
179

Animations in pdfTEX-generated PDF

A New Method for Directly Embedding Animation
into PDF

Jan Holeček, Petr Sojka

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
holecek@fi.muni.cz, sojka@fi.muni.cz

Abstract. This paper presents a new approach for creating animations
in Portable Document Format (PDF). The method of animation au-
thoring described uses free software (pdfTEX) only. The animations are
viewable by any viewer that supports at least some features of Acrobat
JavaScript, particularly Adobe (Acrobat) Reader, which is available at
no cost for a wide variety of platforms. Furthermore, the capabilities
of PDF make it possible to have a single file with animations both for
interactive viewing and printing.
The paper explains the principles of PDF, Acrobat JavaScript and
pdfTEX needed to create animations for Adobe Reader using no other
software except pdfTEX. We present a step by step explanation of an-
imation preparation, together with sample code, using a literate pro-
gramming style. Finally, we discuss other possibilities of embedding ani-
mations into documents using open standards (SVG) and free tools, and
conclude with their strengths and weaknesses with respect to the method
presented.

1 Introduction

Extensive use of electronic documents leads to new demands being made on
their content. Developing specific document versions for different output devices
is time consuming and costly. A very natural demand, especially when preparing
educational materials, is embedding animations into a document.

A widely used open format for electronic documents is the Adobe PDF [2] for-
mat, which combines good typographic support with many interactive features.
Even though it contains no programming language constructs such as those found
in PostScript, the format allows for the inclusion of Document Level JavaScript
(DLJS) [1]. Widely available PDF viewers such as Adobe Reader (formerly Ac-
robat Reader) benefit from this possibility, allowing interactive documents to be
created.

One of the first applications showing the power of using JavaScript with PDF
was Hans Hagen’s calculator [5]. Further, the AcroTEX bundle [9] uses several
LATEX packages and the full version of the Adobe Acrobat software for preparing
PDF files with DLJS [10]; macro support for animations is rudimentary and it

A. Syropoulos et al. (Eds.): TUG 2004, LNCS 3130, pp. 179–191, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

180 Jan Holeček, Petr Sojka

is stressed in the documentation that it works only with the full commercial
version of Acrobat.

Our motivation is a need for PDF animations in a textbook [3] published both
on paper and on CD. We have published it using Acrobat [7,8], and eventually
discovered a method to create animations using pdfTEX [11] only.

pdfTEX facilitates the PDF creation process in several ways. We can directly
write the PDF code which is actually required to insert an animation. We can
also utilise the TEX macro expansion power to produce PDF code. And finally,
we can write only the essential parts directly, leaving the rest to pdfTEX. pdfTEX
introduces new primitives to take advantage of PDF features. The ones we are
going to use will be described briefly as they appear.

In this paper, we present this new ‘pdfTEX only’ way of embedding ani-
mations. We require no previous knowledge either of the PDF language or of
pdfTEX extensions to TEX. However, the basics of TEX macro definitions and
JavaScript are assumed.

The structure of the paper is as follows. In the next section we start with the
description of the PDF internal document structure with respect to animations.
The core of the paper consists of commented code for the pdfTEX that generates
a simple all-in-one animation. The examples are written in plain TEX [6], so that
others can use it in elaborate macro packages, in a literate programming style.
In the second example the animation is taken from an external file, allowing the
modification of the animation without modifying the primary document. Finally,
we compare this approach with the possibilities of other formats, including the
new standard for Scalable Vector Graphics (SVG) [12] from the W3C.

2 The PDF Document Structure

A PDF file typically consists of a header, a body, a cross-reference table and
a trailer. The body is the main part of the PDF document. The other parts
provide meta-information and will not be discussed here. A PDF document is
actually a graph of interconnected objects, each being of a certain type. There
are basic data types (boolean, numeric, string) and some special and compound
types which require some explanation.

A name object has the form /MYNAME. There is a set of names with pre-
defined meanings when used as a dictionary key or value. Other names can be
defined by the user as human readable references to indirect objects (dictionaries
and indirect objects are treated below). An array object is a one-dimensional
list, enclosed by square brackets, of objects not necessarily of the same type. A
dictionary object is a hash, i.e., a set of key-value pairs where the keys are name
objects and the values are arbitrary objects. A dictionary is enclosed by the <<
and >> delimiters. Stream objects are used to insert binary data into a PDF
document. There is also a special null object used as an “undefined” value.

The body of a PDF file consists of a sequence of labelled objects called indirect
objects. An object of any other type which is given a unique object identifier can
form an indirect object. When an object is required in some place (an array

Animations in pdfTEX-generated PDF 181

element, a value of a key in a dictionary), it can be given explicitly (a direct
reference) or as an object identifier to an indirect object (an indirect reference).
In this way objects are interconnected to form a graph. An indirect reference
consists of two numbers. The first number is a unique object number. The second
is an object version number and is always 0 in indirect objects newly created by
pdfTEX—the first one therefore suffices to restore an indirect reference.

Various document elements are typically represented by dictionary objects.
Each element has a given set of required and optional keys for its dictionary.
For example, the document itself is represented by a Catalog dictionary, the
root node of the graph. Its key-value pairs define the overall properties of the
document. A brief description of concrete objects will be given when encountered
for the first time. See [2] for more detailed information.

3 Insertion of the Animation Frames

We are not interested in constructing the animation frames themselves—any
graphics program as METAPOST will do. Let us hence assume we have a PDF
file, each page of which forms a single animation frame and the frames are in
the order of appearance.

Every image is inserted into PDF as a so-called form XObject which is actu-
ally an indirect stream object. There are three primitives that deal with images
in pdfTEX. The \pdfximage creates an indirect object for a given image. The
image can be specified as a page of another PDF file. However, the indirect
object is actually inserted only if referred to by the \pdfrefximage primitive
or preceded by \immediate. \pdfrefximage takes an object number (the first
number of indirect reference) as its argument and adds the image to the TEX list
being currently built. The object number of the image most recently inserted by
\pdfximage is stored in the \pdflastximage register.

A general PDF indirect object can be created similarly by \pdfobj, \pdfref-
obj and \pdflastobj. \pdfobj takes the object content as its argument. TEX
macro expansion can be used for generating PDF code in an ordinary manner.

In our example, we first define four macros for efficiency. The \ximage macro
creates a form XObject for a given animation frame (as an image) and saves its
object number under a given key. The \insertobj macro creates a general PDF
object and saves its object number under a given key. The \oref macro expands
to an indirect reference of an object given by the argument. The last “R” is an
operator that creates the actual indirect reference from two numbers. We are not
going to use \pdfref* primitives, so \immediate must be present. References
will be put directly into the PDF code by the \oref macro. The \image macro
actually places an image given by its key onto the page.

1 % an image for further use
2 \def\ximage#1#2{%
3 \immediate\pdfximage
4 page #2 {frames-in.pdf}%

182 Jan Holeček, Petr Sojka

5 \expandafter\edef
6 \csname pdf:#1\endcsname
7 {\the\pdflastximage}}
8

9 % a general object for further use
10 \def\insertobj#1#2{%
11 \immediate\pdfobj{#2}%
12 \expandafter\edef
13 \csname pdf:#1\endcsname
14 {\the\pdflastobj}}
15

16 % expands to an indirect ref. for a key
17 \def\oref#1{%
18 \csname pdf:#1\endcsname\space 0 R}
19

20 % actually places an image
21 \def\image#1{%
22 \expandafter\pdfrefximage
23 \csname pdf:#1\endcsname}

Another new primitive introduced by pdfTEX is \pdfcatalog. Its argument
is added to the document’s Catalog dictionary every time it is expanded. The
one below makes the document open at the first page and the viewer fit the page
into the window. One more key will be described below.

24 % set up the document
25 \pdfcatalog{/OpenAction [0 /Fit]}

Now we are going to insert animation frames into the document. We will use
the \ximage macro defined above. Its first argument is the name to be bound
with the resulting form XObject. The second one is the number of the frame
(actually a page number in the PDF file with frames). One needs to be careful
here because pdfTEX has one-based page numbering while PDF uses zero-based
page numbering internally.

26 % all animation frames are inserted
27 \ximage{fr0}{1} \ximage{fr1}{2}
28 \ximage{fr2}{3} \ximage{fr3}{4}
29 \ximage{fr4}{5} \ximage{fr5}{6}
30 \ximage{fr6}{7} \ximage{fr7}{8}
31 \ximage{fr8}{9}

Animations in pdfTEX-generated PDF 183

4 Setting up an AcroForm Dictionary

The interactive features are realized by annotation elements in PDF. These form
a separate layer in addition to the regular document content. Each one denotes an
area on the page to be interactive and binds some actions to various events that
can happen for that area. Annotations are represented by Annot dictionaries. The
way pdfTEX inserts annotations into PDF is discussed in the section “Animation
Dynamics” below.

Annotations are transparent by default, i.e., the page appearance is left un-
changed when adding an annotation. It is up to the regular content to provide
the user with the information that some areas are interactive.

We will be interested in a subtype of annotations called interactive form
fields. They are represented by a Widget subtype of the Annot dictionary. Widgets
can be rendered on top of the regular content. However, some resources have to
be set. The document’s Catalog refers to an AcroForm dictionary in which this
can be accomplished.

The next part of the example first defines the name Helv to represent the
Helvetica base-font (built in font). This is not necessary but it allows us to
have a smooth control button. Next we insert the AcroForm dictionary. The
DR stands for “resource dictionary”. We only define the Font resource with one
font. The DA stands for “default appearance” string. The /Helv sets the font,
the 7 Tf sets the font size scale factor to 7 and the 0 g sets the color to be
0 % white (i.e., black). The most important entry in the AcroForm dictionary
is NeedAppearances. Setting it to true (line 43) makes the Widget annotations
visible. Finally, we add the AcroForm dictionary to the document’s Catalog.

32 % the Helvetica basefont object
33 \insertobj{Helv}{
34 << /Type /Font /Subtype /Type1
35 /Name /Helv
36 /BaseFont /Helvetica >> }
37

38 % the AcroForm dictionary
39 \insertobj{AcroForm}{
40 << /DR << /Font <<
41 /Helv \oref{Helv} >> >>
42 /DA (/Helv 7 Tf 0 g)
43 /NeedAppearances true >> }
44

45 % add a reference to the Catalog
46 \pdfcatalog{/AcroForm \oref{AcroForm}}

To make a form XObject with an animation frame accessible to JavaScript,
it has to be assigned a name. There are several namespaces in PDF in which
this can be accomplished. The one searched for is determined from context.
We are only interested in an AP namespace that maps names to annotation

184 Jan Holeček, Petr Sojka

appearance streams. pdfTEX provides the \pdfnames primitive that behaves
similarly to \pdfcatalog. Each time it is expanded it adds its argument to
the Names dictionary referred from document’s Catalog. The Names dictionary
contains the name definitions for various namespaces. In our example we put
definitions into a separate object AppearanceNames.

The name definitions may form a tree to make the lookup faster. Each node
has to have Limits set to the lexically least and greatest names in its subtree.
There is no extensive set of names in our example, so one node suffices. The
names are defined in the array of pairs containing the name string and the
indirect reference.

47 % defining names for frames
48 \insertobj{AppearanceNames}{
49 << /Names
50 [(fr0) \oref{fr0} (fr1) \oref{fr1}
51 (fr2) \oref{fr2} (fr3) \oref{fr3}
52 (fr4) \oref{fr4} (fr5) \oref{fr5}
53 (fr6) \oref{fr6} (fr7) \oref{fr7}
54 (fr8) \oref{fr8}]
55 /Limits [(fr0) (fr8)] >> }
56

57 % edit the Names dictionary
58 \pdfnames{/AP \oref{AppearanceNames}}

5 Animation Dynamics

We have created all the data structures needed for the animation in the previous
section. Here we introduce the code to play the animation. It uses Acrobat Java-
Script [1], an essential element of interactive forms. Acrobat JavaScript is an
extension of Netscape JavaScript targeted to PDF and Adobe Acrobat. Most of
its features are supported by Adobe Reader. They can, however, be supported
by any other viewer. Nevertheless, the Reader is the only one known to us that
supports interactive forms and JavaScript.

The animation is based on interchanging frames in a single widget. Here we
define the number of frames and the interchange timespan in milliseconds to
demonstrate macro expansion in JavaScript.

59 % animation properties
60 \def\frames{8}
61 \def\timespan{550}

Every document has its own instance of a JavaScript interpreter in the
Reader. Every JavaScript action is interpreted within this interpreter. This
means that one action can set a variable to be used by another action triggered
later. Document-level JavaScript code, e.g., function definitions and global vari-
able declarations, can be placed into a JavaScript namespace. This code should
be executed when opening the document.

Animations in pdfTEX-generated PDF 185

Unfortunately, there is a bug in the Linux port of the Reader that renders
this generally unusable. The document level JavaScript is not executed if the
Reader is not running yet and the document is opened from a command line
(e.g., ‘acroread file.pdf’). Neither the first page’s nor the document’s open
action are executed, which means they cannot be used as a workaround. Binding
a JavaScript code to another page’s open action works well enough to suffice in
most cases.

We redeclare everything each time an action is triggered so as to make the
code as robust as possible. First we define the Next function, which takes a
frame index from a global variable, increases it modulo the number of frames
and shows the frame with the resulting index. The global variable is modified.

The animation actually starts at line 78 where the frame index is initial-
ized. The frames are displayed on an interactive form’s widget that we name
"animation"—see “Placing the Animation” below. A reference to this widget’s
object is obtained at line 79. Finally, line 80 says that from now on, the Next
function should be called every \timespan milliseconds.

62 % play the animation
63 \insertobj{actionPlay}{
64 << /S /JavaScript /JS (
65 function Next() {
66 g.delay = true;
67 if (cntr == \frames) {
68 cntr = 0;
69 try { app.clearInterval(arun); }
70 catch(except) {}
71 } else { cntr++; }
72 g.buttonSetIcon(
73 this.getIcon("fr" + cntr));
74 g.delay=false;
75 }
76 try { app.clearInterval(arun); }
77 catch(except) {}
78 var cntr = 0 ;
79 var g = this.getField("animation");
80 var arun = app.setInterval("Next()",
81 \timespan);
82) >> }

Now, let us describe the Next function in more detail. Line 66 suspends
widget’s redrawing until line 74. Then the global variable containing the current
frame index is tested. If the index reaches the number of frames, it is set back
to zero and the periodic calling of the function is interrupted. The function
would be aborted on error, but because we catch exceptions this is avoided. The
getIcon function takes a name as its argument and returns the reference to the
appearance stream object according to the AP names dictionary. This explains

186 Jan Holeček, Petr Sojka

our approach of binding the names to animation frames—here we use the names
for retrieving them. The buttonSetIcon method sets the object’s appearance
to the given icon.

Line 76 uses the same construct as line 69 to handle situations in which
the action is relaunched even if the animation is not finished yet. It aborts the
previous action. It would have been an error had the animation not been running,
hence we must use the exception catching approach.

6 Placing the Animation

The animation is placed on an interactive form field—a special type of annota-
tion. There are two primitives in pdfTEX, \pdfstartlink and \pdfendlink,
to produce annotations. They are intended to insert hyperlink annotations
but can be used for creating other annotations as well. The corresponding
\pdfstartlink and \pdfendlink must reside at the same box nesting level.
The resulting annotation is given the dimensions of the box that is enclosed by
the primitives. We first create a box to contain the annotation. Note that both
box and annotation size are determined by the frame itself—see line 91 where
the basic frame is placed into the regular page content.

We will turn now to the respective entries in the annotation dictionary. The
annotation is to be an interactive form field (/Subtype /Widget). There are
many field types (FT). The only one that can take any appearance and change
it is the pushbutton. It is a special kind of button field type (/FT /Btn). The
type of button is given in an array of field bit flags Ff. The pushbutton has to
have bit flag 17 set (/Ff 65536). To be able to address the field from JavaScript
it has to be assigned a name. We have assigned the name animation to it as
mentioned above (/T (animation)). Finally, we define the appearance charac-
teristics dictionary MK. The only entry /TP 1 sets the button’s appearance to
consist only of an icon and no caption.

83 % an animation widget
84 \centerline{\hbox{%
85 \pdfstartlink user{
86 /Subtype /Widget /FT /Btn
87 /Ff 65536 /T (animation)
88 /BS << /W 0 >>
89 /MK << /TP 1 >> }%
90 \image{fr0}%
91 \pdfendlink}}

For the sake of brevity and clarity we are going to introduce only one control
button in our example. However, we have defined a macro for creating control
buttons to show a very simple way of including multiple control buttons. The
\controlbutton macro takes one argument: the caption of the button it is to
produce. The macro creates a pushbutton and binds it to an action defined like
actionPlay.

Animations in pdfTEX-generated PDF 187

We have chosen control buttons to be pushbuttons again. They are little
different from the animation widget—they are supposed to look like buttons.
The BS dictionary (i.e., border style) sets the border width to 1 point and style
to 3D button look. The MK dictionary (appearance characteristics dictionary)
sets the background color to 60% white and the caption (line 98). The /H /P
entry tells the button to push down when clicked on. Finally, an action is bound
to the button by setting the value of the A key.

92 % control button for a given action
93 \def\controlbutton#1{%
94 \hbox to 1cm{\pdfstartlink user{
95 /Subtype /Widget /FT /Btn
96 /Ff 65536 /T (Button#1)
97 /BS << /W 1 /S /B >>
98 /MK << /BG [0.6] /CA (#1) >>
99 /H /P /A \oref{action#1}

100 }\hfil\strut\pdfendlink}}

And finally, we add a control button that plays the animation just below the
animation widget.

101 % control button
102 \centerline{\hfil
103 \controlbutton{Play}\hfil}
104

105 \bye

7 External Animation

Let us modify the example a little so that the animation frames will be taken
from an external file. This has several consequences which will be discussed at
the relevant points in the code.

We are going to completely detach the animation frames from the document.
As a result, we will need only the \insertobj and \oref macros from lines 1–23
from the previous example. Lines 26–31 are no longer required.

A problem arises here: the basic frame should be displayed in the animation
widget when the document is opened for the first time. This can be accomplished
by modifying the OpenAction dictionary at line 25 as follows.

\pdfcatalog{ /OpenAction <<
/S /JavaScript /JS (
var g = this.getField("animation");
g.buttonImportIcon(

"frames-ex.pdf",0);
this.pageNum = 0;
this.zoomType = zoomtype.fitP;

) >> }

188 Jan Holeček, Petr Sojka

This solution suffers from the bug mentioned in the “Animation Dynamics”
section. The animation widget will be empty until a user performs an action
every time the bug comes into play.

We still do need an AcroForm dictionary, so lines 32–46 are left without a
change. Lines 47–58 must be omitted on the other hand, as we have nothing to
name. We are going to use the same animation as in the previous example, so
lines 59–61 are left untouched. There is one modification of the JavaScript code
to be done. The buttonSetIcon function call is to be replaced by

g.buttonImportIcon(
"frames-ex.pdf", cntr);

We have used the basic frame to determine a size of the widget in the previous
example. This is impossible now because it has to be done at compile time. The
replacement for lines 83–91 is as follows

% an animation widget
\centerline{\hbox to 6cm{%
\vrule height 6cm depth 0pt width 0pt
\pdfstartlink user{
/Subtype /Widget /FT /Btn
/Ff 65536 /T (animation)
/BS << /W 0 >>
/MK << /TP 1

/IF << /SW /A /S /P
/A [0.5 0.5] >> >> }%

\hfil\pdfendlink}}

Dimensions of the widget are specified explicitly and an IF (icon fit) dictio-
nary is added to attributes of the pushbutton so that the frames would be always
(/SW /A) proportionally (/S /P) scaled to fit the widget. Moreover, frames are
to be centered in the widget (/A [0.5 0.5]) which would be the default behav-
ior anyway. The basic frame is not placed into the document—there is only glue
instead.

Lines 92–105 need not be modified.

8 Two Notes on Animation Frames

The examples with full TEX source files can be found at http://www.fi.muni.
cz/~xholecek/animations/. As one can see in these examples, the all-in-one
approach allows all frames to share a single background which is formed by
the frame actually inserted into the page. However, it is possible to overlay
pushbuttons. Elaborate constructions, the simplest of which is to use a common
background frame in the example with external animations, can be achieved in
conjunction with transparency.

http://www.fi.muni.cz/~xholecek/animations/
http://www.fi.muni.cz/~xholecek/animations/

Animations in pdfTEX-generated PDF 189

One must ensure the proper size of all frames when fitting them into the
widget. We have encountered situations (the given example being one of them)
where the bounding box of METAPOST generated graphics with TEX label was
not set properly using \convertMPtoPDF and a white line had to be drawn
around the frames to force the proper bounding box as a workaround.

9 Animations in Other Formats

It is fair to list and compare other possible ways of creating animations. In
this section we give a brief overview of a dozen other formats and technologies
capable of handling animations.

9.1 GIF

One of the versions of the GIF format is the GIF89a format, which allows multi-
image support, with bitmap only animations to be encoded within a single GIF
file. GIF format supports transparency, interlacing and plain text blocks. It is
widely supported in Internet browsers. However, there are licensing problems
due to the compression methods used, and the format is not supported in freely
available TEXware.

9.2 SWF

The SWF format by Macromedia allows storing frame-based animations, created
e.g., by Macromedia’s Flash authoring tool. The SWF authoring tools have to
compute all the animation frames at export time. As proprietary Flash plug-
ins for a wide range of Internet browsers are available, animations in SWF are
relatively portable. The power of SWF can be enriched with scripting by Action-
Script. At the time of writing, we are not aware of any TEXware supporting SWF.

9.3 Java

One can certainly program animations in a general programming language like
Sun’s Java. The drawback is that there are high demands on one’s program-
ming capabilities in Java when creating portable animations. With NTS (a TEX
reimplementation in Java), one can possibly combine TEX documents with fully
featured animations, at the expense of studying numerous available classes, in-
terfaces and methods.

9.4 DOM

It is possible to reference every element in an HTML or XML document by means
of the W3C’s Document Object Model (DOM), a standard API for document
structure.

DOM offers programmers the possibility of implementing animations with
industry-standard languages such as Java, or scripting languages as ECMA-
Script, JavaScript or JScript.

190 Jan Holeček, Petr Sojka

9.5 SVG

The most promising language for powerful vector graphic animation description
seems to be Scalable Vector Graphics (SVG), a W3C recommendation [12]. It
is being developed for XML graphical applications, and since SVG version 1.1
there is rich support for animations. The reader is invited to look at the freely
available book chapter [13] about SVG animations on the publisher’s web site,
or reading [4] about the first steps of SVG integration into TEX world. There
are freely available SVG viewers from Adobe (browser plug-in), Corel, and the
Apache Foundation (Squiggle).

SVG offers even smaller file sizes than SWF or our method. The description
of animations is time-based, using another W3C standard, SMIL, Synchronised
Multimedia Integration Language. The author can change only one object or its
attribute in the scene at a time, allowing detailed control of animated objects
through the declarative XML manner. Compared to our approach, this means a
much wider range of possibilities for creators of animations.

The SVG format is starting to be supported in TEXware. There are SVG
backends in VTEX and BaKoMaTEX, and a program Dvi2Svg by Adrian Frischauf,
available at http://www.activemath.org/~adrianf/dvi2svg/. Another im-
plementation of a DVI to SVG converter in C is currently being developed by
Rudolf Sabo at the Faculty of Informatics, Masaryk University in Brno.

10 Conclusions

We have shown a method of preparing both space-efficient and high-quality
vector frame-based animations in PDF format using only freely available, TEX-
integrated tools.

Acknowledgments

Authors thank Oleg Alexandrov and Karl Berry for comments on an early draft
of the paper.

The work has been supported by VZ MSM 143300003.

References

1. Adobe Systems Incorporated. Acrobat JavaScript Object Specification, Version
5.1, Technical Note #5186. Technical report, Adobe, 2003. http://partners.

adobe.com/asn/developer/pdfs/tn/5186AcroJS.pdf.

2. Adobe Systems Incorporated. PDF Reference: Adobe Portable Document Format
Version 1.5. Addison-Wesley, Reading, MA, USA, fourth edition, August 2003.

3. Zuzana Došlá, Roman Plch, and Petr Sojka. Mathematical Analysis with Maple:
2. Infinite Series. CD-ROM, http://www.math.muni.cz/~plch/nkpm/, December
2002.

http://www.activemath.org/~adrianf/dvi2svg/
http://partners.adobe.com/asn/developer/pdfs/tn/5186AcroJS.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/5186AcroJS.pdf
http://www.math.muni.cz/~plch/nkpm/

Animations in pdfTEX-generated PDF 191

4. Michel Goossens and Vesa Sivunen. LATEX, SVG, Fonts. TUGboat, 22(4):269–280,
Oct. 2001.

5. Hans Hagen. The Calculator Demo, Integrating TEX, METAPOST, JavaScript and
PDF. TUGboat, 19(3):304–310, September 1998.

6. Petr Oľsák. TEXbook naruby (in Czech). Konvoj, Brno, 1997.
7. Petr Sojka. Animations in PDF. In Proceedings of the 8th Annual Conference on

Innovation and Technology in Computer Science Education, ITiCSE 2003, page
263, Thessaloniki, 2003. Association of Computing Machinery.

8. Petr Sojka. Interactive Teaching Materials in PDF using JavaScript. In Proceedings
of the 8th Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2003, page 275, Thessaloniki, 2003. Association of Computing
Machinery.

9. Donald P. Story. AcroTEX: Acrobat and TEX team up. TUGboat, 20(3):196–201,
Sep. 1999.

10. Donald P. Story. Techniques of introducing document-level JavaScript into a PDF
file from LATEX source. TUGboat, 22(3):161–167, September 2001.

11. Hán Thé̂ Thánh. Micro-typographic extensions to the TEX typesetting system.
TUGboat, 21(4):317–434, December 2000.

12. W3C. Scalable Vector Graphics (SVG) 1.1 Specification, January 2003.
13. Andrew H. Watt. Designing SVG Web Graphics. New Riders Publishing, Septem-

ber 2001.

	Introduction
	The PDF Document Structure
	Insertion of the Animation Frames
	Setting up an AcroForm Dictionary
	Animation Dynamics
	Placing the Animation
	External Animation
	Two Notes on Animation Frames
	Animations in Other Formats
	GIF
	SWF
	Java
	DOM
	SVG

	Conclusions

