
Software Framework for Topic Modelling
Radim Řehůřek and Petr Sojka

NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xrehurek,sojka}@fi.muni.cz http://nlp.fi.muni.cz/projekty/gensim/

NLP Framework for VSM

Large corpora are ubiquitous in today’s
world and memory quickly becomes the lim-
iting factor in practical applications of the
Vector Space Model (VSM). In this paper,
we identify a gap in existing implementa-
tions of many of the popular algorithms,
which is their scalability and ease of use.
We describe a Natural Language Process-
ing software framework which is based on
the idea of document streaming, i.e. pro-
cessing corpora document after document,
in a memory independent fashion. Within
this framework, we implement several pop-
ular algorithms for topical inference, in-
cluding Latent Semantic Analysis and La-
tent Dirichlet Allocation, in a way that
makes them completely independent of the
training corpus size. Particular emphasis
is placed on straightforward and intuitive
framework design, so that modifications
and extensions of the methods and/or their
application by interested practitioners are
effortless. We demonstrate the usefulness
of our approach on a real-world scenario
of computing document similarities within
an existing digital library DML-CZ.

Introduction

“Controlling complexity is the essence of computer
programming.” Brian Kernighan [2]

The Vector Space Model (VSM) is a
proven and powerful paradigm in NLP, in
which documents are represented as vec-
tors in a high-dimensional space. The
idea behind topical modelling is that texts
in natural languages can be expressed in
terms of a limited number of underlying
concepts (or topics), a process which both
improves efficiency (new representation
takes up less space) and eliminates noise
(transformation into topics can be viewed
as noise reduction). A topical search for re-
lated documents is orthogonal to the more
well-known “fulltext” search, which would
match particular words, possibly combined
through boolean operators. Research on
topical models has recently picked up pace,
especially in the field of generative topic
models such as Latent Dirichlet Alloca-
tion their hierarchical extensions.

System Design

“Write programs that do one thing and do it well.
Write programs to work together. Write programs
to handle text streams, because that is a universal

interface.” Doug McIlroy [4]

Our choices in designing the proposed
framework are a reflection of these per-
ceived shortcomings. They can be explic-
itly summarised into:
Corpus size independence. We want

the package to be able to detect topics
based on corpora which are larger than

the available RAM, in accordance with
the current trends in NLP (see e.g. [3]).

Intuitive API. We wish to minimise the
number of method names and interfaces
that need to be memorised in order to
use the package. The terminology is
NLP-centric.

Easy deployment. The package should
work out-of-the-box on all major plat-
forms, even without root privileges and
without any system-wide installations.

Cover popular algorithms. We seek to
provide novel, scalable implementations
of algorithms such as TF-IDF, Latent
Semantic Analysis, Random Projections
or Latent Dirichlet Allocation.
We chose Python as the programming

language, mainly because of its straight-
forward, compact syntax, multiplatform
nature and ease of deployment. Python
is also suitable for handling strings and
boasts a fast, high quality library for nu-
merical computing, numpy, which we use
extensively.

A corpus is represented as a sequence
of documents and at no point is there a
need for the whole corpus to be stored
in memory. This feature is not an after-
thought on lazy evaluation, but rather a
core requirement for our application and
as such reflected in the package philoso-
phy. To ensure transparent ease of use, we
define corpus to be any iterable returning
documents:

>>> for document in corpus:
>>> pass

In turn, a document is a sparse vec-
tor representation of its constituent fields
(such as terms or topics), again realised as
a simple iterable:

>>> for fieldId , fieldValue
>> in document :
>>> pass

This is a deceptively simple interface;
while a corpus is allowed to be something
as simple as

>>> corpus =[[(1 , 0.8) , (8, 0.6)]]

this streaming interface also subsumes
loading/storing matrices from/to disk.

Note the lack of package-specific key-
words, required method names, base class
inheritance etc. This is in accordance with
our main selling points: ease of use and
data scalability.

Needless to say, both corpora and docu-
ments are not restricted to these interfaces;
in addition to supporting iteration, they
may (and usually do) contain additional
methods and attributes, such as internal
document ids, means of visualisation, docu-
ment class tags and whatever else is needed
for a particular application.

The second core interface are trans-
formations. Where a corpus represents
data, transformation represents the pro-
cess of translating documents from one
vector space into another (such as from a
TF-IDF space into an LSA space). Real-
ization in Python is through the dictionary
[ ] mapping notation and is again quite
intuitive:

>>> from gensim.models
>>> import LsiModel
>>> lsi = LsiModel (corpus ,

numTopics = 2)
>>> lsi[ new_document ]

[(0, 0.197) , (1, -0.056)]

While an intuitive interface is impor-
tant for software adoption, it is of course
rather trivial and useless in itself. We have
therefore implemented some of the popular
VSM methods, Latent Semantic Analysis,
LSA and Latent Dirichlet Allocation, LDA.

The framework is heavily documented
and is available from http://nlp.fi.
muni.cz/projekty/gensim/. This
website contains sections which describe
the framework and provide usage tutori-
als, as well as sections on download and
installation instructions. The framework
is open sourced and distributed under an
OSI-approved LGPL license.

Application

“An idea that is developed and put into action is
more important than an idea that exists only as an

idea.” Hindu Prince Gautama Siddharta, the
founder of Buddhism, 563–483 B.C.

Many digital libraries today start to offer
browsing features based on pairwise doc-
ument content similarity. For collections
having hundreds of thousands documents,
computation of similarity scores is a chal-
lenge [1]. We have faced this task during
the project of The Digital Mathematics
Library DML-CZ [5]. The emphasis was
not on developing new IR methods for this
task, although some modifications were ob-
viously necessary—such as answering the
question of what constitutes a “token”,
which differs between mathematics and
the more common English ASCII texts.

With the collection’s growth and a
steady feed of new papers, lack of scal-
ability appeared to be the main issue. This
drove us to develop our new document
similarity framework.

As of today, the corpus contains over
61,293 fulltext documents for a total of
about 270 million tokens. There are math-
ematical papers from the Czech Digital
Mathematics Library DML-CZ http://
dml.cz (22,991 papers), from the NUM-
DAM repository http://numdam.org
(17,636 papers) and from the math part
of arXiv http://arxiv.org/archive/
math (20,666 papers). After filtering out
word types that either appear less than five
times in the corpus (mostly OCR errors)
or in more than one half of the documents
(stop words), we are left with 315,167 dis-
tinct word types. Although this is by no
means an exceptionally big corpus, it al-
ready prohibits storing the sparse term-
document matrices in main memory, ruling
out most available VSM software systems.

We have tried several VSM approaches
to representing documents as vectors: term
weighting by TF-IDF, Latent Semantic
Analysis, Random Projections and Latent
Dirichlet Allocation. In all cases, we used
the cosine measure to assess document
similarity.

When evaluating data scalability, one of
our two main design goals (together with
ease of use), we note memory usage is now
dominated by the transformation models
themselves. These in turn depend on the
vocabulary size and the number of topics
(but not on the training corpus size). With
315,167 word types and 200 latent topics,
both LSA and LDA models take up about
480 MB of RAM.

Although evaluation of the quality of
the obtained similarities is not the subject
of this paper, it is of course of utmost
practical importance. Here we note that it
is notoriously hard to evaluate the quality,
as even the preferences of different types
of similarity are subjective (match of main
topic, or subdomain, or specific wording/-
plagiarism) and depends on the motivation
of the reader. For this reason, we have
decided to present all the computed sim-
ilarities to our library users at once, see
e.g. http://dml.cz/handle/10338.
dmlcz/100785/SimilarArticles. At
the present time, we are gathering feed-
back from mathematicians on these results
and it is worth noting that the framework
proposed in this paper makes such side-
by-side comparison of methods straightfor-
ward and feasible.

Conclusion

We believe that our framework makes
an important step in the direction of cur-
rent trends in Natural Language Processing
and fills a practical gap in existing software
systems. We have argued that the com-
mon practice, where each novel topical
algorithm gets implemented from scratch
(often inventing, unfortunately, yet another
I/O format for its data in the process) is
undesirable. We have analysed the reasons
for this practice and hypothesised that this
partly due to the steep API learning curve
of existing IR frameworks.

Our framework makes a conscious effort
to make parsing, processing and transform-
ing corpora into vector spaces as intuitive
as possible. It is platform independent
and requires no compilation or installa-
tions past Python+numpy. As an added
bonus, the package provides ready imple-
mentations of some of the popular IR algo-
rithms, such as Latent Semantic Analysis
and Latent Dirichlet Allocation. These are
novel, pure-Python implementations that
make use of modern state-of-the-art itera-
tive algorithms. This enables them to work
over practically unlimited corpora, which
no longer need to fit in RAM.

We believe this package is useful to
topic modelling experts in implementing
new algorithms as well as to the general
NLP community, who is eager to try out
these algorithms but who often finds the
task of translating the original implemen-
tations (not to say the original articles!)
to its needs quite daunting.

References

[1] T. Elsayed, J. Lin, and D. W. Oard. Pairwise Doc-
ument Similarity in Large Collections with MapReduce.
In HLT ’08: Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics on Human
Language Technologies, pages 265–268, Morristown, NJ,
USA, 2008. Association for Computational Linguistics.

[2] B. W. Kernighan and P. J. Plauger. Software Tools.
Addison-Wesley Professional, 1976.

[3] A. Kilgarriff and G. Grefenstette. Introduction to the Spe-
cial Issue on the Web as Corpus. Computational Linguis-
tics, 29(3):333–347, 2003.

[4] M. D. McIlroy, E. N. Pinson, and B. A. Tague. UNIX
Time-Sharing System: Forward. The Bell System Techni-
cal Journal, 57(6 (part 2)), July/Aug. 1978.

[5] P. Sojka. An Experience with Building Digital Open Ac-
cess Repository DML-CZ. In Proceedings of CASLIN
2009, Institutional Online Repositories and Open Ac-
cess, 16th International Seminar, pages 74–78, Teplá
Monastery, Czech Republic, 2009. University of West Bo-
hemia, Pilsen, CZ.

New Challenges for NLP Frameworks, LREC 2010, Malta, May 22nd, 2010 1 Support of grants MUNI/E/0084/2009 of MU Brno, 1ET200190513 of the Acad. of Sci. of the CR and MŠMT ČR LC536 is acknowledged.

http://nlp.fi.muni.cz/projekty/gensim/
http://dml.cz
http://nlp.fi.muni.cz/projekty/gensim/
http://nlp.fi.muni.cz/projekty/gensim/
http://dml.cz
http://dml.cz
http://numdam.org
http://arxiv.org/archive/math
http://arxiv.org/archive/math
http://dml.cz/handle/10338.dmlcz/100785/SimilarArticles
http://dml.cz/handle/10338.dmlcz/100785/SimilarArticles

