
Aachen
Department of Computer Science

Technical Report

Axiomatising

Tree-interpretable Structures

Achim Blumensath

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2001-10

RWTH Aachen · Department of Computer Science · December 2001



The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/



Axiomatising Tree-interpretable Structures

Achim Blumensath

RWTH Aachen

Abstract We introduce the class of tree-interpretable structures which gen-
eralises the notion of a prefix-recognisable graph to arbitrary relational struc-
tures. We prove that every tree-interpretable structure is finitely axiomatisable
in guarded second-order logic with cardinality quantifiers.

1 Introduction

In recent years the investigation of algorithmic properties of infinite structures
has become an established part of computer science. Its applications range from
algorithmic group theory to databases and automatic verification. Infinite da-
tabases, for example, were introduced to model geometric and, in particular,
geographical data (see [17] for an overview). In the field of automatic verification
several classes of infinite transition systems and corresponding model-checking
algorithms have been defined. For instance, model-checking for the modal µ-
calculus over prefix-recognisable graphs is studied in [5], [18]. A further point of
interest in this context is the bisimulation equivalence of such transition systems
as considered in [24], [25].

Obviously, only restricted classes of infinite structures are suited for such an
approach. In order to process a class K of infinite structures by algorithmic means
two conditions must be met:

(i) Each structure A ∈ K must possess a finite representation.

(ii) The operations one would like to perform must be effective with regard to
these representations.

One fundamental operation demanded by many applications is the evaluation
of a query, that is, given a formula ϕ(x̄) in some fixed logic and the representation
of a structure A ∈ K one wants to compute a representation of the set ϕA :=
{ ā | A |= ϕ(ā) }. Slightly simpler is the model-checking problem which asks
whether A |= ϕ(ā) for some given ā. The class of tree-interpretable structures
investigated in the present article has explicitly been defined in such a way that
model-checking for MSO, monadic second order logic, is decidable. To the authors
knowledge it is one of the largest natural classes with this property.

Several different notions of infinite graphs and structures have been considered
in the literature:

– Context-free graphs [20], [21] are the configuration graphs of pushdown au-
tomata.



– HR-equational graphs [7] are defined by equations of hyperedge-replacement
grammars.

– Prefix-recognisable graphs have been introduced in [6]. Several characterisa-
tions are presented in Section 3.

– Automatic graphs [16], [3], [4] are graphs whose edge relation is recognised
by synchronous multihead automata.

– Rational graphs [16], [19] are graphs whose edge relation is recognised by
asynchronous multihead automata.

– Recursive graphs [14] are graphs whose edge relation is recursive.

These classes of graphs form a strict hierarchy. Table 1 shows for which logic
model-checking is still decidable for the various classes. FO(∃κ), MSO(∃κ), and
GSO(∃κ) denote, respectively, first-order logic, monadic second-order logic, and
guarded second-order logic extended by cardinality quantifiers. Σ0 is the set of
quantifier-free first-order formulae.

When investigating a class of finitely presented structures the question natu-
rally arises which structures it contains. Usually it is quite simple to show that
some structure belongs to the class by constructing a corresponding presentation.
But the proof that such a presentation does not exists frequently requires more
effort.

One possible approach consists in determining what additional information is
needed in order to extract the presentation from a given structure. In the case
of a tree-interpretable structure this information can be coded into a colouring
of its elements and edges. A characterisation of these colourings amounts to one
of the set of presentations of a structure. Besides determining whether a presen-
tation exists such a characterisation can, for instance, be used to investigate the
automorphism group of the structure.

In the present article we generalise the class of prefix-recognisable graphs to
arbitrary relational structures and prove that each presentation corresponds to
a GSO(∃k)-definable colouring. This implies that each such structure is finitely
axiomatisable in this logic. The outline of the article is as follows:

In Section 3 we review several characterisations of the class of prefix-recog-
nisable graphs including characterisations in terms of languages, configuration
graphs of pushdown automata, graph grammars, and interpretations.

Class Logic

context-free GSO(∃κ)
HR-equational GSO(∃κ)
prefix-recognisable MSO(∃κ)
automatic FO(∃κ)
rational Σ0

recursive Σ0

Table 1. Decidability



The latter can be generalised to arbitrary relational structures most easily.
The resulting class of tree-interpretable structures is defined in Section 4. After
summarising some of its properties we also extend the characterisation via regular
languages to this class.

Section 5 is devoted to the study of paths in tree-interpretable graphs. The
presented results are mostly of a combinatorial nature and culminate in the proof
that every connected component is spanned by paths with a certain property.

In Section 6 we prove our main theorem which states that all tree-interpretable
structures are finitely axiomatisable in guarded second-order logic with cardinal-
ity quantifiers. We also show that the cardinality quantifiers are indeed needed.

Section 7 concludes the article with some lemmas about the orbits of the auto-
morphism group of a tree-interpretable structure and the result that isomorphism
is decidable for tree-interpretable structures of finite tree-width.

2 Preliminaries

Automata and trees. Let Σ be an alphabet. The complete tree over Σ is the
structure TΣ := (Σ∗, (suca)a∈Σ ,�) where the suca denote the successor functions
and � is the prefix-order. The longest common prefix of u and v is denoted
by u ⊓ v. If u = vw then we define v−1u := w and uw−1 := v.

For u ∈ Σ∗ and k ∈ N we write u/k for the prefix of u of length |u| − k,
and sufk u for the suffix of u of length k. In case |u| < k we have u/k = ε and
sufk u = u. In particular, (u/k) sufk u = u for all u and k.

Let ≤lex be the lexicographic order and ≤ll the length-lexicographic one defined
by

x ≤lex y : iff x � y, or wc � x and wd � y for some

w ∈ Σ∗, c, d ∈ Σ with c < d.

x ≤ll y : iff |x| < |y|, or |x| = |y| and x ≤lex y.

We denote automata by tuples (Q,Σ,∆, q0, F ) with set of states Q, alpha-
bet Σ, transition relation ∆, initial state q0, and acceptance condition F .

Logic. Let us recall some basic definitions and fix our notation. Let [n] :=
{0, . . . , n − 1}. We tacitly identify tuples ā = a0 . . . an−1 ∈ An with functions
[n] → A or with the set {a0, . . . , an−1}. This allows us to write ā ⊆ b̄ or ā = b̄|I
for I ⊆ [n].

MSO, monadic second-order logic, extends first-order logic FO by quantifica-
tion over sets. In guarded second-order logic, GSO, one can quantify over rela-
tions R of arbitrary arity with the restriction that every tuple ā ∈ R is guarded,
i.e., there is some relation S of the original structure that contains a tuple b̄ ∈ S
such that ā ⊆ b̄. Note that every singleton a is guarded by a = a. For a more
detailed definition see [15].

L(∃κ) denotes the extension of the logic L by cardinality quantifiers ∃λ, for
every cardinal λ, where ∃λ stands for “there are at least λ many”.



A formula ϕ(x̄) where each free variable is first-order defines on a given struc-
ture A the relation ϕA := { ā | A |= ϕ(ā) }.

Definition 1. Let A = (A,R0, . . . , Rn) and B be relational structures. A (one-
dimensional) MSO-interpretation of A in B is a sequence

I =
〈

δ(x), ε(x, y), ϕR0
(x̄), . . . , ϕRn(x̄)

〉

of MSO-formulae such that

A ∼=
(

δB, ϕBR0
, . . . , ϕBRn

)/

εB.
To make this expression well-defined we require that εB is a congruence of the
structure

(

δB, ϕBR0
, . . . , ϕBRn

)

. We denote the fact that I is an MSO-interpreta-
tion of A in B by I : A ≤MSO B or A = I(B).

The epimorphism
(

δB, ϕBR0
, . . . , ϕBRn

)

→ A is called coordinate map and also
denoted by I. If it is the identity function we say that A is definable in B.

3 Prefix-recognisable graphs

Originally, the investigation of tree-interpretable structures was concerned only
with transition systems. This subclass appears in the literature under several
names using widely different definitions which all turned out to be equivalent.
They are summarised in the next theorem. A more detailed description follows
below.

Theorem 2. Let G = (V, (Ea)a∈A) be a graph. The following statements are

equivalent:

(1) G is prefix-recognisable.

(2) G = h−1(T2)|C for a rational substitution h and a regular language C.

(3) G is the restriction to a regular set of the configuration graph of a pushdown

automaton with ε-transitions.

(4) G is MSO-interpretable in the binary tree T2.

(5) G is VR-equational.

The equivalence of the first two items are due to Caucal [6], Stirling [25] men-
tioned the third characterisation, and Barthelmann [1] delivered the last two.

Definition 3. A graph is prefix-recognisable if it is isomorphic to a graph of
the form (S, (Ea)a∈A) where S is a regular language over some alphabet Σ and
each Ea is a finite union of relations of the form

W (U × V ) := { (wu,wv) | u ∈ U, v ∈ V, w ∈W }

for regular languages U , V , W ⊆ Σ∗.

Actually in the usual definition the reverse order (U×V )W is used. The above
formulation was chosen as it fits better to the usual conventions regarding trees.



Example. The structure (ω, suc,≤) is prefix-recognisable. If we represent the
universe by a∗ the relations take the form

suc = a∗(ε× a) and ≤ = a∗(ε× a∗).

This representation can easily be generalised to one of the complete binary tree:

suci = {0, 1}∗(ε× i) and � = {0, 1}∗(ε× {0, 1}∗).

Originally, Caucal defined the prefix-recognisable graphs in a different way.
In order to obtain a class of graphs with decidable MSO-theory he defined two
operations on graphs which preserve MSO-decidability and applied them to the
binary tree T2.

Definition 4. Let G = (V, (Ea)a∈A) be a graph with universe V ⊆ {0, 1}∗.
(1) The restriction G|C denotes the subgraph of G induced by C ⊆ {0, 1}∗.
(2) Let Ā be a disjoint copy of A and expand G by the relations Eā := (Ea)

−1

for ā ∈ Ā. Given a set of labels B and a mapping h associating with every b ∈ B
a language h(b) ⊆ (A ∪ Ā)∗, the inverse substitution h−1(G) defines the graph
(V, (E′

b)b∈B) where E′
b consists of those pairs (u, v) such that in the expansion

of G there is a path from u to v labelled by some word in h(b).

Proposition 1 (Caucal [6]). A graph G is prefix-recognisable if and only if it is

isomorphic to h−1(T2)|C for some regular language C and mapping h such that

h(a) ⊆ {0, 1, 0̄, 1̄}∗ is regular for all a.

Example. (ω, suc,≤) can be defined with C := 1∗ and h(suc) := 1, h(≤) := 1∗.

Similarly to the characterisation of context-free graphs as configuration graphs
of pushdown automata one can describe the class of prefix-recognisable graphs
via some model of automaton. To do so one considers pushdown automata with
ε-transitions where each configuration has either no outgoing ε-transitions or
no outgoing non-ε-transitions. Then the ε-transitions are “factored out” in the
following way: one takes only those vertices without outgoing ε-transitions and
adds an a-transition between two vertices iff in G there is a path between them
consisting of one a-transition followed by arbitrarily many ε-transitions.

Proposition 2 (Stirling [25]). A graph G is prefix-recognisable if and only if

it is the restriction to a regular set of the configuration graph of a pushdown

automaton with ε-transitions where the ε-transitions are factored out in the way

describe above.

Example. A pushdown automaton for (ω, suc,≤) has the following configuration
graph:

q0ε
suc //

≤�� q0X
suc //

≤		 q0XX
suc //

≤		 q0XXX
suc //

≤		 · · ·

q1ε
ε //ε

HH
q1X

ε //ε

II
q1XX

ε //ε

II
q1XXX

ε //ε

II
· · ·



Finally, one can characterise prefix-recognisable graphs via graph grammars.
Using the notation of Courcelle [7], [9], [12] we consider the following operations
on vertex-coloured graphs. Let C be a finite set of colours.

– G+H is the disjoint union of G and H.
– ̺β(G), for β : C → C, changes the colour of the vertices from a to β(a).
– ηa

b,c(G) adds a-edges from each b-coloured vertex to all c-coloured ones.
– a denotes the graph with a single a-coloured vertex.

The clique-width of a graph G is, by definition, the minimal number of colours
one needs to write a term denoting G.

Definition 5. A countable coloured graph is VR-equational if it is the canonical
solution of a finite system of equation of the form

x0 = t0, . . . , xn = tn

where the ti are finite terms build up from the above operations. Further, we
require that none of the ti equals a single variable xk.

Proposition 3 (Barthelmann [1]). A graph is prefix-recognisable if and only if

it is VR-equational.

Since only finitely many colours can be used in a finite system of equations it
follows that the clique-width of each VR-equational graph is finite.

Corollary 1. Each prefix-recognisable graph is of finite clique-width.

Example. If we colour the first element by a and the other ones by b we can
define (ω, suc, <) by

x0 = η<
a,b(x1), x1 = ̺c→bη

suc
a,c (a+ x2), x2 = ̺a→c(x0).

4 Tree-interpretable structures

The characterisation of prefix-recognisable graphs in terms of interpretations is
the one most easily generalised to arbitrary relational structures.

Definition 6. A structure A is called tree-interpretable iff A ≤MSO T2.

From this definition one can immediately deduce some basic properties of the
class of tree-interpretable structures.

Proposition 4. The class of tree-interpretable structures is closed under MSO-

interpretations. In particular, it is closed under

(1) isomorphisms,

(2) definable expansions,

(3) expansion by finitely many constants,

(4) finite unions,

(5) factorisation by definable congruences, and

(6) substructures with definable universe.



Proposition 5. MSO(∃κ) model checking is decidable for every tree-interpreta-

ble structure.

Proof. MSO(∃κ) model checking is decidable for T2 and this property is con-
served by MSO-interpretations. ⊓⊔

All tree-interpretable graphs are of finite clique-width. On the other hand, their
tree-width can be unbounded as the example of the infinite clique Kℵ0

shows.
A result of Courcelle [11] which was extended to tree-interpretable graphs by
Barthelmann [2] shows that being of finite tree-width imposes a strong restriction
on the structure of a tree-interpretable graph. Although stated only for graphs
it also holds for arbitrary structures if one replaces G by its Gaifman graph in
(2)–(4).

Proposition 6 (Barthelmann [2], Courcelle [11]). Let G be a tree-interpretable

graph. The following statements are equivalent:

(1) G is HR-equational.

(2) G has finite tree-width.

(3) G does not contain the subgraph Kn,n for some n < ℵ0.

(4) G is uniformly sparse.

This characterisation allows us to extend Proposition 5 to GSO(∃κ).

Theorem 7. Let A be a tree-interpretable structure. GSO model checking is de-

cidable for A if and only if A is of finite tree-width. The same holds for GSO(∃κ).

Proof. If A is of finite tree-width then GSO(∃κ) collapses to MSO(∃κ) which is
decidable (see Courcelle [10], [13]).

The other direction is a special case of a result of Seese [23]. If A has infinite
tree-width then its Gaifman graph G(A) contains subgraphs Kn,n for all n <
ℵ0. Note that the grid [n] × [n] is bipartite since we can partition the vertices
(i, k) ∈ [n] × [n] depending on whether i + k is even or odd. Thus, G(A) also
contains subgraphs [n] × [n] for all n < ℵ0. The result follows since GSO allows
quantification over such subgraphs and the MSO theory of the class of grids is
undecidable. ⊓⊔

Although the characterisation of tree-interpretable structures by interpreta-
tions is quite elegant, in actual proofs it is most of the time easier to work with a
more concrete characterisation in terms of languages. Let us recall how automata
are used to decide MTh(T2) (see [26] for an overview).

Definition 8. For sets X0, . . . ,Xn−1 ⊆ {0, 1}∗ let TX̄ be the P([n])-labelled
binary tree with T (w) := { i < n | w ∈ Xi } for w ∈ {0, 1}∗. For singletons
Xi = {xi} we also write Tx̄.

With this notation we can now state Rabin’s famous tree theorem in the following
way:

Theorem 9. For each MSO-formula ϕ(X̄, x̄) there is a tree-automaton A that

recognises the language {TX̄x̄ | T2 |= ϕ(X̄, x̄) }.
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Figure 1. The branching structure of 1111, 1011, 101011 and its isomorphism type

Employing this correspondence we generalise the characterisation of prefix-
recognisable graphs by relations of the form W (U × V ) to arbitrary relational
structures.

Definition 10. The branching structure of x0, . . . , xn−1 ∈ Σ∗ is the partial order
(X,�) where X := {ε} ∪ {xi ⊓ xj | i, j < n }. The elements of X are called
branching points.

Example. The branching structure of 1111, 1011, 101011 is depicted in Figure 1.

Note that for a fixed number of words there are only finitely many non-iso-
morphic branching structures.

Proposition 7. An n-ary relation R ⊆ ({0, 1}∗)n is MSO-definable in T2 if and

only if R is a finite union of relations Ri of the following form:

(a) All tuples x̄ ∈ Ri have the same branching structure (up to isomorphism).

(b) For every pair of adjacent branching points u, v there is a regular lan-

guage Wu,v such that x̄ ∈ Ri iff for each such pair u, v the word u−1v
belongs to Wu,v.

Proof. (⇐) Clearly, each such relation is MSO-definable.
(⇒) We show that, if R is MSO-definable, then the labels of paths between

branching points are regular. For simplicity we assume that the relation R ⊆
{0, 1}∗×{0, 1}∗ is binary. Let A = (Q,P({0, 1}),∆, q0 , Ω) be the tree-automaton
associated with the MSO-definition of R in T2. Let occ(t) denote the set of labels
which occur at some vertex of the tree t. Let L(A, q) be the set of trees accepted
by A if the initial state is q. We classify the states of A according to the set of
labels which appear in trees that are accepted from this state.

Q∅ :=
{

q ∈ Q
∣

∣

⋃

occ(t) = ∅ for all t ∈ L(A, q)
}

Q0 :=
{

q ∈ Q
∣

∣

⋃

occ(t) = {0} for all t ∈ L(A, q)
}

Q1 :=
{

q ∈ Q
∣

∣

⋃

occ(t) = {1} for all t ∈ L(A, q)
}

Q0,1 :=
{

q ∈ Q
∣

∣

⋃

occ(t) = {0, 1} for all t ∈ L(A, q)
}

We construct languages Uq, Vq, and Wq such that u ∈ Uq, v ∈ Vq, and w ∈Wq

if and only if there is an accepting run of A on T{wu},{wv} where the node w is



labelled by q. Then

R =
⋃

q∈Q

Wq(Uq × Vq).

We let Wq be the language recognised by the automaton
(

Q, {0, 1},∆Wq , q0, {q}
)

where

∆Wq := { (p, 0, p′) | (p, ∅, p′, p0) ∈ ∆, p0 ∈ Q∅ }

∪ { (p, 1, p′) | (p, ∅, p0, p
′) ∈ ∆, p0 ∈ Q∅ }

and let Uq be recognised by
(

Q ·∪ {qf}, {0, 1},∆Uq , q, {qf}
)

where

∆Uq := { (p, 0, p′) | (p, c, p′, p0) ∈ ∆ where 0 /∈ c and p0 ∈ Q∅ ∪Q1 }

∪ { (p, 1, p′) | (p, c, p0, p
′) ∈ ∆ where 0 /∈ c and p0 ∈ Q∅ ∪Q1 }

∪ { (p, c, qf ) | (p, c, p0, p
′
0) ∈ ∆ where 0 ∈ c and p0, p

′
0 ∈ Q∅ ∪Q1 }

Vq is defined analogously. ⊓⊔

Example. For the branching structure in Figure 1, a relation would be defined
by five regular languages U , V , W , X, and Y with R = U(V ×W (X × Y )).

Definition 11. Let A be a tree-interpretable structure. Fixing an interpretation
we can assume that the universe A ⊆ Σ∗ is regular and each relation R is specified
by regular languages as in the preceding proposition. The syntactic congruence ∼
of A (w.r.t. this interpretation) is the intersection of the syntactic congruences
of all these languages. We denote the index of ∼ by I.

If some elements of a tree-interpretable structure are encoded by several words
it becomes difficult to apply pumping arguments since the words obtained by
pumping may encode the same element. Fortunately, for each tree-interpretable
structure A we can choose an interpretation where this does not happen.

Proposition 8. If A ≤MSO T2 then there is an interpretation I : A ≤MSO T2

where the coordinate map is injective.

Proof. We prove for all regular languages D ⊆ {0, 1}∗ and tree-interpretable
equivalence relations E ⊆ D ×D that there is a regular language D′ ⊆ D that
contains exactly one element of each E-class. Then, the desired interpretation is
obtained by replacing the formula defining the universe of A by the one defin-
ing D′.

Denote the E-class of x by [x], define p[x] := inf� [x] and sx := (p[x])
−1x.

Let ϕp(x, y) be a MSO-definition of the function x 7→ p[x]. Finally, let s be the
number of states of the automaton associated with E. We claim that each class [x]
contains an element of length less than |p[x]| + s. Thus, one can define

D′ := {x ∈ D | sx ≤ll sy for all y ∈ [x] }



where the length lexicographic ordering ≤ll is definable since the length of the
words is bounded so that we only need to consider finitely many cases.

To prove the claim choose x0, x1 ∈ [x] such that x0⊓x1 = p[x]. Since (x0, x1) ∈
E there are regular languages U , V , and W such that x0 = wu, x1 = wv for
u ∈ U , v ∈ V , and w ∈W with w ⊆ p[x]. If |wu| ≥ |p[x]| + s then, by a pumping
argument, there exists some u′ ∈ U such that |p[x]| ≤ |wu′| < |p[x]| + s. Hence,
(wu′, x1) ∈ E is an element of the desired length. ⊓⊔

This result allows us to identify the elements of a tree-interpretable structure
with the unique word encoding them. We will do so tacitly in the remainder of
the article. We conclude this section with a combinatorial lemma whose proof is
based on a pumping argument.

Lemma 1. Let A be a tree-interpretable structure and ϕ(x, y) ∈ MSO(∃κ) such

that, for every a ∈ A, there are only finitely many elements b ∈ A with A |=
ϕ(a, b). There is a constant k such that ϕ(a, b) implies b/k ≺ a. In particular,

|ϕ(a,A)| ∈ O(|a|).

Proof. Consider the syntactic congruence ∼ of the expansion (A, ϕA) and let
k := I be its index. If there are elements a and b satisfying ϕ with |b| ≥ |a⊓b|+I
then there are words b/k � x ≺ y � b with x ∼ y. Let u := x−1y and z := y−1b.
Then (a, b) ∈ ϕA implies that (a, xuiz) ∈ ϕA for all i ∈ N. Contradiction. ⊓⊔

5 Paths in tree-interpretable graphs

In this section we consider a fixed tree-interpretable graph G = (V,E0, . . . , Er−1).
By replacing each edge relation Ea =

⋃

iWi(Ui × Vi) by several relations Ei
a :=

Wi(Ui × Vi) we may assume that Ea = Wa(Ua × Va) for regular languages
Ua, Va,Wa ⊆ Σ∗. We also add the relation Ea− := (Ea)

−1 for each edge re-
lation Ea. Note that these operations do not affect the syntactic congruence ∼.

Remark 1. By Proposition 7 we can choose Ua, Va,Wa such that

(x, y) ∈Wa(Ua × Va)

iff x ⊓ y ∈Wa, (x ⊓ y)−1x ∈ Ua, and (x ⊓ y)−1y ∈ Va.

Definition 12. The base-point of an edge (a, b) ∈ W (U × V ) is the longest
word w contained in W such that w−1a ∈ U and w−1b ∈ V . The spine of a path
is the sequence of the base-points of its edges.

Definition 13.

(1) A path above c is a path a0, . . . , an such that c � ai for all i.

(2) A path a0, . . . , an is bounded by l if |ai| ≤ l for all i.

(3) A sequence a0, . . . , an is k-increasing if |aj| ≥ |ai| − k for all j > i.

(4) A path a0, . . . , an with spine w0, . . . , wn−1 is called k-normal if the path and
its spine are k-increasing and ai/k � aj for all i ≤ j.



The aim of this section is to show that every vertex can be reached by a k-
normal path. The importance of such paths stems from the fact that, by following
a k-normal path to a vertex x, one can compute certain information about x like
its ∼-class. We start with some immediate observations.

Lemma 2. Let a0, . . . , an be a path with spine w0, . . . , wn−1.

(1) Either wi � wi+1 or wi � wi+1 for all i < n− 1.
(2) If w0, . . . , wn−1 is k-increasing then wi/k � wj for all i < j.

The next two lemmas can be used to find a k-normal path once we have shown
how to obtain a path with k-increasing spine.

Lemma 3. Let a0, a1, a2 be a path with spine w0, w1. There exists a vertex a′1 of

length |a′1| < max{|w0|, |w1|} + I such that a0, a
′
1, a2 is a path with spine w0, w1.

Proof. W.l.o.g. assume that w1 � w0. Suppose that |a1| ≥ |w0|+I. Since a1 � w0

there are prefixes w0 � x ≺ y � a1 such that (w0)
−1x ∼ (w0)

−1y. Setting
a′1 := x(y−1a1) we obtain a path a0, a

′
1, a2 with |a′1| < |a1|. By iteration, if

necessary, we obtain a vertex of the desired length. ⊓⊔

Lemma 4. Let w0, . . . , wn−1 be a k-increasing spine of some path from x to y.
There exists a path a0, . . . , an with the same spine from x to y such that

ai/(k + I − 1) � wj for all 0 < i ≤ j < n.

Proof. By the preceding lemma we can replace each ai by some a′i with |a′i| <
max{|wi−1|, |wi|} + I, for 0 < i < n. Since wi−1/k � wi it follows that a′i/(k +
I − 1) � wi−1/k � wj for all j ≥ i. ⊓⊔

In the proofs below we frequently need to remove parts of a path and glue the
remaining pieces together. The following construction is the main tool in this
process.

Definition 14. Let a0, . . . , an be a path with spine w0, . . . , wn−1. Let x and y
be words such that x � wi for all i < n, that is, there are words u0, . . . , un,
v0, . . . , vn−1 such that

ai = xui and wi = xvi.

Shifting the path from x to y yields the sequences a′0, . . . , a
′
n and w′

0, . . . , w
′
n−1

where

a′i := yui and w′
i := yvi.

Lemma 5. Using the same notation as in the preceding definition, x ∼ y implies

that a′0, . . . , a
′
n is a path with spine w′

0, . . . , w
′
n−1.

Proof. Since we have w′
i ∼ wi and (w′

i)
−1a′i = w−1

i ai and (w′
i)
−1a′i+1 = w−1

i ai+1

it follows that (a′i, a
′
i+1) ∈ E iff (ai, ai+1) ∈ E. ⊓⊔

Now we are ready to prove the main result needed to obtain k-normal paths.



Proposition 9. Let G be a tree-interpretable graph. There is a constant K0 such

that for all paths a0, . . . , an with spine w0, . . . , wn−1 there exists a path of length

m ≤ n from a0 to an with spine w′
0, . . . , w

′
m where |w′

i| < max{|w0|, |wn−1|}+K0

for all i ≤ m.

Proof. We proceed in several steps.

Claim 1. If |wi| ≥ max{|w0|, |wn−1|}+I for all 0 < i < n−1, then there exists

a path a′0, . . . , a
′
n from a0 to an with |a′i| < |ai| for all 0 < i < n.

The prerequisites imply that w0, wn−1 ≺ wi for all 0 < i < n−1. Hence, either
w0 � wn−1 or wn−1 � w0. W.l.o.g. assume the latter. There exists a word x of
length I such that w0x � wi for all 0 < i < n−1. Since |x| = I there are prefixes
y ≺ z � x with y ∼ z. The desired path is obtained from shifting the subpath
a1, . . . , an−1 from w0z to w0y.

By this claim we may assume that, for each subpath ak, . . . , al, there exists
some index k < i < l such that |wi| < max{|wk|, |wl−1|} + I.

Claim 2. If |w1| ≥ |w0| + rI2, then there is a path a′0, . . . , a
′
m from a0 to an

with m < n.

Let wi0 , . . . , wit be the subsequence of base-points wi such that

|wk| > |wi| ≥ |w0| for all 0 < k < i.

By assumption

|wik+1
| < |wik | < |wik+1

| + I

for all k < t− 1. Hence, t ≥ rI and there exists indices k < l in {i0, . . . , it} such
that wk ∼ wl and (ak, ak+1), (al, al+1) ∈ Es for some s. Since |wk| > |wl| there
is some word x with wk = wlx and wlx � wi for all 0 < i < k. Let (a′i)i be the
path obtained from (ai)i by shifting the subpath a1, . . . , ak from wlx to wl and
removing the subpath ak+1, . . . , al.

By Claim 2 we may further assume that |wi+1| − |wi| < rI2 for all i < n− 1.
Define K0 := r3I4|Σ|rI2

. The 3rd claim concludes the proof.

Claim 3. There exists a path a′0, . . . , a
′
m from a0 to an with spine w′

0, . . . , w
′
m−1

such that

|w′
i| < max{|a0|, |an|} + r3I4|Σ|rI2

.

Fix some base-point wk such that |wk| is maximal, and consider the subse-
quences wi0 , . . . , wis and wj0 , . . . , wjt of base-points wi, for i < k, and wj , for
j > k, such that

|wi| < |wl| for all i < l ≤ k,

|wj | < |wl| for all k ≤ l < j.



Assume that |wk| ≥ max{|a0|, |an|} + r3I4|Σ|rI2

. By assumption, this implies
that

s ≥ r3I4|Σ|rI2/

(rI2) = r2I2|Σ|rI2

.

For i ∈ {i0, . . . , is} define f(i) ∈ {j0, . . . , jt} such that |wf(i)| ≥ |wi| is minimal.
We colour each i ∈ {i0, . . . , is} with the tuple

χ(i) :=
(

[wi], [wf(i)], w
−1
i wf(i), l, l

′
)

where l and l′ are the indices with (ai, ai+1) ∈ El and (af(i), af(i)+1) ∈ El′ . (Note
that wi � wl for all i ≤ l ≤ f(i).) Since

|wf(i)| < |wi| + rI2

there are less than I2|Σ|rI2

r2 different colours. Thus, there are indices i, i′ ∈
{i0, . . . , is}, i < i′, with χ(i) = χ(i′). Let wi′ = wix. Then wix � wl for i′ ≤ l <
f(i′) and the desired path is obtained from a0, . . . , an by removing the subpaths
ai+1, . . . , ai′ and af(i′)+1, . . . , af(i) and by shifting the subpath ai′+1, . . . , af(i′)

from wix to wi. ⊓⊔

Corollary 2. Let G be a tree-interpretable graph. All elements a, b in the same

component of V are connected by a path bounded by max{|a|, |b|} +K0 + I.

Proof. Let a0, . . . , an be a path from a to b whose spine w0, . . . , wn−1 satisfies

|w′
i| < max{|w0|, |wn−1|} +K0 for all i < n.

Applying Lemma 3 we obtain a path a′0, . . . , a
′
n from a to b with

|a′i| ≤ max{|wi−1|, |wi|} + I < max{|w0|, |wn−1|} +K0 + I. ⊓⊔

Finally, we are able to prove the existence of k-normal paths.

Proposition 10. Let G be a tree-interpretable graph. There is a constant K
such that each connected component of G contains a vertex v, called its root,
such that there are K-normal paths from v to all other vertices of the component.

Proof. Let K := K0 + I − 1. Choose v such that |v| is minimal. Let a0, . . . , an

be a path from v to some other vertex, and let w0, . . . , wn−1 be its spine. We
transform it into a path with K0-increasing spine as follows. Suppose there are
indices i < j such that |wj | < |wi| −K0. Let k < i be the greatest index such
that |wk| < |wj |. By Proposition 9 there is a path b0, . . . , bm from ak to aj whose
spine is bounded by |wj| + K0. By iterating this operation we obtain a path
with K0-increasing spine. Applying Lemma 4 we obtain a path a′0, . . . , a

′
n from v

to an with a′i/K � wj � a′j , a
′
j+1 for all 0 < i ≤ j < n. It remains to prove

that a′0/K = v/K � a′1/K. Since |a′1| ≥ |v| it is sufficient to show v/K � a′1.
Assume that |v ⊓ a′1| < |v| − K. Then |a′1| ≥ |v| ≥ |v ⊓ a′1| + K. Thus, there
exists some b with v ⊓ a′1 � b � a′1 and |b| < |v ⊓ a′1| + I < |v| such that
(v ⊓ a′1)

−1b ∼ (v ⊓ a′1)
−1a′1. Therefore, (v, a′1) ∈ E implies (v, b) ∈ E. This is a

contradiction since the connected component of v does not contain vertices of
smaller length. ⊓⊔



6 Axiomatisations

Equipped with the combinatorial lemmas of the previous section we can present
the main result of this article. Each tree-interpretable structure A is finitely
GSO(∃κ)-axiomatisable, i.e., there is a GSO(∃κ)-sentence ψA such that B |= ψA
if and only if B ∼= A. Actually, we will prove the slightly stronger statement
that, for each tree-interpretable structure, there is a colouring of the guarded
tuples such that the coloured structure is MSO(∃κ)-axiomatisable. That is, the
axiom consists of a sequence of existential non-monadic second-order quantifiers
followed by an MSO(∃κ)-formula.

6.1 The congruence colouring

The axiomatisation uses colourings of elements and pairs of elements that are of
the following form:

Definition 15. (a) Let ≈ ⊆ Σ∗ × Σ∗ be a congruence of finite index and let
k ∈ N. The (≈, k)-congruence colouring χk

≈ maps words x ∈ Σ∗ to the pair

χk
≈(x) :=

(

[x/k]≈, sufk x
)

and pairs (x, y) ∈ Σ∗ ×Σ∗ to

χk
≈(x, y) :=

(

χk
≈(w−1x), χk

≈(w−1y)
)

where w := x ⊓ y.
(b) A (≈′, k′)-colouring χ′ refines the (≈, k)-colouring χ if ≈′ ⊆ ≈ and k′ ≥

k. We denote this fact by χ′ ≥ χ. The common refinement of the (≈0, k0)-
colouring χ0 and the (≈1, k1)-colouring χ1 is the (≈0∩≈1, max{k0, k1})-colouring
denoted by χ0 ⊔ χ1.

Definition 16. The χ-expansion (A, χ) of a structure A expands A by unary
and binary relations for each colour class where the binary colour classes consists
only of pairs (x, y) which are guarded.

The restriction to guarded pairs is essential since GSO allows only quantification
over relations of this form. Below we frequently will need to obtain the value
χ(x, y) for pairs (x, y) which are not guarded. These values must be computed
explicitly from available data. This is where k-normal paths come into play.

Lemma 6. Let χ1 ≥ χ0.

(1) There exists a function f with χ0 = f ◦ χ1.

(2) (A, χ0) is FO-interpretable in (A, χ1).

Lemma 7. Let A be a tree-interpretable structure, ≈ a congruence of finite in-

dex, and k a constant. The χk
≈-expansion (A, χk

≈) of A is also tree-interpretable.

Proof. It is sufficient to note that, since ≈ is of finite index, each ≈-class is a
regular language. ⊓⊔



We say that a set P of vertices codes a path between x and y if every element
of P except for x and y is connected to exactly two other elements in P whereas
x and y are connected to exactly one. Clearly, not every path can be coded in
this way. Fortunately, for our purposes it is sufficient that, if there is a k-normal
path between two vertices, then we can obtain a codable k-normal path between
them by removing some vertices.

Lemma 8. Let G be a graph, χ a (≈, k)-congruence colouring, and c a colour

of χ. There is an MSO-formula ϕc(P, x, y) such that (G, χ) |= ϕc(P, x, y) if and

only if P codes a k-normal path from x to y and χ((x ⊓ y)−1y) = c.

Proof. We label the elements z ∈ P by the (≈, k′)-colour of (x/k)−1z for some
k ≤ k′ ≤ 2k. Since x/k � y we can compute (x ⊓ y)−1y from χ(x) and the label
of y. To decide whether a given labelling is correct note that, if (z, z′) is an edge
of the path and z is labelled ([u], w), then the label of z′ consists of the suffix w′

of x′ of length min{2k, |w| + |x′| − |x|} and the ≈-class of (x/k)−1z′(w′)−1 both
of which can be calculated from the colour of z. Note that, since the path is k-
normal, we can ensure that the length of the stored suffix is at least 2k − k = k.

⊓⊔

6.2 Forests

We start slowly by showing that forests are finitely axiomatisable. We regard
forests as partial orders such that the elements below any given one form a finite
linear order. For any partial order let

↓x := { z ∈ A | z < x } and ↑x := { z ∈ A | x < z }.

Lemma 9. Let T := (T,≤) be a tree-interpretable forest and χI
∼ the (∼, I)-

congruence colouring. χI
∼(x) = χI

∼(y) implies that ↑x ∼= ↑y.

Proof. For each b ∈ T , there are only finitely many a ≤ b. By Lemma 1 it
follows that a ≤ b implies a/I � b. Hence, ↑a ⊆ (a/I)Σ∗, and the function
f : (x/I)Σ∗ → (y/I)Σ∗ mapping (x/I)z to (y/I)z is the desired isomorphism.

⊓⊔

Theorem 17. If T := (T,≤) is a tree-interpretable forest and χ ≥ χI
∼ then the

structure (T, χ) is finitely FO(∃κ)-axiomatisable.

Proof. Let T0 ⊆ T be the set of minimal elements, and for x ∈ T let S(x) be the
set of its immediate successors. For X ⊆ T let ν(X) be the function which maps
each colour c to the number of elements x ∈ X coloured c.

We claim that a partial order X := (X,≤, χ′) is isomorphic to (T, χ) if and
only if

(1) ≤ is a partial order such that the set ↓x is either empty or a finite linear
order for all x ∈ X,

(2) ν(X0) = ν(T0) where X0 ⊆ X is the set of minimal elements, and



(3) ν(S(x)) = ν(S(u)) for all vertices x ∈ X and u ∈ T with χ′(x) = χ(u).

Clearly, all these conditions can be expressed in FO(∃κ).

To prove the nontrivial direction we construct an isomorphism h : X → T for a
given order X which satisfies the above conditions. Note that (1) implies that X is
a forest. Let ht(x) := |↓x|. We construct h as the limit of partial isomorphisms hi,
i < ω, where

hi : {x ∈ X | ht(x) ≤ i } → {u ∈ T | ht(u) ≤ i }.

(i = 0) As ν(X0) = ν(T0) there is a bijection h0 : X0 → T0 that preserves the
colouring.

(i > 0) For each x ∈ X with ht(x) = i − 1 we choose a colour preserving
bijection gx : S(x) → S(hi−1x). Note that (3) ensures its existence. hi is the
extension of hi−1 by all the gx.

Using the preceding lemma it is easy to show that h is well-defined and indeed
an isomorphism. ⊓⊔

6.3 Partial-orders

The next step consists in extending the result to tree-interpretable partial orders
A := (A,≤) for which there is a constant n ∈ N such that x ≤ y implies
x/n � y/n for all x, y ∈ A. To do so we have to define a forest in A. When
speaking of paths we always consider undirected paths in this section, i.e., we
ignore the direction of the edges.

Definition 18. Let x ⊑ y iff x/n � y/n and there is an undirected ≤-path
z0, . . . , zm from x to y with x/n � zi/n for all i ≤ m. Further, define x ≡ y iff
x ⊑ y and y ⊑ x.

Lemma 10. (A,⊑)/≡ is a forest.

Proof. It is sufficient to show that ↓[x]≡ is a linear order for all [x]≡ ∈ A/≡. Let
[y]≡, [z]≡ ⊑ [x]≡ with y/n � z/n. We claim that [y]≡ ⊑ [z]≡.

By definition, there are undirected ≤-paths y0, . . . , yl form y to x and z0, . . . , zm
from z to x such that y/n � yi/n and z/n � zi/n for all i. Hence, also y/n � zi/n,
and the path y0, . . . , yl, zm−1, . . . , z0 leading from y to z witnesses that y ⊑ z.

⊓⊔

Using the result of the previous section we first prove that (A,⊑, χ) is axioma-
tisable by defining a suitable copy of (A,⊑)/≡ in it.

Lemma 11. The subset A0 ⊆ A which consists of the lexicographically minimal

elements of each ≡-class is MSO-definable in (A,⊑, χn
∼).

Proof. Since x ≡ y implies x/n = y/n, one can determine whether x ≤lex y by
looking at sufn x and sufn y. This information is contained in the colouring χn

∼.
⊓⊔



Proposition 11. There is a congruence colouring χ0 such that (A,⊑, χ) is

finitely MSO(∃κ)-axiomatisable for every χ ≥ χ0.

Proof. Let B := (A,⊑), and let δ(x) be the formula defining A0 in (B, χ). We
set χ0 := χn

∼ ⊔ χIt
∼t

where ∼t is the syntactic congruence corresponding to B/≡
and It is its index.

A structure (X, χ′) := (X,⊑′, χ′) is isomorphic to (B, χ) if and only if there is
an isomorphism

f : (X/≡′, χ′) → (B/≡, χ)

such that [x]≡′ ∼= f [x]≡ for all x ∈ X where ≡′ := ⊑′ ∩ ⊒′. This condition is
equivalent to the following ones:

(1) δX contains exactly one element of each ≡′-class of X.
(2) (δX,⊑′, χ′) ∼= (δB,⊑, χ).
(3) [x]≡′ ∼= [a]≡ for all x ∈ X and a ∈ A with χ′(x) = χ(a).

(1) and (3) are easily expressed in MSO. (2) can be checked since χ ≥ χIt
∼t

and
therefore the forest (δB,⊑, χ) ∼= (B/≡, χ) is FO(∃κ)-axiomatisable. ⊓⊔

In order to transfer the axiomatisability result from (A,⊑) to A, we have to
show that each of the structures is definable in the other one.

Lemma 12.

(a) If x ⊑ y then there is a K-normal path z0, . . . , zm from x to y with x/n � zi/n
for all i.

(b) If x ≡ y then there exists an undirected ≤-path z0, . . . , zm from x to y with

x/n � zi/n and |zi| ≤ |x| +K for all i ≤ m.

(c) The relation ⊑ is MSO-definable in (A, χK
∼ ).

(d) (A,⊑, χ) is MSO-definable in (A, χ) for all χ ≥ χK
∼ .

Proof. (a) is implied by Proposition 10, and (b) follows from Proposition 9 since
x and y are connected above x/n = y/n.

(c) We have x ⊑ y iff there is a K-normal undirected path z0, . . . , zm from x
to y with x/n � zi/n for all i. Thus, x ⊑ y iff there is a K-normal path P such
that each initial segment P ′ of P leads to some vertex z with |z| ≥ |x|. It follows
from Lemma 8 that the condition |z| > |x| can be expressed by an MSO-formula.

(d) By (c) it remains to define the colouring χ(x, y) for x ⊑ y. This can by
done by Lemma 8 since there exists a K-normal path from x to y. ⊓⊔

Lemma 13. (A, χ) is MSO-definable in (A,⊑, χ) for all colourings χ ≥ χn
∼.

Proof. Since ≤ is tree-interpretable and x ≤ y implies x/n � y/n, there are sets
U([w]) ⊆ Σ≤I and V ([w]) ⊆ Σ∗/∼ for every class [w] ∈ Σ∗/∼ such that

x ≤ y iff x/n � y/n, w−1x ∈ U([w]), and [w−1y] ∈ V ([w]).

where w := x ⊓ y. Since x ≤ y implies x ⊑ y, all of the above conditions can
be expressed in MSO using χ(x), χ(y), and χ(x, y). The colouring of (A, χ) is
definable for the same reason. ⊓⊔



Theorem 19. Let A := (A,≤) be a tree-interpretable partial-order and let n ∈ N

be a constant such that x ≤ y implies x/n � y/n for all x, y ∈ A. There is a

congruence colouring χ0 such that (A, χ) is finitely MSO(∃κ)-axiomatisable for

every χ ≥ χ0.

Proof. Let χ′0 be the colouring of Proposition 11. We set χ0 := χ′
0 ⊔ χ

K
∼ ⊔ χn

∼.
Let I be the MSO-definition of (A,⊑, χ) in (A, χ). By the preceding lemma, a
structure (X, χ′) is isomorphic to (A, χ) if and only if I(X, χ′) ∼= I(A, χ). The
claim follows since I(A, χ) is MSO(∃κ)-axiomatisable by Proposition 11. ⊓⊔

6.4 The general case

Finally, we consider an arbitrary tree-interpretable structure A. For the reduction
to the previous case we define, as above, a partial order ≤ and show that the
structures (A,≤) and A are definable within each other.

Definition 20. Let x ⊢ y if x/I � y/I and the pair (x, y) is guarded. Let ≤ be
the reflexive and transitive closure of ⊢.

Lemma 14. (A,≤, χ) is MSO-definable in (A, χ) for all colourings χ ≥ χI
∼.

Proof. The relation ⊢ is FO-definable, since one can tell whether x/I � y/I
holds by looking at χI

∼(x, y). Thus, ≤, its reflexive and transitive closure, is
MSO-definable.

To show that the colouring is also definable we prove that for each colour c
of χ there is a formula ϕc(x, y) such that

(A, χ) |= ϕc(x, y) iff x ≤ y and χ(x, y) = c.

If x ⊢ y then there is a relation R and a tuple ā ∈ R with x, y ∈ ā. Hence,
χ(x, y) is available in (A, χ). Thus, there is a formula ϕ⊢c (x, y) which expresses
that x ⊢ y and χ(x, y) = c. We have x ≤ y iff there is a path x = z0 ⊢ · · · ⊢ zn = y.
Note that zi ⊢ zi+1 implies zi/I � zi+1/I. Therefore, we can compute χ(x, zi+1)
from χ(x, zi) and χ(zi, zi+1). ⊓⊔

The proof of the converse is more involved and requires an investigation of the
branching structure of a tuple.

Definition 21. Let ā, b̄ ∈ An. We say that ā is a reduct of b̄ iff

(1) the branching structures of ā and b̄ are the same,
(2) inf� ā ∼ inf� b̄,
(3) (ai⊓aj)

−1(ak⊓al) ∼ (bi⊓bj)
−1(bk⊓bl) for all indices such that ai⊓aj � ak⊓al,

(4) |ai| < |inf� ā| + nI for all i < n.

A tuple is called reduced if it is a reduct of itself.

Lemma 15. If ā is a reduct of b̄ and b̄ ∈ R then ā ∈ R.

To check whether a tuple ā belongs to a relation R we use the characterisation
of Proposition 7. To do so we need the ∼-class of u−1v for branching points
u and v of ā.



Definition 22. Let ā ∈ An. The elements bik ∈ A, for i, k < n, code the branch-

ing structure of ā if

(1) bii = ai for i < n,

(2) bik/nI ≺ ai ⊓ ak � bik for all i, k, and

(3) if ai ⊓ ak ≺ ai ⊓ al then bik ⊢ bil for i, k, l < n.

If we are given bik and bil we can compute the ∼-class of (ai ⊓ ak)
−1(ai ⊓

al). Hence, if we can show that such elements always exists and that they are
definable, then we are almost done.

Lemma 16. For each branching structure X there is a formula βX(x̄, ȳ) such

that (A,≤, χ) |= β(ā, b̄) if and only if the branching structure of ā is X and it is

coded by b̄.

Proof. For all i, k < n we have to express that bik/m = ai ⊓ak for some m < nI.
Since bik ⊢ bii = ai and bik ⊢ bkk = ak this can be determined by looking at
χ(bik, ai) and χ(bik, ak). The verification of the other conditions can be done
easily. ⊓⊔

Lemma 17. Let R be an n-ary relation of A and ā ∈ R. There are elements

bik ∈ A, i, k < n, coding the branching structure of ā.

Proof. W.l.o.g. assume that Σ = {0, 1}. Let

Jik := { j < n | ai ⊓ ak ≺ ai ⊓ aj }.

We define tuples c̄ik, for i, k < n, by induction on |Jik| such that c̄ik|Jik
is a

reduct of ā|Jik
. If Jik = ∅ let c̄ik := ā. Otherwise, let j, l be indices such that the

branching points ai ⊓ al and aj ⊓ ak are the immediate successors of ai ⊓ ak. Let

d̄ik := c̄il|Jik
∪ c̄jk|Jki

∪ ā|Jik∪Jki
.

Choose c̄ik such that

c̄ik|Jik∪Jki
is a reduct of d̄ik|Jik∪Jki

and c̄ik|Jik∪Jki
= ā|Jik∪Jki

.

Finally, set bik := (cik)k. Since, by construction, d̄ik|Jki
∪ c̄|Jki

∈ R we have

bik = (cik)k ⊢ (dik)l = (cil)l = bil. ⊓⊔

At last, we are able to prove the other direction.

Lemma 18. The structure (A, χ) is MSO-definable in (A,≤, χ) for every χ ≥
χnI
∼ where n is the maximal arity of relations of A.

Proof. Let R be an n-ary relation of (A, χ). We prove the claim by induction
on n.

(n = 1) R ⊆ Σ∗ is regular with a coarser congruence than ∼. Thus, we can
determine whether a ∈ R by looking at χ(a).



(n > 1) W.l.o.g. assume that all tuples ā ∈ R have the same branching struc-
ture. For all branching points ai ⊓ ak with immediate successor ai ⊓ al let Wikl

the the regular language such that ā ∈ R iff (ai ⊓ ak)
−1(ai ⊓ al) ∈ Wikl for all

such i, k, l. By the preceding lemma it follows that ā ∈ R if and only if there
are elements bik, i, k < n, coding the branching structure of ā and constants mik

such that bik/mik = ai ⊓ ak and (bik/mik)
−1(bil/mil) ∈ Wikl for all admissible

i, k, l. Since bik ⊢ bil we can check the latter condition by looking at χ(bik, bil).
⊓⊔

Theorem 23. Let A be a tree-interpretable structure. There is a congruence

colouring χ0 such that (A, χ) is finitely MSO(∃κ)-axiomatisable for all χ ≥ χ0.

Proof. The proof is completely analogous to the one of Theorem 19. Let χ′0 be
the colouring of Theorem 19 for the structure (A,≤), and set χ0 := χ′

0 ⊔ χnI
∼

where n is the maximal arity of relations of A. Let X be a structure. By the
preceding lemmas (A, χ) and (A,≤, χ) are MSO-definable within each other. Let
I : (A,≤, χ) ≤MSO (A, χ) be the corresponding interpretation. It follows that
X ∼= (A, χ) iff I(X) ∼= I(A, χ). The later condition is MSO(∃κ)-expressible by
Theorem 19. ⊓⊔

Since GSO(∃κ) allows quantification over colourings χ we obtain as immediate
corollary the following result.

Theorem 24. Every tree-interpretable structure is finitely GSO(∃κ)-axiomatis-

able.

6.5 Lower bounds

We have shown that every tree-interpretable structure is finitely GSO(∃κ)-ax-
iomatisable. Of course, the question arises if we can do better. In this section
we show that at least the quantifiers ∃ℵ0 and ∃ℵ1 are needed. Since all tree-
interpretable structures are countable we obviously can do without the ones for
higher cardinalities.

For a logic L let Lm denote the set of L-formulae of quantifier rank at most m
where we count both first- and second-order quantifiers. The following statements
about the expressivity of MSOm and MSOm(∃ℵ0) can easily be proved using the
corresponding versions of the Ehrenfeucht-Fräıssé game.

Lemma 19. (a) For every m ∈ N there exists a constant k such that two sets

A and B are MSOm-equivalent if and only if either

|A| = |B| or |A|, |B| ≥ k.

(b) For every m ∈ N there exists a constant k such that two sets A and B are

MSOm(∃ℵ0)-equivalent if and only if either

|A| = |B|, or k ≤ |A|, |B| < ℵ0, or |A|, |B| ≥ ℵ0.

(c) Any two infinite sets are MSO(∃ℵ0)-equivalent.



Lemma 20. For all GSO(∃κ)-sentences ϕ there is an MSO(∃κ)-sentence ϕ′

such that

T |= ϕ iff T |= ϕ′ for every tree T.

Proof. Since each vertex has at most one predecessor one can code a set of edges
by the set of their second components. This way each quantifier over sets of edges
can be replaced by a monadic quantifier. ⊓⊔

Theorem 25. There exists tree-interpretable trees which are not GSO(∃ℵ0)-
axiomatisable.

Proof. The preceding lemmas imply that K1,ℵ0
≡GSO(∃ℵ0 ) K1,ℵ1

. But the former
structure is tree-interpretable while the latter obviously is not. ⊓⊔

This shows that we cannot do without all cardinality quantifiers even if we
allow infinitely many axioms. But do we really need non-monadic second-order
quantifiers?

Open Problem. Are there tree-interpretable structures which are not (finitely)
MSO(∃κ)-axiomatisable?

7 Automorphisms of tree-interpretable structures

As mentioned in the introduction the axiomatisation of a tree-interpretable struc-
ture can be used to investigate its automorphism group.

Lemma 21. Let A be a tree-interpretable structure and a ∈ A. The orbit O of a
under automorphisms is GSO(∃κ)-definable.

Proof. If A is tree-interpretable then so is (A, a). Let ϕ(x) be the GSO(∃κ)-
formula obtained from the axiom of (A, a) by replacing every occurrence of the
constant a by the variable x. It follows that

b ∈ O iff (A, b) ∼= (A, a) iff A |= ϕ(b). ⊓⊔

Lemma 22 (Pélecq [22]). Let A be a tree-interpretable structure of finite tree-

width and let O be the orbit of a ∈ A under automorphisms. Then (A, O) is

tree-interpretable.

Proof. O is GSO(∃κ)-definable by the preceding lemma. Since A is of finite tree-
width it follows that O is even MSO(∃κ)-definable and, therefore, (A, O) ≤MSO

T2. ⊓⊔

We conclude this article with a simple application to the isomorphism problem.

Theorem 26 (Courcelle [8]). Given two tree-interpretable structures A and B

of finite-tree width one can decide whether A ∼= B.

Proof. Although not explicitly stated, the construction of the axiom in the pre-
vious section is effective. Thus, in order to determine whether A ∼= B one can
construct the GSO(∃κ)-formula ϕA which axiomatises A and check whether B

satisfies ϕA. ⊓⊔

Open Problem. Is isomorphism decidable for all tree-interpretable structures?
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