
Segmentation from 97% to 100%:
Is It Time for Some Linguistics?

Petr Sojka
Masaryk University in Brno, Faculty of Informatics

sojka��fi.muni.z

December 8th, 2012

http://www.fi.muni.cz

Competing Patterns
Definitions

Main Result: Computing Minimal Competing Patterns is NP-Complete
Methodology and Applications
References

Segmentation Task

+ In NLP, we often segment. Texts into paragraphs, paragraphs
into sentences, sentences into phrases, phrases into words,
words into syllables or words into stems for indexing in IR,
hyphenation,. . .

+ Many NLP tasks could be transformed into segmentation tasks
(divide et impera), like PoS tagging: sequence of [ambiguious]
tags could be ‘segmented’ after the right tag.

+ It is frequent, often used task, that needs to be solved quickly, in
limited space (memory matters) and linguistic data are typically
big, full of exceptions, and change slowly in time (decades, even
years).

+ −→ language-aware machine learning (as oposed to brute-force
machine learning).

Machine Learning

+ Recognition of rules/patterns in NLP (textual) data: catching
regularities in empirical data.

+ in 1960’s Michal Chytil and Hájek started to generate unary
hypotheses on finite models using the GUHA method: p-truth
formulas (Hájek, Havránek).

+ Standard way today: data [features] represented as points in
high-dimensional space: methods (like SVM) then try to
cover/separate different set of points by hyperplanes.

+ Noise added to data to get from 85% to 87% to optimize
hyperplane (like MALT parsing with SVM). Principally wrong, as
ignoring [linguistic] data properties: will never reach 100%.

+ Remedy? −→ For some tasks competing patterns approach/
methodology [Sojka 2003].

Patterns

+ Recognition of rules/patterns in (textual) data: catching
regularities (and iregularities) in empirical data.

+ NLP examples: SVOMPT. Syllable CV patterns (V, CV, CCV,. . .).
+ Main problem with patterns: they only cover, no contextual

handling and no negation.
Competing patterns: algebraic definition (words over free monoid

〈(Σ ∪ V)∗, ε, ·〉).
+ Hyphenation: o1, o2u1, .po3uč

Com-pet-ing Pat-terns in Lan-guage En-gi-neer-ing
and Com-puter Type-set-ting

Definition (matrix representation of the data)

Let us have m× n matrix W = wij of data that describe m objects with
n binary attributes P1, P2, . . . , Pn (unary predicates). Either Pj or ¬Pj
holds. Elementary conjunction is a conjuction of literals Pj, 1 ≤ j ≤ n,
where every predicate appears once at most. Similarly, Elementary
disjunction. We say that the object i fulfills elementary conjunction Φ
if the formula exactly describes the attributes in line i of W. We say
that Φ holds for W if Φ holds for all objects (lines in W). We say that
formula Φ is p-truth if Φ holds for at least 100p% of objects,
p ∈ R,0 < p ≤ 1.

p-truth pattern

Definition (p-truth pattern α)

Let us have m hyphenated words represented in matrix W as in
previous definition. We say that pattern α is p-truth pattern if it
covers at least 100p% of applicable word segmentation points.

Competing Patterns and Pattern Levels

h y p h e n a t i o n

l1 1n a

l1 1t i o

l2 n2a t

l2 2i o

l2 h e2n

l3.h y3p h

l4 h e n a4

l5 h e n5a t

.h0y3p0h0e2n5a4t2i0o0n.

h y-p h e n-a t i o n

In this example 〈A,≤〉 is N (natural
numbers). There are 5 pattern
levels —l1. . .l5. Patterns in
odd levels are covering, in an even
levels inhibiting. Winner pattern
is .h0y3p0h0e2n5a4t2i0o0n.

Pattern h e n5a t wins over n2a t,
thus hyphenation is possible.

Towards Efficient, Correct and Minimal Patterns

We want to find a pattern set that is minimal in size and maximal in
performance; we have to define these performance measures.

Definition (precision, recall, F-score)

Let W = (Σ ∪ {0,1})∗, and P a set of patterns over Σ′ ∪ N . Let
good(w, P) is the number of word divisions where classify(w, P) covers
w, good(W, P) =

∑
w∈W good(w, P). bad(w, P) is the number of word

divisions where classify(w, P) classifies word division that is not in w,
bad(W, P) =

∑
w∈W bad(w, P). missed(w, P) is the number of word

divisions where classify(w, P) fails to classify word division that is in w,
missed(W, P) =

∑
w∈W missed(w, P).

Measures
The definition of the measures is then as follows:

Definition (Precision, Recall)

precision(W, P) =
good(W, P)

good(W, P) + bad(W, P)
(1)

recall(W, P) =
good(W, P)

good(W, P) + missed(W, P)
(2)

The precision and recall scores can be combined into a single measure,
known as the F-score [Manning 1999]:

Definition (F-score)

F(W, P) =
2 × precision(W, P) × recall(W, P)
precision(W, P) + recall(W, P)

(3)

Full Coverage −→ Compression, and Competing Patterns as
Data Structure

An F-score reaches its maximum when both precision and recall is
maximal; in the case F(W, P) = 1 all information about word division is
compressed into the pattern base P .

Definition (lossless compression, cross validation)

If F(W, P) = 1 we say that we losslessly compressed W into P . We can
test performance of P on an unseen word list W′ to measure the
generalization properties of pattern set P—in the machine learning
community, the term cross validation is used.

Towards Minimalistic Patterns

There are many pattern sets P that losslessly compress (cover) W;
one straightforward solution is having just one pattern for every word
w ∈ W by putting dot symbol around the word with division points
marked by 1. Such a pattern set P is a feasible solution. But we want
to obtain minimal pattern set. Minimality can be measured by the
number of patterns, by the number of characters in patterns, or by
the space the patterns occupy when stored in some data structure.
Even if we take the simplest measure by counting the patterns, and
try to find a minimal set of patterns that cover W, we will show how
hard the task is. To formulate it more precisely, we need to define:

Definition (minimum set cover problem)

An instance of set cover problem is finite set X and a family F of
subsets of X, such that X =

⋃
S∈F S. The problem is to find a set

C ⊆ F of minimal size which covers X, i.e. X =
⋃

S∈C S.

Minimum Set Cover Problem

The minimum set cover problem (MSCP) is known to be in the class of
NPO problems (optimization problems analogical to NP decision
problems), [Ausiello 1999]. A variant of MSCP, in which the subsets
have positive weights and the objective is to minimize the sum of the
weights in a set cover, is also NPO. Weighted version of minimum set
cover problem is approximable within 1 + ln|X| as shown by Chvatal in
1979.

Main Result

Theorem (pattern minimization problems)

Let W be a set of words with one division only. Problem of finding minimal
number of patterns P that losslessly compress W is equivalent to the
(weighted) minimum set cover problem.

Proof.

For every subset C ∈ W there exists at least one feasible solution PC
such that PC covers C and does not cover any word in W − C, e.g.,
pattern set {.c.| c ∈ C}. Between all such feasible solutions we choose
a canonical representative P ′C —a set which is smallest by some
measure (e.g., number of patterns, or number of characters in the
pattern set). We now have a one to one correspondence between all
pattern sets that cover exactly C represented by P ′C and C. Thus we
showed that a pattern coverage minimization problem is equivalent to
the weighted minimum set cover [Chvatal 1979] in NPO class.

Competing Patterns

We have shown that even a pattern covering problem without
competition is already NPO. When trying to cover W by competing
patterns, complicated interactions may arise—we need some
approximation of the optimal solution.

À Competing patterns extend the power of finite state transducer
(FST) somewhat like adding the “not” operator to regular
expressions.

Á Instead of storing full FST, we make patterns that embody the
same information in an even more compact manner
(compression).

Â Collecting patterns matching a given word can be done in linear
time, using a trie data structure for pattern storage.

Standard Czech Hyphenation Generation

level length param % correct % wrong # patterns size
1 1–3 1 5 1 95.43 6.84 +2,261
2 1–3 1 5 1 95.84 1.17 +1,051
3 2–5 1 3 1 99.69 1.24 +3,255
4 2–5 1 3 1 99.63 0.09 +1,672 40 kB

Methodology for Competing Patterns Development

The methodology consists of several parts:

stratification – for repetitive pattern generation, it is practical to
have a stratified word list with ‘information bearing’
samples only;

bootstrapping – input data (word list with marked hyphenation
points) preparation;

goal-driven threshold setting heuristics – the quality of generated
patterns depends on many parameters that have to be
set in advance;

data filtering by threshold setting heuristics – we can filter out
‘dangerous’ data—data that are hard to learn for
manual inspection.

Stratified Sampling

A large body of information can be comprehended reasonably well
by studying more or less random portions of the data.

The technical term for this approach is stratified sampling.
Donald Knuth, 1991

As word lists from which patterns are generated are rather big
(5,000,000 for Czech morphology or hyphenation, even more for other
tasks such as POS tagging), they may be stratified. Stratification
means that from ‘equivalent’ words only one or a small number of
representatives are chosen for the pattern generation process.

Bootstrapping

The road to wisdom? Well it’s plain and simple to express:
Err and err and err again but less and less and less. Piet Hein, 1966

Developing patterns is usually an iterative process. One starts with
hand-written patterns, uses them on input word list, sees the results,
makes the correction, generates new patterns, etc. This technique
succeeded in accelerating the pattern development process by the
order of magnitude. We usually do not start from scratch, but use
some previously collected data (e.g., word list).

Pattern Generation

An important feature of a learning machine is that
its teacher will often be very largely ignorant of quite what is going on inside,
although he may still be able to some extent to predict his pupil’s behavior.

Alan Turing, 1950

A generation process can be parametrised by several parameters
(thresholds) for every level. Parameters could be tuned (heuristics) so
that virtually all hyphenation points are covered, with no misses.

Input wordlist can be loslessly compressed into patterns.

Size optimal pattern generation is NPO problem even without
competition.

Summary of Results

À [Formal definition of competing patterns.] We have described
and developed a new approach to language engineering based on
the theory of covering and inhibiting patterns.

Á [New approaches to competing pattern generation.] We have
verified plausibility and usefulness of bootstrapping and
stratification techniques for machine learning techniques of
pattern generation process. We have related our new techniques
to those used so far—with the new approach, the results
improve significantly.

Â [Properties of pattern generation process.] We have shown that
reaching size-optimality of pattern generation process is an NPO
problem; however, it is possible to achieve full data recall and
precision on the given data with the heuristics presented.

Summary of Results (cont.)

� [New approach to Thai text segmentation problem.] We have
shown that an algorithm using competing patterns learnt from
segmented Thai text returns better results than current
methods for this task.

Ä [Thai segmentation patterns.] New patterns for Thai
segmentation problem were generated from data in the ORCHID
corpus.

Å [New Czech and Slovak hyphenation patterns.] The new
hyphenation patterns for Czech and Slovak give much better
performace than the previous ones, and are in practical use in
distributions of text processing systems ranging from TEX,
SCRIBUS, OPENOFFICE.ORG to Microsoft Word.

Summary of Results (cont.)

Æ [New patterns for specific tasks.] Patterns for specific tasks
demanded in the areas of computer typesetting and NLP were
developed—phonetic hyphenation, universal syllabic hyphenation,
and the possibility of using context-sensitive patterns for
disambiguation tasks were shown.

Ç [Foundation for new pattern generation algorithms.] Redesign of
a program for pattern generation in of OPATGEN in an object
oriented manner allows easy experiment with new pattern
generation heuristics.

È [Usage of the methodology for partial morphological
disambiguation.]
We have shown that the methodology can be used for partial
disambiguation tasks. Experiments showed performance for the
partial morphological disambiguation of Czech.

From 97% to 100%: Some Linguistics Needed

“What is best for the final application, i.e. breaking paragraphs into
lines: near zero misses or occasional errors for seldomly used words.”

Czech nar|val ‘narwhal’ and na|rval ‘gathered by tearing,
plucked’; pod|robit ‘subjugate, to bring under one’s
domination’ and po|drobit ‘to crumble’; o|blít ‘to vomit up’
and ob|lít ‘to pour around’

Danish træ|kvinden ‘the wood lady’ and træk|vinden ‘the
draught’; ku|plet ‘verse’ and kup|let ‘domed’

From 97% to 100%: Some Linguistics needed (cont.)

Dutch kwart|slagen ‘quarter turns’ and kwarts|lagen ‘quartz
layers’; go|spel ‘the game of Go’ and gos|pel ‘certain
type of music’; rots|tempel ‘rock temple’ and rot|stempel
‘damned stamp’; dĳ|kramp ‘cramp in the thighs’ and
dĳk|ramp ‘dike catastrophe’; ver|ste ‘farthest’ and
vers|te ‘most fresh’.

English rec|ord (noun) re|cord (verb) or even record (adjective).
German Staub|ecken ‘dusty eck’ and Stau|becken ‘traffic jam in

the valley’; Wach|stube ‘guard room’ and Wachs|tube ‘wax
tube’; Bet|tuch and Bett|tuch.

Fortunately, number of these homonyms is far below 1% and for such
a small number of possible hyphenation points it is not worth to do full
semantical analysis.

Practical applications of the developed methods?

À Hyphenation modules in various text and language processing
tools: DTP systems (TEX, InDesign, Scribus), text processors
(OpenOffice, Word), FOP processors (XEP,. . .).

Á Segmentation of texts (for machine translation, for further
processing (Thai), SMS).

Â Various types of disambiguation (context dependent).
� Contextual dependent ligatures [šéflékař], Fraktur s, Arabic

hamza (e.g. in OpenType).
Ä Compound word hyphenation (Dutch, German).

Application of the competing patterns method for the
hyphenation data compression?

Information about segmentation of 5.000.000 Czech words (of
average length 9 characters) compressed into 10.000 patterns
(stored in packed trie in some 50 kB of RAM). In addition, one gets the
information in constant time (linear with respect to the word length).

Other data can be encoded in this way.

Mission to find solution that is time and space efficient and precise is
completed.

Questions?

THE END

Journals

Petr Sojka and Pavel Ševeček. 1995.
Hyphenation in TEX—Quo Vadis?
TUGboat, 16(3):280–289.

Petr Sojka. 1995.
Notes on Compound Word Hyphenation in TEX.
TUGboat, 16(3):290–297.

Pavel Smrž and Petr Sojka. 1997.
Word Hy-phen-a-tion by Neural Networks.
Neural Network World, 7:687–695.

Journals (cont.)

Petr Sojka. 1999.
Hyphenation on Demand.
TUGboat, 20(3):241–247.

Petr Sojka. 2000.
Competing Patterns for Language Engineering.
In Sojka et al. (Eds.): Proceedings of TSD 2000, Springer-Verlag,
LNCS 1902, pages 157–162.

David Antoš and Petr Sojka. 2001.
Pattern Generation Revisited.
In Simon Pepping, editor, Proceedings of the 16th European TEX
Conference, Kerkrade, 2001, pages 7–17, Kerkrade, The
Netherlands, September. NTG.

Petr Sojka and David Antoš. 2003.
Context Sensitive Pattern Based Segmentation: A Thai
Challenge.
pages 65–72, EACL 2003, Budapest, April.

	Competing Patterns
	Main Result: Computing Minimal Competing Patterns is NP-Complete
	Methodology and Applications
	References

