(a); �d(bi)) �l;p (�d(a); �d(bj))and thus (a; bi) 2 E i� (a; bj) 2 E.(() We onstrut an interpretation of G in N1. Let r := jAj, s := jBij.The elements of A are enoded as numbers less than r, and those of Bi assi + r; : : : ; s(i + 1) + r � 1. We an de�ne formulae expressing that x is thekth element of Bi for some i, and that x 2 Bi and y 2 Bi+1 for some i by k(x) := x� r � k (mod s);�(x; y) := 9z( 0(z) ^ z � s � x < z � y < z + s):The desired formula 'E(x; y) for E an be onstruted as disjuntion over theases x; y 2 A; x 2 A, y 2 B0; x 2 A, y 2 Bi for i > 0; x 2 Bi, y 2 Bk forji� kj > 1, and so on. Eah ase an be handled using  k(x) and �(x; y).Corollary 7.18. The Random Graph R has no unary presentation.Proof. Suppose there is a partition (A;B0; B1; : : : ) ofR satisfying the onditionsof the preeding theorem. Set X := A[B0[ � � �[B4. By the extension axioms,there is some node v =2 X whih is onneted to all elements of X exept thoseof B3. Sine v 2 Bi for some i � 5 we have (b1k; v) 2 E i� (b3k; v) 2 E, by theseond ondition of part (ii) above. Contradition.Groups. As far as groups are onerned unary presentations only suÆe todesribe �nite strutures.Theorem 7.19. Let G = (G; �) be a group. G 2 1AutStr if and only if G is�nite.Proof. (() is immediate. ()) Suppose G is in�nite. Fix an injetive pre-sentation d with loop onstants (l; p). Choose elements a and b suh that2p < �d(a) < �d(b)� p.If �d(a � b) < �d(b)� l then hoose  suh that �d() = �d(b)+ p. Beause of(�d(a); �d(b); �d(a � b)) �l;p (�d(a); �d(); �d(a � b))we have a � b = a � . But this implies b = . Contradition.If �d(a � b) � �d(b)� l then hoose  suh that �d() = �d(a)� p. Beause of(�d(a); �d(b); �d(a � b)) �l;p (�d(); �d(b); �d(a � b))we again obtain a ontradition.Corollary 7.20. Let A be a ring or �eld. A 2 1AutStr if and only if A is�nite.Let G = (G; �) be a group, S a set of semigroup generators of G, and setfa(x) := x � a. If we do not require full multipliation to be presented butuse groups in the form (G; (fa)a2S) instead, there are also in�nite groups in1AutStr.



80 7. Unary PresentationsLemma 7.21. Let G = (G; �) be a group and S, S0 � G be sets of semigroupgenerators of G. (G; (fa)a2S) =FO (G; (fa)a2S0).Proof. Eah g 2 S an be written as g = g00 � � � g0n for some g00; : : : ; g0n 2 S0.Thus, fg an be de�ned by fgx := fg0n � � � fg00x.Proposition 7.22. Let G = (G; (fa)a2S) be an abelian group. G 2 1AutStr ifand only if G is either �nite or G �= Z�Zp0 � � � � �Zpn for some p0; : : : ; pn.Proof. ()) Suppose G �= Z � Z � H and let a and b be generators of thesubgroups Z. By the preeding lemma we an assume that a, b 2 S. Sinef�a (bn) \ f�a (bm) = ; for all n 6= m there are in�nitely many disjoint fa-hainsin ontradition to Lemma 7.8.(() Let G = Z� H for �nite H. W.l.o.g. assume that S = fag [ T wherea generates Z and T generates H. Let n := jH j. We identify H with the setf0; : : : ; n�1g, and onstrut an interpretation of G in N1 by enoding elements(k; l) 2 Z�H byh(k; l) := (2kn+ l if k � 0;(�2k � 1)n+ l if k < 0:The generating funtions an be de�ned byfa(x) = y : i� �y = x+ 2n ^ 9z(z < n ^ x� z � 0 (mod 2n))�_ �y + 2n = x ^ 9z(z < n ^ x� z � n (mod 2n))�_ �n � x < 2n ^ y = x� n�;fb(x) = y : i� 9z�z � 0 (mod n) ^ _h2H(x = z + h ^ y = z + gb(h)�:where b 2 T and gb : H ! H is the right-multipliation by b in H.Proposition 7.23. Let G = (G; (fa)a2S) 2 1AutStr be a group. If a and b areelements of in�nite order then there are some onstants k, l 2 Z n f0g suh thatak = bl.Proof. W.l.o.g. assume a 2 S. Consider the fa-hains of bi for i � 0. Eahhain is in�nite sinebian = biam =) an = am =) n = m:By Lemma 7.8, only �nitely many hains an be disjoint. Hene, there arei, j 2 N suh that f�a (bi) \ f�a (bj) 6= ;, i.e.,bian = bjam =) bi�j = am�nfor some n, m 2 N.Equivalently, the above proposition an be stated as, if G is in 1AutStr anda is of in�nite order then jG : haij, the index of hai, is �nite.



7.3. Complexity 817.3 ComplexityAfter having de�ned unary presentations and having shown that they are muhweaker than general automati presentations the question arises whether wehave gained anything by this restrition. A �rst positive e�et is a drastiderease in omplexity.We will show that every quanti�er 9x' an be replaed by a bounded version(9x � m)' for some m.De�nition 7.24. For a, b 2 Nk and n; Æ 2 N we de�nea �n;Æ b : i� d(ai; aj) =Æ3n d(bi; bj) and ai � bi (mod Æ) for all i; j < kwhered(a0; a1) := a1 � a0 and a =l b : i� a = b or a; b > l:The following lemma ensures that if 9x' is satis�ed then there is some element bwhih is not too large suh that '(b) holds.Lemma 7.25. Let a, b 2 Nk with a0 = b0 = 0 and a �n+1;Æ b, and let m 2 Nbe suh that b0; : : : ; bk�1 � m. For every a0 2 N there is some b0 2 N withb0 � m+ Æ(3n + 1) suh that aa0 �n;Æ bb0.Proof. W.l.o.g. assume a0 � � � � � ak�1, and let ai � a0 � ai+1 for some i. Thease ak�1 < a0 is proved analogously.If d(ai; a0) � Æ3n then hoose b0 := bi + d(ai; a0). It follows thatd(a0; ai+1) =Æ3n d(b0; bi+1)and a0 � ai + d(ai; a0) � bi + d(ai; a0) � b0 (mod Æ):Thus, aa0 �n;Æ bb0.If d(ai; a0) > Æ3n but d(a0; ai+1) � Æ3n then hoose b0 := bi+1 � d(ai; a0).Again, we have aa0 �n;Æ bb0.Finally, if both distanes are more than Æ3n then hoose some b0 suh thatbi + Æ3n < b0 < bi+1 � Æ3n and b0 � a0 (mod Æ). This is possible beaused(bi; bi+1) > Æ3n+1 andf a mod Æ j ai < a < ai+1 g = f0; : : : ; Æ � 1g= f b mod Æ j bi < b < bi+1 g:Furthermore b0 an be hosen suh that d(bi; b0) � Æ3n + Æ. Therefore b0 <m+ Æ(3n + 1).Proposition 7.26. Let ' = Q0x0 � � �Qn�1xn�1 (x; y) for quanti�ers Q0; : : : ,Qn�1 2 f9;8g and let n0; : : : ; nr be the onstants appearing in divisibility predi-ates n jx. Denote the least ommon multiple of n0; : : : ; nr by Æ, and for a 2 Nklet m := maxfa0; : : : ; akg. Then the model-heking problem N1 j= '(a) is inDspae�O(n+ log j'j+ log Æ + logm)�:



82 7. Unary PresentationsProof. Obviously, b �0;Æ b0 implies N1 j=  (b; a) i� N1 j=  (b0; a). By thepreeding lemma there are bounds m0; : : : ;mn�1 suh that we an �nd b0i < mi,i < n with b �0;Æ b0. We havem0 := m+ Æ(3n�1 + 1);mi+1 := mi + Æ(3n�i + 1); for i < n� 1:Whih yieldsmi = m+Xj�i Æ(3n�j�1 + 1)= m+ Æ(i+ 1) + Æ3n�i�1Xj�i 3j= m+ Æ(i+ 1) + Æ3n�i�1 3i+1 � 13� 1� m+ Æ(i+ 1) + 12Æ3n:Therefore, a Turing mahine an evaluate '(a) by yling through all valuesof bi for i < n on its tape, and heking whether  (a; b) holds, whih an bedone in Logspae. The spae used to store b islogXi<nmi = log�nm+ 12Æn(n+ 1) + 12Æn3n�� log�nm+ Æ2O(n)�� O(n+ log Æ + logm):Hene, using the same onventions as in Setion 3.4 we obtain the followingbound on the omplexity of the model-heking problem for 1AutStr.Corollary 7.27. Let � be a relational signature. Given the presentation d ofa struture A 2 1AutStr[� ℄, a tuple a in A, and a formula '(x) 2 FO[� ℄, themodel-heking problem for (A; a; ') is in Dspae�O(j'j2 jdj6 + log�d(a))�.Proof. Construt an interpretation I of A in N1 via the translation of automatato formulae given above. A loser look reveals that the length of eah formula  de�ning one �l;p-lass is in O(l + p2). There are at most jdj suh lasses (onefor eah �nal state). Sine l; p � jdj we obtain j j 2 O(jdj3). The translationof d to I an be performed in Dtime[O(jdj3)℄.Further, note that the interpretation maps eah a 2 A to the number �d(a).By the preeding proposition we an deide N1 j= 'I(aI) inDspae�O(n+ log j'I j+ log Æ + log�d(a))�:Sine j'I j 2 O(j'j jdj3) we have n 2 O(j'j jdj3), n0; : : : ; nr 2 2O(j'jjdj3), andheneÆ � n0 � � �nr 2 (2O(j'jjdj3))O(j'jjdj3) = 2O(j'j2jdj6):



7.4. Deidability 837.4 DeidabilityWe start our investigation as to what logis are deidable by showing that N01allows quanti�er elimination. To simplify the task an intermediate struture isintrodued.Lemma 7.28. The struture �Z; s;�; (x � k (mod n))k;n� admits quanti�erelimination.Proof. It is well known that (Z; s;�) admits quanti�er elimination. In [KK71℄it is shown that eah formula 9x' 2 FO[s;�℄ with quanti�er-free ' an betransformed into a disjuntion of formulae of the form9x� î x < ti ^ î ui < x ^ î x = vi�:Analogously, formulae 9x' 2 FO[s;�; (x � k (mod n))k;n℄ an be brought intothe form9x� î x < ti ^ î ui < x ^ î x = vi ^ î (x � ki (mod ni))�by using the following additional rules:smx � k (mod n) � x � k �m (mod n);:(x � k (mod n)) � _i 6=k x � i (mod n):Furthermore, we an ensure that all moduli ni are equal by replaing them bytheir least ommon multiple. Thus, we obtain9x� î x < ti ^ î ui < x ^ î x = vi ^ î (x � ki (mod n))�:If there are more than one atom of the form x � ki (mod n) with di�erent kithen the formula is false. If there is no suh atom then we an eliminate thequanti�er as in the ase of (Z; s;�). Hene, we only need to onsider the ase9x� î x < ti ^ î ui < x ^ î x = vi ^ x � k (mod n)�:If there is at least one atom of the form x = v then we an replae x by veverywhere. Otherwise, let the free variables be among fy0; : : : ; ysg. Then theformula is equivalent to9x _k0;:::;ks<n�î�s yi � ki (mod n) ^ 'k0:::ks�where 'k is obtained from ' be removing the modulo-atom and modifying allother atoms aording to the following rules:x < slyi �! x < sl��iyi;slyi < x �! sl+�iyi < x;where �i := ki � k (mod n). In the resulting formula the quanti�er an beeliminated as in the ase of (Z; s;�).



84 7. Unary PresentationsCorollary 7.29. N01 admits quanti�er elimination.Proof. It follows from the preeding lemma thatZ01 := �Z; s;�; 0; (x � k (mod n))k;n�admits elimination of quanti�ers (just replae 0 by some new variable, eliminateall quanti�ers, and replae the new variable by 0, see e.g. [KK71℄). N01 is thesubstruture of Z01 de�ned by Æ(x) := 0 � x. Let '(x) 2 FO. By 'Æ we denotethe relativisation of ' to the set de�ned by Æ. There is some quanti�er-free (x) 2 FO suh thatZ01 j= 'Æ(x)$  (x)i� Z01 j= 'Æ(a)() Z01 j=  (a) for all a in Z=) Z01 j= 'Æ(a)() Z01 j=  (a) for all a in N :As  is quanti�er-free this impliesZ01 j= 'Æ(a)() N01 j=  (a) for all a in Ni� N01 j= '(a)() N01 j=  (a) for all a in Ni� N01 j= '(x)$  (a):We have quanti�er elimination not only for FO but also for FO(R), theextension of FO by Ramsey-quanti�ers. The formula Rx0 : : : xn�1' holds i�there is some in�nite set X suh that '(a) is true for all distint a0; : : : ; an�1in X .Lemma 7.30. N01 admits quanti�er elimination for FO(R).Proof. We have to show that for every formula '(y) = Rx0 : : : xn�1 (y; x) with 2 FO there is an equivalent formula '0(y) 2 FO. If we an prove thatN01 j= '(a) i� there are k; p 2 N with k > aj + p for all j suh thatN01 j=  (a; k + i0p; : : : ; k + in�1p)for all di�erent i0; : : : ; in�1 2 N;then it follows that'(y) � 9z� î yi + p < z^ 8x� î �xi � z ^ xi � z (mod p)� ^ î 6=j xi 6= xj !  (y; x)��:Thus it remains to prove the above laim. (() is trivial. ()) Let (l; p) bethe loop onstants of some unary presentation d of N01. Let X � N be a maximalin�nite set satisfying N01 j=  (a; b0; : : : ; bn�1) for all distint b0; : : : ; bn�1 2 Xand with b � aj + p for all j and b 2 X . By the Pigeonhole Priniple there issome onstant  < p suh thatY := f b 2 X j b �  (mod p) g



7.4. Deidability 85is in�nite. Note that, if b0 < � � � < bn�1 2 Y and bi+1 � bi + 2p, thenN01 j=  (a; b0; : : : ; bi; bi+1 � p; : : : ; bn�1 � p):Let b0 < � � � < bn�1 be the least elements of Y . Applying the above observationseveral times we obtainN01 j=  (a; b0 + i0p; : : : ; bn�1 + in�1p)for all i0; : : : ; in�1 2 N suh that bj + ijp+ p � bj+1+ ij+1p for all j < n. Thus,when setting k := bn�1, it follows thatN01 j=  (a; k + i0p; : : : ; k + in�1p)for all distint i0; : : : ; in�1 2 N.Unfortunately, despite the weakness of unary presentations we have notgained muh as far as deidability of stronger logis is onerned.Proposition 7.31. There are strutures with undeidable FO(DTC)-theory in1AutStr.Proof. Immediately from Lemma 2.7 as (N; s) 2 1AutStr.There is only a very speial ase in whih we obtain deidability. Denoteby FO(losed DTC) the restrition of FO(DTC) to those formulae suh that inevery subformula of the form [DTCx;y  (x; y)℄(u; v) the only free variables of  are x and y.Theorem 7.32. 1AutStr is e�etively losed under FO(losed DTC1)-inter-pretations.Proof. De�nef(x) := (y if y is the unique element suh that  (x; y);x otherwise:Then [DTCx;y  (x; y)℄(u; v) holds i� v 2 f�(u). Therefore, the laim followsfrom Lemma 7.10.



86 7. Unary Presentations



Chapter 8Other Types ofPresentationsThe restrition to unary alphabets turned out to yield an interesting sublassof automati strutures where model-heking has an aeptable omplexityand whih permits many preise haraterisations. In this hapter we look atdi�erent kinds of restritions hoping to obtain other interesting sublasses.While the lass studied in the �rst setion has many pleasant theoretialproperties it seems doubtful whether weak presentations are strong enough to beof pratial value. The lasses de�ned in the seond setion even lak importanttheoretial properties|like losure under �rst-order interpretations|and areonly inluded for the sake of ompleteness.8.1 Weak PresentationsThe hoie we made onerning the enoding of tuples is not the only onepossible. In this setion we investigate an alternative enoding where a tuple(x0; : : : ; xn�1) of words is enoded by the word x0� � � ��xn�1. As it turns outthis model is onsiderably weaker than those we have used so far.De�nition 8.1. Let x0; : : : ; xn�1 2 ��. The weak onvolution of x is de�nedas x0 
w � � � 
w xn�1 := x0� � � ��xn�1:The notion of weak presentation (alled \strong presentation" in [KN95℄) isde�ned analogously to automati presentations where(i) onvolution is replaed by weak onvolution everywhere and(ii) the language L" de�ning equality is left out, i.e., the presentation is alwaysinjetive.The lass of � -strutures with weak presentation is denoted by WAutStr[� ℄.The reason for the restrition to injetive presentations is that identity an-not be weakly presented. Therefore only �nite strutures would be presentablewithout it (see Corollary 8.6 and Theorem 8.7 below).87



88 8. Other Types of PresentationsAs in the ase of automati strutures one an e�etively evaluate FO-formulae on weakly presentable strutures with the notable exeption of equality.In the following we denote by L6= the logi L without equality. If we want toemphasise that equality is allowed the notation L= is used.Lemma 8.2. There is a reursive funtion � assigning to every weak presenta-tion d of some A 2WAutStr[� ℄ and every formula ' 2 FO6=[� ℄ a weak presen-tation of (A; 'A).Proof. Analogous to the proof for automati strutures with obvious modi�a-tions for the ase of quanti�ers.In order to give a haraterisation in terms of a omplete struture we haveto hoose a di�erent logi.De�nition 8.3. FFO is the restrition of FO6= to boolean ombinations ofmonadi FO6=-formulae, i.e., formulae with only one free variable.Obviously, every suh formula an be written in the form'(x0; : : : ; xn�1) = _i<m ĵ<n ij(xj)with  ij 2 FO.Theorem 8.4. Let R � Nn. Let odep(x) be the p-adi enoding of x 2 N andde�neodep(R) := f odep(x0)
w � � � 
w odep(xn�1) j (x0; : : : ; xn�1) 2 R g:odep(R) is regular if and only if R is FFO-de�nable in Np.Proof. ()) Let A = (Q;�; Æ; q0; F ) be a deterministi automaton reognisingodep(R). For eah pair (q; q0) 2 Q we an onstrut formulae  qq0 (x) sayingthat if A starts in state q it reahes state q0 after reading odep(x). Then R anbe de�ned by'(x0; : : : ; xn�1) :=_n q0q1(x0) ^ ^i<n�1 Æ(qi;�);qi+1(xi) ���q0; : : : ; qn�1 2 Q; qn 2 F o:(() Let '(x0; : : : ; xn�1) = WiVj  ij(xj). The languages Lij de�ned by  ijare regular. Therefore, the language L = Si Li0� � � ��Lin�1 is regular as well.Corollary 8.5. A struture A = (A;R0; : : : ; Rr) has a weak automati presen-tation if and only if A �FFO Np for some/all p 2 N n f0; 1g.Corollary 8.6 (Khoussainov, Nerode [KN95℄). If A 2WAutStr then for everyrelation R of A with arity r there are Xik � A suh thatR = [i<mXi0 � � � � �Xi(r�1):Proof. Take asXik the sets de�ned by the formulae  ik in the de�nition of R.



8.1. Weak Presentations 89Theorem 8.7. Let A be a relational �-struture. A 2 WAutStr if and only ifthere is some ongruene � suh that A=� is �nite.Proof. ()) Let WiVk  jik be the formula de�ning Rj . Setx � y : i�  jik(x)()  jik(y) for all j; i; k:Then � is the required ongruene of �nite index.(() Let A = (A;R0; : : : ; Rr) and let � be a ongruene of �nite index. Weonstrut a weak automati presentation of A as follows. Let [a0℄; : : : ; [an℄ bean enumeration of A=�, and ni := ��[ai℄��. Denote the kth member of [ai℄ by aik .We enode aik as 1i#1k. The presentation is d := (�; f1;#g; LÆ; LR0 ; : : : ; LRr)where LÆ := [i�n 1i#1<ni ; �(1i#1k) := aik;LRj :=[n 1i0#1�� � � ��1irj�1#1� ��� �[ai0 ℄; : : : ; [airj�1 ℄� 2 Rj=�o:In ase of strutures with funtions f the ondition above, applied to thegraph of f , means that the image of f is �nite.Theorem 8.7 shows that weakly presentable strutures are just �nite stru-tures blown up. Therefore we an redue most problems to the �nite ase whihusually is deidable. We all a logi L invariant under ongruenes if for allstrutures A, ongruenes �, and formulae '(x) 2 L it holds thatA j= '(a) i� A=� j= '([a℄�):Theorem 8.8. Let L be a logi invariant under ongruenes. WAutStr islosed under L-interpretations.Proof. As WAutStr is losed under reduts it is suÆient to show that givenA 2 WAutStr and ' 2 L we an onstrut an FFO-interpretation of (A; 'A)in Np. Aording to Theorem 8.7 there is a ongruene � of �nite index.Let I = (h; Æ; "; 'R0 ; : : : ; 'Rr ) be an FFO-interpretation A �FFO Np and let#[a℄�(x) be the formula de�ning the �-lass of a in Np. By assumption on Lthe formula (x) :=_n î<n #[ai℄�(xi) ��� �[a0℄�; : : : ; [an�1℄�� 2 'A=� ode�nes 'A. Thus (I;  ) is an FFO-interpretation of (A; 'A) in Np.Some logi satisfying the ondition above is FO 6=(PFP). Logis not overedare e.g., FO= or FO 6=(#). What about SO?Proposition 8.9. WAutStr is not losed under SO 6=-interpretations.Proof. Equality is de�nable in SO 6=.u = v : i� 96=[:u 6= v ^ 8x:x 6= x^ 8R(8x:Rxx! 8x8y(Rxy! x 6= y))℄:



90 8. Other Types of PresentationsThe above proof uses a two-dimensional relation variable. This leaves thease of monadi seond-order logi unanswered. In fat, WAutStr is losed underMSO 6=-interpretations despite it not being invariant under ongruenes.Proposition 8.10. WAutStr is losed under MSO6=-interpretations.Proof. Let A = (A;R0; : : : ; Rr) be a relational struture and � a ongrueneof A. We denote by A�m = (A�m; (R0)�m; : : : ; (Rr)�m) the substruture of A whihontains exatlym elements of eah �-lasses of size at leastm, and all elementsof smaller �-lasses. Note that, sine � is a ongruene, A�m is uniquely deter-mined up to isomorphisms. Let P � A be a unary relation. The re�nement �Pof � indued by P is de�ned asa �P b : i� a � b and a 2 P () b 2 P:Let  (x) = Q0P0 � � �Qn�1Pn�1'(x; P ) 2 MSO 6= with Q0; : : : ; Qn�1 2 f9;8gand ' 2 FO6=. We prove by indution on n thatA j=  (a) i� A�2n j=  (a0) for some a0 � a:The ase n = 0 is immediate as FO6= is invariant under ongruenes. For theindution step we prove:Claim. There is a surjetive mapping 0 assoiating to every P � A a relationP 0 � A�2n suh that(A; P )�P2n�1 �= (A�2n ; P 0)�P2n�1 :Then it follows thatA j= 9=8P (a)i� for some/all P � A : (A; P ) j=  (a)i� for some/all P � A : (A; P )�2n�1 j=  (a0) (ind. hyp.)i� for some/all P � A : (A�2n ; P 0)�2n�1 j=  (a0) (Claim)i� for some/all P � A�2n : (A�2n ; P )�2n�1 j=  (a0) (surjetivity)i� for some/all P � A�2n : (A�2n ; P ) j=  (a00) (ind. hyp.)i� A�2n j= 9=8P (a00):It remains to prove the laim. Consider eah �-lass [a℄ in turn. What we haveto do is to deide how many elements of [a℄ are to be inluded in P 0.If j[a℄j � 2n then [a℄ � A�2n and we an put all b 2 [a℄\P into P 0. Otherwiselet n1 := ��[a℄ \ P �� and n2 := ��[a℄ n P ��, and set n01 := minfn1; 2n�1g, n02 :=minfn2; 2n�1g. Then we an add n01 elements form [a℄ to P 0 and there are stillat least n02 elements left whih are not in P 0. Therefore in both ases we have(i) either ��[a℄ \ P �� = ��[a℄ \ P 0�� or ��[a℄ \ P ��; ��[a℄ \ P 0�� � 2n�1, and(ii) either ��[a℄ n P �� = ��[a℄ n P 0�� or ��[a℄ n P ��; ��[a℄ n P 0�� � 2n�1.Hene,(A; P )�P2n�1 �= (A�2n ; P 0)�P2n�1 :It remains to show that 0 is surjetive. Let ~P � A�2n . Construt a relation P � Aby inluding ��[a℄ \ ~P �� elements of eah �-lass [a℄ into P . Then P 0 = ~P .



8.2. Star-free and Loally Threshold Testable Presentations 91Theorem 8.11. WAutStr � 1AutStrProof. Let A = (A;R0; : : : ; Rr) 2WAutStr and let � be the ongruene de�nedin Theorem 8.7. Fix an enumeration [a0℄; : : : ; [an�1℄ of A=� and denote thekth member of [ai℄ by aik . Set ni := ��[ai℄��. We onstrut a unary presentationd := (�; f1g; LÆ; L"; LR0 ; : : : ; LRr)of A by enoding aik by the string of length kn+ i.�(1l) := aik where k := bl=n; i := l (mod n);LÆ := [i<n 1i(1n)<ni ;L" := [ 11 ℄� ;LRj :=[� 1i0(1n)� 
 � � � 
 1irj�1(1n)� �� ([ai0 ℄; : : : ; [airj�1 ℄) 2 Rj=�	:8.2 Star-free and Loally Threshold TestablePresentationsWhen looking at restritions of regular languages one naturally thinks of star-free and loally threshold testable languages. As far as automati presentationsare onerned those lasses of languages are unsuitable as the following remarkshows.Lemma 8.12 (see e.g. [Tho97b, page 412℄). The lasses of star-free and loallythreshold testable languages are not losed under projetions.Therefore we only have losure under quanti�er-free interpretations.Lemma 8.13. Let A be a struture with a star-free or loally threshold testablepresentation. Then, for every quanti�er-free formula ', (A; 'A) has a presen-tation of the same type.Proof. By de�nition, the lass of star-free languages forms a boolean algebra.By the logial haraterisation of loally threshold testable languages the sameis true in ase of the seond lass. Therefore, by the same proof as for AutStrwe obtain the desired result.The strutures in question areS�p := (N;�; (Di )i2Zp) and Ssp := (N; sp ; (Di)i2Zp)whereDixy : i� digi(x; y) and sp := f (x; px) j x 2 N g:Again, for the haraterisation via interpretations we need to de�ne the rightlogi. We onsider only strutures with universe N and de�ne WpFO to be therestrition of FO to quanti�ation over powers of p.As in Proposition 4.2 we enode words w 2 Z�p be the number valp(w1).



92 8. Other Types of PresentationsTheorem 8.14. Let R � Nn .(i) R is WpFO-de�nable in S�p if and only if fold(val�1p (R)) is star-free.(ii) R is WpFO-de�nable in Ssp if and only if fold(val�1p (R)) is loally thresh-old testable.Proof. We prove only (i). The other ase is analogous.()) Let '(y) 2 FO[�; (Qki )k;i℄ de�ne L where Qki is the set of positions atwhih the symbol i appears in the kth omponent of the word. We onstrut aformula '�(x; y) 2WpFO suh thatw0 
 � � � 
 wn�1 j= '(r0; : : : ; rm�1)i� Bp j= '�(valp(w0); : : : ; valp(wn�1); pr0 ; : : : ; prm�1):First we de�ne a formula speifying those positions whih lie in the domain ofthe kth word, whih is the ase if there is a greater position arrying the digit 1.domk(y) := 9pz(y < z ^D1xkz); dom(y) := _k<n domk(y):The translation is(Qki y)� := domk(y) ^Dixky for i 6= �;(Qk�y)� := :domk(y);(yi = yj)� := yi = yj ;(yi � yj)� := yi � yj ;(:')� := :'�;(' _  )� := '� _  �;(9y'(y))� := 9py(dom(y) ^ '�(x; yy)):(() Let '(x; y) 2 WpFO where the variables y are guaranteed to rangeover powers of p. As variables in S�p are unbounded whereas the positionsin word models are bounded by the length of the longest word, we need tostore additional information about those variables whose values are too large.Therefore we de�ne for any tuple (r0; : : : ; rm�1) 2 Ntypen(r) := (tik)i;k<mwheretik := 8><>:ri � rk if jri � rkj < 2n;1 if ri � rk � 2n;�1 if ri � rk � �2n:We write t j= yi � yk for some type t i� tik � 0 and similarly for other formulae.Now, we an onstrut a formula '�t (y) 2 FO suh thatBp j= '(odep(w0); : : : ; odep(wn�1); pr0 ; : : : ; prm�1)i� w0 
 � � � 
 wn�1 j= '�t (ri0 ; : : : ; rik )



8.2. Star-free and Loally Threshold Testable Presentations 93wherel := maxfjw0j ; : : : ; jwn�1jg;t := typeqr(')(l � 1;maxfl � 1; r0g; : : : ;maxfl� 1; rm�1g);fri0 ; : : : ; rikg := � r 2 fr0; : : : ; rm�1g �� r < l 	:First, we simplify ' to '0 by applying the following rules.(xi = xk)0 := 8pz ĵ (Djxiz $ Djxkz);(xi = y)0 := D1xiy ^ 8pz(z 6= y ! D0xiz);(y = xi)0 := (xi = y)0;(xi � y)0 := xi = y _ 8pz(z � y ! D0xiz);(y � xi)0 := y = xi _ :(xi � y)0;(xi � xk)0 := xi = xk _ 9pzh _j<j0(Djxiz ^Dj0xkz)^ 8z0�z0 > z ! ĵ (Djxiz0 $ DjXkz0)�i;(Diyjyk)0 := 8><>:yj 6= yk if i = 0;yj = yk if i = 1;false otherwise;(Dixkxj)0 := 9pz(xj = z ^Dixkz);(Diyxk)0 := 9pz(xk = z ^Diyz):Thus, only the following ases remain. For the boolean onnetives we de�ne(:')�t := :'�t ;(' _  )�t := '�t _  �t ;(9pz'(x; y))�t := 9z'�t[z=l�1℄(yz)_ _�'�t[z=r℄(y) �� t j= r � y + 2qr(') for some y 	;where we denoted by t[z = r℄ the extension of t by an additional variable withvalue r, and for the atomi formulae(Dixky)�t :=8>>><>>>:Qki y if t j= y < l;true if i = 1 and t j= y = l;true if i = 0 and t j= y > l;false otherwise;(yi = yj)�t :=8><>:yi = yj if t j= yi < l ^ yj < l;true if t j= yi = yj � l;false otherwise;(yi � yj)�t :=8><>:yi � yj if t j= yi < l ^ yj < l;true if t j= yi � yj ^ l � yj ;false otherwise:



94 8. Other Types of PresentationsCorollary 8.15. (i) A struture A = (A;R0; : : : ; Rr) has a star-free presenta-tion if and only if A �WpFO S�p for some p 2 N n f0; 1g.(ii) A struture A = (A;R0; : : : ; Rr) has a loally threshold testable presen-tation if and only if A �WpFO Ssp for some p 2 N n f0; 1g.



Chapter 9ConlusionWe studied various lasses of strutures whih an be presented in some way orother by automata. The resulting hierarhy is depited in Figure 9.1. A ommonharateristi of those lasses is that they allow e�etive|even automati|evaluation of �rst-order queries. In the ase of AutStr several omplexity resultswere obtained. They are summarised in Table 9.1.One of the most fundamental results was that in eah ase we were ableto give an equivalent haraterisation in terms of interpretations. Eah lassinvestigated turned out to be the losure of some omplete struture underinterpretations. This view an be applied to various other �elds. For instane,the lass of reursive strutures an be de�ned as the losure of Arithmetiunder �1-interpretations.Another example are onstraint databases. A onstraint database onsistsof a �xed struture, alled ontext struture, extended by relations that an bede�ned by quanti�er-free formulae in this struture. Extensions of this kind anbe regarded as interpretations of a partiularly simple form. Hene the lassof onstraint databases using a �xed ontext struture is the losure of thisstruture under a restrited type of interpretations.A natural generalisation of both automati strutures and onstraint data-bases therefore onsists of lasses de�ned as the losure of some given strutureunder interpretations of some kind. Form a pratial point of view it would beof partiular interest to �nd lasses where either the omplexity of evaluating aquery is aeptable or Reahability beomes deidable.Another area of possible further researh would be to develop methods forproving non-membership in one of the automati lasses. To the knowledge ofStruture-Complexity Expression-ComplexityModel-Cheking �0 Logspae-omplete Alogtime-omplete�0 + fun Nlogspae Ptime-omplete�1 Nptime-omplete Pspae-ompleteQuery-Evaluation �0 Logspae Pspae�1 Pspae ExpspaeTable 9.1: Complexity results for AutStr95
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Figure 9.1: Hierarhy of automati lasses and omplete struturesthe author up to now only two suh methods are available: showing that theFO-theory is undeidable and proving a more than exponential lower boundon the ardinality of generations. In partiular there is no tool to separate!-TAutStr from !-AutStr.Finally, many questions in model theory remain unresolved. Besides om-patness there are several other results in lassial model theory whih fail formost restrited lasses, e.g., Craig's Interpolation Theorem, Beth's De�nabilityTheorem, Lyndon's Lemma, and other preservation properties. Up to now itis unknown whether these results do or do not hold in the ase of automatistrutures. A �rst step to answer those questions ould be to show that thereare no automati non-standard models of Th(Np). In that ase it would bepossible to axiomatise a well-ordering, and if, furthermore, it were possible toredue this axiom system to a �nite one, one would have a tool whih perhapsould be used to answer the above questions.
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