Document Engineering for a Digital Library

PDF recompression using JBIG2 and other optimization of PDF

Petr Sojka and Radim Hatlapatka

Masaryk University, Faculty of Informatics, Brno, Czech Republic <sojka@fi.muni.cz>, <208155@fi.muni.cz>

DocEng 2010, Manchester, UK, September 22nd

Outline and two take-off messages

- Motivation, vision of PubMed Central for Mathematics
- 2 Complexity of digitization workflow of The Czech Digital Mathematics Library DML-CZ
- 3 Document engineering technologies and tools for DML-CZ and **EuDML**
- 4 Tools developed (PDF Re-compressor et al.)
- 6 Results: already compressed 2-layer bitonal PDF squeezed to 38%
- 6 Summary, conclusions and future work

Decade of the vision of WDML as PubMed 4 Math

In the beginning was vision of all mathematical knowledge, peer reviewed,

The EUROPEAN DIGITAL strategy of MATHEMATICS LIBRARY is:

- to master the technology, develop tools and offer them;
- concept of moving wall to motivate and engage commercial
- to collect data (from existing local or publisher's) digital libraries

Decade of the vision of WDML as PubMed 4 Math

In the beginning was vision of all mathematical knowledge, peer reviewed, verified (100,000,000 pages) and engineered into one-stop e-shop/DL.

The EUROPEAN DIGITAL strategy of MATHEMATICS LIBRARY is:

- to master the technology, develop tools and offer them;
- concept of moving wall to motivate and engage commercial
- to collect data (from existing local or publisher's) digital libraries

Decade of the vision of WDML as PubMed 4 Math

In the beginning was vision of all mathematical knowledge, peer reviewed, verified (100,000,000 pages) and engineered into one-stop e-shop/DL.

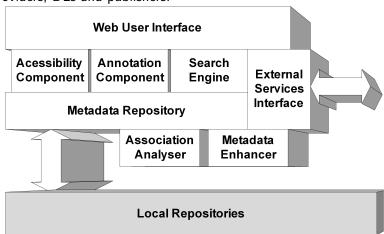
Several attempts to fund development of WDML on world-wide (NSF/de Moore foundation) and European level (FP5, FP6) were not successful. Finally three year Pilot B project EuDML (programme EU CIP-ICT-PSP, type Pilot B, EU contribution 1.6 MEur) from February 2010. The

The EUROPEAN DIGITAL strategy of MATHEMATICS LIBRARY is:

- to master the technology, develop tools and offer them;
- to collect data (from existing local or publisher's) digital libraries

Decade of the vision of WDML as PubMed 4 Math

In the beginning was vision of all mathematical knowledge, peer reviewed, verified (100,000,000 pages) and engineered into one-stop e-shop/DL.


Several attempts to fund development of WDML on world-wide (NSF/de Moore foundation) and European level (FP5, FP6) were not successful. Finally three year Pilot B project EuDML (programme EU CIP-ICT-PSP, type Pilot B, EU contribution 1.6 MEur) from February 2010. The

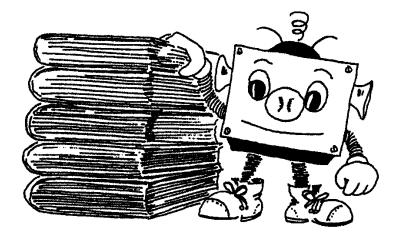
The EUROPEAN DIGITAL strategy of MATHEMATICS LIBRARYIS:

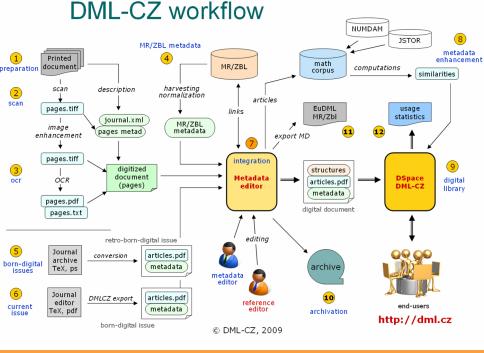
- to master the technology, develop tools and offer them;
- concept of moving wall to motivate and engage commercial publishers without Open Access bussiness model;
- to collect data (from existing local or publisher's) digital libraries into 'one-stop shop' and achieve critical mass in the domain \rightarrow 'a must/me too' effect then as with PubMed.

EuDML as a virtual library portal

EuDML will be a virtual library based on data from smaller data providers, DLs and publishers:

European Digital Mathematics Library

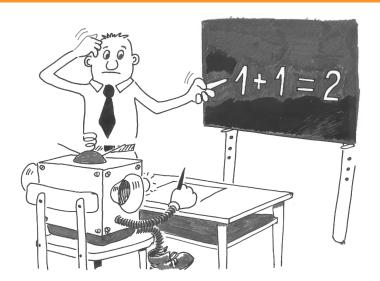

Bottom up—from building bricks of regional repositories


As DML content providers serve mostly publisher's or regional DML repositories as The Czech Digital Mathematics Library DML-CZ or NUMDAM, DML-PL, DML-PT, RusDML, . . . : aggregating content from local repositories to build the bigger (global?) DML.

Bottom up—from building bricks of regional repositories

As DML content providers serve mostly publisher's or regional DML repositories as The Czech Digital Mathematics Library DML-CZ or NUMDAM, DML-PL, DML-PT, RusDML, . . . : aggregating content from local repositories to build the bigger (global?) DML.

Example of DML-CZ: up and running digital mathematic library ><a href= For more, see (who, what, browse, browse similar, how to search).



Take care! "God is in the details." (Mies van der Rohe)

Challenges of Math handling: OCR, indexing, search...

DML-CZ—data: scientific math published in CZ/SK

Proof. Let \hat{K} be a cube, $\hat{K} \subset \hat{G}$; put $K = q^{-1}(\hat{K})$. According to theorem 50 we have K & M and it follows from theorem 24 that

$$P(K, v) = \int f(x) dx$$
.

The functional determinant T of the mapping $\psi = \varrho^{-1}$ fulfils the relation $T(\varphi(x))$, det M(x) = 1, so that

$$\int f(x) dx = \int f(y(y)) \cdot |T(y)| dy = \int \hat{f}(y) dy$$
. (9)

From theorem 50 (and relation (86)) we see that $P(K, v) = P(\hat{K}, \hat{v})$; relations (89), (90) show therefore that $P(\hat{K}, \hat{v}) = \int \hat{f}(y) \,dy$, which completes the proof.

Remark. The reader may compare this paper with [6].

DEPERENCES

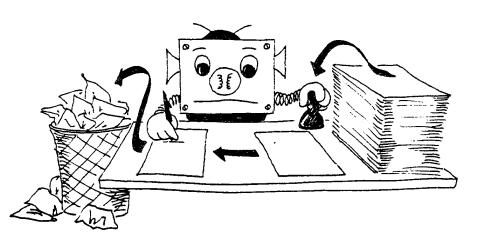
- V. Jarník: Diferenciální počet, Praha 1953 [2] V. Jarník: Integrální počet II. Praha 1955.
- [3] J. Mařík: Vrcholy jednotkové koule v prostoru funkcionál na daném polouspořádaném prostoru, Časopis pro pěst, mat., 79 (1954), 3-40.
- [4] Ян Маржик (Jan Mařík): Представление функционала в виде интеграла, Чехослопапкий мат. исурнал. 5 (80), 1955, 467-487
- [5] J. Mařík: Plošný integrál, Časopis pro pěst. mat., 81 (1956), 79-82.
- [6] Ян Маржин (Jan Mařik): Заметна и теории поверхностного интеграда, Чехословацкий мат. журнал, 6 (81), 1956, 387-400.
- [7] S. Saks: Theory of the integral, New York.

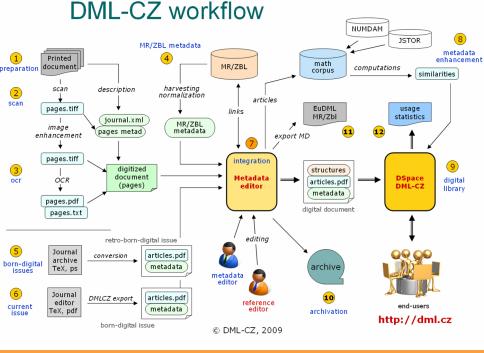
Резюме

поверхностный интеграл

SH MAPKUK (Jan Mařík), Ilpara, (Поступило в редакцию 10/Х 1955 г.)

Пусть m — натуральное число; пусть E_m — m-мерное евклидово пространство. Для всякого ограниченного измеримого множества $A \subset E_n$ положим $\|A\|=\sup\int_{t-1}^{\infty}\frac{\partial v_i(x)}{\partial x_i}\,\mathrm{d}x$, где v_1,\dots,v_m — многочлены такие, что


 $\sum v_i^2(x) \leq 1$ для всех $x \in A$. Пусть $\mathfrak A$ — система всех ограниченных измеримых множеств A, для которых $||A|| < \infty$. Теорема 18 тогда утверждает:


 Π_{ycmb} $A \in X$; пусть D — граница множества A. Тогда на системе В всех борелевских подмножеств множества D существует мера р и на

иосиф виссарионович сталин 1879 - 1953

Document engineering—from paper to digital workflow

Data heterogenity, plethora of formats, validation and conversions:

```
retro-digital period: scanning, geometrical transformations
     (BookRestorer), OCR (FineReader, InftyReader),
     two-laver PDF
```

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-laver PDF

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

Data heterogenity, plethora of formats, validation and conversions:

```
retro-digital period: scanning, geometrical transformations
     (BookRestorer), OCR (FineReader, InftyReader),
     two-laver PDF
```

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TFX with export of [meta]data into digital library

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-laver PDF

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TFX with export of [meta]data into digital library

world of authors: LATEX, TEX notation of mathematics

Data heterogenity, plethora of formats, validation and conversions:

retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-laver PDF

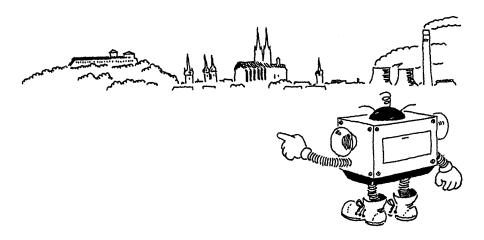
retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TFX with export of [meta]data into digital library

world of authors: LATEX, TEX notation of mathematics world of applications/data exchange: XML, MathML

Data heterogenity, plethora of formats, validation and conversions:

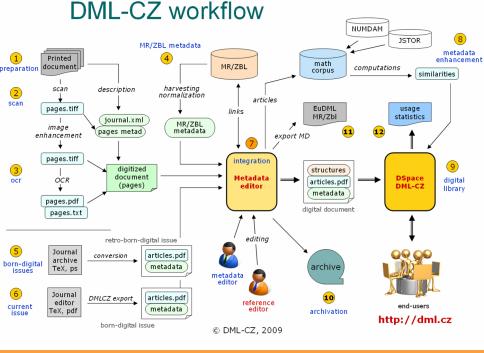
retro-digital period: scanning, geometrical transformations (BookRestorer), OCR (FineReader, InftyReader), two-laver PDF

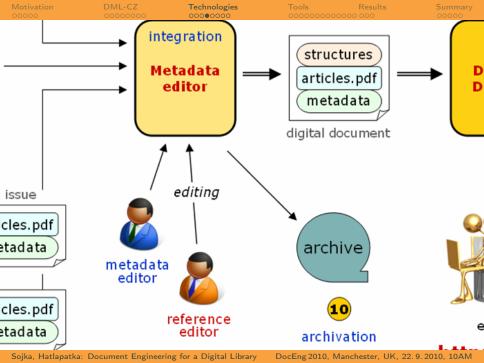

retro-born-digital period: not complete .tex or .dvi data, bad formats, bitmap fonts of low resolution

born-digital period: typesetting by TFX with export of [meta]data into digital library

world of authors: LATEX, TEX notation of mathematics world of applications/data exchange: XML, MathML big volumes: → high automation to save costs

6+ years of local (Brno, CZ) document engineering

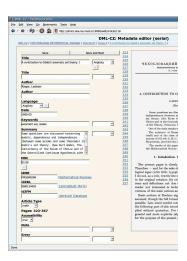



- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Pre-MSC era papers' automated classification by MSC (Radim
- gensim framework: similarity article computations (machine

- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (Radim Řehůřek)
- gensim framework: similarity article computations (machine learning research with Radim Řehůřek)

- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (Radim Řehůřek)
- gensim framework: similarity article computations (machine

- Scanned image processing and transformations (with BookRestorer) (BT Pulkrábek)
- Mathematical optical character recognition: OCR by combining FineReader (SDK 8.1) and Infty by prof. Suzuki (MT Panák, Mudrák, BT Vystrčil)
- Pre-MSC era papers' automated classification by MSC (Radim Řehůřek)
- gensim framework: similarity article computations (machine learning research with Radim Řehůřek)



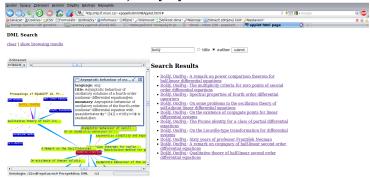
Metadata Editor http://editor.dml.cz

Web-based client-server tool open source development (ICS MU) from scratch (Ruby) for [meta]data import, editing, validation, batch checking and correction.

To test, try http://editor.dml.cz:9129, admin/admin

- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)

- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)


- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum]

Verified and proven technologies (in DML-CZ) (cont.)

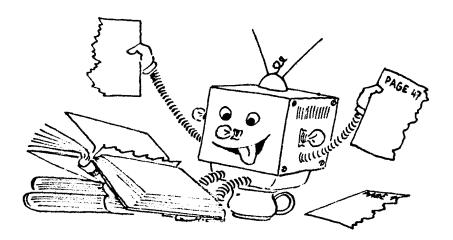
- Google Scholar partnership: interface to use our metadata instead of those parsed from landing pages' HTML
- Math retrieval: math formula indexing and search (MT Vítězslav Dostál, BT Martin Liška, BT Peter Mravec)
- Citation linking: CiteCrawl (BT Lukáš Lalinský)
- Born-digital publishing system [for Archivum Mathematicum and for other 10 journals] and retro-born-digital paper conversions and enhancements (BT&MT Michal Růžička)

Verified and proven technologies (in DML-CZ) (cont.)

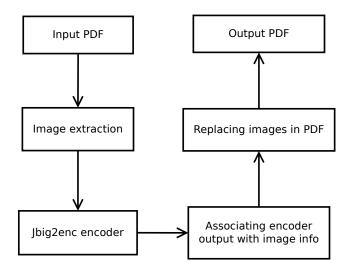
Metadata (in RDF) vizualization, browsing: Visual Browser tool (MT Zuzana Nevěřilová) for [Eu]DML GUI.

Verified and proven technologies (cont.): PDF

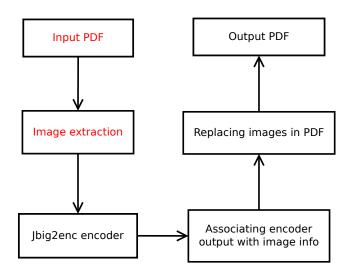
- batch digital signature of PDF: pdfsign (BT Peter Bočák).
- PDF recompression using JBIG2: an application based on


Verified and proven technologies (cont.): PDF

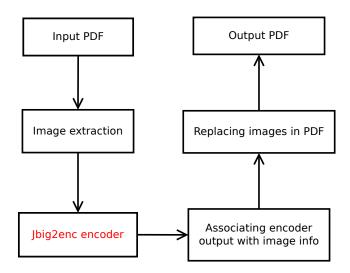
- batch digital signature of PDF: pdfsign (BT Peter Bočák).
- optimization of PDF: pdfopt (from ghostscript), pdfsizeopt.py (by Peter Szabó).
- PDF recompression using JBIG2: an application based on jbig2enc/Leptonica (BT Radim Hatlapatka).


Verified and proven technologies (cont.): PDF

- batch digital signature of PDF: pdfsign (BT Peter Bočák).
- optimization of PDF: pdfopt (from ghostscript), pdfsizeopt.py (by Peter Szabó).
- PDF recompression using JBIG2: an application based on jbig2enc/Leptonica (BT Radim Hatlapatka).


PDF tools

PDF tools: PDF re-compressor


PDF re-compressor: input PDF

PDF re-compressor: input PDF

```
27 0 obj << /Type/XObject
/Subtype/Image
/Name/im1
/Length 47053
/Width 2294
/Height 3502
/BitsPerComponent 1
/ColorSpace/DeviceGray
/Filter/CCITTFaxDecode
/DecodeParms << /K -1
        /EndOfLine false
        /EncodedByteAlign false
        /Columns 2294
        /EndOfBlock true >>
>>
stream
endstream
```

PDF re-compressor via encoder jbig2enc

- Open-source JBIG2 encoder developed by Adam Langley, commissioned by Google [Books]
- Open-source library Leptonica, developed by Dan Bloomberg,
- Symbols (bitmaps of connected pixels) are encoding using a
- Supports output in format suitable for PDF

- Open-source JBIG2 encoder developed by Adam Langley, commissioned by Google [Books]
- Open-source library Leptonica, developed by Dan Bloomberg, is used for manipulation with images and bitmaps of symbols
- Symbols (bitmaps of connected pixels) are encoding using a
- Supports output in format suitable for PDF

- Open-source JBIG2 encoder developed by Adam Langley, commissioned by Google [Books]
- Open-source library Leptonica, developed by Dan Bloomberg, is used for manipulation with images and bitmaps of symbols
- Symbols (bitmaps of connected pixels) are encoding using a chosen bitmap as representant for each symbol and putting pointers to this representant
- Supports output in format suitable for PDF

- Open-source JBIG2 encoder developed by Adam Langley, commissioned by Google [Books]
- Open-source library Leptonica, developed by Dan Bloomberg, is used for manipulation with images and bitmaps of symbols
- Symbols (bitmaps of connected pixels) are encoding using a chosen bitmap as representant for each symbol and putting pointers to this representant
- Supports output in format suitable for PDF

- Compare all templates (representative symbols) with the same size for finding equivalence on symbols

 - we look for accumulations in shapes such as points or lines

- Compare all templates (representative symbols) with the same size for finding equivalence on symbols
 - two templates are considered equivalent if there is not found big enough accumulation of differences
 - we look for accumulations in shapes such as points or lines
- Unify equivalent symbols

- Compare all templates (representative symbols) with the same size for finding equivalence on symbols
 - two templates are considered equivalent if there is not found big enough accumulation of differences
 - we look for accumulations in shapes such as points or lines
- Unify equivalent symbols

- Compare all templates (representative symbols) with the same size for finding equivalence on symbols
 - two templates are considered equivalent if there is not found big enough accumulation of differences
 - we look for accumulations in shapes such as points or lines
- Unify equivalent symbols

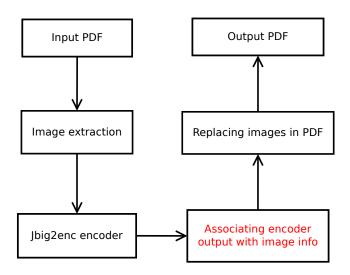
Image before and after compression

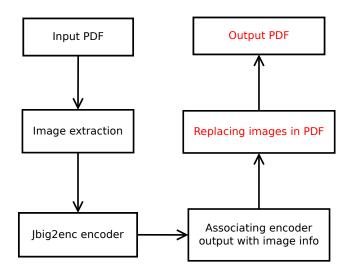
Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,

Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,

Image before and after compression: differences

Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,


Compared to my previous life as a graduate student in Oxford, life at Caltech was like changing to the fast lane on a freeway. First, instead of Oxford being the center of the universe, it was evident that, to a first approximation,


Image before and after compression: differences

PDF re-compressor: associating output with image info

PDF re-compressor: output PDF

PDF re-compressor: PDF image encoded using JBIG2

```
2 0 obj << /DecodeParms
   << /JBIG2Globals 1 0 R >>
   /Width 2294
   /BitsPerComponent 1
   /Height 3502
   /Filter /JBIG2Decode
   /Subtype /Image
   /Length 34336
   /ColorSpace /DeviceGray
   /Type /XObject
>>
stream
endstream
```

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

- Generic PDF optimizer written in Python by Péter Szabó (Google)
- Uses best practices and Unix tools to optimize size of PDF document (e.g. image compression, font unification)
- Uses ghostscript, Multivalent, sam2p, pngout, jbig2enc,...
- Uses only generic coding of jbig2enc
- Images compressed using different compression methods and chooses one with the best result

Results: description of data used to create statistics

- PDF files of 11 journals retro-digitized in DML-CZ
- PDF files contain scanned text (bitonal page images originally compressed by CCITT-G4)
- 6,641 pages in 665 papers in total

Results: description of data used to create statistics

- PDF files of 11 journals retro-digitized in DML-CZ
- PDF files contain scanned text (bitonal page images originally compressed by CCITT-G4)
- Applied at PDF documents from digitized journal Archivum Mathematicum from years 1965-1991
- 6,641 pages in 665 papers in total

Results: different parts of PDFs

	Original	After	After using	After using
	PDF	using PDF	pdfsizeopt.py	both
		recompressor		
Total size	7,123	4,702	3,962	2,717
(in kB)	(100%)	(66.01%)	(55.62%)	(38.14%)
Font data	1,525	1,525	103	103
objects (in kB)	(100%)	(100%)	(6.74%)	(6.74%)
Image objects	4,717	1,915	3,529	1,904
(in kB)	(100%)	(40.6%)	(74.83%)	(40.37%)
Other objects	545	926	31	411
(in kB)	(100%)	(169.76%)	(5.63%)	(75.38%)

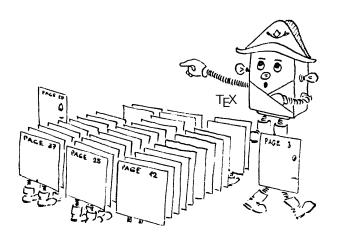
Results: single vs multi page PDF

Single page documents (655.83 MB in total)						
	By using PDF	By using	By using both			
	recompressor	pdfsizeopt.py				
Saved globally	77.37%	52.22%	46.68% (396 MB)			
Saved in image	70.46%	60.30%	52.97%			
and other objects						

Multi page documents (723.47 MB in total)						
	By using PDF	By using	By using both			
	recompressor	pdfsizeopt.py				
Saved globally	66.01%	55.62%	38.14% (276 MB)			
Saved in image	53.99%	67.66%	44.00%			
and other objects						

Summary

- Verified complex DML-CZ digitization workflow and proven technologies and tools for math DL
- PDF size reduction of sixtytwo percent of original already
- EuDML: Towards wordwide digital mathematical library, based


Summary

- Verified complex DML-CZ digitization workflow and proven technologies and tools for math DL
- PDF size reduction of sixtytwo percent of original already CCITT-G4 compressed PDFs using PDF recompressor with improved jbig2enc and pdfsizeopt.py
- EuDML: Towards wordwide digital mathematical library, based

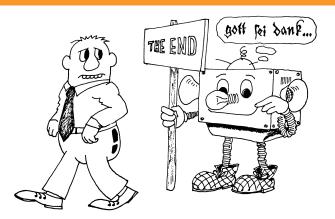
Summary

- Verified complex DML-CZ digitization workflow and proven technologies and tools for math DL
- PDF size reduction of sixtytwo percent of original already CCITT-G4 compressed PDFs using PDF recompressor with improved jbig2enc and pdfsizeopt.py
- EuDML: Towards wordwide digital mathematical library, based on DML-CZ know-how and tools developed at Masaryk University during last \approx 6 years

Yes, you can!

- Adding OCR tools to PDF re-compressor to increase compression ratio of bitonal images even further.
- Optimize subimage lookup and storage in PDF re-compressor.
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity.
- Design alternative and novel user interfaces for the digital library.
- Improve metadata validation procedures in ME.
- Interfaces for export and conversion for projects on European or worldwide levels.
- Other challenges: multilingual math retrieval, MathML indexing and search, math common sense
- Cooperation "wanted!" for problems above, fixfont, math OCR.

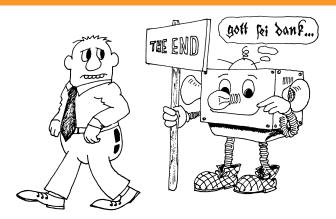
- Adding OCR tools to PDF re-compressor to increase compression ratio of bitonal images even further.
- Optimize subimage lookup and storage in PDF re-compressor.
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity.
- Design alternative and novel user interfaces for the digital library.
- Improve metadata validation procedures in ME.
- Interfaces for export and conversion for projects on European or worldwide levels.
- Other challenges: multilingual math retrieval, MathML indexing and search, math common sense
- Cooperation "wanted!" for problems above, fixfont, math OCR.


- Adding OCR tools to PDF re-compressor to increase compression ratio of bitonal images even further.
- Optimize subimage lookup and storage in PDF re-compressor.
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity.
- Design alternative and novel user interfaces for the digital library.
- Improve metadata validation procedures in ME.
- Interfaces for export and conversion for projects on European or worldwide levels.
- Other challenges: multilingual math retrieval, MathML indexing and search, math common sense
- Cooperation "wanted!" for problems above, fixfont, math OCR.

- Adding OCR tools to PDF re-compressor to increase compression ratio of bitonal images even further.
- Optimize subimage lookup and storage in PDF re-compressor.
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity.
- Design alternative and novel user interfaces for the digital library.
- Improve metadata validation procedures in ME.
- Interfaces for export and conversion for projects on European or worldwide levels.
- Other challenges: multilingual math retrieval, MathML indexing and search, math common sense
- Cooperation "wanted!" for problems above, fixfont, math OCR.

- Adding OCR tools to PDF re-compressor to increase compression ratio of bitonal images even further.
- Optimize subimage lookup and storage in PDF re-compressor.
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity.
- Design alternative and novel user interfaces for the digital library.
- Improve metadata validation procedures in ME.
- Interfaces for export and conversion for projects on European or worldwide levels.
- Other challenges: multilingual math retrieval, MathML

- Adding OCR tools to PDF re-compressor to increase compression ratio of bitonal images even further.
- Optimize subimage lookup and storage in PDF re-compressor.
- Pursue research in mathematical document classification, math indexing and retrieval, OCR for math, document similarity.
- Design alternative and novel user interfaces for the digital library.
- Improve metadata validation procedures in ME.
- Interfaces for export and conversion for projects on European or worldwide levels.
- Other challenges: multilingual math retrieval, MathML indexing and search, math common sense
- Cooperation "wanted!" for problems above, fixfont, math OCR.


End of the talk

Questions? Comments?

• Continue by pictorial summary if time permits

End of the talk

Questions? Comments?

PContinue by pictorial summary if time permits.

References

Dan Bloomberg.

Leptonica [online, cit. 2010-09-09]. http://www.leptonica.com/>.

Adam Langley:

Jbig2enc [online, cit. 2010-09-09]. http://github.com/agl/jbig2enc/>.

Péter Szabó:

Optimizing PDF output size of TFX documents [online, cit. 2010-09-09]. <http://code.google.com/p/pdfsizeopt/>.

DMI-C7 team

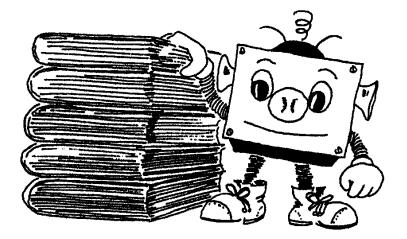
Materials about DML-CZ, project publications [online, cit. 2010-09-09]. http://project.dml.cz/documents.html.

EuDML team.

EuDML project info [online, cit. 2010-09-09].

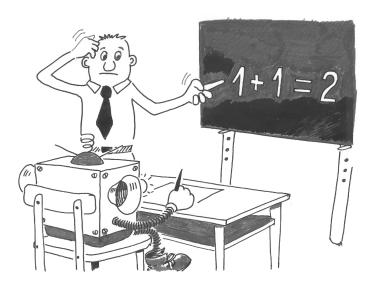
http://ec.europa.eu/information society/apps/projects/factsheet/index.cfm?project ref=250503>.

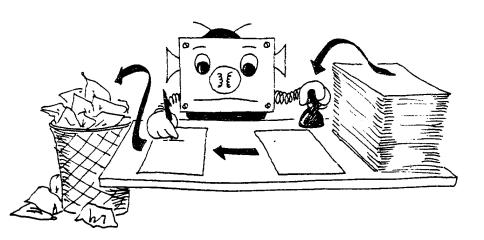
FuDMI team


EuDML webpage [online, cit. 2010-09-09]. ">http://eudml.eu/>">.

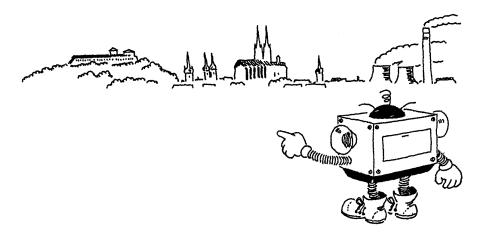
EuDML at MU team.

EuDML at MU project info [online, cit. 2010-09-09]. http://nlp.fi.muni.cz/projekty/eudml/ or http://www.muni.cz/projekty/eudml/ or http://www.muni.cz/research/projects/10067.

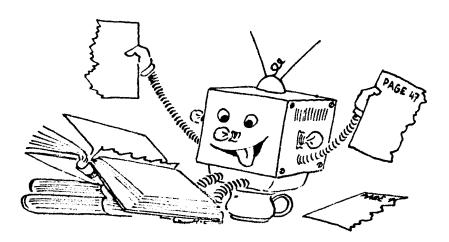

From paper to digital processing

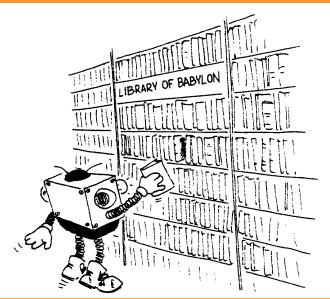

Information overload in globalized scientific world

Information overload also in specific domains (mathematics)

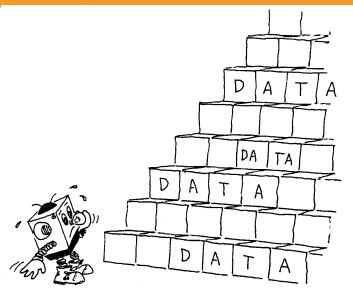

Document Engineering (DocEng): from paper to digital workflow

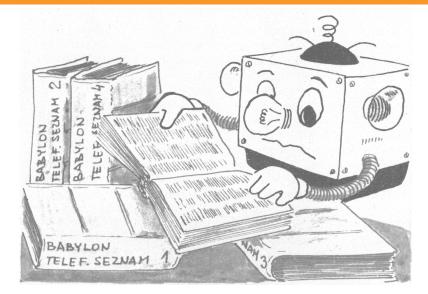
DocEng: retro-digitization, digital library development

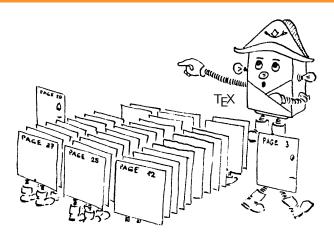

DocEng for specific/local (Brno, CZ) purposes

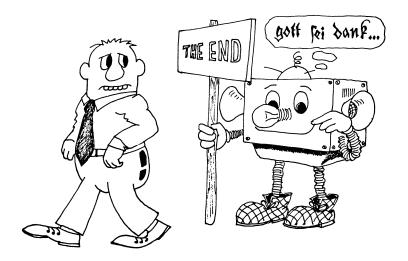

DocEng in DML-CZ: new workflows and data processing

DocEng in DML-CZ: new tools


'Bottom up' deployment towards EU or worldwide scale


The European Digital Mathematics Library: EuDML


EuDML: from local data collections to the virtual DL


DocEng for EuDML: scalable tools development

Yes, you can! You can have visibility, scalability, similarity fulltext metrics, 38% of original size PDFs,...

End of talk overview

- What is DjVu? DjVu is open document format (alternative to PDF) designed to store scanned text especially with text, line drawings and photographs.
- How are images compressed? Image is divided into three images (foreground, background and mask).
- Background and foreground images are compressed using a wavelet-based compression algorithm named IW44.
- What is JB2? It is compression method similar to JBIG2 used for compression of mask image.

- What is DjVu? DjVu is open document format (alternative to PDF) designed to store scanned text especially with text, line drawings and photographs.
- How are images compressed? Image is divided into three images (foreground, background and mask).
- Background and foreground images are compressed using a wavelet-based compression algorithm named IW44.
- What is JB2? It is compression method similar to JBIG2 used for compression of mask image.

- What is DjVu? DjVu is open document format (alternative to PDF) designed to store scanned text especially with text, line drawings and photographs.
- How are images compressed? Image is divided into three images (foreground, background and mask).
- Background and foreground images are compressed using a wavelet-based compression algorithm named IW44.
- What is JB2? It is compression method similar to JBIG2 used for compression of mask image.

- What is DjVu? DjVu is open document format (alternative to PDF) designed to store scanned text especially with text, line drawings and photographs.
- How are images compressed? Image is divided into three images (foreground, background and mask).
- Background and foreground images are compressed using a wavelet-based compression algorithm named IW44.
- What is JB2? It is compression method similar to JBIG2 used for compression of mask image.

- What is DjVu? DjVu is open document format (alternative to PDF) designed to store scanned text especially with text, line drawings and photographs.
- How are images compressed? Image is divided into three images (foreground, background and mask).
- Background and foreground images are compressed using a wavelet-based compression algorithm named IW44.
- What is JB2? It is compression method similar to JBIG2 used for compression of mask image.

DjVu and JB2 – How is image segmented?

Figure: Image before (on the left) and after compression (on the right) [?]

DjVu and JB2 – How is image segmented? (cont.)

Figure: DjVu image components of the image shown at previous slide;

left to right: Mask, Foreground and Background [?]