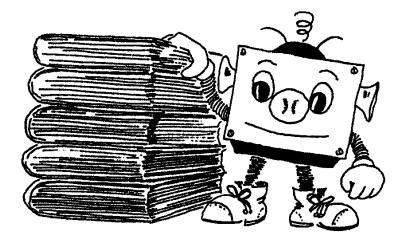
Document Engineering for a Digital Library

PDF recompression using JBIG2 and other optimization of PDF

Petr Sojka et al.

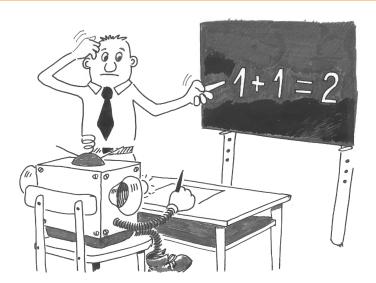
Masaryk University, Faculty of Informatics, Brno, Czech Republic <sojka@fi.muni.cz>

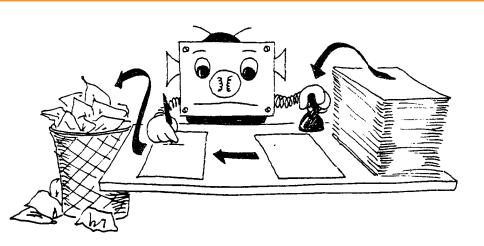
University of Portsmouth Computing Seminar, Portsmouth, UK November 5th, 2010, 12AM, Anglesea building, room 1.05



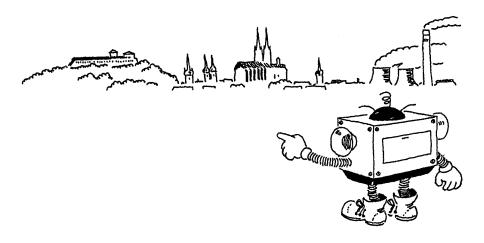
Outline and two take-home messages

- 1 Pictorial overview
- 2 Motivation, vision of PubMed Central for Mathematics
- 3 Complexity of digitization workflow of The Czech Digital Mathematics Library DML-CZ
- 4 Document engineering technologies and tools for DML-CZ and EuDML
- 5 Tools developed (PDF recompressor et al.)
- 6 Results: already compressed 2-layer bitonal PDFs squeezed to 38%
- 7 Summary, conclusions and future work


From paper to digital library and processing

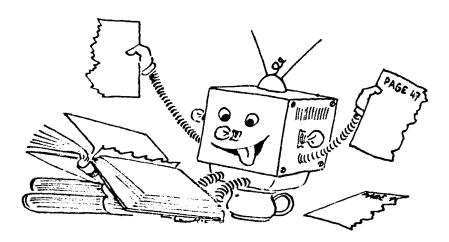

Information overload in globalized scientific world

Overview



Document Engineering (DocEng): from paper to digital workflow

Overview

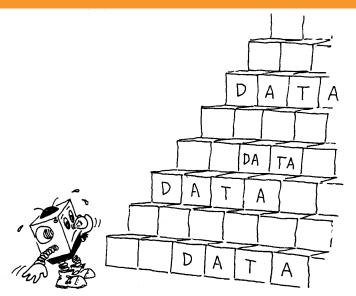


Overview

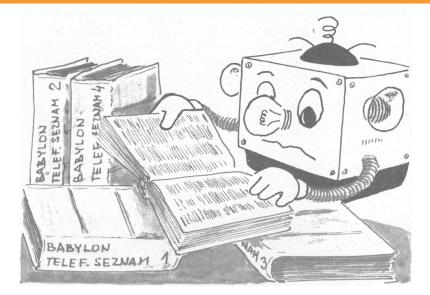
DocEng in DML-CZ: new workflows and data processing

DocEng in DML-CZ: new tools

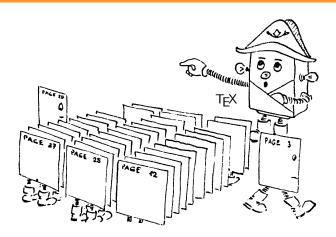
'Bottom up' deployment towards EU or worldwide scale



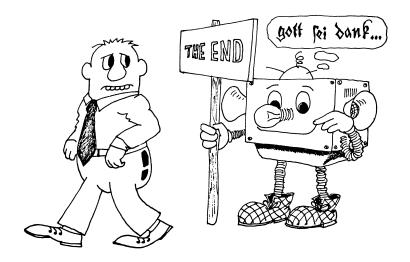
The European Digital Mathematics Library: EuDML


Overview

EuDML: from local data collections to the virtual DL


Overview

DocEng for EuDML: scalable [PDF] tools development



Overview

Yes, you can! You can have visibility, scalability, similarity fulltext metrics, 38% of original size PDFs,...

End of talk overview

In the beginning was vision of all mathematical knowledge, *peer reviewed*, *verified* (100,000,000 pages) and engineered into one-stop e-shop/DL.

Progress of IT, connectivity, cheap storage, new information retrieval technologies (Google).

In the beginning was vision of all mathematical knowledge, *peer reviewed*, *verified* (100,000,000 pages) and engineered into one-stop e-shop/DL.

Progress of IT, connectivity, cheap storage, new information retrieval technologies (Google).

In the beginning was vision of all mathematical knowledge, *peer reviewed*, *verified* (100,000,000 pages) and engineered into one-stop e-shop/DL.

Progress of IT, connectivity, cheap storage, new information retrieval technologies (Google).

In the beginning was vision of all mathematical knowledge, *peer reviewed*, *verified* (100,000,000 pages) and engineered into one-stop e-shop/DL.

Progress of IT, connectivity, cheap storage, new information retrieval technologies (Google).

Vision of European Digital Mathematics Library

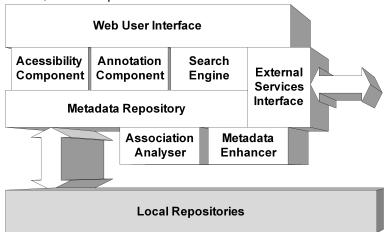
Even other attempts on the European level (FP5, FP6) were not successful. Finally three year project or *European Digital Mathematics Library, EuDML* (programme EU CIP-ICT-PSP, type Pilot B, EU contribution (1.6 MEur, 50% of total budget only)

started from February 2010. The strategy of MATHEMATICS LIBRARY is:

- to master the technology, develop tools and offer them;
- concept of moving wall to motivate and engage commercial publishers without Open Access bussiness model;
- to collect data (from existing local or publisher's) digital libraries into 'one-stop shop' and achieve critical mass in the domain → 'a must/me too' effect then as with PubMed.

Vision of European Digital Mathematics Library

Even other attempts on the European level (FP5, FP6) were not successful. Finally three year project or *European Digital Mathematics Library, EuDML* (programme EU CIP-ICT-PSP, type Pilot B, EU contribution (1.6 MEur, 50% of total budget only)


The EUROPEAN DIGITAL .

started from February 2010. The strategy of $\frac{\textit{The EUROPEAN DIGITAL}}{\textit{MATHEMATICS LIBRARY}}$ is:

- to master the technology, develop tools and offer them;
- concept of moving wall to motivate and engage commercial publishers without Open Access bussiness model;
- to collect data (from existing local or publisher's) digital libraries into 'one-stop shop' and achieve critical mass in the domain → 'a must/me too' effect then as with PubMed.

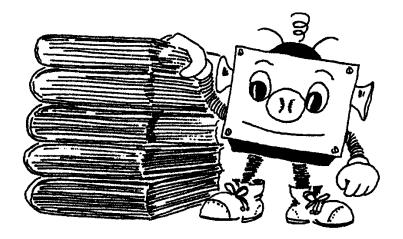
EuDML as a virtual library portal

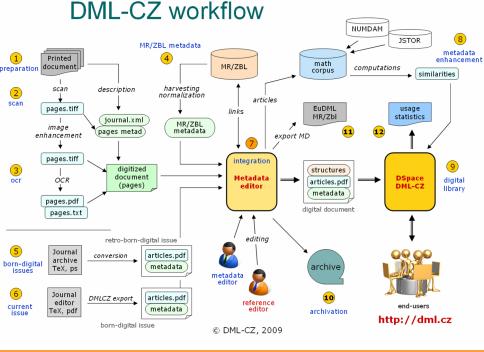
EuDML will be a *virtual* library based on data from smaller data providers, DLs and publishers:

European Digital Mathematics Library

Bottom up—from building bricks of regional repositories

As DML content providers serve mostly publisher's or regional DML repositories as The Czech Digital Mathematics Library DML-CZ or NUMDAM, DML-PL, DML-PT, RusDML,...: aggregating content from local repositories to build the bigger (global?) DML.

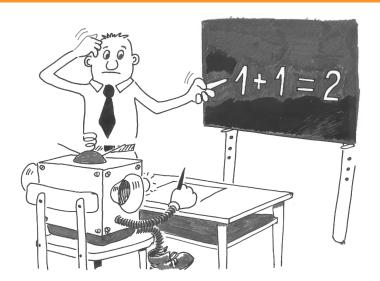

Example of DML-CZ: up and running digital mathematics library http://dml.cz with nearly 30,000 papers (300,000 pages). For more, see (who, what, browse, browse similar, how to search).


Bottom up—from building bricks of regional repositories

As DML content providers serve mostly publisher's or regional DML repositories as The Czech Digital Mathematics Library DML-CZ or NUMDAM, DML-PL, DML-PT, RusDML,...: aggregating content from local repositories to build the bigger (global?) DML.

Example of DML-CZ: up and running digital mathematics library http://dml.cz with nearly 30,000 papers (300,000 pages). For more, see (who, what, browse, browse similar, how to search).

From paper to digital processing, from local to the whole



Take care! "God is in the details." (Mies van der Rohe)

Challenges of Math handling: OCR, indexing, search...

DML-CZ—data: scientific math published in CZ/SK

Proof. Let \hat{K} be a cube, $\hat{K} \subset \hat{G}$; put $K = \varphi^{-1}(\hat{K})$. According to theorem 50 we have $K \in \mathfrak{A}$ and it follows from theorem 24 that

$$P(K, v) = \int f(x) dx$$
.

The functional determinant T of the mapping $y = \varphi^{-1}$ fulfils the relation $T(\varphi(x))$, det M(x) = 1, so that

$$\int f(x) dx = \int f(y(y)) \cdot |T(y)| dy = \int \hat{f}(y) dy. \qquad (90)$$

From theorem 50 (and relation (86)) we see that $P(K, v) = P(\hat{K}, \hat{v})$; relations (89), (90) show therefore that $P(\hat{K}, \hat{v}) = f\hat{f}(y) \, dy$, which completes the proof.

Remark. The reader may compare this paper with [6].

REFERENCES

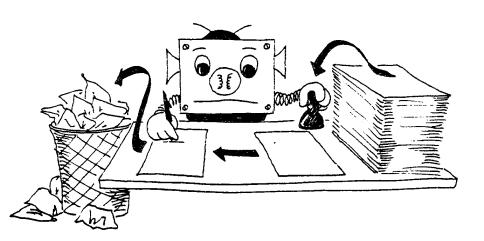
- V. Jarník: Diferenciální počet, Praha 1953.
 V. Jarník: Integrální počet II. Praha 1955.
- J. Mařík: Vrcholy jednotkové koule v prostoru funkcionál na daném polouspořádaném prostoru, Časopis pro přet. mat., 79 (1954), 3-40.
- [4] Ян Марженк (Jan Mařík): Представление функционала в виде интеграла, Чехослопациий мат. мурнал, 5 (80), 1955, 467—487.
- [5] J. Mařík: Plošný integrál, Časopis pro pěst. mat., 81 (1956), 79—82.
- [6] Ян Маржих (Jan Mařík): Заметна и теории поверхностного интеграла, Чехословациий мат. журнал, 6 [81], 1956, 387—400.
- [7] S. Saks: Theory of the integral, New York.

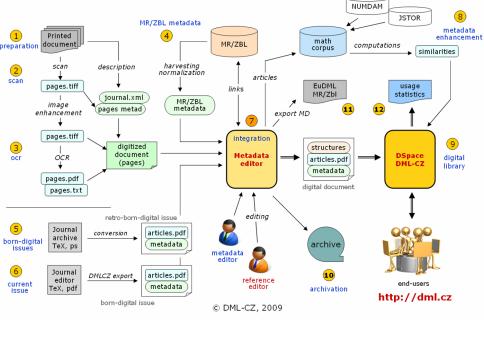
Резюме

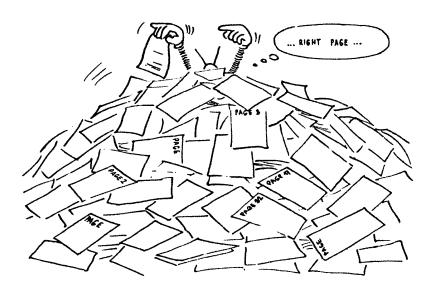
поверхностный интеграл

ЯН МАРЖИК (Jan Mařík), Прага. (Поступило в редакцию 10/X 1955 г.)

Пусть m — натуральное число; пусть E_m — m-мерное евклидово пространство. Для всякого ограниченного измеримого множества $A \subset E_m$ по-


ложим $\|A\|=\sup_{A}\sum_{i=1}^{m}\frac{\partial v_{i}(x)}{\partial x_{i}}\,\mathrm{d}x$, где v_{1},\dots,v_{m} — многочлены такие, что $\sum_{i=1}^{m}v_{i}^{2}(x)\leq1$ для всех $x\in A$. Пусть \mathfrak{A} — система всех ограниченимх измери-


 $A_{ij}(x) = 1$ для восега $A_{ij}(x)$ для которых $\|A\| < \infty$. Теорема 18 тогда утверждает: $H_{ij}(x)$ $A \in \mathfrak{A}_{ij}(x)$ друго $A \in \mathfrak{A}_{ij}(x)$ для страница мно жества A. Тогда на системе


ИОСИФ ВИССАРИОНОВИЧ СТАЛИН 1879—1953

Document engineering—from paper to digital workflow

DML-CZ document engineering—data processing

DML-CZ, the Czech Digital Mathematics Library, now serves almost 300,000 pages of 30,000 math papers. Challenges were

- migration of existing workflows (retro-digital, retro-digital and born-digital) into the repository
- negotiations with Google Scholar towards better visibility
- math indexing and search
- copyright and sustainability issues
- visualization
- space and processing demands
-

Document engineering 4 DML processing challenges

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-laver PDF

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-layer PDF

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TEX with export of [meta]data into digital library

world of authors: LATEX, TEX notation of mathematics world of applications/data exchange: XML, MathML big volumes: → high automation to save costs

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-laver PDF

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TFX with export of [meta]data into digital library

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-layer PDF

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TEX with export of [meta]data into digital library

world of authors: LATEX, TEX notation of mathematics world of applications/data exchange: XML, MathML high relumnes to high automation to save costs

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-laver PDF

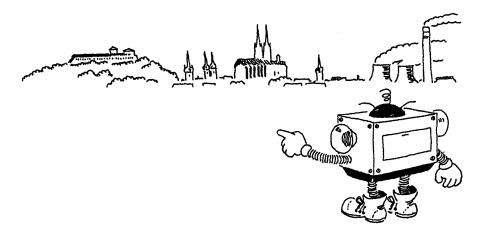
retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TFX with export of [meta]data into digital library

world of authors: LATEX, TEX notation of mathematics world of applications/data exchange: XML, MathML

Data heterogenity, plethora of formats, validation and conversions:

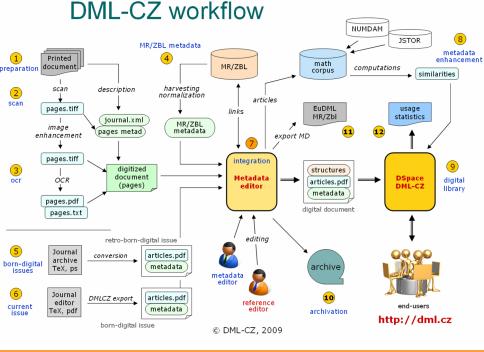
retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-layer PDF

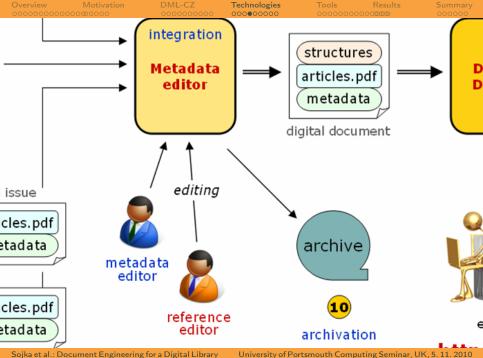

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TEX with export of [meta]data into digital library

world of authors: LATEX, TEX notation of mathematics world of applications/data exchange: XML, MathML big volumes: → high automation to save costs

Document engineering technologies and tools

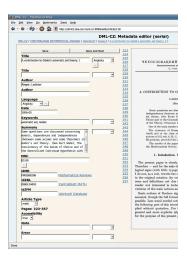

- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (with Radim Řehůřek)
- gensim framework: similarity article computations aka document clustering (PhD research by Radim Řehůřek)
- web-based long distance metadata editing: web application metadata editor


- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (with Radim Řehůřek)
- gensim framework: similarity article computations aka document clustering (PhD research by Radim Řehůřek)
- web-based long distance metadata editing: web application metadata editor

- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (with Radim Řehůřek)
- gensim framework: similarity article computations aka document clustering (PhD research by Radim Řehůřek)
- web-based long distance metadata editing: web application metadata editor

- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (with Radim Řehůřek)
- gensim framework: similarity article computations aka document clustering (PhD research by Radim Řehůřek)
- web-based long distance metadata editing: web application metadata editor

- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (with Radim Řehůřek)
- gensim framework: similarity article computations aka document clustering (PhD research by Radim Řehůřek)
- web-based long distance metadata editing: web application metadata editor

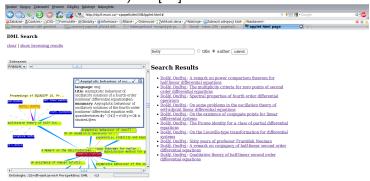


Metadata Editor http://editor.dml.cz

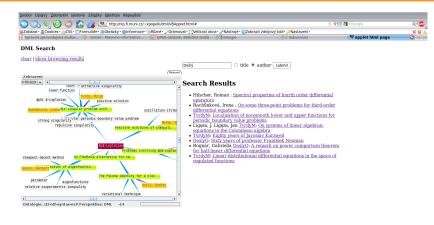
Web-based client-server tool allowing long-distance editing in any browser open source development (ICS MU) from scratch (Ruby) for [meta]data import, editing, validation, batch checking and correction.

To test, try <http://editor.dml.cz:9129>, admin/admin

- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)
- Visualization and browsing interface (MT Zuzana Nevěřilová)


- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)
- Visualization and browsing interface (MT Zuzana Nevěřilová)

- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)
- Visualization and browsing interface (MT Zuzana Nevěřilová)

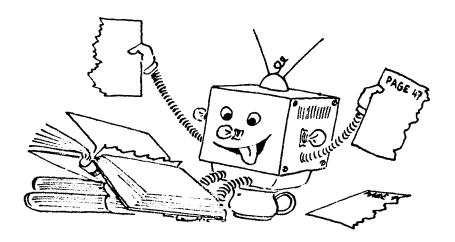

- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)
- Visualization and browsing interface (MT Zuzana Nevěřilová)

- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)
- Visualization and browsing interface (MT Zuzana Nevěřilová)

Metadata (in RDF) visualisation, browsing: Visual Browser tool (MT Zuzana Nevěřilová) for [Eu]DML GUI.

Visual Browser visualisation

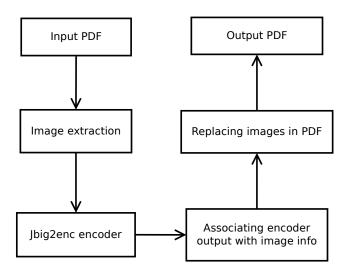
http://nlp.fi.muni.cz/~xpopelk/dml/VBApplet.html#

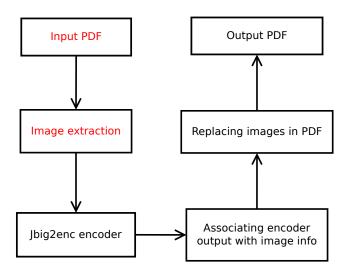


- batch digital signature of PDF: pdfsign (BT Peter Bočák)
- optimization of PDF: pdfopt (from ghostscript suite), pdfsizeopt.py (by Google sponsored Peter Szabó)
- PDF recompression using JBIG2: an application based on jbig2enc/Leptonica (started as BT by Radim Hatlapatka)

- batch digital signature of PDF: pdfsign (BT Peter Bočák)
- optimization of PDF: pdfopt (from ghostscript suite), pdfsizeopt.py (by Google sponsored Peter Szabó)
- PDF recompression using JBIG2: an application based on jbig2enc/Leptonica (started as BT by Radim Hatlapatka)

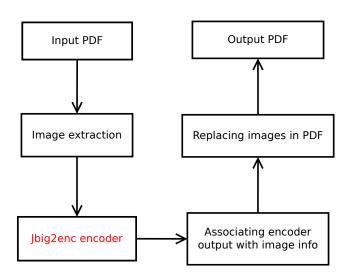
- batch digital signature of PDF: pdfsign (BT Peter Bočák)
- optimization of PDF: pdfopt (from ghostscript suite), pdfsizeopt.py (by Google sponsored Peter Szabó)
- PDF recompression using JBIG2: an application based on jbig2enc/Leptonica (started as BT by Radim Hatlapatka)

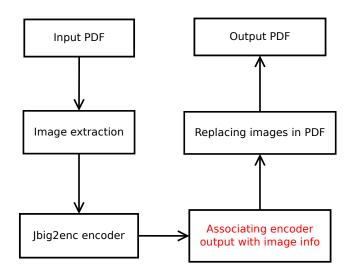

PDF tools


PDF recompressor

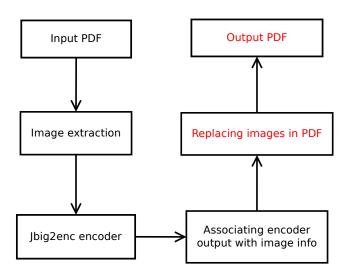
- Open-source tool written in Java for recompression of bitonal images
- Uses benefits of standard JBIG2 which is supported in PDF since version 1.4 (Acrobat 5)
- Uses improved jbig2enc with symbol coding used for text area
- Supports multi-page compression

PDF tools: PDF recompressor


PDF recompressor: input PDF


PDF recompressor: input PDF

```
27 0 obj << /Type/XObject
     /Subtype/Image
     /Name/im1
     /Length 47053
     /Width 2294
     /Height 3502
     /BitsPerComponent 1
     /ColorSpace/DeviceGray
     /Filter/CCITTFaxDecode
     /DecodeParms << /K -1
             /EndOfLine false
             /EncodedByteAlign false
             /Columns 2294
             /EndOfBlock true >>
     >>
     stream
     endstream
```


PDF recompressor via encoder jbig2enc

PDF recompressor: associating output with image info

PDF recompressor: output PDF

JBIG2 and jbig2enc basic principles

- Page segmented to several regions based on type of data (text, image, generic)
- For each region is used specific coding
- Text area segmented to connected components (symbols)
- For each new symbol is created a representive one and instances of this symbol are just pointers to this canonical representative

JBIG2 and jbig2enc basic principles

- Page segmented to several regions based on type of data (text, image, generic)
- · For each region is used specific coding
- Text area segmented to connected components (symbols
- For each new symbol is created a representive one and instances of this symbol are just pointers to this canonical representative

JBIG2 and jbig2enc basic principles

- Page segmented to several regions based on type of data (text, image, generic)
- For each region is used specific coding
- Text area segmented to connected components (symbols)
- For each new symbol is created a representive one and instances of this symbol are just pointers to this canonical representative

JBIG2 and jbig2enc basic principles

- Page segmented to several regions based on type of data (text, image, generic)
- For each region is used specific coding
- Text area segmented to connected components (symbols)
- For each new symbol is created a representive one and instances of this symbol are just pointers to this canonical representative

Improvement of jbig2enc—motivation

- Number of symbols recognized for a page is several times greater than of born digital documents
- Our improvement reduces size of output image in average for further 10 percent without visible loss

Improvement of jbig2enc—motivation

- Number of symbols recognized for a page is several times greater than of born digital documents
- Our improvement reduces size of output image in average for further 10 percent without visible loss

Improvement of jbig2enc

- Comparison of representative symbols
 - Two symbols are considered equivalent iff there is not found a
- Key idea: safe unification of two equivalent symbols to one

Improvement of jbig2enc

- Comparison of representative symbols
 - Two symbols are considered equivalent iff there is not found a big enough difference to form a line or a point
- Key idea: safe unification of two equivalent symbols to one

Improvement of jbig2enc

- Comparison of representative symbols
 - Two symbols are considered equivalent iff there is not found a big enough difference to form a line or a point
- Key idea: safe unification of two equivalent symbols to one

Image before and after compression

Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,

Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,

Image before and after compression: differences

Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,

Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout,
- Uses only generic coding of jbig2enc

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

- PDF files of 11 journals retro-digitized in DML-CZ

- PDF files of 11 journals retro-digitized in DML-CZ
- PDF files contain scanned text (bitonal page images originally compressed by CCITT-G4)

- PDF files of 11 journals retro-digitized in DML-CZ
- PDF files contain scanned text (bitonal page images originally compressed by CCITT-G4)

- PDF files of 11 journals retro-digitized in DML-CZ
- PDF files contain scanned text (bitonal page images originally compressed by CCITT-G4)
- Applied at PDF documents from digitized journal Archivum Mathematicum from years 1965-1991
- 6,641 pages in 665 papers in total

- PDF files of 11 journals retro-digitized in DML-CZ
- PDF files contain scanned text (bitonal page images originally compressed by CCITT-G4)
- Applied at PDF documents from digitized journal Archivum Mathematicum from years 1965-1991
- 6.641 pages in 665 papers in total

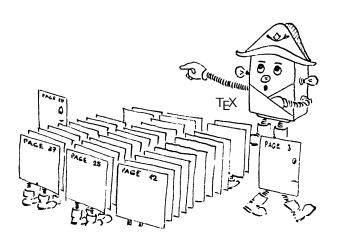
Results: different parts of PDFs

	Original	After	After using	After using
	PDF	using PDF	pdfsizeopt.py	both
		recompressor		
Total size	7,123	4,702	3,962 (55.62%)	2,717
(in kB)	(100%)	(66.01%)		(38.14%)
Font data	1,525	1,525	103 (6.74%)	103
objects (in	(100%)	(100%)		(6.74%)
kB)				
Image objects	4,717	1,915	3,529 (74.83%)	1,904
(in kB)	(100%)	(40.6%)		(40.37%)
Other objects	545	926	31 (5.63%)	411
(in kB)	(100%)	(169.76%)		(75.38%)

Results: single vs multi page PDF

Single page documents (655.83 MB in total)						
	By using PDF	By using	By using both			
	recompressor	pdfsizeopt.py				
Saved globally	77.37%	52.22%	46.68% (396 MB)			
Saved in image	70.46%	60.30%	52.97%			
and other objects						

Multi page documents (723.47 MB in total)						
	By using PDF	By using	By using both			
	recompressor	pdfsizeopt.py				
Saved globally	66.01%	55.62%	38.14% (276 MB)			
Saved in image	53.99%	67.66%	44.00%			
and other objects						


- Verified complex DML-CZ digitization workflow and proven technologies and tools for math DL
- PDF size reduction of sixtytwo percent of original already CCITT-G4 compressed PDFs using PDF recompressor with improved jbig2enc and pdfsizeopt.py
- EuDML: Towards wordwide digital mathematical library, based on DML-CZ know-how and tools developed at Masaryk University during last \approx 6 years
- DML workshop series, join us at DML 2011 c/o CICM Bertinoro, Italy, July 18th–23rd, 2011

- Verified complex DML-CZ digitization workflow and proven technologies and tools for math DL
- PDF size reduction of sixtytwo percent of original already CCITT-G4 compressed PDFs using PDF recompressor with improved jbig2enc and pdfsizeopt.py
- ullet EuDML: Towards wordwide digital mathematical library, based on DML-CZ know-how and tools developed at Masaryk University during last pprox 6 years
- DML workshop series, join us at DML 2011 c/o CICM Bertinoro, Italy, July 18th–23rd, 2011

- Verified complex DML-CZ digitization workflow and proven technologies and tools for math DL
- PDF size reduction of sixtytwo percent of original already CCITT-G4 compressed PDFs using PDF recompressor with improved jbig2enc and pdfsizeopt.py
- EuDML: Towards wordwide digital mathematical library, based on DML-CZ know-how and tools developed at Masaryk University during last \approx 6 years
- DML workshop series, join us at DML 2011 c/o CICM Bertinoro, Italy, July 18th–23rd, 2011

- Verified complex DML-CZ digitization workflow and proven technologies and tools for math DL
- PDF size reduction of sixtytwo percent of original already CCITT-G4 compressed PDFs using PDF recompressor with improved jbig2enc and pdfsizeopt.py
- ullet EuDML: Towards wordwide digital mathematical library, based on DML-CZ know-how and tools developed at Masaryk University during last pprox 6 years
- DML workshop series, join us at DML 2011 c/o CICM Bertinoro, Italy, July 18th–23rd, 2011

Yes, you can!

- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further

- Interfaces for export and conversion for projects on European
- Other challenges: multilingual math retrieval, MathML

- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further
- Optimize subimage lookup and storage in PDF recompressor

- Interfaces for export and conversion for projects on European
- Other challenges: multilingual math retrieval, MathML

- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further
- Optimize subimage lookup and storage in PDF recompressor
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity

- Interfaces for export and conversion for projects on European
- Other challenges: multilingual math retrieval, MathML

- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further
- Optimize subimage lookup and storage in PDF recompressor
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity
- Design alternative and novel user interfaces for the digital library
- Interfaces for export and conversion for projects on European
- Other challenges: multilingual math retrieval, MathML


- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further
- Optimize subimage lookup and storage in PDF recompressor
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity
- Design alternative and novel user interfaces for the digital library
- Improve metadata validation procedures in ME
- Interfaces for export and conversion for projects on European
- Other challenges: multilingual math retrieval, MathML

- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further
- Optimize subimage lookup and storage in PDF recompressor
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity
- Design alternative and novel user interfaces for the digital library
- Improve metadata validation procedures in ME
- Interfaces for export and conversion for projects on European or worldwide levels
- Other challenges: multilingual math retrieval, MathML

- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further
- Optimize subimage lookup and storage in PDF recompressor
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity
- Design alternative and novel user interfaces for the digital library
- Improve metadata validation procedures in ME
- Interfaces for export and conversion for projects on European or worldwide levels
- Other challenges: multilingual math retrieval, MathML indexing and search, math common sense

- Adding OCR tools to PDF recompressor to increase compression ratio of bitonal images even further
- Optimize subimage lookup and storage in PDF recompressor
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity
- Design alternative and novel user interfaces for the digital library
- Improve metadata validation procedures in ME
- Interfaces for export and conversion for projects on European or worldwide levels
- Other challenges: multilingual math retrieval, MathML indexing and search, math common sense
- Cooperation "wanted!" for problems above, fixfont, math OCR

End of the talk

Questions? Comments? Cooperation offers?

Patrice Y. Simard, Henrique S. Malvar, James Rinker, Erin Renshaw:

A Foreground/Background Separation Algorithm for Image Compression.

Dan Bloomberg.

Leptonica [online, cit. 2010-11-04].

L. Bottou and P. Haffner and P. G. Howard and P. Simard and Y. Bengio and Y. Le Cun:

High Quality Document Image Compression with DjVu http://leon.bottou.org/papers/bottou-98.

R. Hatlapatka:

Website of the PDF recompression project.

<http://nlp.fi.muni.cz/projekty/eudml/pdfRecompression/>.

Adam Langley:

Jbig2enc [online, cit. 2010-11-04].

<http://github.com/agl/jbig2enc/>.

Péter Szabó:

Optimizing PDF output size of T_EX documents [online, cit. 2010-11-04]. http://code.google.com/p/pdfsizeopt/>.

DML-CZ team.

Materials about DML-CZ, project publications [online, cit. 2010-11-04]. http://project.dml.cz/documents.html.

References (cont.)

FuDMI team

EuDML project info [online, cit. 2010-11-04].

<http://ec.europa.eu/information_society/apps/projects/factsheet/index.cfm?project_ref=250503>.

EuDML team.

EuDML webpage [online, cit. 2010-11-04]. http://eudml.eu/.

EuDML at MU team.

EuDML at MU project info [online, cit. 2010-11-04].

 $\verb|\color| chttp://nlp.fi.muni.cz/projekty/eudml/> or <|chttp://www.muni.cz/research/projects/10067>.|$