
The Art of Mathematics Retrieval

Petr Sojka, Martin Líška
NLP Centre, Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

sojka@fi.muni.cz, 255768@mail.muni.cz

Abstract

The design and architecture of MIaS (Math Indexer and Searcher), a system for mathematics retrieval is presented, and design decisions are discussed. We argue for an approach based on Presentation MathML using a similarity of math
subformulae. The system was implemented as a math-aware search engine based on the state-of-the-art system Apache Lucene. Scalability issues were checked against more than 400,000 arXiv documents with 158 million mathematical
formulae. Almost three billion MathML subformulae were indexed using a Solr-compatible Lucene.

I do not seek. I find. (Pablo Picasso)

1. Introduction and Motivation

The solution to the problem of mathematical formulae retrieval lies at the heart
of building digital mathematical libraries (DML).

Computers are useless. They can only give you answers. (Pablo Picasso)

2. Approaches to Searching Mathematics

A great deal of research on has been already undertaken on searching mathe-
matical formulae in digital libraries and on the web. The comparison of math
search systems, including our new MIaS is summarized in the table below.

System Input documents Internal representation Approach α-
eq.

Query language Queries Indexing
core

MathDex HTML, TEX/LATEX, Word,
PDF

Presentation MathML (as
strings)

syntactic 5 ? text, math,
mixed

Apache
Lucene

LeActiveMath OMDoc, OpenMath OpenMath (as string) syntactic 5 OpenMath (palette editor) text, math,
mixed

Apache
Lucene

LATEXSearch LATEX LATEX (as string) syntactic 5 LATEX titles,
math, DOI

?

MathWeb Search Presentation MathML, Con-
tent MathML, OpenMath

Content MathML, Open-
Math (substitution trees)

semantic 4 QMath, LATEX, Mathematica,
Maxima, Maple, Yacas
styles (palette editor)

text, math,
mixed

Apache
Lucene
(for text
only)

EgoMath Presentation MathML, Con-
tent MathML, PDF

Presentation MathML trees
(as strings)

mixed 4 LATEX text, math,
mixed

EgoThor

MIaS any (well-formed) MathML Canonical Presentation
MathML trees (as com-
pacted strings)

math tree
similarity/
normaliza-
tion

4 𝒜ℳ𝒮-LATEX or MathML text, math,
mixed

Apache
Lucene/
Solr

Everything you can imagine is real. (Pablo Picasso)

3. Design of MIaS

We have developed a math-aware, full-text based search engine called MIaS
(Math Indexer and Searcher).
The top-level indexing scheme, including a detailed view of the mathematical
part is shown in Figure 1.

input
canonicalized

document

document
handler

tex
t

searcher

input query

te
xt

ter
ms

queryresults

index

indexer

unification

math processing

tokenization

m
at

h

math

searching

indexing

Lucene

math processing

ordering

tokenization

variables unification

constants unification

indexing

searching

w
ei

gh
tin

g

canonicalization canonicalization

Figure 1: Scheme of the MIaS workflow of math processing

Indexing MIaS is currently able to index documents in XHTML, HTML and
TXT formats. As Figure 1 shows, the input document is first split into textual
and mathematical parts. The textual content is indexed in a conventional way.
Mathematical expressions, on the other hand, are pre-analyzed in several steps
to facilitate searches not only for exact whole formulae, but also for subparts
(tokenization) and for similar expressions (formulae modifications). This ad-
dresses the issue of the static character of full-text search engines and creates
several representations of each input formula all of which are indexed. Each
indexed mathematical expression has a weight (relevancy score) assigned to it.
It is computed throughout the whole indexing phase by individual processing
steps following this basic rule of thumb—the more modified a formula and the
lower the level of a subformula, the less weight is assigned to it.
At the end of all processing methods, formulae are converted from XML nodes
to a compacted linear string form, which can be handled by the indexing core.
Start and end XML tags are substituted by the tag name followed by an argu-
ment embraced by opening and closing parentheses. This creates abbreviated
but still unambiguous representation of each XML node. For example, formula
a + b2, in MathML written as:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>a</mi>
<mo>+</mo>
<msup> <mi>b</mi><mn>2</mn></msup>

</mrow>
</math>

is converted to “math(mrow(mi(a)mo(+)msup(mi(b)mn(2))))” and this
string is then indexed by Lucene.

Tokenization Tokenization is a straightforward process of obtaining subfor-
mulae from an input formula. MIaS makes use of Presentation MathML markup
where all logical units are enclosed in XML tags which makes obtaining all
subformulae a question of tree traversal. The inner representation of each
formula is an XML node encapsulating all the member child nodes. This means
the highest level formula—as it appears in the input document—is represented
by a node named “math”. All logical subparts of an input formula are obtained
and passed on to modification algorithms.

Formulae Modifications MIaS performs three types of unification algorithms,
the goal of which is to create several more or less generalized representations
of all formulae obtained through the tokenization process. These steps allow
the system to return similar matches to the user query while preserving the
formula structure and α-equality.

Ordering Let us take a simple example: a+ 3 and the query 3+ a. This would
not match even though it is perfectly equal. This is why a simple ordering of the
operands of the commutative operations, addition and multiplication, is used.
It tries to order arguments of these operations in the alphabetical order of the
XML nodes denoting the operands whenever possible—it considers the priority
of other relevant operators in the formula. The system applies this function to
the formula being indexed as well as to the query expression. Applied to the
example above, the XML node denoting variable a is named “mi”, the node de-
noting number 3 is named “mn”. “mi”<“mn” therefore 3 + a would be exchanged
for a + 3 and would match.

Unification of Variables and Constants Let us take another example: a+ba

and x + yx. Again, these would not match even though the difference is only in
the variables used. MIaS employs a process that unifies variables in expres-
sions while taking bound variables into account. All variables are substituted
for unified symbols (ids) in both the indexing and searching phases. Applied
to the example, both expressions would unify to id1 + idid1

2 and would match.
This process is not applied to single symbols—this would lead to the indexing
of millions of ids and searching for any symbol would end up matching all of
the documents containing it.
Unification of constants is a strightforward process of substituting all the nu-
merical constants for one unified symbol (const). This obviates the need for the
exact values of constants in user queries.

Formulae Weighting During the searching phase, a query can match several
terms in the index. However one match can be more important to the query
than another, and the system must consider this information when scoring
matched documents. For mathematical formulae the system makes use of
the processing operations described above since they all produce expressions
more generalized than the input ones.
Each formula has a weight attribute indexed alongside itself, which belongs to
the interval (0, 1⟩. Weight w of the subformula contained on a certain level in
a parent formula with the number of nodes (n) can be calculated in particular
situations as follows:
∙ no changes made: w = llevel(1+v+c+vc)

n

∙ unified variables: w = llevel(v+vc)
n

∙ unified constants: w = llevel(c+vc)
n

∙ unified both variables and constants: w = llevel(vc)
n .

To fine tune the weighting parameters, we developed a tool with verbose output
in which the behavior of the model can be observed and tested. A sample from
the tool mentioned above is shown in Table 1.
We have come to the conclusion that the unification of variables interferes
less with original formula meaning than the unification of number constants.
For this reason, its coefficient should be higher—i.e., less discriminating. The
main question then became, how discriminating the level coefficient should
be. Our empirical deduction is that going deeper in a structural tree should
be discriminating, the precise match on a lower level should still score more
than any unified formula on the level above, as could be seen in Table 1: 1

a+3
(row 5) is an exact match on the second level and its score is higher than unified
expressions matched on the first level (rows 2, 3 and 4).
This led us to the valuation of level weighting coefficient l = 0.7, unification
weighting coefficient v = 0.8 and constant weighting coefficient c = 0.5.
In Figure 2 the whole formula preprocessing process is illustrated together with
its subformulae weightings.

(a+b2+c , 0.125)

(a+bc+2 , 0.125)

(“mi” < “mn” ⇒ 2 <-> c)

(a , 0.0875) (+, 0.0875) (bc+2 , 0.0875)

(b , 0.06125) (c+2, 0.06125)

(c , 0.042875)
(+, 0.042875)

(2, 0.042875)

(id 1+2, 0.0343)

(c+const , 0.030625)

(id 1+const , 0.01715)

(id 1
id 2+2 , 0.07)

(bc+const , 0.04375)

(id 1
id 2+const , 0.035)

(id 1+id 2
id 3+2 , 0.1)

(a+bc+const , 0.0625)

(id 1+id 2
id 3+const , 0.05)

input:

ordered:

tokenization:

variables
unification:

constants
unification:

Figure 2: Example of formula preprocessing. Ordered pairs are (<expression
written naturally>, <it’s weight>). All expressions as shown are indexed, except
for the original one.

Table 1: Example of weighting function on several formulae. Original query is
a + 3—all queried expressions are a + 3, id1 + 3, a + const, id1 + const.

Formula Indexed Expressions Score Matched

a + 3 0.25=[a + 3], 0.2=[id1 + 3], 0.175=[a, 3, +], 0.125=[a + const], 0.1=[id1 + const] 2.7 0.1[id1+const] + 0.25[a+3] + 0.2[id1+3] + 0.125[a+const]
b + 3 0.25=[b + 3], 0.2=[id1 + 3], 0.175=[b,+, 3], 0.125=[b + const], 0.1=[id1 + const] 1.2 0.1[id1 + const] + 0.2[id1 + 3]
a + 5 0.25=[a + 5], 0.2=[id1 + 5], 0.175=[a,+, 5], 0.125=[a + const], 0.1=[id1 + const] 0.9 0.1[id1 + const] + 0.125[a + const]
c + 10 0.25=[c+10], 0.2=[id1+10], 0.175=[c,+, 10], 0.125=[c+const], 0.1=[id1+const] 0.4 0.1[id1 + const]

1
a+3

0.16667=[1
a+3], 0.13334=[1

id1+3], 0.11667=[1, a + 3], 0.09334=[id1 + 3],
0.08334=[const

a+const], 0.08167=[+, 3, a], 0.06667=[const
id1+const], 0.05833=[a + const],

0.04667=[id1 + const]
1.26

0.04667[id1 + const] + 0.11667[a + 3] + 0.09334[id1 + 3] +
0.05833[a + const]

1
b+3

0.16667=[1
b+3], 0.13334=[1

id1+3], 0.11667=[b + 3, 1], 0.09334=[id1 + 3],
0.08334=[const

b+const], 0.08167=[b, 3,+], 0.06667=[const
id1+const], 0.05833=[b + const],

0.04667=[id1 + const]
0.56 0.04667[id1 + const] + 0.09334[id1 + 3]

1
a+5

0.16667=[1
a+5], 0.13334=[1

id1+5], 0.11667=[1, a + 5], 0.09334=[id1 + 5],
0.08334=[const

a+const], 0.08167=[a, 5,+], 0.06667=[const
id1+const], 0.05833=[a + const],

0.04667=[id1 + const]
0.42 0.04667[id1 + const] + 0.05833[a + const]

1
c+10

0.16667=[1
c+10], 0.13334=[1

id1+10], 0.11667=[1, c + 10], 0.09334=[id1 + 10],
0.08334=[const

c+const], 0.08167=[+, c, 10], 0.06667=[const
id1+const], 0.05833=[c + const],

0.04667=[id1 + const]
0.19 0.04667[id1 + const]

math processing

ordering

tokenization

variables unification

constants unification

indexing

searching

w
ei

gh
tin

g

canonicalization

searchingindexing

x y+y3

x y+y3 , x y , y3 , x , y , 3,+

x y+y3 , x y , y3 , x , y , 3,+ , id1
id 2+id 2

3 , id 1
id 2 , id 1

3

x y+y3 , x y , y3 , x , y , 3,+ , id1
id 2+id 2

3 ,

id1
id 2 , id1

3 , x y+ yconst , yconst , id 1
id 2+id 2

const , id 1
const

x y+y3

x y+y2

x y+y2

x y+y 2 , id 1
id 2+id 2

2

x y+y 2 , id1
id 2+id 2

2
,

x y+yconst , id 1
id 2+id 2

const

x y+yconst , id 1
id 2+id 2

const Match!
Figure 3: Math-aware search in MIaS

Searching In the search phase, user input is again split into mathematical
and textual parts. Formulae are then reprocessed in the same way as in the
indexing phase, except for tokenization—which we doubt that users are likely
to query, for example a+b

c wanting to find documents only with occurrences of
variable c. That means the queried expressions are first ordered, then unified.
This produces several representations which are connected to the final query
by the logical OR operator.

A very positive value has its price in negative terms. . .
the genius of Einstein leads to Hiroshima. (Pablo Picasso)

4. Evaluation and Implementation

For large scale evaluation, we needed an experimental implementation and
a corpus of mathematical texts. The Math Indexer and Searcher is written in
Java. The role of full-text indexing and searching core is performed by Apache
Lucene 3.1.0. The mathematical part of document processing can be seen as
a standalone pluggable extension to any full-text library, however it would need
custom integration for each one. In the case of Lucene, a custom Tokenizer
(MathTokenizer) has been implemented.
For the textual content of documents, Lucene’s StandardAnalyzer is employed.
In MathTokenizer, TermAttributes are used for carrying strings of math expres-
sions and PayloadAttribute for storing weights of formulae. Lucene’s practical
scoring function for every hit document d by query q with each query term t is
as follows:

score(q, d) = coord(q, d) · queryNorm(q) ·
∑︁
t in q

(︁
tf (t in d) · idf (t)2 · t.getBoost() · norm(t, d)

)︁
Corpus of Mathematical Documents MREC A document corpus MREC
(version 2011.3.324) was used to evaluate the behaviour of the system we
modelled. The documents come from the arXMLiv project that is converting
document sets from arXiv into XHTML + MathML (both Content and Presenta-
tion) [2].
We were able to gather great amount of documents in MREC corpus version
2011.4.439 to test our indexing system. This corpus consists of 439,423 arXM-
Liv documents containing 158,106,118 mathematical formulae. 2,910,314,146
expressions were indexed and the resulting size of the index is 47 GB. Sizes
of uncompressed and compressed corpora size are 124 GB and 15 GB, re-
spectively. MREC corpora are available to the community for download from
MREC web page http://nlp.fi.muni.cz/projekty/eudml/MREC/ so that
other math indexing engines could be compared with MIaS on the same data.

Results MIaS demonstrated the ability to index and search a relatively vast
corpus of real scientific documents. Its usability is highly elevated thanks to its
preprocessing functions together with formulae weighting model. The ability to
search for exact and similar formulae and subformulae, more so with customiz-
able relevancy computation, demonstrates an unquestionable contribution to
the whole search experience.
We have created a demo web interface WebMIaS which is publicly available on
the MIaS web page http://nlp.fi.muni.cz/projekty/eudml/mias/.
Our WebMIaS interface supports queries in two different notations—in
𝒜ℳ𝒮-LATEX and MathML. Mathematical queries are additionally canonized
using XSLT transformations from UMCL library [1] to improve the query and
to avoid notation flaws restraining proper results retrieval. Portability of the
interface is increased by using MathJax for rendering of mathematical formulae
in snippets.

Scalability Testing and Efficiency We have devised a scalability test to see
how the system behaves with an increasing number of documents and formu-
lae indexed. Subsets containing 10,000, 50,000, 200,000 and the complete
324,060 documents were gradually indexed and several values were measured:
the number of input formulae, the number of indexed formulae, the indexing
time and the average query time. Indexing time of this corpus was 1378.82 min,
e.g. almost 23 hours.
Table 2: Scalability test results (run on 32 GB RAM, quad core AMD OpteronTM

Processor 850 driven machine).

Documents Input formulae Indexed formulae Indexing time [min] Average query time [ms]
10,000 3,450,114 65,194,737 39.15 32
50,000 17,734,342 334,078,835 201.68 178

200,000 70,102,960 1,316,603,055 889.28 576
324,060 112,055,559 2,129,261,646 1,292.16 789

I am always doing that which I can not do, in order that I may learn how to do it.
(Pablo Picasso)

5. Conclusions, Credits

We have presented an approach to mathematics searching and indexing—the
architecture and design of the MIaS system. The feasibility of our approach
has been verified on large corpora of real mathematical papers from arXMLiv.
Scalability tests have confirmed that the computing power needed for fine math
similarity computations is readily available; this would allow the use of this
technology for projects on a European or world-wide scale.

Figure 4: Web interface of MIaS for The European Digital Mathematics Library
Acknowledgements. Our work has been partially supported by the Ministry
of Education of Czech Republic within the Center of Basic Research LC536 and
by the European Union through its Competitiveness and Innovation Programme
(Policy Support Programme, “Open access to scientific information”, Grant
Agreement No. 250503).

References

[1] D. Archambault, F. Berger, and V. Moço. Overview of the “Universal Maths Conversion
Library”. In A. Pruski and H. Knops, editors, Assistive Technology: From Virtuality to Reality:
Proceedings of 8th European Conference for the Advancement of Assistive Technology in
Europe AAATE 2005, Lille, France, pages 256–260, Amsterdam, The Netherlands, Sept.
2005. IOS Press.

[2] H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David, and B. Miller. Transforming Large
Collections of Scientific Publications to XML. Mathematics in Computer Science, 3:299–307,
2010. http://dx.doi.org/10.1007/s11786-010-0024-7.

DocEng 2011, Mountain View, California, USA, September 19–22, 2011, doi>10.1145/2034691.2034703

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html
http://kwarc.info/projects/arXMLiv/
http://nlp.fi.muni.cz/projekty/eudml/MREC/
http://nlp.fi.muni.cz/projekty/eudml/mias/
http://mathjax.org
http://dx.doi.org/10.1007/s11786-010-0024-7
http://dx.doi.org/10.1145/2034691.2034703

