
Masaryk University in Brno
Faculty of Informatics

��� �
� � ���

	�
 ������������������ �
!�" #
$ %

& ' (*),+ -/.103254 687:9/;=<?> @ A�BDC
E FG HI

Competing Patterns
in Language Engineering

and Computer Typesetting

Petr Sojka

Ph.D. Dissertation

Supervisor: Karel Pala Brno, January 2005

Competing Patterns
in Language Engineering

and Computer Typesetting

A Dissertation
Presented to the Faculty of Informatics

of Masaryk University in Brno
in Partial Fullfillment of the Requirements

for the Ph.D. Degree

by
Petr Sojka

January 2005

Abstract

The goal of this dissertation is to explore models, methods and methodologies
for machine learning of the compact and effective storage of empirical data in
the areas of language engineering and computer typesetting, with a focus on
the massive exception handling.

Research has focused on the pattern-driven approach. The whole
methodology of so called competing patterns capable of handling exceptions
to be found so widely in natural language data and computer typesetting, is
further developed. Competing patterns can store context dependent informa-
tion and can be learnt from data, or written by experts, or combined together.

In the first part of the thesis, the theory of competing patterns is
built; competing patterns are defined, cornerstones of methodology based
on stratified sampling, bootstrapping and problem modeling by competing
patterns are described. Segmentation problems (hyphenation) and problems
of disambiguation of tagged data in corpus linguistics are used as examples
when developing formal model of the competing patterns method.

The second part consist of a series of seven published papers that de-
scribe problems addressed by the proposed methods: applications of compet-
ing patterns and related learning methods in areas of hyphenation, hyphen-
ation of compound words and, for example, the segmentation of Thai texts.

Key Words
competing patterns • context-sensitive patterns • machine learning • natural
language engineering • hyphenation • segmentation • Thai text segmentation
• disambiguation • formal concept analysis • part of speech tagging

iii

Declaration

I declare that this dissertation thesis is the result of my work carried out at the
Faculty of Informatics, Masaryk University in Brno, Czech Republic. The work
described here, is to the best of my knowledge, all my own, except where clear
reference is made to the work of others. The material contained herein has not
been submitted in whole or in part for a degree, diploma, professional or any
other qualification at this or another university.

Petr Sojka

iv

Acknowledgments

Feeling gratitude and not expressing it
is like wrapping a present and not giving it.

— William Arthur Ward
This thesis would not be the same without the support of many people that
deserve my thanks. It is my pleasure to thank them all.

Jiří Hořejš taught me the basics of Computer Science and helped me
with my first steps in the field. Under his guidance I learnt my first research
skills.

The work on the thesis has been supervised by Karel Pala, saving me
from dead-ends and narrowing my concentration of the research topics. I
would like to express my gratitude for his continuous encouragement during
the long period of doing research presented in this thesis. I have got many
words of encouragement from my colleagues: Jozef Gruska, Ivan Kopeček,
Jaroslav Král, Jiří Sochor and Pavel Zezula, to mention only some of them.

David Antoš, Pavel Ševeček and Pavel Smrž worked with me on the
problems presented in the second part of this thesis and provided valuable
feedback and discussions.

The thesis writing has included other tasks: the draft has been proofread
by Libor Škarvada and Tomáš Hála and corrections to my English prose were
done by Silvie Bilková, Michael L. G. Hill and James Thomas.

Finally, I owe my deepest gratitude to my family for their emotional
support and patience, especially during the final stages of the thesis prepara-
tion under the pressure of the deadline, when they tolerated me working long
hours in order to achieve completion of this work.

v

Contents

I The Theory of Competing Patterns 1

1 Introduction 2
1.1 Thesis Organization . 3

References . 4

2 Formalization of Competing Patterns 7
2.1 Basic Notions . 7

References . 12

3 Methodology of Competing Patterns 13
3.1 Stratification . 13
3.2 Bootstrapping . 14
3.3 Pattern Generation . 14
3.4 Pattern Parameter Setting Optimization 15
3.5 Layering of Disambiguation Patterns 15

References . 16

4 Applications of Competing Patterns 17
4.1 Competing Patterns in Computer Typesetting 17
4.2 Competing Patterns in Natural Language Processing 18

4.2.1 Pattern Mining . 19
4.2.2 Hyphenation versus Morphological Segmentation 20
4.2.3 Segmentation in Speech Processing 20
4.2.4 Encoding of Patterns for Part of Speech Tagging 21
4.2.5 Results . 21
References . 21

5 Conclusions 24
5.1 Author’s Contributions . 24
5.2 Mission Statement and Future Work 25

References . 25

vi

Contents

II Papers 26

6 Competing Patterns for Czech and Slovak Hyphenation 27
6.1 Motivation . 28
6.2 Hyphenation Development . 29

6.2.1 English . 29
6.2.2 Those Other Languages 30
6.2.3 Exception Logs . 31
6.2.4 The Need to Regenerate US English Patterns 34

6.3 Making Czech and Slovak Hyphenation Patterns 35
6.3.1 Czech Hyphenation Rules 35
6.3.2 Stratified Sampling . 36
6.3.3 Compound Words . 37
6.3.4 Generalization . 39

6.4 Future Work . 40
6.4.1 Compound Word Hyphenation Support in a Successor

to TEX . 40
6.4.2 Pattern Generalization . 41
6.4.3 Suggestions for ε-TEX . 41

6.5 Conclusions . 42
References . 42

7 Compound Word Hyphenation 46
7.1 Motivation . 47
7.2 Problems . 47

7.2.1 Compounds . 47
7.2.2 Dependency of Hyphenation Points on Semantics 48
7.2.3 Exceptions . 49
7.2.4 Discretionary Hyphenation Points 49
7.2.5 Language Evolution . 50

7.3 Solutions . 50
7.3.1 Compounds . 50
7.3.2 Discretionary Hyphenation Points 51
7.3.3 Exceptions . 53

7.4 Experiments . 53
7.4.1 Non-Uniformity of Languages 54
7.4.2 Compounds in German 55
7.4.3 Discretionary Hyphenation Points 56

7.5 Conclusions . 56
7.6 Summary . 57

References . 57

vii

Contents

8 Word Hy-phen-a-tion by Neural Networks 59
8.1 Introduction . 60
8.2 Hyphenation Problems with Neural Networks 61

8.2.1 Hyphenation of Czech Words 61
8.2.2 Neural Net Architecture 61
8.2.3 Training Sets Used . 62

8.3 Empirical Results — Brute Force Trial 62
8.4 The Influence of Input Coding: Use of Real Numbers 63
8.5 Comparison of Various Topologies 66
8.6 Syllabic Hyphenation . 67
8.7 Discussion . 68
8.8 Conclusion and Acknowledgments 68

References . 68

9 Hyphenation on Demand 70
9.1 Motivation . 71
9.2 Pattern Generation . 72
9.3 Pattern Development . 73
9.4 Pattern Bootstrapping and Iterative Development 73
9.5 Modularity of Patterns . 76
9.6 Common Patterns for More Languages 77
9.7 Phonetic Hyphenation . 77
9.8 Hyphenation for an Etymological Dictionary 78
9.9 More Hyphenation Classes . 79
9.10 Speed Considerations . 80
9.11 Reuse of Patterns . 80
9.12 Future Work . 81

References . 81

10 Competing Patterns for Language Engineering 83
10.1 Introduction . 84
10.2 Patterns . 85
10.3 Methodology . 87

10.3.1 Pattern Generation . 87
10.3.2 Stratification Technique 87
10.3.3 Bootstrapping Technique 87

10.4 Application to Czech Morphology 87
10.5 Application to Hyphenation and Compound Words 88
10.6 Outline of an Application to Part-of-Speech Tagging 88
10.7 Conclusion . 89

References . 90

viii

Contents

11 Pattern Generation Revisited 92
11.1 Introduction . 93
11.2 Patterns . 95
11.3 Pattern Generation . 96
11.4 Tagging with Patterns . 97
11.5 PATGEN Limitations . 98
11.6 PATLIB . 98
11.7 Packed digital tree (trie) . 99
11.8 Pattern Translation Processes . 101
11.9 Summary and Future Work . 103

References . 103

12 Context Sensitive Pattern Based Segmentation: A Thai Challenge 105
12.1 Motivation and Problem Description 106

12.1.1 The Thai Segmentation Problem 106
12.1.2 Existing Approaches to Thai Segmentation 107

12.2 Patterns . 107
12.2.1 Competing Patterns . 108
12.2.2 Example . 108
12.2.3 Comparison with Finite-State Approaches 109
12.2.4 Pattern Generation — Programs PATGEN and OPATGEN 109

12.3 Thai Texts in ORCHID Corpus . 110
12.3.1 Corpus Preprocessing . 110

12.4 Methodology . 112
12.4.1 Evaluation Measures . 112
12.4.2 Experiments . 113

12.5 Data-Driven Approach Based on Competing Patterns 115
12.5.1 Pattern Translation Processes 115
12.5.2 Applications in Computer Typesetting 116

12.6 Conclusion and Future Work . 117
References . 118

Bibliography 121

Author Index 134

Subject Index 138

ix

List of Tables

4.1 Rule templates in Brill’s POS tagger. 20

6.1 Hyphenation patterns for TEX with PATGEN statistics for vari-
ous languages. 32

6.2 Hyphenation patterns for TEX with PATGEN statistics for vari-
ous languages (continued). 33

6.3 A growing number of exceptions for hyphen.tex. 34
6.4 PATGEN statistics for Czech and Slovak. 37
6.5 Standard Czech hyphenation with Liang’s parameters for English. 37
6.6 Standard Czech hyphenation with improved pattern size strategy. 37
6.7 Standard Czech hyphenation with improved recall (percentage

of hyphenation points covered) strategy. 38
6.8 Czech hyphenation of composed words with Liang’s parame-

ters but allowing patterns of length one in level one. 38
6.9 Czech hyphenation of composed words with slightly modified

parameters (percentage of correct slightly optimized). 38
6.10 Czech hyphenation of composed words with other parameters

of generation (percentage of correct optimized, but percentage
of wrong and size increased). 39

6.11 PATGEN-like statistics for using various language patterns on a
Czech hyphenated word list. 40

7.1 Example of a discretionary hyphenation table for German. . . . 51
7.2 German compound word hyphenation with pattern size opti-

mized strategy. 55
7.3 German compound word hyphenation with different (percent-

age of correct optimised) strategy. 55
7.4 German compound word hyphenation covering even more

break points. 55
7.5 Standard German hyphenation pattern generation with slightly

improved (size) Liang’s parameters. 56

x

List of Tables

7.6 German hyphenation pattern generation using a word list with
discretionary points added (the same parameters as in Ta-
ble 7.5 on page 56). 56

8.1 Results of learning of the network 301-30-1 with 1,581,183
training patterns. 63

8.2 Results of learning of the network 301-100-1 with 1,581,183
training patterns. 63

8.3 Coding of letters according to the alphabet. 64
8.4 Results of experiments with the network 7-30-9-2 and coding

according to Table 8.3 on page 64. 64
8.5 Alternative coding of letters. 65
8.6 Results of experiments with the network 7-30-9-2 and coding

according to Table 8.5 on page 65. 65
8.7 Generalization ability of the network 7-30-9-2. 67
8.8 Generalization ability of the network 301-30-1. 67
8.9 Results of experiments with the network 7-30-1 and conson-

ant/vowel coding. 68

11.1 Packed trie. 100

12.1 Results of Thai segmentation pattern generation (6,000 para-
graphs from ORCHID). 113

12.2 Results of Thai segmentation pattern generation (8,000 para-
graphs from ORCHID). 113

12.3 Precision, recall, and F-score on unseen text. 114

xi

List of Figures

7.1 English word list statistics: US English word list (123 664
words), average word length 8.93 characters. 53

7.2 Czech word list statistics: Czech word list (3,300,122 words),
average word length 10.55 characters. 54

7.3 German word list statistics: German word list (368,152 words),
average word length 13.24 characters 54

8.1 Comparison of the results of experiments with the network
7-30-9-2 using both coding alternatives. 66

9.1 Example of phonetic hyphenation usage. 78
9.2 Using OMEGA to typeset paragraphs in which words from

languages with more than 256 different characters may appear
and be hyphenated in parallel. 79

10.1 Competing patterns and pattern levels. 86

11.1 Trie — an example. 100

12.1 Competing patterns and pattern levels for segmentation of
English word hyphenation. 109

12.2 ORCHID loaded into Emacs. 111

xii

Terms and Notation

Symbol Meaning
Σ an arbitrary finite non-empty set of symbols
ε an empty string
Σ∗ the set of all finite sequences of the elements of Σ including ε

Σ+ the set of all finite sequences of the elements of Σ (without ε)
string an element of Σ∗

|s| the length of a string s
|Σ| the cardinality of a set Σ

N the set of all positive integers
R the set of all real numbers
{a1, a2, . . . , an} the enumeration of elements of a finite set
W r C set difference {x|x ∈ W ∧ x 6∈ C}
· (centered dot) concatenation of symbols
. (dot symbol) begin of word marker and end of word marker

xiii

PART I

THE THEORY OF COMPETING PATTERNS

Chapter 1

Introduction

“Everything is a symbol, and symbols can be combined to form patterns. Pat-
terns are beautiful and revelatory of larger truths. These are the central ideas
in the thinking of Kurt Gödel, M. C. Escher, and Johann Sebastian Bach, per-
haps the three greatest minds of the past quarter-millennium.” (Hofstadter,
1979) Recognition of patterns is considered as the central issue in intelligence.
Artificial intelligence needs statistical emergence (Hofstadter, 1983): for real se-
mantics, symbols must be decomposable, complex, autonomous — active. The
proper handling of various types of patterns is essential in the many levels of
natural language processing (NLP) and other fields.

The problems of computerized natural language processing and com-
puter typesetting have been tackled by both linguists and computer scien-
tists for decades. As the available computing power steadily grows, new ap-
proaches recently deemed impossible are becoming reality — example being
corpus linguistics (Armstrong et al., 1999; Young and Bloothooft, 1997; Bogu-
raev and Pustejovsky, 1996). The so-called empirical approaches are used for
machine learning of language phenomena: from huge language data (cor-
pora, wordlists), language models and patterns are learnt by sophisticated al-
gorithms through machine learning techniques. As an example of this shift,
successful unsupervised learning of natural language morphology from lan-
guage word lists has been reported recently (Goldsmith, 2001). These merely
statistical approaches work quite well for many tasks in the area of computa-
tional linguistics, and quickly reach above 90% efficiency in tasks such as part
of speech tagging, sentence segmentation, speech recognition or probabilistic
parsing. The main drawback of a solely statistical approach is that the results
of learning methods are usually not understandable by expert linguists, as the
language models are hidden in weights of synapses of neural nets or in zillions
of probabilities or conditioned grammar rules. It appears that going the “last
mile”, increasing the remaining few percent is not feasible, and ways to cover
the remaining exceptions are being sought.

2

Chapter 1 1.1 Thesis Organization

Conversely, a rule-based approach, such as, when the results of the
learning process are human-understandable rules or patterns, allows for
the merging of hand-crafted and machine learnt knowledge. It is becoming
clear that a close cooperation between computer scientists and linguists is
necessary (Brill et al., 1998) — both sides need each other. Neither rigorous
computational analysis and formal models nor linguistic introspection and
language models should be absent in successful approaches.

Patterns can be identified as a set of objects that share some common
property (a formal definition is to be found in Chapter 2 on page 7). During
the emergence of patterns covering the rules in data, some exceptions may
occur. Remaining errors and exceptions covered in the first level can be viewed
again as set of objects and described by inhibiting patterns. The next layer
of covering patterns may describe the patterns in the data not handled by
previous rules, and so on. By this process, knowledge from the data can
be learnt, either by an automatic procedure, or by information fusion from
different sources.

There is plethora of methods of machine learning (Michalski et al.,
1983a; Michalski et al., 1983b; Mitchell, 1997), data mining and knowledge
management (Shi et al., 2004), structural pattern recognition (Schlesinger and
Hlaváč, 2002), exploratory data analysis (Hájek and Havránek, 1978; Hájek
et al., 2004) and association rule mining (Zhang and Zhang, 2002). However,
up to now, we are not aware of an systematic attempt made to deal with
the large-scale exception handling that is so widespread across linguistic data
in machine learning methods and data mining. This work is one of the first
attempts to formalize and fully employ the theory of competing patterns for
the utilization of language data in the areas of natural language processing and
computer typesetting.

1.1 Thesis Organization
The thesis is organized into two parts. As the research has been carried over
last decade and results have already been published in scientific journals and
conference proceedings, the main part of the thesis is the collection of seven
published papers in Part II on page 27. To make the thesis focused on one
topic, we are not including any of the many other papers published by the
author in the last decade: (Géczy et al., 1993; Thành et al., 1996; Sojka, 1998a;
Sojka, 1998b; Došlá et al., 1999; Došlá et al., 2002; Sojka, 2003a; Sojka, 2003b;
Sojka, 2003c; Holeček and Sojka, 2004; Nevěřilová and Sojka, 2005), among
others.

3

Chapter 1 1.1 Thesis Organization

The first part consists of several chapters that describe the methodology
of competing patterns. Pattern theory is formalized in Chapter 2 on page 7. An
overview of the methodology of pattern development is given in Chapter 3 on
page 13. A list of applications in the areas of computer typesetting and
language engineering is discussed in Chapter 4 on page 17. The closing chapter
of part one sums up author’s contributions of this thesis and discusses the
direction of further research and the employment of results.

References are listed at the end of each chapter; a collected bibliography
is at the end on page 121.

References
Susan Armstrong, Kenneth Church, Pierre Isabelle, Sandra Manzi, Evelyne

Tzoukermann, and David Yarowsky, editors. 1999. Natural Language
Processing Using Very Large Corpora. Kluwer Academic Publishers Group.

Branimir Boguraev and James Pustejovsky. 1996. Corpus Processing for Lexical
Acquisition. MIT Press.

Eric Brill, Radu Florian, John C. Henderson, and Lidia Mangu. 1998. Beyond
N-Gram: Can Linguistic Sophistication Improve Language Modeling? In
Proceedings of the ACL ’98.

Zuzana Došlá, Roman Plch, and Petr Sojka. 1999. Matematická analýza s programem
Maple: 1. Diferenciální počet funkcí více proměnných (Mathematical Analysis
with Program Maple: 1. Differential Calculus). CD-ROM,
http://www.math.muni.cz/~plch/mapm/, December.

Zuzana Došlá, Roman Plch, and Petr Sojka. 2002. Matematická analýza s programem
Maple: 2. Nekonečné řady (Mathematical Analysis with Maple: 2. Infinite
Series). CD-ROM, http://www.math.muni.cz/~plch/nkpm/, December.

Peter Géczy, Petr Sojka, and Jan Blatný. 1993. Robustness and Generalization of
Multilayer Neural Networks. In Igor Mokriš, editor, Proceedings of the
International Conference Image Processing and Neural Networks, Liptovský
Mikuláš, 1993, pages 163–170, Liptovský Mikuláš. Military Technical
University in Liptovský Mikuláš, Slovak Electrotechnical Society of Military
Technical University.

John Goldsmith. 2001. Unsupervised Learning of the Morphology of a Natural
Language. Computational Linguistics, 27(2):153–198, June.

Petr Hájek and Tomáš Havránek. 1978. Mechanising hypothesis formation —
Mathematical foundations for a general theory. Springer-Verlag.

Petr Hájek, Jan Rauch, David Coufal, and Tomáš Feglar. 2004. The GUHA Method,
Data Preprocessing and Mining. In Database Support for Data Mining
Applications, volume LNAI 2862, pages 135–153.

4

http://www.math.muni.cz/~plch/mapm/
http://www.math.muni.cz/~plch/nkpm/

Chapter 1 1.1 Thesis Organization

Douglas R. Hofstadter. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. Basic
Books.

Douglas R. Hofstadter. 1983. Artificial intelligence: Subcognition as computation.
Jan Holeček and Petr Sojka. 2004. Animations in a pdfTEX-generated PDF. In

Apostolos Syropoulos, Karl Berry, Yannis Haralambous, Baden Hughes,
Steven Peter, and John Plaice, editors, TEX, XML, and Digital Typography,
volume 3130 of Lecture Notes in Computer Science, pages 179–191, Berlin,
Heidelberg, August. Springer-Verlag.

Ryszard Spencer Michalski, Jaime Guillermo Carbonell, and Tom Michael Mitchell.
1983a. Machine Learning: An Artificial Intelligence Approach. Tioga
Publishing Company, Palo Alto.

Ryszard Spencer Michalski, Jaime Guillermo Carbonell, and Tom Michael Mitchell.
1983b. Machine Learning: An Artificial Intelligence Approach, volume 2.
Morgan Kaufmann Publishers, Inc., Los Altos, California.

Tom Michael Mitchell. 1997. Machine Learning. McGraw-Hill.
Zuzana Nevěřilová and Petr Sojka. 2005. XML-Based Flexible Visualisation of

Networks: Visual Browser. Submitted.
Michail I. Schlesinger and Václav Hlaváč. 2002. Ten Lectures on Statistical and

Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht, The
Netherlands, May.

Yong Shi, Weixuan Xu, and Zhengxin Chen, editors. 2004. Data Mining and
Knowledge Management: Chinese Academy of Sciences Symposium
CASDMKM, volume LNCS 3327 of Lecture Notes in Computer Science.
Springer-Verlag, July.

Petr Sojka. 1998a. An Experience from a Digitization Project. Cahiers GUTenberg,
(28–29):276–281, March.

Petr Sojka. 1998b. Publishing Encyclopaedia with Acrobat using TEX. In Towards the
Information-Rich Society. Proceedings of the ICCC/IFIP conference Electronic
publishing ’98, pages 217–222, Budapest, Hungary, April. ICCC Press.

Petr Sojka. 2003a. Animations in PDF. In Proceedings of the 8th SIGCSE Annual
Conference on Innovation and Technology in Computer Science Education,
ITiCSE 2003, page 263, Thessaloniki. Association of Computing Machinery.

Petr Sojka. 2003b. Interactive Teaching Materials in PDF using JavaScript. In
Proceedings of the 8th SIGCSE Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2003, page 275,
Thessaloniki. Association of Computing Machinery.

Petr Sojka. 2003c. Rapid Evaluation using Multiple Choice Tests and TEX. In
Proceedings of the 8th SIGCSE Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2003, page 265,
Thessaloniki. Association of Computing Machinery.

5

Chapter 1 1.1 Thesis Organization

Hàn Thế Thành, Petr Sojka, and Jiří Zlatuška. 1996. TEX2PDF — Acrobatics with an
Alternative to DVI Format. TUGboat, 17(3):244–251.

Steve Young and Gerrit Bloothooft, editors. 1997. Corpus-Based Methods in
Language and Speech Processing. Kluwer Academic Publishers Group,
Dordrecht.

Chengqi Zhang and Shichao Zhang. 2002. Association Rule Mining, volume LNAI
2307 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

6

Chapter 2

Formalization of Competing Patterns

A theory of patterns can be developed using several formalisms. The choice
of representation crucially determines the performance of a pattern mining
process from data, and the analysis of information-theoretic properties of
patterns.

In this chapter we build a competing patterns theory formally. Other
approaches, as formalisms of Grenander’s general pattern theory (Grenander,
1993), or formal concept analysis (Carpineto and Romano, 2004) are worth
studying, too.

2.1 Basic Notions
The two fundamental problems are pattern definition and pattern recogni-
tion/generation from input data. There are many ways of formalizing pat-
terns — sets of objects sharing some recognizable properties (attributes, struc-
ture, . . .).
Definition 2.1 (pattern). By alphabet we mean a finite, nonempty set. Let us
have two disjoint alphabets Σ (the alphabet of terminals , called also called
characters or literals) and V (the alphabet of variables). Patterns are words
over the free monoid 〈(Σ ∪ V)∗, ε, ·〉. The length |ε| of an empty word ε is zero.
Patterns having only terminals are called terminal patterns or literal patterns .
The length of a literal pattern p, denoted by |p|, is the number of literals in it.
The language L(α) defined by a pattern α consists of all words obtained from α

by leaving the terminals unchanged and substituting a terminal word for each
variable v. The substitution in our case has to be uniform : different occurences
of v are replaced by the same terminal word. If the substitution always replaces
variables by a nonempty word, such language LNE is non-erasing , and such
pattern is called NE-pattern . Similarly, we define an erasing language LE as
a language generated by an E-pattern such that substitution of variable v by
empty word ε is allowed.

7

Chapter 2 2.1 Basic Notions

The pattern SVOMPT for English sentences where the variables denote
Subject, Verb, Object, Mood, Place, Time may serve as an example of E-pattern.
A useful task is to infer a pattern common to all input words in a given sample
by the process of inductive inference . It has been shown by Jiang et al. (1995)
that the inclusion problem is undecidable for both erasing and non-erasing
pattern languages. It is easy to show that the decidability of the equivalence
problem for non-erasing languages is trivial. The decidability status of the
equivalence problem for E-patterns remains open. These results show that
trying to infer language description in the form of a set of patterns (or the
whole grammar) automatically is very difficult task.

We focus our attention in the further study to literal patterns only.
Definition 2.2 (classifying pattern). Let A be alphabet, let 〈A,≤〉 be a partially
ordered system, ≤ be a lattice order (every finite non-empty subset of A has
lower and upper bound). Let . be a distinguished symbol in Σ′ = Σ ∪ {.} that
denotes the beginning and the end of word — begin of word marker and end
of word marker . Classifying patterns are the words over Σ′ ∪ V ∪ A such that
dot symbol is allowed only at the beginning or end of patterns.

Terminal patterns are “context-free” and apply anywhere in the classi-
fied word. It is important to distinguish patterns applicable at the beginning
and end of word by the dot symbol in a pattern.1 Classifying patterns allow us
to build tagging hierarchies on patterns.
Definition 2.3 (word classification, competing word patterns).
Let P be a set of patterns over Σ′ ∪ V ∪ A (competing patterns , pattern
set). Let w = w1w2 . . . wn be a word to be classified with P. Classification
classify(w, P) = a0w1a1w1 . . . wnan of w with respect to P is computed from
a pattern set P by a competing procedure: all patterns whose projection to Σ

match a substring of w are collected. ai is supremum of all values between
characters wi and wi+1 in matched patterns. classify(w, P) is also called the
winning pattern .

It is worth noting that the classification procedure can be implemented
very efficiently even for large pattern bases. Its effectiveness depends on the
data structure where the patterns are stored. When an indexed trie is used, the
classification of a word can be realized in linear time with respect to the word
length |w| and does not depend on |P|.

Our motivation for studying of competing patterns was the word
division (hyphenation) problem. It is related to a dictionary problem — the
problem of effective storage of a huge word list. An enumerated list of
Czech words may have well above 6,000,000 words. Storage of such a large

1. It is itmrnopt to dgtusisinh ptatren apcbliplae at the bngninieg and end of wrod by the dot
sobmyl in a ptarten.

8

Chapter 2 2.1 Basic Notions

table even using hashing requires considerable space. Another idea is to
use finite-state methods — finite-state automata and transducers. It has been
shown that decomposition of the problem by using local grammars (Gross,
1997) or building cascades of finite state machines (Hobbs et al., 1997) is a
tractable, even though very time-consuming task. The main problem with
these approaches is that they do not generalize well — they do not perform
well on unseen words. A structural decomposition of W into patterns is the
key idea here, and brings better generalization qualities:
Definition 2.4 (word division problem). Let W be a set of words over
Σ ∪ {0, 1} such that placing 1 between two letters in w denotes the possibility
of word division at that point (placing 0 or nothing means the opposite). We
want to find pattern set P such that winning patterns classify(w, P) encode the
same information as w. In this case we say that P or classify(w, P) covers w.

An example of competing patterns for the hyphenation problem is
shown in Figure 10.1 on page 86.

We want to find a pattern set that is minimal in size and maximal in
performance; we have to define these performance measures.
Definition 2.5 (precision, recall, F-score). Let W = (Σ ∪ {0, 1})∗, and P a
set of patterns over Σ′ ∪ N. Let good(w, P) is the number of word divisions
where classify(w, P) covers w, good(W, P) = ∑w∈W good(w, P). bad(w, P) is
the number of word divisions where classify(w, P) classifies word division
that is not in w, bad(W, P) = ∑w∈W bad(w, P). missed(w, P) is the number of
word divisions where classify(w, P) fails to classify word division that is in w,
missed(W, P) = ∑w∈W missed(w, P). The definition of the measures is then as
follows:

precision(W, P) =
good(W, P)

good(W, P) + bad(W, P)
(2.1)

recall(W, P) =
good(W, P)

good(W, P) + missed(W, P)
(2.2)

The precision and recall scores can be combined into a single measure,
known as the F-score (Manning and Schütze, 1999):
Definition 2.6 (F-score).

F(W, P) =
2 × precision(W, P) × recall(W, P)

precision(W, P) + recall(W, P)
(2.3)

An F-score reaches its maximum when both precision and recall is
maximal; in the case F(W, P) = 1 all information about word division is
compressed into the pattern base P.

9

Chapter 2 2.1 Basic Notions

Definition 2.7 (lossless compression, cross validation). If F(W, P) = 1 we say
that we losslessly compressed W into P. We can test performance of P on an
unseen word list W ′ to measure the generalization properties of pattern set
P — in the machine learning community, the term cross validation is used.

Here we see one advantage of the pattern approach. In the case where
we have solved the hyphenation problem by storing all the words with the
division point in a hash table or using a finite state transducer, we do not
know how to segment new, unseen words. On the other hand, pattern P
trained on W can perform well on unseen words (typically new long words
or compounds) — as in patterns the rules are generalized.

There are many pattern sets P that losslessly compress (cover) W; one
straightforward solution is having just one pattern for every word w ∈ W by
putting dot symbol around the word with division points marked by 1. Such
a pattern set P is a feasible solution . But we want to obtain minimal pattern
set. Minimality can be measured by the number of patterns, by the number of
characters in patterns, or by the space the patterns occupy when stored in some
data structure. Even if we take the simplest measure by counting the patterns,
and try to find a minimal set of patterns that cover W, we will show how hard
the task is. To formulate it more precisely, we need to define:

Definition 2.8 (minimum set cover problem). An instance of set cover
problem is finite set X and a family F of subsets of X, such that X =

⋃
S∈F S.

The problem is to find a set C ⊆ F of minimal size which covers X, i.e.
X =

⋃
S∈C S.
The minimum set cover problem (MSCP) is known to be in the class

of NPO problems (optimization problems analogical to NP decision prob-
lems), (Ausiello et al., 1999). A variant of MSCP, in which the subsets have
positive weights and the objective is to minimize the sum of the weights in
a set cover, is also NPO. Weighted version of minimum set cover problem is
approximable within 1 + ln|X| as shown by Chvátal (1979).

Theorem 2.1 (pattern minimization problems). Let W be a set of words with
one division only. Problem of finding minimal number of patterns P that losslessly
compress W is equivalent to the (weighted) minimum set cover problem.

Proof. For every subset C ∈ W there exists at least one feasible solution PC
such that PC covers C and does not cover any word in W r C, e.g., pattern
set {.c.| c ∈ C}. Between all such feasible solutions we choose a canonical
representative P′

C — a set which is smallest by some measure (e.g., number of
patterns, or number of characters in the pattern set). We now have a one to
one correspondence between all pattern sets that cover exactly C represented
by P′

C and C. Thus we showed that a pattern coverage minimization problem

10

Chapter 2 2.1 Basic Notions

is equivalent to the weighted minimum set cover (Chvátal, 1979) in NPO
class.

We have shown that even a pattern covering problem without compe-
tition is already NPO. When trying to cover W by competing patterns, com-
plicated interactions may arise — we need some approximation of the optimal
solution.

Liang’s main concern in the pattern covering problem was the size of
the patterns stored in a packed trie (indexed trie with packing the different
families of the trie into a single large array — see Table 11.1 on page 100) in
computer memory. He discusses NP-completeness of finding a minimum size
trie (Liang, 1983, page 25) by pointing to the problem transformation from
graph coloring by Pfleger (1973).

Competing patterns extend the power of finite state transducer some-
what like adding the “not” operator to regular expressions.

Methods for the induction of covering patterns from W are needed.
Attempts to catch the regularities in empirical data (W in our case) can

be traced back to the 1960s, when Chytil and Hájek started to generate unary
hypotheses on finite models using the GUHA method (Hájek and Havránek,
1978).
Definition 2.9 (matrix representation of the data). Let us have m × n matrix
W = wij of data that describe m objects with n binary attributes P1, P2, . . . , Pn
(unary predicates). Either Pj or ¬Pj holds. Elementary conjunction is a con-
juction of literals Pj, 1 ≤ j ≤ n, where every predicate appears once at most.
Similarly, Elementary disjunction is a disjunction of literals Pj with the same
condition. We say that the object i fulfills elementary conjunction Φ if the for-
mula exactly describes the attributes in line i of W. We say that Φ holds for
W if Φ holds for all objects (lines in W). We say that formula Φ is p-truth if Φ

holds for at least 100p% of objects, p ∈ R, 0 < p ≤ 1.
We immediately see that we can represent our hyphenation problem by

a matrix W: the attribute in column j, Pj tells whether a word can be divided
(true or 1) or not (false or 0).

GUHA method searches for such elementary conjunctions A (ante-
cedents) and elementary disjunctions S (succedents) with no common pred-
icates, such that implication A → S is p-truth; it searches for hypotheses with
highest p to detect dependencies in data. Observational language in this case
is propositional logic . There are many general approaches using first-order
predicate calculus or even higher formalisms (Lloyd, 2003), but these are not
necessary for our task.

11

Chapter 2 2.1 Basic Notions

Definition 2.10 (p-truth pattern α). Let us have m hyphenated words repre-
sented in matrix W as in Definition 2.9. We say that pattern α is p-truth pattern
if it covers at least 100p% of applicable word segmentation points.

The greedy approach for pattern search consists in collecting p-truth
patterns with the highest p of the shortest length. Short patterns give a high
generalization and good minimalization of space for pattern storage. But
during its generation some heuristics have to be used, as maximal coverage of
covering patterns does not imply good performace in the succeeding phases
of pattern generation (of inhibiting patterns). Further discussion on pattern
preparation follows in Section 3.3 on page 14.

References
Giorgio Ausiello, Giorgio Gambosi, Pierluigi Crescenzi, and Viggo Kann. 1999.

Complexity and Approximation. Springer-Verlag.
Claudio Carpineto and Giovanni Romano. 2004. Concept Data Analysis: Theory and

Applications. Wiley, July.
Václav Chvátal. 1979. A Greedy Heuristic for the Set Covering Problem.

Mathematics of Operations Research, 4:233–235.
Ulf Grenander. 1993. General Pattern Theory. Clarendorn Press, Oxford.
Maurice Gross. 1997. The Construction of Local Grammars. pages 329–354.
Petr Hájek and Tomáš Havránek. 1978. Mechanising hypothesis formation —

Mathematical foundations for a general theory. Springer-Verlag.
Jerry R. Hobbs, Douglas Appelt, John Bear, David Israel, Megumi Kameyama, Mark

Stickel, and Mabry Tyson. 1997. FASTUS: A Cascaded Finite-State Transducer
for Extracting Information from Natural-Language Text. pages 383–406.

Franklin M. Liang. 1983. Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis,
Department of Computer Science, Stanford University, August.

John W. Lloyd. 2003. Learning Comprehensible Theories from Structured Data. In
S. Mendelson and A.J. Smola, editors, Advanced Lectures on Machine
Learning, LNAI 2600, pages 203–225.

Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press.

12

Chapter 3

Methodology of Competing Patterns

The idea of competing patterns is taken from the method developed by
Liang (1983) for his English hyphenation algorithm. It has been shown by
extensive studies (Sojka and Ševeček, 1995; Sojka, 1995; Sojka, 1999) that
the method scales well and that parameters of the pattern generator — PAT-
GEN program (Liang and Breitenlohner, 1999) — could be fine-tuned so that
virtually all hyphenation points are covered, leading to about 99.9% efficiency.

The methodology consists of several parts:
stratification – for repetitive pattern generation, it is practical to have a

stratified word list with ‘information bearing’ samples only;
bootstrapping – input data (word list with marked hyphenation points)

preparation;
goal-driven threshold setting heuristics – the quality of generated patterns

depends on many parameters that have to be set in advance;
data filtering by threshold setting heuristics – we can filter out ‘dangerous’

data — data that are hard to learn for manual inspection.

3.1 Stratification
Word lists from which patterns are generated may be rather big. A full list
of Czech word forms has about 6,000,000 entries when generated by the
Czech morphological analyzer ajka. It may be even more than that for other
tasks with huge input data collections such as POS tagging, or Thai text
segmentation (see Chapter 12 on page 105). Context necessary for ambiguity
resolution is often repeated several times — a word list may be stratified.
Stratification means that from ‘equivalent’ words only one or small number
of representatives are chosen for the pattern generation process.

With the stratification procedure described in Section 6.3.2 we have
downsampled 3,300,000 Czech word forms to a word list of 372,562 word

13

Chapter 3 3.2 Bootstrapping

forms (samples) for PATGEN input. The same approach was used also for
Slovak with the results are in Table 6.4 on page 37.

Stratified sampling is less important when we insist on lossless com-
pression, or when we have enough computing power for pattern generation.

3.2 Bootstrapping
The preparation of data for machine learning is often a time-consuming task
and for extremely large data sets, a technique called bootstrapping is used.
It was used for tagging the ORCHID corpus (Section 12.3 on page 110), and
for tagging word divisions it is also usefull. The idea is to tag only small
initial data set (word list), and generate patterns from this input. Then, these
bootstrap patterns are used for the automatic tagging of a bigger input list, and
checked before the next pattern generation phase.

Bootstrapping may bring errors especially with overlapping prefixes
(ne-, nej-, po-, pod-). It is worth the trouble marking these points separately,
e.g., with the help of a morphological analyzer. For detailed description of this
technique, refer to Section 9.4 on page 73.

3.3 Pattern Generation
Pattern generation processes are driven by several threshold parameters
whose settings are essential for the quality and properties (precision and
recall) of generated patterns. Our experience shows that parameter setting
not only depends on the requested pattern behaviour but to a certain extent
on the problem at hand. Parameter setting has to be tuned for every pattern
generation project.

PATGEN runs at various levels. At every level, a new set of patterns
is generated. It starts with short patterns (counting frequencies of substrings
of a given length), generating longer ones in the next level as ‘exceptions’,
and making ‘exceptions of exceptions’ in the next level, etc. With this model,
we can learn exact dependencies between contexts of hyphenation points in
words that are used in a much wider context than can standard (bi|tri)gram or
other statistical methods taken into consideration — there are examples when
the segmentation decision depends on the word segment that is six characters
away.

There is no known algorithm that helps with setting of the parameters
of the learning process. Liang’s original patterns (hyphen.tex) that are in
every TEX distribution as a default patterns for (American) English are very

14

Chapter 3 3.4 Pattern Parameter Setting Optimization

inefficient and have very low recall. They cover only 89.3% (Liang, 1983,
page 37) — of very small word list (Webster’s Pocket Dictionary) of 49,858
words. The threshold used in pattern generation were not tuned at all, and
better choices can lead to smaller pattern size and higher (actually complete)
coverage of hyphenation points in an input word list.

3.4 Pattern Parameter Setting Optimization
Our extensive experience shows that parameter setting is highly language de-
pendent — it differs when generating patterns for Thai segmentation (Chap-
ter 12 on page 105) for Czech and Slovak hyphenations (Chapter 6 on page 27
or German compounds (Chapter 7 on page 46). Scannell (2003) reports that
using this methodology he generated a new pattern for Irish that does not
produce any hyphen points which are not in the database and miss just 10 out
of 314,639 hyphen points. This is consistent with our findings that the method-
ology is usable as very effective lossless compression algorithm, and there is
the power of competing patterns to cover all exceptions from data.

We may experiment with parameter setting so that generated patterns
are nearly lossless. Words that were not covered in this phase are in some way
different than the rest. This difference may well be right, but usually show an
input data tagging error. We suggest manually checking this small set of words
esspecially when developing and marking new word lists from scratch.

3.5 Layering of Disambiguation Patterns
There can be a different version of the input data (different variants of
segmentation, tagging), with different patterns. As competing patterns are
decomposable into layers, we can “plug-in” patterns developed by experts on
the problem and merge or compare them with those generated. We can let the
patterns “compete” — or adjust them so that, for example, expert knowledge
takes preference over generated patterns, or we can take the expert patterns
as initial set of patterns and generate the patterns to cover the rest of the
input data. Tables 6.1 and 6.2 show that hyphenation patterns were often
done by hand, or by a combination of hand crafted and generated patterns.
Having several layers of expert patterns, we can easily set up their priorities
by changing the classification numbers in the patterns. This priority handling
is necessary in most information fusion tasks.

The potential of the methodology was mostly tested on the segmenta-
tion problems described in the following chapter.

15

Chapter 3 3.5 Layering of Disambiguation Patterns

References
Franklin M. Liang and Peter Breitenlohner. 1999. PATtern GENeration program for the

TEX82 hyphenator. Electronic documentation of PATGEN program version 2.3
from web2c distribution on CTAN.

Franklin M. Liang. 1983. Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis,
Department of Computer Science, Stanford University, August.

Petr Sojka and Pavel Ševeček. 1995. Hyphenation in TEX — Quo Vadis? TUGboat,
16(3):280–289.

Petr Sojka. 1995. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297.

Petr Sojka. 1999. Hyphenation on Demand. TUGboat, 20(3):241–247.

16

Chapter 4

Applications of Competing Patterns

The methodology of competing patterns was used on a wide spectrum of
tasks, and for several tasks we have designed or suggested its application.
In Section 4.1 we list applications in computer typeseting, and in Section 4.2 on
the following page tasks solvable by our methodology in the area of language
engineering are discussed.

4.1 Competing Patterns in Computer Typesetting
Pattern technique can be used in every task, where some context-dependent
action should be taken during typesetting. There are many examples of
application in the computer typesetting area:
Hyphenation for Czech and Slovak. New hyphenation patterns and process

of their development is described in Chapter 6 on page 27 and (Sojka,
2004).

Hyphenation of compound words. The plausibility of the approach was
shown for German in (Sojka, 1995).

Context-dependent ligatures and discretionary insertions. A typesetting en-
gine should not use ligatures in some cases, e.g., on compound word
boundaries, and insert or change characters during the hyphenation of
some characters in German. Chapter 7 on page 46 discusses these ap-
plications in detail.

Fraktur long s versus short s. In the Gothic letter-type there are two types of
s-es, a long one and the normal one. The actual usage depends on the
word’s morphology. This is another typical context-dependent auto-
tagging procedure implementable by contextual patterns.

End of sentence recognition. To typeset a different width space at the end of
a sentence automatically, one has to filter out abbreviations that do not
normally appear at the end of a sentence. A hard, but managable task
for competing patterns.

17

Chapter 4 4.2 Competing Patterns in Natural Language Processing

Context dependent spell checking. Storing a big word list in a packed digital
tree is feasible and gives results comparable to spelling checkers like
ispell. We think that even context-dependent spell checking can be
taught by patterns.

Thai segmentation. There is no explicit word/sentence boundary, punctua-
tion and inflexion in Thai text. This information, implicitly tagged by
spaces and punctuation marks in most languages, is missing in stan-
dard Thai text transliteration. It is, however, needed, during typeset-
ting for line-breaking. It was shown in Chapter 12 on page 105 that the
pattern-based technology outperforms the currently used probabilistic
trigram model (Sornlertlamvanich et al., 1999).

Arabic letter hamza. Typesetting systems for Arabic scripts need to have
built-in logic for choosing one of five possible appearances of the letter
hamza, depending on the context. This process can easily be learned as
pattern-driven task.

Greek or Czech diacritics. In (Haralambous and Plaice, 2001, page 153), there
is an algorithm — full of exceptions and context dependent actions —
for the process of adding proper accents in Greek texts. Most parts of it
can easily be described as a sequence of pattern-triggered actions and
thus be implemented by the pattern technique.
Similarly, there are many Czech texts written without diacritics from the
times when email mailers only supported seven-bit ASCII, which wait
to be converted into a proper form. Even for this task patterns could be
trained.

4.2 Competing Patterns in Natural Language Processing
One’s ability to produce and recognize grammatical utterances

is not based on the notions of statistical approximation and the like.
— Chomsky (1957)

Corpora based natural language processing has become a mainstream research
topic (Halteren, 1999; Armstrong et al., 1999) in the area of language engineer-
ing in the last decade. The power of today’s computer chips allows the stor-
age and searching of the whole of Shakespeare’s works within a microsecond.
The crucial problem is to identify and capture the right language patterns for
particular tasks for various language models. The ideal solution is to learn
language models from language corpora (Čermák, 1998; Francis and Kučera,
1982; Pala et al., 1997).

In spite of the wide availability of more powerful (context free, mildly
context sensitive, or even Turing equivalent) formalisms, the bulk of the

18

Chapter 4 4.2 Competing Patterns in Natural Language Processing

applied work on language and sub-language modeling (Natural Language
Engineering) is still performed by various Finite-State Methods (based on
Finite-State Automata or Finite-State Transducers) (Karttunen et al., 1996;
Mohri, 1997; Roche and Schabes, 1995; Mohri, 1996; Kornai, 1999).

While it is certainly true that the mathematical theory of (weighted)
regular sets and relations is mature, the same cannot be said of the algorith-
mic aspects of the subject. As the size of machines grows, we can discern two
complementary trends: on the one hand, the search for more efficient algo-
rithms continues, and on the other, techniques leveraging the already remark-
able efficiency and scalability of finite state techniques begin to appear (Kor-
nai, 1999). Building such finite state language models from scratch is a very
time-consuming task.

4.2.1 Pattern Mining
An important feature of a learning machine is that

its teacher will often be very largely ignorant of quite what is going on inside,
although he may still be able to some extent to predict his pupil’s behavior.

— Turing (1950)

Statistical techniques (hidden Markov models , N-gram models) for language
learning (for an overview see (Manning and Schütze, 1999)) are frequently
used, especially in speech analysis. These models attempt to capture con-
straints of language by conditioning the probability of a word on a small fixed
number of predecessors. The inadequacy of Markov models has been stated
by Chomsky (1956). Nevertheless, there are several attempts to use the Viterbi
algorithm (Viterbi, 1967) for POS tagging tasks. These methods require large
corpora (sparseness problem) to achieve adequate results.

In his thesis, Brill (1993) developed a rule-based approach for learning
local dependencies in language data (part of speech tagging). His tagger has
three parts, each of which is inferred from a training corpus: a lexical tagger,
unknown word tagger and contextual tagger, which is the core of the tagger.
Contextual rule templates are shown in Table 4.1 on the following page.

Templates are instantiated based on tag statistics (280 contextual rules
were obtained). Problems with guessing the right templates for particular
problem are partially overcome by unsupervised learning of the rule-based
part (Brill and Pop, 1999). Word precision of POS tagging in English is reported
up to 96%, but it is a believed that with more linguistic sophistication, the
results may even be improved (Brill et al., 1998).

19

Chapter 4 4.2 Competing Patterns in Natural Language Processing

Table 4.1: Rule templates in Brill’s POS tagger.
A B PREVTAG C A to B if previous tag is C
A B PREV1OR2OR3TAG C A to B if previous 1/2/3 tag is C
A B PREV1OR2TAG C A to B if previous one or two tags is C
A B NEXTTAG C A to B if next tag is C
A B SURROUNDTAG C D A to B if surrounding tags are C and D
A B NEXTBIGRAM C D A to B if next bigram tag is C D
A B PREVBIGRAM C D A to B if previous bigram tag is C D

4.2.2 Hyphenation versus Morphological Segmentation
Hyphenation rules are in fact set by conventions. German publishers usually
respect DUDEN (1991), British use conventions published by Allen (1990),
Americans has their Webster’s dictionary (Gove and Webster, 2002).

Conventions differ even for the same language, as an example from
English shows. British use etymological roots of a word when choosing hy-
phenation points while Americans follow pragmatically syllabic segmenta-
tion. British even differentiate between several levels of desirability of hyphen-
ation patterns.

Morphological, or rather morphosyntactic segmentation is a task of
cutting a word into several segments (prefix, stem, intersegment, ending),
according to the word morphology. The relation between hyphenation and
morphological segmentation is not obvious. Karlsson (1993, page 95) reports
that in Finnish there is high congruence between morphological and syllable
boundaries in compounds. Thus a simple CV-rule for hyphenation before
consonant-vowel pair has recall of 95.7% and precision of 98.7%.

Morphological analyzer ajka (Sedláček, 1999) uses a specific algorithm
for morphological segmentation. Nevertheless, at least for stem/intersegment
parts, competing patterns can be generated to solve this task. These patterns
can be helpful when a new word is about to be segmented, for classifying
morphological paradigms. Experiments we did with Czech morphological
segmentation are described in Section 10.4 on page 87.

4.2.3 Segmentation in Speech Processing
During two fundamental tasks of speech processing, speech recognition and
speech synthesis, segmentation of speech and text for synthesis has to be done.
As speech systems and corpora are available, finding a corpus for training
competing patterns for the segmentation tasks should not be a problem.

20

Chapter 4 4.2 Competing Patterns in Natural Language Processing

4.2.4 Encoding of Patterns for Part of Speech Tagging
A high quality part-of-speech tagger is the foundation stone of any NLP
system. As hand made tagging is erroneous and costly, a lot of effort has
been devoted to developing methods of POS tagging — statistical taggers and
rule-based taggers being the mainstream methods used so far. Although their
efficiency approaches 96–97%, it still leads to about one tagging error per
sentence. Statistical taggers fail on exceptions, rule-based taggers are very hard
to develop and maintain as natural language evolves in time.

Given a sentence w1 w2 . . . wn an ambiguous tagger gives various
possible tags: p11 . . . p1a1 for the first word, p21 . . . p2a2 for the second, etc.
Writing output as (p11 . . . p1a1)(p11 . . . p2a2). . . (pn1 . . . pnan) the task is to choose
the right POS (pij) for every i. Taking the tag set used in the Brown University
Standard Corpus of Present-day American English (Francis and Kučera, 1982)
for the sentence “The representative put chairs on the table.” we get the output

. AT (NN - JJ) (NN VBD -) (NNS - VBZ) IN AT NN .

Hyphenation markers immediately after the right POS tags show solutions for
training. Such ‘word lists’ (for each sentence from a training corpus we get one
‘hyphenated’ word) could be used by PATGEN for disambiguation patterns
generation. Sentence borders are explicitly coded.

4.2.5 Results
We have tried several ways of encoding of morphosyntactic disambiguation
problem by patterns (Macháček, 2003). Results show that the method is ap-
plicable for the partial disambiguation and comparable with other approaches
(inductive logic programming, error driven transformation-based). It is espe-
cially useful for deciding “hard” problems, where statistical techniques fail
and for disambiguation where wider context has to be taken into account. Pat-
terns were able to disambiguate about 30% of all ambiguities with error rate
less than 0.25%. Disambiguation coverage failure often shows errors in man-
ual tagging and after fixing these errors in a training corpus, disambiguation
results are better than those obtained by other state-of-the-art methods. Details
of experiments done are to be found in (Macháček, 2003).

References
Susan Armstrong, Kenneth Church, Pierre Isabelle, Sandra Manzi, Evelyne

Tzoukermann, and David Yarowsky, editors. 1999. Natural Language
Processing Using Very Large Corpora. Kluwer Academic Publishers Group.

Eric Brill and Mihai Pop. 1999. Unsupervised learning of disambiguation rules for
part-of-speech tagging. (Armstrong et al., 1999), pages 27–42.

21

Chapter 4 4.2 Competing Patterns in Natural Language Processing

Eric Brill, Radu Florian, John C. Henderson, and Lidia Mangu. 1998. Beyond
N-Gram: Can Linguistic Sophistication Improve Language Modeling? In
Proceedings of the ACL ’98.

František Čermák. 1998. Czech National Corpus: Its Character, Goal and
Background. In Petr Sojka, Václav Matoušek, Karel Pala, and Ivan Kopeček,
editors, Text, Speech and Dialogue, pages 9–14, Brno, Czech Republic,
September. Masaryk University Press.

Nelson W. Francis and Henry Kučera. 1982. Frequency Analysis of English Usage:
Lexicon and Grammar. Houghton Mifflin.

Philip Babcock Gove and Merriam Webster. 2002. Webster’s Third New International
Dictionary of the English language Unabridged. Merriam-Webster Inc.,
Springfield, Massachusetts, U.S.A, January.

Hans van Halteren, editor. 1999. Syntactic Wordclass Tagging. Kluwer Academic
Publishers Group.

Yannis Haralambous and John Plaice. 2001. Traitement automatique des langues et
composition sous Omega. Cahiers GUTenberg, (39–40):139–166, May.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller. 1996.
Regular Expressions for Language Engineering. Natural Language
Engineering, 2(4):305–328.

András Kornai. 1999. Extended Finite State Models of Language. Cambridge
University Press.

David Macháček. 2003. Přebíjející vzory ve zpracování přirozeného jazyka
(Competing Patterns in Natural Language Processing). Master’s thesis,
Masaryk University in Brno, Faculty of Informatics, Brno, Czech Republic.

Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press.

Mehryar Mohri. 1996. On some applications of finite-state automata theory to
natural language processing. Natural Language Engineering, 2:61–80.
Originally appeared in 1994 as Technical Report, Institut Gaspard Monge,
Paris.

Mehryar Mohri. 1997. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2):269–311, June.

Karel Pala, Pavel Rychlý, and Pavel Smrž. 1997. DESAM — Annotated Corpus for
Czech. pages 523–530, Milovy, November. Springer-Verlag.

Emmanuel Roche and Yves Schabes. 1995. Deterministic Part-of-Speech Tagging.
Computational Linguistics, 21(2):227–253.

Radek Sedláček. 1999. Morphological Analyzer of Czech (in Czech). Master’s thesis,
Masaryk University in Brno, April.

Petr Sojka. 1995. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297.

Petr Sojka. 2004. Slovenské vzory dělení: čas pro změnu? (Slovak Hyphenation
Patterns: A Time for Change?). CSTUG Bulletin, 14(3–4):183–189.

22

Chapter 4 4.2 Competing Patterns in Natural Language Processing

Virach Sornlertlamvanich, Thatsanee Charoenporn, and Hitoshi Isahara. 1999.
Building a Thai Part-Of-Speech Tagged Corpus. The Journal of the Acoustical
Society of Japan (E), 20(3):140–189, May.

Andrew J. Viterbi. 1967. Error Bounds for Convolutional Codes and an
Asymptotically Optimal Decoding Algorithm. IEEE Transactions on
Information Theory, IT-13:260–267, April.

23

Chapter 5

Conclusions

In Section 5.1 we give an overview of the main contributions of our work. We
conclude with an outline of possible directions for future work.

5.1 Author’s Contributions
A dissertation should make a contribution to world knowledge. It is hoped
that this applies to this work as well. Let us sum up the results.
Formal definition of competing patterns. We have described and developed

a new approach to language engineering based on the theory of
covering and inhibiting patterns.

New approaches to competing pattern generation. We have verified plausi-
bility and usefulness of bootstrapping and stratification techniques for
machine learning techniques of pattern generation process. We have re-
lated our new techniques to those used so far — with the new approach,
the results improve significantly.

Properties of pattern generation process. We have shown that reaching size-
optimality of pattern generation process is an NPO problem; however,
it is possible to achieve full data recall and precision on the given data
with the heuristics presented.

New approach to Thai text segmentation problem. In Chapter 12 on page 105
(Sojka and Antoš, 2003) we have shown that an algorithm using com-
peting patterns learnt from segmented Thai text returns better results
than current methods for this task.

Thai segmentation patterns. New patterns for Thai segmentation problem
were generated from data in the ORCHID corpus.

New Czech and Slovak hyphenation patterns. The new hyphenation pat-
terns for Czech and Slovak give much better performace than the pre-
vious ones, and are in practical use in distributions of text processing

24

Chapter 5 5.2 Mission Statement and Future Work

systems ranging from TEX, SCRIBUS, OPENOFFICE.ORG to Microsoft
Word.

New patterns for specific tasks. Patterns for specific tasks demanded in the
areas of computer typesetting and NLP were developed — phonetic
hyphenation, universal syllabic hyphenation, and the possibility of
using context-sensitive patterns for disambiguation tasks were shown.

Foundation for new pattern generation algorithms. Redesign of a program
for pattern generation in of OPATGEN in an object oriented manner
allows easy experiment with new pattern generation heuristics.

Usage of the methodology for partial morphological disambiguation.
We have shown that the methodology can be used for partial disam-
biguation tasks. Experiments showed performance for the partial mor-
phological disambiguation of Czech.

5.2 Mission Statement and Future Work
This work investigated ways how to losslessly compress empirical data
(represented as huge binary table for example) into order of magnitude smaller
structured patterns in such a way, that information can be located in linear time
with respect to the pattern length (irrespectively of the number of patterns).
The author hopes that applications of this methodology and techniques
developed will be used not only for better hyphenation and segmentation, but
for various problems and tasks in the area of natural language engineering,
namely speech processing, phonology, word sense disambiguation, etc. The
first indications of this hope being realized are the new Irish hyphenation
patterns (Scannell, 2003), as well as expression of interest on the usage
of the methodology for text segmentation in machine translation software
(by Telelingua Software) or by native Thai speakers (by NECTEC). Further
applications may have big impact — as is shown, default hyphenation patterns
for English that are kept for backward compatibility only cover less than
80% of hyphenation patterns. We showed that it is possible to achieve 100%,
making the documents shorter and thus saving forests of trees.

References
Kevin Patrick Scannell. 2003. Hyphenation patterns for minority languages.

TUGboat, 24(2):236–239.
Petr Sojka and David Antoš. 2003. Context Sensitive Pattern Based Segmentation:

A Thai Challenge. pages 65–72, Budapest, April.

25

PART II

PAPERS

Chapter 6

Competing Patterns for Czech and Slovak
Hyphenation

In this chapter we describe basic techniques of pattern-driven approach to
the hyphenation problem. Results presented here were joint work with Pavel
Ševeček; the paper was written by the Petr Sojka based on word lists and
experiments realized by Pavel Ševeček. My proportion on the results presented
here is agreed to be 65%.

The first version of this paper was published at the EuroTEX confer-
ence (Sojka and Ševeček, 1994):

Petr Sojka and Pavel Ševeček. 1994. Hyphenation in TEX — Quo
Vadis? In Włodek Bzyl and Tomek Przechlewski, editors, Proceedings
of the 9th European TEX Conference, Gdańsk, 1994, pages 59–68,
September.

The paper was requested to be reprinted in (Sojka and Ševeček, 1995a)
and final version was accepted for the journal publication (Sojka and Ševeček,
1995b):

Petr Sojka and Pavel Ševeček. 1995a. Hyphenation in TEX — Quo
Vadis? In Michel Goossens, editor, Proceedings of the TEX Users
Group 16th Annual Meeting, St. Petersburg, 1995, pages 280–289,
Portland, Oregon, U.S.A. TEX Users Group.
Petr Sojka and Pavel Ševeček. 1995b. Hyphenation in TEX — Quo
Vadis? TUGboat, 16(3):280–289.

This chapter contains the final version with minor corrections. The
paper has been cited several times, e.g., in (Beccari et al., 1995; Scannell,
2003) and in on-line discussions about solving hyphenation in current XSL
formatting objects (XSL-FO) processors.

27

Chapter 6 6.1 Motivation

Petr Sojka, Pavel Ševeček

Hyphenation in TEX — Quo Vadis?

Abstract: A significant progress has been made in the hyphen-
ation ability of TEX since its first version in 1978. However, in
practice, we still face problems in many languages such as Czech,
German, Swedish etc. when trying to adopt local typesetting in-
dustry standards.
In this paper we discuss problems of hyphenation in multilin-
gual documents in general and explain principles used in TEX
engine for hyphenation of words. We show how we have made
Czech and Slovak hyphenation patterns and we describe our re-
sults achieved using the PATGEN program for hyphenation pat-
tern generation. We show that hyphenation of compound words
may be partially solved even within the scope of TEX82. We dis-
cuss possible enhancements of the process of hyphenation pat-
tern generation and describe features that might be reasonable
to think about to be incorporated in OMEGA or another succes-
sor to TEX82.

Key Words: hyphenation • PATGEN • compound words • pattern generation
• hyphenation exceptions • ε-TEX • NT S • OMEGA

6.1 Motivation
Go forth and make masterpieces of hyphenation patterns . . .

— Haralambous (1994)

Editors’ and publishers’ typographical requirements for camera-ready pre-
pared documents are growing. To meet some of their requirements in TEX, es-
pecially when typesetting in narrow columns, one needs perfect hyphenation
patterns in order to find almost all permissible hyphenation points.

When making Czech hyphenation patterns and typesetting multi-
lingual documents we encountered some problems related to achieving qual-
ity hyphenation and decent-looking documents within TEX. This work has led
us to ideas about possible remedies and future extensions in a successor to TEX.

This chapter consists of three parts. In the first part we summarize
the developments that have been made on the issue since TEX’s conception.
In the second one, we describe our attempts to create Czech and Slovak

28

Chapter 6 6.2 Hyphenation Development

hyphenation patterns and summarize hints and suggestions for PATGEN
users. In the third part we discuss possible improvements that might take place
in a TEX successor (OMEGA, ε-TEX or New Typesetting System (NT S)).

6.2 Hyphenation Development
Let us review the developments in hyphenation in TEX that have been made
so far.

6.2.1 English
In TEX78 a rule-driven algorithm for English was built-in by Liang and Knuth.
Their algorithm found 40% of the allowable hyphens, with about 1% er-
ror (Liang, 1981). Although authors claimed that these results are “quite good”,
Liang continued working on the generalization of the idea of rules expressed
by hyphenating and inhibiting patterns. In his dissertation (Liang, 1983) he
describes a method, which is used in TEX82, based on the generalization of
the prefix, suffix and the vowel-consonant-consonant-vowel rules. He wrote
(in WEB) the PATGEN program (Liang and Breitenlohner, 1991) to automate
the process of pattern generation from a set of already hyphenated words.
He started with the 1966 edition of Webster’s Pocket Dictionary that included
hyphenated words and inflections (about 50,000 entries in total). In the early
stages, testing the algorithm on a 115,000 word dictionary from the publisher,
10,000 errors in words not occurring in the pocket dictionary were found.
“Most of these were specialized technical terms that we decided not to worry
about, but a few hundred were embarrassing enough that we decided to add
them to the word list.” (Liang, 1983, p. 30). He reports the following figures:
89.3% permissible hyphens found in the input word list with 4447 patterns
with 14 exceptions.

Liang’s method is described by Knuth (1986, Appendix H) and was
later adopted in many programs such as TROFF (Emerson and Paulsell, 1987)
and LOUT, and in localizations of today’s WYSIWYG DTP systems such
as SCRIBUS, OPENOFFICE.ORG, QuarkXPress, or programs as etc. Although
specialized dictionaries such as (Allen, 1990) by Oxford University Press
separate possible word division points into at least two categories (preferred
and less recommended), we have not seen any program that incorporates the
possibility of taking into account these classes of hyphenation points so far.

29

Chapter 6 6.2 Hyphenation Development

6.2.2 Those Other Languages
. . . patterns are supposed to be prepared

by experts who are paid well for their expertise.
(Knuth, 1986, p. 453, 8th printing)

The first version of TEX82 allowed only one set of patterns to be loaded at
a time. Thus it was not possible to typeset multilingual documents with correct
hyphenation in all languages and this limitation was quite unsatisfactory.
Already in 1985, two attempts to solve the problem were made:
Multilingual TÊX: Extensions, most of which afterwards Knuth adopted in

TEX 3.x were suggested and implemented by Ferguson (1985). A new
primitive \language1 was introduced for switching between several
sets of \patterns and hyphenation exceptions. A new \charsubdef

primitive is still used in today’s 8-bit implementations of TEX. Full
details can be found in (Ferguson, 1988).

ISITEX: Barth and Nirschl (1985) presented an approach to achieving decent
hyphenation in German texts under the name SITEX, or in its interactive
version under the name ISITEX. Their method, (available as a change
file for UNIXTEX from http://www.apm.tuwien.ac.at/) has been used
in Germany for years and is being improved (Barth and Steiner, 1992;
Barth et al., 1993; Steiner, 1995). This approach has not been accepted
for inclusion in NT S (NTS-L, 1992 1995).
SITEX (ISITEX for the interactive version) introduces a new primitive
\nebenpenalty which allows differentiation between main (compound
word boundaries) and secondary (word stem) hyphenation points.
A new notation for hyphenation patterns is introduced and a hyphen-
ation algorithm for German is hardwired into the program. The tables
for the algorithm, file sihyphen.tex (60 kB) are written manually and
can be simply edited and enriched. However, no provision for the gen-
eration of these patterns from a word list (such as the PATGEN program)
is offered.
During the last 15 years almost every year there appeared a paper in

TUGboat reporting new patterns for some language (see Table 6.1 on page 32).
Another couple of hyphenation patterns, fonts and preprocessors is available
in ScholarTEX2 (Haralambous, 1991).

Although Donald Knuth introduced the new primitives \language and
\setlanguage for switching between several sets of hyphenation patterns in

1. A rather misleading name, as it deals with only one particular feature of a language —
hyphenation — which feature is of only limited interests to linguists.
2. ScholarTEX is a registered trademark of Yannis Haralambous.

30

http://www.apm.tuwien.ac.at/

Chapter 6 6.2 Hyphenation Development

TEX 3.0, there are indications that not all of the related problems have been
solved and further investigations are necessary (Fanton, 1991).

Proposals on how to customize TEX for a new language were sug-
gested by Partl (1990). New tools to simplify the generation of 8-bit (vir-
tual) fonts were designed — fontinst (Jeffrey, 1993) and accents (Zlatuška,
1991). A macro package for simple language switching babel (Braams, 1991a;
Braams, 1991b; Braams, 1993) was produced to simplify typesetting of mul-
tilingual documents. An international version of the Makeindex program was
written (Schrod, 1991). The DC fonts (Ferguson, 1990; Haralambous, 1992a;
Haralambous, 1993a), designed to permit hyphenation in many languages, are
now being widely distributed, forced by the new LATEX wave. Compliance with
the suggestions of the working group TWGMLC3 (Haralambous, 1992a) could
help too (naming conventions for hyphenation files, etc.). Multilingual docu-
ment aspects of typesetting are being collected in the scope of LATEX3 project
in (Gaulle, 1994), where a nice collection of language-related TEX primitives
can be found, together with definitions of the terminology used.

6.2.3 Exception Logs
If any computer center decides to preload different exceptions

from those in plain TEX (i.e., in the file HYPHEN.TEX), the changed exceptions
should not under any circumstances be put into HYPHEN.TEX

or PLAIN.TEX. All local changes should go into a separate file,
so that TEX will still produce identical results on all machines. In fact,

I recommend not preloading those changes, but rather assuming that individual
users will have their own favorite collection of updates to the standard format files.

— Knuth (1983)

The exception log and corrections for US English hyphenation were reported
several times by Thulin (1987), Beeton (1989) and Kuiken (1990) as shown in
Table 6.3 on page 34. These listings are published in accordance with Knuth’s
wish in (Knuth, 1983). Only words with wrongly placed hyphenation points
are listed, not those where TEX finds only a subset of possible breakpoints.

This shows that significant care and effort is still needed and is being
gradually spent on the checking of hyphenation points during proof-reading
and that the standard US patterns are not sufficient to satisfy current needs.
Additional sets of patterns (two versions — ushyphen.add and ushyphen.max)
were generated by Kuiken (1990) to cover the exceptions by additional
patterns and these add-on files are available on CTAN4. But, by adding one
of these files to the end of the \patterns command in hyphen.tex, in order to

3. TEXnical Working Group on Multiple Language Coordination
4. Comprehensive TEX Archive Network

31

Chapter 6 6.2 Hyphenation Development

Table 6.1: Hyphenation patterns for TEX with PATGEN statistics for various
languages.

language trie ops done by # patt size author (& reference)
BG (Bulgarian) 688 56 hand 263 1,672 Ognyan Tonev/90
CA (Catalan) 661 11 hand 826 6,136 Goncal Badenes,

Francina Turon/91
CY (Welsh) 8,552 143 PATGEN 6,728 43,162 Yannis Haralambous,

(Haralambous, 1993b)
CZ1 (Czech) 3,676 90 hand 4,479 25,710 Ladislav Lhotka/91,

(Lhotka, 1991)
CZ2 5,302 67 PATGEN 4,196 23,474 Pavel Ševeček/94,

(Sojka and Ševeček,
1994)

DEmin (German) 6,099 170 PATGEN 4,066 25,660 Norbert Schwarz/88
DEmax 9,980 255 PATGEN 7,007 45,720 Norbert Schwarz/88
DE (v3.1) 8,375 207 PATGEN 5,719 39,251 Norbert Schwarz, Bernd

Raichle/94, (Schulze,
1984; Partl, 1988;
Breitenlohner, 1988;
Obermiller, 1991; Kopka,
1991)

DK (Danish) 1,815 60 PATGEN 1,145 6,411 Frank Jensen/92
EL (Mod. Greek) 1,278 23 hand 1,616 8,786 Yannis Haralambous/92
EO (Esperanto) 4,895 143 PATGEN 4,118 23,224 Derk Ederveen/93
ES (Spanish) 1,106 29 hand 578 4,609 Francesc Carmona/93
ET (Estonian) 2,054 45 PATGEN 1,267 7,976 Enn Saar/92
FI (Finnish) 583 27 hand 232 1,342 Kauko Saarinen/92,

(Saarinen, 1988)
FR (French) 1,634 86 comb. 917 30,022 Jacques Désarménien,

Daniel Flipo, Bernard
Gaulle et al./84–94,
(Désarménien, 1984)

Ancient Greek hand Yannis
Haralambous/92,
(Haralambous, 1992b)

HR (Croatian) 1,471 46 hand 916 7,250 Cvetana Krstev/93
HY (Armenian) Yannis Haralambous

(in ScholarTEX)
IS (Icelandic) 5,477 145 PATGEN 4,187 29,919 Jorgen Pind/87
IT (Italian) 1,327 15 hand 729 4,255 Salvatore Filippone/92,

(Canzii et al., 1984)

32

Chapter 6 6.2 Hyphenation Development

Table 6.2: Hyphenation patterns for TEX with PATGEN statistics for various
languages (continued).

language trie ops done by # patt size author (& reference)
IT (Italian) 529 37 hand 210 2,571 Claudio Beccari/93,

(Beccari, 1992)
Latin hand Y. Haralambous/92,

(Haralambous, 1992b)
Modern Latin hand Claudio Beccari/92,

(Beccari, 1992)
LT (Lithuanian) 2,169 77 PATGEN 1,546 9,639 Vitautas Statulevicius &

Y. Haralambous/92
NL1 (Dutch) 7,824 124 PATGEN 6,105 37,997 CELEX/89
NL2 10,338 187 PATGEN 7,928 50,969 CELEX/89
NL3 520 24 hand 326 1,732 Peter Vanroose
NO (Norwegian) 3,669 220 PATGEN 2,371 15,589 Ivar Aavatsmark/92
PL (Polish) 4,954 194 hand 4,053 28,907 Hanna

Kołodziejska/94,
(Kołodziejska, 1987;
Kołodziejska, 1988)

PT (Portuguese) 374 10 hand 126 534 Pedro J. de Rezende,
(Rezende, 1987)

RU (Russian) 4,599 92 hand 4,121 29,272 Dimitri Vulis, (Vulis,
1989; Malyshev et al.,
1991a; Malyshev et al.,
1991b; Samarin and
Urvantsev, 1991)

SK (Slovak) 3,600 248 hand 2,569 22,628 Jana Chlebíková/92,
(Chlebíková, 1991)

SK 7,606 78 PATGEN 6,137 35,623 Pavel Ševeček/94,
(Sojka and Ševeček,
1994)

SR (Serbian) 1,475 40 hand 896 6,890 Cvetana Krstev/89,
(Krstev, 1991)

SV (Swedish) 5,269 125 PATGEN 3,733 23,821 Jan Michael
Rynning/91

TR (Turkish) 678 16 hand 1,834 9,580 Pierre A. MacKay/88,
(MacKay, 1988)

UK (UK English) 10,995 224 PATGEN 8,527 54,769 Dominik Wujastyk/93
US (US English) 6,075 181 PATGEN 4,447 27,302 Frank Liang/82, (Liang,

1983)
US 6,661 229 PATGEN 4,810 30,141 Gerald D.C. Kuiken/90,

(Kuiken, 1990)

33

Chapter 6 6.2 Hyphenation Development

Table 6.3: A growing number of exceptions for hyphen.tex.

of exceptions where reported
14 (Liang, 1983)
24 (Beeton, 1984, TUGboat 5, no. 1)
88 (Beeton, 1985, TUGboat 6, no. 3)

127 (Beeton, 1986, TUGboat 7, no. 3)
129 (Thulin, 1987, TUGboat 8, no. 1)
501 (Beeton, 1989, TUGboat 10, no. 3)
543 (Beeton, 1992, TUGboat 13, no. 4)

overcome huge exception lists that should be loaded with every document,
one loses the compatibility between different installations and acts against
Knuth’s wishes.

6.2.4 The Need to Regenerate US English Patterns
! TeX capacity exceeded, sorry [exception dictionary=307.]

— Donald E. Knuth

So, to follow Knuth’s rules, every document should start with loading the
exception file — for this, one has to increase the size of exception buffer in
TEX82 (in words) from 307 to at least 607 (as it is now usual in UNIXTEX,
emTEX and other installations). However, this is barely sufficient for the
current English exception file (remember one has to add words in all possible
inflexions), for inflexional languages (such as Czech, where from one stem
there are about 20 different suffixes) it is unusable.

Maybe it is time to regenerate the patterns from a bigger (say, 200,000
entries) word list once again from the scratch?5 Imagine the day when you
know that TEX will find 99.99% of hyphens contained in your copy of Webster,
so you will not have to go through a list of exceptions and a couple of
dictionaries to check hyphenation points in your document! For backward
compatibility one has to save every document together with the patterns and
exceptions used anyway.6

5. Otherwise in 2050 there will have to be an extra issue of TUGboat devoted to the
publication of exceptions to hyphen.tex.
6. A search on CTAN via quote site index command shows five files of different lengths
with the name hyphen.tex. (And Knuth and Liang’s hyphen.tex can be found there un-
der four different names — hyphen.tex, ushyph1.tex, ushyphen.std, ushyphen.tex— which
leads to the total confusion!)

34

Chapter 6 6.3 Making Czech and Slovak Hyphenation Patterns

6.3 Making Czech and Slovak Hyphenation Patterns with
PATGEN

A program should do one thing, and do it well. — Ken Thompson

The first Czech patterns were made in 1988 by Petr Novák using PATGEN
from a list of 170,000 word forms. Because of errors in his word list, and only
partially optimized PATGEN parameter settings, the patterns were good but
not perfect.

The patterns were not publicly available, so the second attempt was
done by hand by Lhotka (1991) just as MacKay (1988) did for Turkish. Because
of lots of exceptions to the ‘rules’, their usage was not quite comfortable either.

As Novák’s list of words had lately been made public, we started
compiling a bigger word list from various sources using the old patterns for
bootstrapping. We have learnt a lot from the experience described by Rynning
(1991) and Haralambous (1993b) and in a tutorial (Haralambous, 1994).

6.3.1 Czech Hyphenation Rules
Czech hyphenation rules are described in Martincová et al. (1993, p. 53–54)
and in a special book (Haller, 1956) where a list of exceptions was published.
Briefly, we have syllabic hyphenation with morphological ‘etymological’ ex-
ceptions. Hyphenation is preferred between a prefix and the stem, and on the
boundary of compound words. Things become complicated when:

1. The word evolved in such a way that although historically it was built
from a prefix plus the stem of another word, today it is perceived as
a new word stem. As an example may serve the word ro-zu-mět — “to
understand” (syllabic division) against roz-u-mět (roz is the prefix and
umět means “to know”).

2. There is no agreement on word hyphenation — e.g., the current rules
for word sestra — “sister” allow one to hyphenate se-stra, ses-tra
and sest-ra.

3. Word stem hyphenation points change when a suffix is added —
e.g., hrad— “castle” cannot be hyphenated, but with a suffix it can —
hra-du.

4. Compound words, e.g. tři-a-třiceti-letý — “33 years old”, are
taken into account. Czech has a lot of compound words, but not to such
an extent as German has.

5. The hyphenation of a word depends on the semantics: nar-val “nar-
whal” and na-rval “plucked”.
These rules make it difficult to create patterns that describe all these ex-

ceptions and exceptions to exceptions. As we had at hand a word list with lists

35

Chapter 6 6.3 Making Czech and Slovak Hyphenation Patterns

of allowable prefixes and suffixes, together with preliminary patterns to hy-
phenate word stems for bootstrapping, we decided to generate a hyphenated
list of Czech words for PATGEN.

6.3.2 Stratified Sampling
A large body of information can be comprehended reasonably well

by studying more or less random portions of the data.
The technical term for this approach is stratified sampling.

— Knuth (1991, p. 3)

Czech is a highly inflexional language; on average 20–30 inflexions can be
derived from one word stem by changing the suffix added and one can
multiply it almost twice, as negation can be formed from many words
(adjectives, verbs) by prefixing ne. Thus from a 170,000 stem word list about
3,300,000 word forms may be generated. Generating patterns from such a list
would be very impractical. Because the suffixes are often the same or similar,
we generated a word list by means of the following rules:

• We add only every 7th (actually 17th worked as well) derived word
form from the full list to the PATGEN input list, with the following
exceptions:
1. Every stem must be accompanied by at least one derived form.
2. Every derived form with overlapping prefixes has to be present in

the PATGEN input list as well.
3. Only one word with prefixes ne (by which one can form negation

to almost every word) and nej (by which one creates superlatives)
is included.

4. The hand-made list of exceptions (about 10,000 words) from Haller
(1956) and other sources are always included.

With this procedure we have 372 562 Czech words to work with
PATGEN. The same approach was used also for Slovak. The results are in
Table 6.4 on the following page.

Samples of PATGEN statistics are presented in Tables 6.5, 6.6 and 6.7.
These tables show that by twiddling with PATGEN parameters one may gen-
erate various versions of patterns. Usually the size of patterns and percentage
of bad hyphenations are the minimization criteria, but maximization of per-
centage of good (found) hyphenations and other strategies might be chosen.
Comparing this approach to the use of feedforward neural networks to learn
hyphenation rules (Smrž and Sojka, 1997), discrete patterns win from almost
all perspectives.

36

Chapter 6 6.3 Making Czech and Slovak Hyphenation Patterns

Table 6.4: PATGEN statistics for Czech and Slovak.
of # of hyphenation points

words Correct Wrong Missed
Czech

372,562 1,019,686 39 18,086
(98.26%) (0.01%) (1.74%)

Slovak
333,139 1,025,450 34 15,273

(98.53%) (0.01%) (1.47%)

6.3.3 Compound Words
Hints for hyphenation are most often needed at the word boundaries

of compound words. — Saarinen (1988, p. 191)

As an experiment we took our (rather huge) word list of Czech words in which
hyphenation was marked only on prefix and compound word boundaries.

Table 6.5: Standard Czech hyphenation with Liang’s parameters for English.

level length param % correct % wrong # patterns size
1 2–3 1 2 20 96.95 14.97 + 855
2 3–4 2 1 8 94.33 0.47 +1,706
3 4–5 1 4 7 98.28 0.56 +1,033
4 5–6 3 2 1 98.22 0.01 +2,028 32 kB

The PATGEN program was able to produce hyphenation patterns for
this list successfully. The number of patterns was rather large, but feasible
(25–84 kB, depending on parameters). From a 380,698 item word list the
patterns found 307,470 of the hyphenation points correctly, 5,040 points
were hyphenated wrongly (exceptions), and 4,680 hyphenation points were

Table 6.6: Standard Czech hyphenation with improved pattern size strategy
(cf. Table 6.4).

level length param % correct % wrong # patterns size
1 1–3 1 2 20 97.41 23.23 + 605
2 2–4 2 1 8 85.98 0.31 + 904
3 3–5 1 4 7 98.40 0.78 +1,267
4 4–6 3 2 1 98.26 0.01 +1,665 23 kB

37

Chapter 6 6.3 Making Czech and Slovak Hyphenation Patterns

Table 6.7: Standard Czech hyphenation with improved recall (percentage of
hyphenation points covered) strategy.

level length param % correct % wrong # patterns size
1 1–3 1 5 1 95.43 6.84 +2,261
2 1–3 1 5 1 95.84 1.17 +1,051
3 2–5 1 3 1 99.69 1.24 +3,255
4 2–5 1 3 1 99.63 0.09 +1,672 40 kB

Table 6.8: Czech hyphenation of composed words with Liang’s parameters but
allowing patterns of length one in level one.

level length param % correct % wrong # patterns size
1 1–3 1 2 20 72.97 14.32 + 300
2 2–4 2 1 8 69.32 3.09 + 450
3 3–5 1 4 7 84.09 4.02 + 870
4 4–6 3 2 1 82.61 0.33 +2,625 25 kB

missing. Some of hyphenation points in the input word list might be wrong,
as the database we used is only preliminary. Due to our experience with
the standard hyphenation list, after correction of errors (wrongly marked
hyphenation points, typos) PATGEN can generalize substantially better and
the size of the list of patterns is reduced significantly.

To test the possibility of creating patterns for compound words in detail,
we generated a word list of more than 100,000 words with 101,687 hyphenation
points marked. The list included both compound words and simple ones too.

The results of some of the runs are shown in Tables 6.8, 6.9 and 6.10.

Table 6.9: Czech hyphenation of composed words with slightly modified
parameters (percentage of correct slightly optimized).

level length param % correct % wrong # patterns size
1 1–3 1 2 20 72.97 14.32 + 300
2 2–4 2 1 8 69.32 3.09 + 450
3 3–5 1 4 3 90.82 4.24 +3,014
4 4–6 3 2 1 89.07 0.36 +2,770 40 kB

38

Chapter 6 6.3 Making Czech and Slovak Hyphenation Patterns

Table 6.10: Czech hyphenation of composed words with other parameters of
generation (percentage of correct optimized, but percentage of wrong and size
increased).

level length param % correct % wrong # patterns size
1 1–3 1 5 1 64.35 5.34 +1,415
2 2–4 1 5 1 67.10 1.88 +1,261
3 3–5 1 3 1 97.94 5.39 +8,239
4 4–6 1 3 1 97.91 1.14 +2,882 84 kB

6.3.4 Generalization
Just for curiosity we tried patterns for different languages on our Czech PAT-
GEN input word list — see Table 6.11 on the next page. There are interesting
speculations about these numbers — e.g., trying Slovak patterns on the Czech
word list, one finds more than 90% of hyphenation points. On the contrary,
probably because of non-syllabic principles and different rules for pronuncia-
tion, UK English rules are totally different — only 19% of Czech words are hy-
phenated correctly by UK patterns. Surprisingly, Swedish, Finnish and Dutch
(NE3) patterns make fewer wrong hyphenations than the Czech old hyphen-
ation patterns. The difference between Dutch patterns made by hand (NE3)
based on the syllabic principle) and those made by PATGEN (NE1, NE2) may
be caused by the fact that general syllabic hyphenation is relatively good for
languages in which the hyphenation is based on syllabic principles. Having
hyphenated word lists of different languages, it might be interesting to mea-
sure the ‘syllabic principles of hyphenation’ of different languages on a uni-
versal syllabic hyphenation.

As hyphenation in most languages is based on syllabic principles,
it is worth trying to create universal syllabic hyphenation and only learn
the difference (exceptions) from this universal hyphenation. Let us try to
summarize what we think that should be done in the future.

39

Chapter 6 6.4 Future Work

Table 6.11: PATGEN-like statistics for using various language patterns on a
Czech hyphenated word list.

Language Correct Wrong Missed
CZ (Sev) 98.26% 0.01% 1.74%
NE3 57.38% 4.11% 42.62%
SV 57.10% 5.32% 42.90%
FI 52.67% 5.40% 47.32%
CZ (Lho) 93.39% 5.89% 6.61%
SK 90.77% 7.28% 9.23%
US 31.84% 9.58% 68.16%
IT 49.27% 9.88% 50.73%
NO 51.61% 11.32% 48.39%
FR 59.07% 11.54% 40.93%
NE1 59.14% 11.59% 41.86%
NE2 58.80% 11.99% 41.20%
UK 18.84% 12.19% 81.16%
DEmin 58.62% 12.50% 41.38%
DEmax 58.56% 12.70% 41.44%
PL∗ 69.00% 12.96% 31.00%
PL 68.06% 13.12% 31.94%
DE (v.3.1) 58.84% 13.86% 41.16%

∗ with transformed patterns — accented letters substituted by non-accented
ones

6.4 Future Work
I hope TEX82 will remain stable at least until I finish Volume 7 of
The Art of Computer Programming. — Knuth (1989a, p. 625)

6.4.1 Compound Word Hyphenation Support in a Successor to TEX
Good typography therefore is a silent art; not its presence but rather

its absence is noticeable. — Mittelbach and Rowley (1992b)

It seems feasible to incorporate separate compound word hyphenation pat-
terns in ε-TEX.

These experiments, discussed in Section 6.3.3 on page 37 show that,
even with the current TEX, only doubling the patterns for a language with
compounds might allow, e.g., switching between standard hyphenation in
narrow columns and compound-word only hyphenation in wide columns.

40

Chapter 6 6.4 Future Work

With a simple change in the program, one may achieve additional
flexibility in hyphenation:

New registers \leftcompoundhyphenmin and \rightcompoundhyphenmin

may be helpful for filtering unneeded hyphenation near compound word bor-
ders and \compoundwordhyphenpenalty might set a penalty (usually much
lower than \hyphenpenalty) for breaks on compound word boundaries. In
this case \compoundwordchar character (i.e., the compound work mark in the
DC fonts) could be automatically inserted there to prevent ligatures going
over a compound word boundary.

Another minor addition might be added too, e.g., ε-TEX: in the old
version of MLTEX a flag \dischyph was implemented, indicating whether to
hyphenate words with discretionaries (i.e. embedded hyphens) or not.

6.4.2 Pattern Generalization
Apart from PATGEN extensions according to character clustering, which are
orthogonal, we are thinking of the following generalization. Currently, there
are only two classes of inter-letter state: an odd or even number that carries
information whether to hyphenate or not. The natural generalization would be
having n classes. Interletter numbers in patterns would code these classes in
such a way that number m between letters will mean that this position belongs
to the class number k ≡ m (mod n) — when numbering classes from zero.
The case n = 2 is the current situation, so \pattern[2] might mean classical
Liang’s patterns. Another class might be a prefix boundary, a compound word
boundary or whatever else might possibly be useful for the hyphenation
algorithm to be aware of the word (discretionary being another possibility).

An application for English is straightforward too. Our approach will
allow one to distinguish “preferred” and “less recommended” classes of
hyphenation points as published in (Allen, 1990).

In German, one may make other classes (and patterns), e.g., classes for
different discretionary breaks.

6.4.3 Suggestions for ε-TEX
Please correct if you have a hyphenated word at the bottom of a right-hand page.

— AMS (1993)

A possible direction was shown by Plaice (1993) and in (Haralambous and
Plaice, 1994; Plaice, 1994). With suggested clustering of letters and enriched
PATGEN (Liang and Breitenlohner, 1991) one could achieve context-dependent
discretionaries and thus solve the c-k → k-k-like problems in German.

Taylor (1992, p. 249) mentions a possible definition of
\brokenpenalty = \ifrecto 500\else 200\fi.

41

Chapter 6 6.5 Conclusions

If the output routine could communicate with the parameter-breaking algo-
rithm, word breaks crossing page boundaries could be eliminated.

6.5 Conclusions
Therefore it still is not the right moment to manufacture TEX on a chip.

— Knuth (1989a, p. 641)

In this chapter we presented an overview on the topic of hyphenation in TEX
and our results based on experience with Czech and Slovak. We conclude that
the current possibilities of TEX are far from perfect and might be improved
either in the scope of TEX82 (creation of better hyphenation patterns for various
languages by PATGEN), ε-TEX (e.g., duplication of hyphenation mechanism
for compound words), OMEGA or NT S (special capabilities for context-
dependent discretionaries).

References
R. E. Allen. 1990. The Oxford Spelling Dictionary, volume II of The Oxford Library

of English Usage. Oxford University Press.
Wilhelm Barth and Helmut Steiner. 1992. Deutsche Silbentrennung für TEX 3.1

(German hyphenation for TEX 3.1). Die TEXnische Komödie, (Heft 1). Journal
of DANTE (Deutschsprachige Anwendervereinigung TEX e.V.); Group of
German-speaking TEX Users.

Wilhelm Barth, Helmut Steiner, and H. Herbeck. 1993. ISITEX Interaktive
Silbentrennung für die deutsche Sprache unter TEX 3.14 und 3.141 unter
UNIX (Interactive hyphenation for German and TEX 3.14 and 3.141 under
UNIX). Electronic documentation of ISITEX from
http://www.apm.tuwien.ac.at/, August.

Claudio Beccari, Radu Oprea, and Elena Tulei. 1995. How to make a foreign
language pattern file: Romanian. TUGboat, 16(1):30–41.

Claudio Beccari. 1992. Computer Aided Hyphenation for Italian and Modern Latin.
TUGboat, 13(1):23–33, April.

Barbara Beeton. 1984. Hyphenation exception log. TUGboat, 5(1):15, May.
Barbara Beeton. 1985. Hyphenation exception log. TUGboat, 6(3):121, November.
Barbara Beeton. 1986. Hyphenation exception log. TUGboat, 7(3):146–147, October.
Barbara Beeton. 1989. Hyphenation exception log. TUGboat, 10(3):336–341,

November.
Barbara Beeton. 1992. Hyphenation exception log. TUGboat, 13(4):452–457,

December.
Johannes Braams. 1991a. Babel, a multilingual style-option system for use with

LATEX’s standard document styles. TUGboat, 12(2):291–301, June.

42

http://www.apm.tuwien.ac.at/

Chapter 6 6.5 Conclusions

Johannes Braams. 1991b. Babel, a multilingual style-option system. Cahiers
GUTenberg, 10–11:71–72, September.

Johannes Braams. 1993. An update on the babel system. TUGboat, 14(1):60–62,
April.

Peter Breitenlohner. 1988. German TEX, a next step. TUGboat, 9(2):183–185, August.
G. Canzii, F. Genolini, and Dario Lucarella. 1984. Hyphenation of Italian words.

TUGboat, 5(1):14, May.
Janka Chlebíková. 1991. Ako rozdělit’ (slovo) Československo (How to Hyphenate

(word) Czechoslovakia). CSTUG Bulletin, 1(4):10–13, April.
Jacques Désarménien. 1984. How to run TEX in a French environment: Hyphenation,

fonts, typography. TUGboat, 5(2):91, November.
Sandra L. Emerson and Karen Paulsell. 1987. troff Typesetting for UNIXTM Systems.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
M. Fanton. 1991. TEX: les limites du multilinguisme. Cahiers GUTenberg,

10–11:73–80, September.
Michael J. Ferguson. 1988. TEX is Multilingual. In Thiele (Thiele, 1988), pages

179–189.
Michael J. Ferguson. 1990. Fontes latines européennes et TEX 3.0. Cahiers

GUTenberg, 7:29–32, November.
Bernard Gaulle. 1994. Requirements in multilingual environments. in electronic

form (version 1.02) on CTAN as file vt15d02.tex, March.
Michel Goossens, editor. 1994. Proceedings of the TEX Users Group 15th Annual

Meeting, Santa Barbara, 1994, Portland, Oregon, U.S.A. TEX Users Group.
Jiří Haller. 1956. Jak se dělí slova (How the Words Get Hyphenated). Státní

pedagogické nakladatelství Praha.
Yannis Haralambous and John Plaice. 1994. First applications of Ω: Greek, Arabic,

Khmer, Poetica, ISO-10646/Unicode, etc. In Goossens (Goossens, 1994), pages
256–264.

Yannis Haralambous. 1991. ScholarTEX. Cahiers GUTenberg, 10–11:69–70,
septembre.

Yannis Haralambous. 1992a. TEX Conventions Concerning Languages. TEX and TUG
News, 1(4):3–10.

Yannis Haralambous. 1992b. Hyphenation patterns for ancient Greek and Latin.
TUGboat, 13(4):457–469, December.

Yannis Haralambous. 1993a. DC fonts — questions and answers. TEX and TUG
News, 2(1):10–12.

Yannis Haralambous. 1993b. Using PATGEN to Create Welsh Patterns. Submitted to
TUGboat, July.

Yannis Haralambous. 1994. A Small Tutorial on the Multilingual Features of
PATGEN2. In electronic form, available from CTAN as
info/patgen2.tutorial, January.

43

Chapter 6 6.5 Conclusions

Alan Jeffrey. 1993. A PostScript font installation package written in TEX. TUGboat,
14(3):285–292, October.

Donald E. Knuth. 1983. A note on hyphenation. TUGboat, 4(2):64, September.
Donald E. Knuth. 1986. The TEXbook, volume A of Computers and Typesetting.

Addison-Wesley, Reading, MA, USA.
Donald E. Knuth. 1988. The Errors of TEX. Technical Report STAN-CS-88-1223,

Department of Computer Science, Stanford University, September.
Hanna Kołodziejska. 1987. Dzielenie wyrazów polskich w systemie TEX. Technical

Report 165, Sprawozdania Instytutu Informatyki Uniwersytetu
Warszawskiego.

Hanna Kołodziejska. 1988. Le traitement des textes polonais avec le logiciel TEX.
Cahiers GUTenberg, (0):3–10, April.

Helmut Kopka. 1991. LATEX—Erweiterungsmöglichkeiten mit einer Einführung in
METAFONT. Addison-Wesley Verlag, Bonn, Germany, second edition.

Cvetana Krstev. 1991. Serbo-Croatian hyphenation: a TEX point of view. TUGboat,
12(2):215–223, June.

Gerard D.C. Kuiken. 1990. Additional Hyphenation Patterns. TUGboat, 11(1):24–25,
April.

Ladislav Lhotka. 1991. České dělení pro TEX (Czech Hyphenation for TEX). CSTUG
Bulletin, (4):8–9, April.

Franklin M. Liang and Peter Breitenlohner. 1991. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.0
from UNIXTEX distribution at ftp://ftp.cs.umb.edu, November.

Franklin M. Liang. 1981. TEX and hyphenation. TUGboat, 2(2):19–20, July.
Franklin M. Liang. 1983. Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis,

Department of Computer Science, Stanford University, August.
Pierre A. MacKay. 1988. Turkish hyphenations for TEX. TUGboat, 9(1):12–14, April.
Basil Malyshev, Alexander Samarin, and Dimitri Vulis. 1991a. Russian TEX. Cahiers

GUTenberg, 10–11:1–6, September.
Basil Malyshev, Alexander Samarin, and Dimitri Vulis. 1991b. Russian TEX.

TUGboat, 12(2):212–214, June.
Frank Mittelbach and Chris Rowley. 1992. The future of high quality typesetting:

structure and design. In Jiří Zlatuška, editor, Proceedings of the 7th European
TEX Conference, Prague, 1992, page 255, Brno, September. Masarykova
Universita.

NTS-L. 1992–1995. New typesetting system discussion list. Archived in
CTAN/digests/nts-l/.

Walter Obermiller. 1991. TEX in Germany. TUGboat, 12(2):211–212, June.
Hubert Partl. 1988. German TEX. TUGboat, 9(1):70–72, April.
John Plaice. 1994. Progress in the Omega Project. In Goossens (Goossens, 1994),

pages 190–193.

44

ftp://ftp.cs.umb.edu

Chapter 6 6.5 Conclusions

Pedro de Rezende. 1987. Portuguese hyphenation table for TEX. TUGboat,
8(2):102–102, July.

Kauko Saarinen. 1988. Experiences with TEX in Finland. In Thiele (Thiele, 1988),
pages 189–194.

Alexander Samarin and A. Urvantsev. 1991. CyrTUG, le monde TEX en cyrillique.
Cahiers GUTenberg, 12:71–74, December.

Kevin Patrick Scannell. 2003. Hyphenation patterns for minority languages.
TUGboat, 24(2):236–239.

Joachim Schrod. 1991. An International Version of MakeIndex. Cahiers GUTenberg,
10–11:81–90, September.

Bernd Schulze. 1984. German hyphenation and Umlauts in TEX. TUGboat, 5(2):103,
November.

Pavel Smrž and Petr Sojka. 1997. Word Hy-phen-a-tion by Neural Networks. Neural
Network World, 7:687–695.

Petr Sojka and Pavel Ševeček. 1994. Hyphenation in TEX — Quo Vadis? In Włodek
Bzyl and Tomek Przechlewski, editors, Proceedings of the 9th European TEX
Conference, Gdańsk, 1994, pages 59–68, September.

Wilhelm Steiner. 1995. Automatische Silbentrennung durch Wortbildungsanalyse.
Ph.D. thesis, Technisch-Naturwissenschaftliche Fakultät.

Christina Thiele, editor. 1988. Proceedings of the TEX Users Group 9th Annual
Meeting, Montréal, 1988, Portland, Oregon, U.S.A. TEX Users Group.

Anders Thulin. 1987. More hyphenation exceptions. TUGboat, 8(1):76–76, April.
Dimitri Vulis. 1989. Notes on Russian TEX. TUGboat, 10(3):332–336, November.
Jiří Zlatuška. 1991. Automatic generation of virtual fonts with accented letters for

TEX. Cahiers GUTenberg, 10–11:57–68, September.

45

Chapter 7

Compound Word Hyphenation

The paper presented in this chapter was published in (Sojka, 1995a) and in
the TUG ’95 conference preprint Proceedings. Final version appeared in the
journal (Sojka, 1995b):

Petr Sojka. 1995a. Notes on Compound Word Hyphenation in TEX.
Technical Report FIMU-RS-95-04, Masaryk University in Brno, Faculty
of Informatics, August.
Petr Sojka. 1995b. Notes on Compound Word Hyphenation in TEX.
TUGboat, 16(3):290–297.

This paper was awarded when presented at the TUG 1995 conference
in Florida, by nomination of Donald E. Knuth, who attended the conference,
and heard my presentation.

This chapter contains the final version with minor corrections. The
paper has been cited several times, e.g. in (Kodydek and Schönhacker, 2003;
Scannell, 2003) and others.

46

Chapter 7 7.1 Motivation

Compound Word Hyphenation

Petr Sojka

Abstract: The problems of the automatic compound word and
discretionary hyphenation in TEX are discussed. These hyphen-
ation points have had to be marked manually in the TEX source
file so far. Several methods how to tackle these problems are
observed. The results obtained from experiments with German
word list are discussed.

7.1 Motivation
. . . problems [with hyphenation] have more or less disappeared,

and I have learnt that this is only because, nowadays, every hyphenation
in the newspaper is manually checked by human proof-readers.

— Jarnefors (1995)

In (Sojka and Ševeček, 1994) a case study of problems related to achieving
quality hyphenation in TEX was presented with emphasis on the pattern gen-
eration for inflexional languages like Czech. It was shown that many issues can
be handled within the frame of the good old TEX. Nevertheless, some of them
definitely not because TEX was not originally designed as a universal tool for
typesetting of all kinds of publications in all languages, but as a personal pro-
ductivity tool for typesetting of The Art of Computer Programming (Knuth,
1973a) in American English. This was the initial motivation.

In this chapter we continue elaborating these issues, with the emphasis
on the hyphenation problems in the presence of long compound words in
Germanic (and Slavic) languages.

7.2 Problems
7.2.1 Compounds
The main problem with automatic hyphenation was nicely expressed in ISO-
-10646 electronic discussion list by Jarnefors (1995):

“The leading Swedish daily newspaper Dagens Nyheter had se-
vere problems with sometimes occurring incorrect hyphenations
a couple of years ago. It (and its computerized typesetting) was

47

Chapter 7 7.2 Problems

during a period the object of much amusement, ridicule and ir-
ritation from its readers. These problems have more or less dis-
appeared, and I’ve learnt that this is only because, nowadays,
every hyphenation in the newspaper is manually checked by
human proof-readers. Because of the higher frequency of long
words in Swedish compared to e.g., English or French, around
a third of all lines in a typical newspaper article (with approxi-
mately 30 characters per line) end with a hyphenated word.
The hyphenation problems in Swedish have to do with the high
frequency of compound words (the Swedish vocabulary cannot
be enumerated: new compounds are easily created by anyone)
and the rule that a compound word shall always be hyphenated
between the constituent word parts, to ease the flow of reading.”
For instance, in German and Czech there are no hyphens in compound

words, you take the first word, rarely a fill-char and the second word. In some
languages, compounds are built with hyphens. With this construction, it is
easy to break at the end of line and to spell-check. However, in most of the
languages compound word boundaries cannot be deducted from syntax only.

7.2.2 Dependency of Hyphenation Points on Semantics
In some cases, even the context of the sentence is needed in order to be
able to decide on the hyphenation point. A collection of examples for several
languages follows:
Czech nar|val ‘narwhal’ and na|rval ‘gathered by tearing, plucked’;

pod|robit ‘subjugate, to bring under one’s domination’ and po|drobit
‘to crumble’; o|blít ‘to vomit up’ and ob|lít ‘to pour around’

Danish træ|kvinden ‘the wood lady’ and træk|vinden ‘the draught’;
ku|plet ‘verse’ and kup|let ‘domed’

Dutch kwart|slagen ‘quarter turns’ and kwarts|lagen ‘quartz layers’;
go|spel ‘the game of Go’ and gos|pel ‘certain type of mu-
sic’; rots|tempel ‘rock temple’ and rot|stempel ‘damned stamp’;
dij|kramp ‘cramp in the thighs’ and dijk|ramp ‘dike catastrophe’;
ver|ste ‘farthest’ and vers|te ‘most fresh’.

English rec|ord (noun) re|cord (verb) or even record (adjective).
German Staub|ecken ‘dusty eck’ and Stau|becken ‘traffic jam in the valley’;

Wach|stube ‘guard room’ and Wachs|tube ‘wax tube’; Bet|tuch and
Bett|tuch.

Fortunately, number of these homonyms is far below 1% and for such a small
number of possible hyphenation points it is not worth to do full semantical
analysis.

48

Chapter 7 7.2 Problems

7.2.3 Exceptions
Some hyphenation points are forbidden because of unwanted connotations the
new parts of the word may have:
Czech kni|hovna, sere|náda, tlu|močení, se|kunda
English the|rapists, anal|ysis
German Spargel|der, beste|hende, Gehörner|ven, bein|halten, Stiefel|tern

7.2.4 Discretionary Hyphenation Points
1. \discretionary{xx}{x}{xx} (in German, x is a consonant f, l, m, n, p, r

or t)
Now, let us consider the situation that the first word ends with a dou-
ble consonant and the second word starts with the same consonant. If
the second letter of the second word is a consonant, nothing changes —
Sauerstoff + Flasche composes to Sauerstoffflasche. If the second letter
of the second word is a vowel, the three consonants will be reduced to
two — Schiff + Fahrt composes to Schiffahrt. One can find meaning-de-
pendent discretionaries: Bett|tuch ‘sheet’ vs. Bet|tuch ‘prayer shawl’.

2. \discretionary{k}{k}{ck} (German)
This discretionary (as most of the others) has the rationale in the fact
that pronunciation of c depends on the following letter (as in other
languages). If hyphen occurs just after the letter c, the reading is slowed
down because the reader does not know how to pronounce it and the
eye has a long way to the beginning of the next line.
Even here the hyphenation can depend on the word meaning: word
Druckerzeugnis is hyphenated Druck|erzeugnis in case of ‘printed
matter’ or Druk|kerzeugnis when speaking about ‘certificate for a
printer’.1

3. \discretionary{a}{}{aa} (Dutch)
There is another type of discretionary in which a character is deleted
in case hyphenation occurs — word omaatje becomes oma|tje when
hyphenated.

4. \discretionary{é}{}{ee} (Dutch)
Apart from character deletion another change may occur: cafeetje
becomes café-tje when hyphenated.

5. \discretionary{l}{l}{l·l} (Catalan)

1. The German speaking countries are in the process of introducing new rules for hyphen-
ation, in which ck is not any more allowed to be hyphenated. With the new rules, an old
way which was introduced in 1902 — e.g. hyphenation of Zuk|ker ‘sugar’ might change to
Zu|cker in the future norm.

49

Chapter 7 7.3 Solutions

In Catalan the word paral·lel is broken as paral|lel, intel·ligencia as
intel|ligencia. l·l is considered as one character (trigraph). With this
hyphenation it changes to another two characters.

7.2.5 Language Evolution
Another complication is the fact that a language is not fixed, non-evolving
entity, but it changes, sometimes quite rapidly. New words, especially com-
pounds, are being adopted every day. An example of an adaptation of a lan-
guage to the technology — the typewriter and telegraphy in this case — may
serve different spelling allowed for umlauted characters ä, ö, ü and ß in Ger-
man (ae, oe, ue, ss). Some compounds are becoming to be percepted as base
words. Thus the idea of fixing hyphenation algorithm/patterns once and for-
ever is not a clever one.2 A solution may consist in a relatively easy gener-
ation of algorithm or patterns from the updated dictionary or description of
changes.

7.3 Solutions
7.3.1 Compounds
It is obvious that we need to take the burden of the manual markup of com-
pound word borders from the writer and leave it to the machine (typesetting
system). The proper solution of this problem is a language module for every
language, with the ability of creating new words by composition from oth-
ers. This module, based on the morphology of a language, is needed, e.g., in a
spellchecker for a given language anyway. Most probably, such language mod-
ules will become a part of the language support of operating systems in near
future. Such dynamic libraries will be shared among software applications.
Building such a module, however, is not a trivial task, because only some of
the compounds are meaningful words.

Looking for a temporary TEX patch that will help the current TEX users,
especially those writing in Germanic and Slavic languages, the following
algorithm may be used (compare with (Sojka and Ševeček, 1994)):

1. For a particular language a special word list is created, which contains
all word forms, but only compound word borders are marked there.

2. Hyphenation patterns from this word list are created by PATGEN (Liang
and Breitenlohner, 1991).

2. When storing document for later retypesetting with TEX we also have to save the
hyphenation patterns.

50

Chapter 7 7.3 Solutions

Table 7.1: Example of a discretionary hyphenation table for German.

pre break post break no break left right discretionary example
text text text context context character
1 2 3 4 5 6 7
k k ck c k c1 Drucker
ek k äck äc k c2 Bäcker
ff f f f f c3 Schiffahrt
ll l l l l c4 Rolladen
mm m m m m c5 Programmeister
nn n n n n c6 Brennessel
pp p p p p c7 Stoppunkt
rr r r r r c8 Herraum
tt t t t t c9 Balettheater

3. A special pass in the paragraph breaking algorithm of TEX (for the
detailed description consult (Knuth and Plass, 1981; Knuth, 1986a;
Knuth, 1986b)) is added after the first (no hyphenation trial) pass.
Words are hyphenated using the compound word patterns. Then, an
extra penalty \compoundwordhyphenpenalty is associated with these
hyphenation points.

4. If \tolerance has not been met by now, further hyphenation points
are added using the ‘standard’ patterns. These new hyphenation points
have associated \hyphenpenalty, allowing differentiation between the
two types of hyphenation points.

5. Hyphenation points ‘near’ the word borders (specified by \leftdis-

cretionaryhyphenmin and \rightdiscretionaryhyphenmin are sup-
pressed (removed).

6. The algorithm now continues with the ‘old’ second and eventually the
third (\emergencystretch) passes.

7. \compoundwordchar (e.g., as in Cork-coded fonts \char‘027) is included
at the compound word breakpoint in order to prevent ligatures span-
ning over the word borders šéflékař ‘chief doctor’ versus šéflékař which
is wrong due to fl ligature).

7.3.2 Discretionary Hyphenation Points
Manual insertion of discretionary points is tedious and it is usually forgotten3,
leading to typographic errors.

3. How many of you, TEX users, remember to type eigh\discretionary{t}{t}{t}een

instead of just eighteen?

51

Chapter 7 7.3 Solutions

One solution is the following one. For every language, a table of
possible discretionaries is created. For a German example see Table 7.3.1 on
the previous page. Words with these discretionaries are added to the word list
with the “discretionary character” inserted between the “left context” and the
“right context”. From such an extended word list the patterns are generated.

The hyphenation algorithm of TEX (Knuth, 1986a, parts 38 – 43, sections
813 – 965) has to be extended. Roughly speaking:

1. As a first step, “normal” hyphenation points in the word in question are
found.

2. The discretionary exception table is looked up (similar to the
\hyphenation list of exception). If the word is found there, the dis-
cretionary is inserted and the algorithm ends, otherwise it is continued
by step 3.

3. The discretionary table is looked up and at the hyphenation points that
match “left and right context” strings (columns 4 and 5 in Table 7.3.1 on
the preceding page), the “discretionary character” (column 6) is in-
serted. Such a word is hyphenated once again to check whether this
discretionary really applies at this position. If so, the corresponding dis-
cretionary (columns 1 – 3 of the Table 7.3.1 on the previous page) is au-
tomatically inserted.

4. “Normal” hyphenation points, which appear ‘near’ to “discretionary”
hyphenation points (within the ‘window’ specified by the values of
counters \leftdiscretionaryhyphenmin and \rightdiscretionary-

hyphenmin), are removed.
This approach takes the advantage of the data structure used for

storing the information about the hyphenation points. The patterns are stored
using the trie data structure (Knuth, 1973b, pp. 481 – 505). This data structure
implicitly allows an effective prefix compression, and in the case of packed
tries (Liang, 1983) even suffix compression by suffix sharing. Because of that,
the increase in the size of the patterns is negligible, as the patterns doublets
share both prefix and suffix parts in the trie.

Also, the look up time in the trie is linear with respect to the word length
of hyphenated words. The time needed for looking up in the trie for the second
time is thus acceptable — it is only performed sometimes — when the context
of a hyphenation point is matched in the discretionary table.

The algorithm is backward compatible in the sense that if discretionary
table is not present for the current language, nothing changes with respect to
the standard TEX behavior.

52

Chapter 7 7.4 Experiments

7.3.3 Exceptions
The exceptions can be reasonably handled by the patterns. Although the gen-
eration of patterns for languages with lots of exceptions may lead to complex
patterns, it is much better to regenerate the patterns with the exceptions than
maintain huge lists of exceptions and to slow down the processing consider-
ably.

Because regenerating of patterns is not always possible, to enable
enrichment of the knowledge of discretionary hyphenation points compiled
into the patterns, it is wise to introduce a new \discretionaryhyphenation

for this purpose.

0
2
4
6
8

10
12
14
16

15
2

97
5

. .

. .

. .

. .

. .

. .

. .

. .

34
20

.

. .

. .

. .

. .

. .

. .

. .

68
40

. .

. .

. .

. .

. .

. .

11
33

1

. .

. .

. .

. .

16
05

3

.

. .

. .

18
87

9

. .
18

14
2

. .
15

12
8

. .
11

80
5

. .

. .

83
74

. .

. .

. .

. .

55
98

. .

. .

. .

. .

. .

32
92

. .

. .

. .

. .

. .

. .

18
67

. .

. .

. .

. .

. .

. .

. .

93
9

. .

. .

. .

. .

. .

. .

. .

. .

51
3

. .

. .

. .

. .

. .

. .

. .

. .

17
8

. .

. .

. .

. .

. .

. .

. .

. .

10
0

. .

. .

. .

. .

. .

. .

. .

. .

32
. .
. .
. .
. .
. .
. .
. .
. .

14

. .

. .

. .

. .

. .

. .

. .

. .

5

. .

. .

. .

. .

. .

. .

. .

. .

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

2 3 4 5 6 7 8 9 1011121314151617181920212223
word length

percentage of total number of words in a word list

...

...

...

...

...

...

...

...

Figure 7.1: English word list statistics: US English word list (123 664 words),
average word length 8.93 characters.

7.4 Experiments
We had several databases of words available for experiments. For inflexional
languages (Czech, German), they were based on morphology, for English it
was just a list of word forms. We did our PATGEN experiments with the
German word list generated from the full word list by our stratified sampling
technique very similar to that described in (Sojka and Ševeček, 1994, page 63)
for Czech. We took German because the problems there are the most serious.
Simple statistics show how the languages differ.

53

Chapter 7 7.4 Experiments

0
2
4
6
8

10
12
14
16

12
8

23
43

. .

. .

. .

. .

. .

. .

. .

. .

12
25

0

. .

. .

. .

. .

. .

. .

. .

. .

44
48

9

. .

. .

. .

. .

. .

. .

. .

. .

11
08

82
. .
. .
. .
. .
. .
. .
. .

22
95

07

.

. .

. .

. .

. .

. .

36
27

00

.

. .

. .

. .

46
99

51

. .

. .

50
35

23

. .

46
69

60

. .

37
21

25

. .

27
06

82

. .

. .

. .

17
81

80

. .

. .

. .

. .

11
52

09

. .

. .

. .

. .

. .

. .

72
05

0

. .

. .

. .

. .

. .

. .

. .

42
04

9

. .

. .

. .

. .

. .

. .

. .

23
39

5

. .

. .

. .

. .

. .

. .

. .

. .

12
18

4

. .

. .

. .

. .

. .

. .

. .

. .

61
62

. .

. .

. .

. .

. .

. .

. .

. .

28
81

. .

. .

. .

. .

. .

. .

. .

. .

13
95

. .

. .

. .

. .

. .

. .

. .

. .

61
6

. .

. .

. .

. .

. .

. .

. .

. .

27
9

. .

. .

. .

. .

. .

. .

. .

. .

12
7

. .

. .

. .

. .

. .

. .

. .

. .

43

. .

. .

. .

. .

. .

. .

. .

. .

7

. .

. .

. .

. .

. .

. .

. .

. .

5

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
word length

percentage of total number of words in a word list

...

...

...

...

...

...

...

...

Figure 7.2: Czech word list statistics: Czech word list (3,300,122 words),
average word length 10.55 characters.

0
2
4
6
8

10
12
14
16

90 36
6

. .

. .

. .

. .

. .

. .

. .

. .

13
65

. .

. .

. .

. .

. .

. .

. .

. .

34
05

. .

. .

. .

. .

. .

. .

. .

. .

65
27

. .

. .

. .

. .

. .

. .

. .

. .

95
79

.

. .

. .

. .

. .

. .

. .

. .

15
28

1

. .

. .

. .

. .

. .

. .

. .

22
05

1

. .

. .

. .

. .

. .

. .

30
77

2

. .
. .
. .
. .
. .

37
14

5

. .

. .

. .

. .

40
54

7

. .

. .

. .

39
36

1

. .

. .

. .

35
82

1

. .

. .

. .

30
50

0

. .

. .

. .

. .

24
84

4

. .

. .

. .

. .

19
82

1

. .

. .

. .

. .

. .

15
36

1

. .

. .

. .

. .

. .

. .

11
50

6

. .

. .

. .

. .

. .

. .

82
30

. .

. .

. .

. .

. .

. .

. .

54
39

. .

. .

. .

. .

. .

. .

. .
35

85

. .

. .

. .

. .

. .

. .

. .

. .
24

01

. .

. .

. .

. .

. .

. .

. .

. .
15

45

. .

. .

. .

. .

. .

. .

. .

. .

99
7

. .

. .

. .

. .

. .

. .

. .

. .

63
1

. .

. .

. .

. .

. .

. .

. .

. .

38
6

. .

. .

. .

. .

. .

. .

. .

. .

24
1

. .

. .

. .

. .

. .

. .

. .

. .

15
2

. .

. .

. .

. .

. .

. .

. .

. .

89

. .

. .

. .

. .

. .

. .

. .

. .

52

. .

. .

. .

. .

. .

. .

. .

. .

30
. .
. .
. .
. .
. .
. .
. .
. .

14
. .
. .
. .
. .
. .
. .
. .
. .

6

. .

. .

. .

. .

. .

. .

. .

. .

3

. .

. .

. .

. .

. .

. .

. .

. .

1

. .

. .

. .

. .

. .

. .

. .

. .

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637
word length

percentage of total number of words in a word list

...

...

...

...

...

...

...

...

Figure 7.3: German word list statistics: German word list (368,152 words),
average word length 13.24 characters

7.4.1 Non-Uniformity of Languages
In Tables 7.1, 7.2 and 7.3 there are histograms of word lengths in our databases.
Although it is clear that shorter words are more frequent then the long ones,
we see that in German the average word is much longer than in English and
also in Czech. It is interesting to compare the total number of words. As Czech
is very inflexional language, from about 170,000 word stems we got more than
3,300,000 word forms. One can compare that with the best English dictionaries
and spellers, which do not have more than 200,000 word forms. The ratio of

54

Chapter 7 7.4 Experiments

the total number of word forms to the number of word stems for German is
about 3 (we have about 120,000 word stems), but for Czech it is almost 20.

The average word length depends on the word list chosen, but in gen-
eral our results are commensurable with the result published for Welsh (Hara-
lambous, 1993) — 9.71 characters per word, but the words like Llanfairpwll-
gwyngyllgogerychwryndrobwllllantysiliogogogoch were not taken into ac-
count there.

Table 7.2: German compound word hyphenation with pattern size optimized
strategy (cf. Table 6.4 on page 37).

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 62.41 13.38 + 472 good=134279
2 2–4 2 1 8 52.89 2.53 + 712 bad=676
3 3–5 1 4 7 87.11 4.05 +2,951 missed=22636
4 4–6 3 2 1 85.57 0.43 +1,506 patterns size=33.6 kB

Table 7.3: German compound word hyphenation with different (percentage of
correct optimised) strategy.

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 62.41 13.38 + 472 good=143478
2 2–4 2 1 8 52.89 2.53 + 712 bad=698
3 3–5 1 4 3 93.06 4.23 +6,612 missed=13437
4 4–6 3 2 1 91.44 0.44 +1,586 patterns size=56.5 kB

Table 7.4: German compound word hyphenation covering even more break
points.

level length param % correct % wrong # patterns statistics
1 1–3 1 3 1 60.43 9.87 +4,819 good=149502
2 1–4 1 3 2 60.24 4.21 +1,714 bad=888
3 3–6 1 2 1 98.76 10.82 +1,939 missed=7413
4 3–7 1 1 1 95.28 0.57 + 353 patterns size=70.2 kB

7.4.2 Compounds in German
In the word list, only the compound word borders and prefixes were marked.
This led to about 150,000 positions in our German word list. The words
without any breaks of this kind were not removed. The results of PATGEN
runs applied to this word list are summarized in Tables 7.2 and 7.3. The

55

Chapter 7 7.5 Conclusions

Table 7.5: Standard German hyphenation pattern generation with slightly
improved (size) Liang’s parameters.

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 94.25 23.72 +449 good=485590
2 2–4 2 1 8 82.66 0.56 +1,183 bad=48
3 3–5 1 4 7 98.59 1.08 +1,737 missed=8047
4 4–6 3 2 1 98.37 0.01 +1,333 patterns size=25.2 kB

Table 7.6: German hyphenation pattern generation using a word list with
discretionary points added (the same parameters as in Table 7.5).

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 93.90 23.40 + 456 good=492366
2 2–4 2 1 8 82.48 0.55 +1,182 bad=60
3 3–5 1 4 7 98.60 1.13 +1,760 missed=8155
4 4–6 3 2 1 98.37 0.01 +1,388 patterns size=25.6 kB

efficiency achieved (about 90% breaks covered) is quite sufficient, as a ‘normal’
hyphenation pass follows and the error when a hyphenation point is classified
as ‘normal’ instead of ‘compound’ reflects only a different penalty associated
with this break. At the expense of pattern size we can do even better (see
Table 7.4 on the preceding page).

7.4.3 Discretionary Hyphenation Points
In our German word list, we had 1,626 words with the c-k discretionary
and 42 words with the discretionary hyphenation of type x-x, where x is
a consonant — see Table 7.3.1 on page 51, (Raichle, 1995) or (DUDEN, 1991)
for a list of possible discretionaries in German.

Then we created doublets of these words with these discretionaries by
inserting the discretionary character (column 6) at the hyphenation position
and added them to our word list. Then we applied PATGEN at this new word
list. Results can be compared in Tables 7.5 and 7.6. The difference in the pattern
size is small as expected — the size of the pattern file increased by less than
0.4 kB, which makes a difference in the trie structure of about 100 bytes only.

7.5 Conclusions
We claim that the integration of language modules with build-in knowledge
about a particular language is a must in today’s top-rated systems for publish-
ing. We suggested extensions of hyphenation algorithms of TEX that may help

56

Chapter 7 7.6 Summary

with hyphenation especially in the Germanic languages with high frequency
of compound words and discretionary hyphenation. Suggested extensions are
possible with limited changes to TEX — The Program (Knuth, 1986a). Their
implementation in any conservative successor to TEX will be rather straight-
forward and when agreed on their usefulness they will be implemented as
independent change files in the future. It remains to be decided on the primi-
tives our approach needs.

7.6 Summary
Some computerized typesetting methods in frequent use today may render

a conservative approach to word division impractical. Compromise may
therefore be necessary pending the development of more sophisticated technology.

— Anonymous (1993, Section 6.43)

We have outlined some of the possibilities offered by TEX and PATGEN for
the development of customized hyphenation patterns. We have suggested
bootstrapping and iterative techniques to facilitate pattern development. In
addition we are suggesting wider employment of PATGEN and preparation
of hyphenated word lists and modules of patterns for easy preparation of
hyphenation patterns on demand in today’s age of digital typography (Knuth,
1999).

References
DUDEN. 1991. Duden Band 1 — Rechtschreibung der Deutschen Sprache.

Dudenverlag, 20., neu bearbeitete und erweiterte Auflage edition.
Yannis Haralambous. 1993. Using PATGEN to Create Welsh Patterns. Submitted to

TUGboat, July.
Donald E. Knuth and Michael F. Plass. 1981. Breaking Paragraphs into Lines.

Software—Practice and Experience, 11(11):1119–1184, November.
Donald E. Knuth. 1973a. Fundamental Algorithms. The Art of Computer

Programming. Addison-Wesley, Reading, Massachusetts, second edition.
Donald E. Knuth. 1973b. Sorting and Searching, volume 3 of The Art of Computer

Programming. Addison-Wesley, Reading, MA, USA.
Donald E. Knuth. 1986a. TEX: The Program, volume B of Computers and

Typesetting. Addison-Wesley, Reading, MA, USA.
Donald E. Knuth. 1986b. The TEXbook, volume A of Computers and Typesetting.

Addison-Wesley, Reading, MA, USA.
Donald E. Knuth. 1999. Digital Typography. CSLI Lecture Notes 78. Center for the

Study of Language and Information, Stanford, California.

57

Chapter 7 7.6 Summary

Gabriele Kodydek and Martin Schönhacker. 2003. Si3Trenn and Si3Silb: Using the
SiSiSi Word Analysis System for Pre-Hyphenation and Syllable Counting in
German Documents. Lecture Notes in Artificial Intelligence LNCS/LNAI
2807, pages 66–73, České Budějovice, Czech Republic, September.
Springer-Verlag.

Franklin M. Liang and Peter Breitenlohner. 1991. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.0
from UNIXTEX distribution at ftp://ftp.cs.umb.edu, November.

Franklin M. Liang. 1983. Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis,
Department of Computer Science, Stanford University, August.

Bernd Raichle. 1995. Kurzbeschreibung – german.sty (version 2.5), April. Available
from CTAN archives.

Kevin Patrick Scannell. 2003. Hyphenation patterns for minority languages.
TUGboat, 24(2):236–239.

Petr Sojka and Pavel Ševeček. 1994. Hyphenation in TEX — Quo Vadis? In Włodek
Bzyl and Tomek Przechlewski, editors, Proceedings of the 9th European TEX
Conference, Gdańsk, 1994, pages 59–68, September.

58

ftp://ftp.cs.umb.edu

Chapter 8

Word Hy-phen-a-tion by Neural Networks

A comparison of competing patterns approach with feedforward neural net-
works to solve the hyphenation problem is presented in this chapter. It was
drafted as a technical report (Smrž and Sojka, 1996) as an outcome of Master’s
thesis of Pavel Smrž supervised by the latter author. The final version has been
published in the journal Neural Network World (Smrž and Sojka, 1997):

Pavel Smrž and Petr Sojka. 1996. Word Hy-phen-a-tion by Neural
Networks. Technical Report FIMU-RS-96-04, Masaryk University in
Brno, Faculty of Informatics, August.
Pavel Smrž and Petr Sojka. 1997. Word Hy-phen-a-tion by Neural
Networks. Neural Network World, 7:687–695.

This journal version appears here with only minimal changes. Authors
agree that their proportion on the results is the same.

59

Chapter 8 8.1 Introduction

Word Hy-phen-a-tion by Neural Networks

Pavel Smrž and Petr Sojka

Abstract: We are discussing our experiments we made to learn
a feed-forward neural network for the task of finding valid
hyphenation points in all words of a given language. Multilayer
neural networks were successfully used to solve this difficult
problem. The structure of the network used is given, together
with a discussion about training sets, influence of input coding
and results of experiments done for the Czech language. We
end up with pros and cons of the tested approach — hybrid
architecture suitable for a multilingual system.

Key Words: neural networks • hyphenation • back propagation • generaliza-
tion • typesetting • multilayer perceptron

8.1 Introduction
The invention of the alphabet was one of the greatest advances
in the history of civilization. However, the ancient Phœnicians

probably did not anticipate the fact that, centuries later, the
problem of word hyphenation would become a major headache for
computer typesetters all over the world. — Liang (1983, page 39)

The problem of finding all valid hyphenation points in all words of a given
language has been tackled for decades. Most of the approaches used so far
are deterministic. A rule-driven hyphenation algorithm for English was imple-
mented in TEX78 (Liang, 1981). The method was improved by Liang (1983) for
use in TEX82 (Knuth, 1986). It is based on the generalization of the prefix, suf-
fix and vowel-consonant-consonant-vowel rules. The program PATGEN (Liang
and Breitenlohner, 1991) enables the process of pattern generation from a set of
already hyphenated words to be automated. This algorithm or its derivatives
are used in many DTP systems like troff (Emerson and Paulsell, 1987), Lout,
QuarkXpress, 3B2, Scribus and many others today.

Liang’s algorithm performs well for nonflexional languages with a
small number of compounds like English but there is still lack of good
methods for other languages, especially for inflexional languages (all Slavonic
languages, Dutch, German etc). Sojka and Ševeček (Sojka and Ševeček, 1995;
Sojka, 1995) state that in Czech, on average, 20–30 different word forms —
inflexions — can be derived from one word stem. This number can be almost

60

Chapter 8 8.2 Hyphenation Problems with Neural Networks

doubled if negatives are formed from many words (adjectives, verbs, adverbs,
some nouns) by adding the prefix ne. Thus, from a 170,000 stem word list about
5,000,000 inflexions may be generated in Czech.

For multilingual documents usually several separate algorithms for
every language used are needed, even if the languages are only dialects,
leading to high computer memory demands. Typesetting in narrow columns
brings the necessity to find very high percentage of all valid hyphenation
points.

From the DTP world and prominent publishers another need is being
heard of: several classes of hyphenation points are called for, to make a distinc-
tion, e.g., between valid and not recommended, but possible one, as published
in (Allen, 1990).

This leads to the stochastic approaches rather than deterministic ones —
Brunak and Lautrup (1990) show that a neural network is likely to be a way
leading quickly to the working solution.

8.2 Hyphenation Problems with Neural Networks
8.2.1 Hyphenation of Czech Words
We performed our experiments with multilayer neural networks trained
on hyphenation for Czech language. The problem of word hyphenation in
Czech is rather complex. Hyphenation rules for Czech language are described
in (Hlavsa and others, 1993) and (Haller, 1956). In (Haller, 1956) also a
list of exceptions is given including about 10,000 words. Czech language
has syllabic hyphenation with “etymological” exceptions. Hyphenation is
preferred between a prefix and the stem and on the boundary of compound
words.

8.2.2 Neural Net Architecture
The architecture of the networks used in the experiments is similar to that of
NETtalk (Sejnowski and Rosenberg, 1987) — multilayer feedforward nets. We
use usual notation here: 7-30-1 means NN topology with 7 neurons in the input
layer, 30 neurons in the middle layer and 1 neuron in the output layer. Layers
are fully interconnected.

The input of our network is a series of seven consecutive letters from
one of the training words. The central letter in this sequence is the “current”
one for which the output is to be produced. Three letters on either side of
this central letter provide the context that helps to determine the hyphenation
point. Individual words are moved through the input window so that each

61

Chapter 8 8.3 Empirical Results — Brute Force Trial

letter in the word with the exception of the last two is “seen” in the central
position. Blanks are added before and after the word as needed.

One type of tested networks uses unary encoding. For each of the seven
letter positions in the input, the network has a set of 43 input units: one for
each of 41 letters in Czech, one for letters from other languages, and one for
blank. Thus, there are 43 × 7 = 301 input units. Another tested type uses real
numbers rather than binary ones for encoding the input. The letters are coded
in the form of numbers from the set {0.02, 0.04, . . . , 0.98}. The exact coding of
a particular letter will be given later.

The networks have one or two output neurons. In the first case, the
meaning of the output value is 0 for ‘do not hyphenate’ and 1 for ‘insert
hyphenation point’. In the second case the output 0 1 means ‘hyphenate’, 1 0
‘do not hyphenate’.

8.2.3 Training Sets Used
We had a set of 169,888 hyphenated Czech words to experiment with. The
problem with this set was a considerably large number of errors. There are two
types of errors. The first type is probably the worse one — the hyphen is placed
in the position where the word cannot be hyphenated. In the case of errors of
the second type the algorithm is not able to find an allowed hyphenation point.
These errors are a big complication of typesetting in narrow columns.

8.3 Empirical Results — Brute Force Trial
For the first group of experiments the networks with the topologies 301-30-1
and 301-100-1 were employed. In both cases each layer was completely inter-
connected with the next one. The training set was divided into 170 parts each
containing 1000 words. Totally, 1,581,183 training patterns were generated.

The network was trained with each part of the training set. The training
was carried out until the network error dropped below the value of 0.1 or until
100 cycles were reached. The learning rate was initially set to the value of 0.7.
Then it was stepwise decreased in each training by 0.1 to the final value of 0.3
which was used for the rest of learning.

Naturally, this learning process was extremely time consuming. The
training of the network 301-30-1 took about 17 days of user time on Sun
SparcStation 10 not taking into account the time for generating patterns. For
the training of the network 301-100-1 the supercomputer Silicon Graphics
POWER Challenge L was used. Despite its computing power the training took
about 18 days of user time.

62

Chapter 8 8.4 The Influence of Input Coding: Use of Real Numbers

The results of the experiments described above are summarized in
Tables 8.1 and 8.2. Although in the latter case the network contained more than
three-fold number of connections, the number of wrong patterns was almost
the same. It is obvious that, in this case, the performance of the network cannot
be significantly improved by increasing the number of hidden layer neurons
only.

Table 8.1: Results of learning of the
network 301-30-1 with 1,581,183 train-
ing patterns.

STATISTICS (1581183 patterns)

wrong: 3.43% (54282 patterns)

right:96.57% (1526901 patterns)

Table 8.2: Results of learning of
the network 301-100-1 with 1,581,183
training patterns.

STATISTICS (1581183 patterns)

wrong: 3.26% (51599 patterns)

right:96.74% (1529584 patterns)

As stated earlier, the biggest problem with the training of word hyphen-
ation is to obtain a good training set. It seems to be unrealistic to avoid all er-
rors but it is necessary to try to find patterns with the least number of wrongly
hyphenated words and with the maximum of correctly marked hyphenation
points. The file of 169,888 hyphenated words contained many errors. There-
fore, when the network was tested using this file, some correctly hyphenated
words were considered erroneous by the system. Remaining errors mainly oc-
curred in words which belong to the exceptions from hyphenation rules, espe-
cially in words adapted from foreign languages.

To test if a network can even learn all the exceptions from hyphenation
rules, all 54,282 training patterns wrongly hyphenated by the network 301-30-1
were used as one big training set and presented to another network of the
type 301-30-1. Learning rate decreased stepwise from the value 0.8 to 0.2. After
100 cycles the network learnt all but 4 training patterns which is an excellent
result.

8.4 The Influence of Input Coding: Use of Real Numbers
All the following experiments were carried out with the training set containing
78,809 hyphenated words beginning with the letter m. The number of errors in
these data was very low. The number of errors of the first type was negligible
and the relative number of errors of the second type was smaller too. A subset
of 1,000 words in which the errors were corrected was used for most of shorter
experiments. They were performed with the networks with seven input layer
neurons for seven consecutive letters. Each letter was coded as a real number.

63

Chapter 8 8.4 The Influence of Input Coding: Use of Real Numbers

 a á b c č d
0.02 0.04 0.06 0.08 0.10 0.12 0.14
d’ e é ě f g h

0.16 0.18 0.20 0.22 0.24 0.26 0.28
i í j k l m n

0.30 0.32 0.34 0.36 0.38 0.40 0.42
ň o ó p q r ř

0.44 0.46 0.48 0.50 0.52 0.54 0.56
s š t t’ u ú ů

0.58 0.60 0.62 0.64 0.66 0.68 0.70
v w x y ý z ž

0.72 0.74 0.76 0.78 0.80 0.82 0.84

Table 8.3: Coding of letters according to the alphabet.

In the beginning, the codes of letters were assigned according to the alphabet
(see Table 8.3).

The results of experiments with the network 7-30-9-2 are summarized
in Table 8.4. It is obvious that these results are not satisfactory as the network
error is too high. The network wrongly hyphenated even words often used
with simple syllabic hyphenation. It did not recognize the rules of making
syllables, did not take into account which letters are vowels and which
consonants. Therefore, this approach proved to be inapplicable due to poor
generalization achieved.

Table 8.4: Results of experiments with the network 7-30-9-2 and coding
according to Table 8.3.

STATISTICS (8411 patterns)

wrong : 14.12 % (1188 patterns)

right : 85.88 % (7223 patterns)

In order to improve results, learning with another input coding of
letters was used. It is shown in Table 8.5 on the following page. All vowels in
Czech were coded as small numbers in the range of 〈0.02, 0.28〉, all consonants
except r and l as numbers from 〈0.50, 0.98〉. Letters r and l are consonants but
can make syllables in Czech. Therefore, they were coded using numbers 0.40
and 0.42 separately from the other consonants. The blank was coded as 0.34,
i.e. as a number between code numbers of vowels and consonants.

64

Chapter 8 8.4 The Influence of Input Coding: Use of Real Numbers

Table 8.5: Alternative coding of letters.
a á e é ě i í

0.02 0.04 0.06 0.08 0.10 0.12 0.14
o ó u ú ů y ý

0.16 0.18 0.20 0.22 0.24 0.26 0.28
 r l

0.34 0.40 0.42
b c č d

0.50 0.52 0.54 0.56
d’ f g h j k m

0.58 0.60 0.62 0.64 0.66 0.68 0.70
n ň p q ř s š

0.72 0.74 0.76 0.78 0.80 0.82 0.84
t t’ v w x z ž

0.86 0.88 0.90 0.92 0.94 0.96 0.98

The results of the experiments with the network 7-30-9-2 and the coding
described above are shown in Table 8.6. The comparison of results with both
coding alternatives is given in Figure 8.1 on the following page.

Table 8.6: Results of experiments with the network 7-30-9-2 and coding
according to Table 8.5.

STATISTICS (8411 patterns)

wrong : 3.41 % (287 patterns)

right : 96.59 % (8124 patterns)

Information about the type of a letter (consonant or vowel) helped the
network to generalize. The different coding of letters r and l also improved
learning. The results with this network could be probably further improved
by another sorting of input letter codes. Many errors were caused by a special
nature of joined letters c and h. In Czech they both are used together as a two-
character symbol of one sound and, in fact, they form a sort of a single letter.
Thus, c and h cannot be separated by a hyphen. A solution of this problem
may be to code joined c and h by a special number which would differ from
the codes of both single letters.

65

Chapter 8 8.5 Comparison of Various Topologies

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000

Figure 8.1: Comparison of the results of experiments with the network 7-30-9-2
using both coding alternatives. Upper curve: Coding according to Table 8.3 on
page 64. Lower curve: Coding according to Table 8.5 on the preceding page.

8.5 Comparison of Various Topologies
The next series of experiments was designed to compare the abilities of net-
works with different topology. Networks 301-30-1, 301-60-1, 7-30-1, 7-30-9-2,
and 7-60-2 were compared. In the case of networks with seven input neu-
rons the alternative coding was used (as described in Table 8.5 on the previous
page). A detailed description of results can be found in (Smrž, 1995).

No significant difference in learning performance was observed be-
tween the networks with topologies 301-30-1 and 301-60-1. A similar result
was obtained earlier using the networks 301-30-1 and 301-100-1 and the other
training set — see Section 8.3 on page 62.

The results obtained with the network 301-30-1 are distinctly better than
those with networks consisting of a smaller number of neurons and synapses
for which different coding was necessary. On the other hand, this network
needs much more memory for weight storage.

66

Chapter 8 8.6 Syllabic Hyphenation

Learning and generalization performance of a network is significantly
influenced not only by the number of hidden layer neurons but also by the
network topology (Bugmann et al., 1992). Using the network 7-30-9-2 with two
hidden layers, better results were obtained though the total number of neurons
and connections was smaller than that of the network 7-60-2 with only one
hidden layer.

Next, the generalization ability of the networks 7-30-9-2 and 301-30-1
was studied. The networks were trained with the subset of 1,000 words. Then
the whole set of 78,809 words was used for testing. The results are given
in Tables 8.7 and 8.8. The percentage of wrongly hyphenated words can be
considered very low if the number of errors in the set used for testing is taken
into account.

Table 8.7: Generalization ability of the
network 7-30-9-2.
STATISTICS (648928 patterns)

wrong: 4.91% (31886 patterns)

right: 95.09% (647042 patterns)

Table 8.8: Generalization ability of the
network 301-30-1.
STATISTICS (648928 patterns)

wrong: 2.78% (18057 patterns)

right: 97.22% (630871 patterns)

To sum up our observation: to train a neural network to perform
hyphenation in a language one should:

1. Create a training set with proofread hyphenated words without errors
with all exceptions from generalizable rules.

2. Make a clever ordering of letters in the given language reflecting
“similarity”/“exchangeability” of letters.

3. Use a topology with two hidden layers might be cheaper in memory
consumption but learning is then harder.

The learning process itself can be used for finding errors in training data
(proofreading of words that were not learnt). This gradual bootstrapping
process may lead to a perfect network.

8.6 Syllabic Hyphenation
Finally, it was tested how well a network would perform if only the type of
letters (consonants or vowels) was given. The network 7-30-1 was used. Con-
sonants were coded as 0, vowels as 1 and blank as 0.5. The results of these
experiments are given in Table 8.9 on the next page. The results clearly show
that the syllabic hyphenation plays a dominant rôle in Czech language. How-
ever, as the error was about 6%, it was obvious that if only the syllabic hy-

67

Chapter 8 8.7 Discussion

phenation was included in the algorithm, the results would be unsatisfactory
for everyday use.

Table 8.9: Results of experiments with the network 7-30-1 and conson-
ant/vowel coding.

STATISTICS (8411 patterns)

wrong : 6.08 % (511 patterns)

right : 93.92 % (7900 patterns)

8.7 Discussion
The results obtained for Czech hyphenation are close to those for “classical”
approach showed in (Sojka and Ševeček, 1995; Sojka, 1995). Testing the
“syllabic hyphenation neural network” on “close” languages (e.g., syllabic
ones), preprocessed for accents, gives similar results. This fact allows to build
a modular hybrid system, in which separate neural networks will be trained to
cover “close” languages, and hyphenation of words not covered by them will
be stored in the exception tries in the PATGEN fashion. Such a system is able
not only perform well if properly tuned up — in addition — it can be trained
to give a measure of suitability of hyphenation points found for the [DTP]
system.

8.8 Conclusion and Acknowledgments
We showed that solving the word hyphenation problem with neural networks
is possible and that generalization abilities of neural networks allow to build
a working system for the given task. Combining with exception lists, we can
build a quality system which is able to store hyphenation points for several
languages with moderate memory needs.

We acknowledge the possibility to use computer facilities of Supercom-
puting Center Brno.

References
R. E. Allen. 1990. The Oxford Spelling Dictionary, volume II of The Oxford Library

of English Usage. Oxford University Press.
Guido Bugmann, Petr Sojka, Michael Reiss, Mark Plumbley, and John G. Taylor.

1992. Direct Approaches to Improving the Robustness of Multilayer Neural
Networks. pages 1063–1066, Brighton, UK, September. Elsevier Science
Publishers B.V.

68

Chapter 8 8.8 Conclusion and Acknowledgments

Sandra L. Emerson and Karen Paulsell. 1987. troff Typesetting for UNIXTM Systems.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Jiří Haller. 1956. Jak se dělí slova (How the Words Get Hyphenated). Státní
pedagogické nakladatelství Praha.

Zdeněk Hlavsa et al. 1993. Pravidla českého pravopisu (The Rules of the Czech
Spelling). Academia Praha.

Donald E. Knuth. 1986. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA.

Franklin M. Liang and Peter Breitenlohner. 1991. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.0
from UNIXTEX distribution at ftp://ftp.cs.umb.edu, November.

Franklin M. Liang. 1981. TEX and hyphenation. TUGboat, 2(2):19–20, July.
Terry J. Sejnowski and C. R. Rosenberg. 1987. Parallel Networks that Learn to

Pronounce English Text. Complex Systems, 1:145–168.
Pavel Smrž. 1995. Learning Algorithms of Neural Networks. Master’s thesis,

Masaryk University in Brno, April.
Petr Sojka and Pavel Ševeček. 1995. Hyphenation in TEX — Quo Vadis? TUGboat,

16(3):280–289.
Petr Sojka. 1995. Notes on Compound Word Hyphenation in TEX. TUGboat,

16(3):290–297.

69

ftp://ftp.cs.umb.edu

Chapter 9

Hyphenation on Demand

In this chapter it is shown that the technique of competing patterns can be
tailored to the specific problems in the area of computer typesetting.

The first version of this paper was presented at the TUG 1999 confer-
ence in Vancouver (Sojka, 1999a) and final version appeared as the journal
publication (Sojka, 1999b):

Petr Sojka. 1999a. Hyphenation on Demand. pages 1085–1091,
Vancouver, August. The University of British Columbia.
Petr Sojka. 1999b. Hyphenation on Demand. TUGboat, 20(3):241–247.

This chapter contains the final version with minor corrections.

70

Chapter 9 9.1 Motivation

Hyphenation on Demand

Petr Sojka

Abstract: The need to fully automate the batch typesetting
process has increased with the use of TEX as the engine for
high-volume and on-the-fly typeset documents which, in turn,
has lead to the need for programmable hyphenation and line-
-breaking of the highest quality.
An overview of approaches to building custom hyphenation
patterns is provided, along with examples. A methodology of the
process is given, combining different approaches: one based on
morphology and hand-made patterns, and one based on word
lists and the PATGEN program. The method is aimed at modular,
easily maintainable, efficient, and portable hyphenation. The bag
of tricks used in the process to develop custom hyphenation is
described.

9.1 Motivation
In principle, whether to hyphenate or not is a style question
and CSS [Cascading Style Sheets] should develop properties

to control hyphenation. In practice, however, for most languages
there is no algorithm or dictionary that gives all (and only)

correct word breaks, so some help from the author may occasionally
be needed. — Bos (1999)

Separation of content and presentation in today’s open information manage-
ment style in the sense of SGML/XML (Goldfarb, 1990; Megginson, 1998) is
a challenge for TEX as a batch typesetting tool. The attempts to bring TEX’s en-
gine to untangle presentation problems in the WWW arena are numerous (Su-
tor and Díaz, 1998; Skoupý, 1998).

One bottleneck in the high-volume quality publishing is the proofread-
ing stage — line-breaking and hyphenation handling that need to be tuned fine
to the layout of a particular publication. Tight deadlines in paper-based doc-
ument production and high-volume electronic publishing put additional de-
mands for better automation of the typesetting process. The need for multiple
presentations of the same data (e.g., for paper and screen) adds another di-
mension to the problem. Problems with hyphenation are often one of the most

71

Chapter 9 9.2 Pattern Generation

difficult. As most TEX users are perfectionists, fixing and tuning hyphenation
for every presentation is a tedious, time-consuming task.

Several issues related to hyphenation in TEX were discussed in (Sojka
and Ševeček, 1995; Sojka, 1995). On the ground that we were involved
in typesetting tens of thousands of TEX pages of multilingual documents
(mostly dictionaries), we want to point out several methods suitable for the
development of hyphenation patterns.

9.2 Pattern Generation
There is no place in the world that is linguistically homogeneous,

despite the claims of the nationalists around the world. — Plaice (1998)
Liang (1983) in his thesis written under Knuth’s supervision, developed
a general method to solve the hyphenation problem that was adopted in
TEX82 (Knuth, 1986, App. H). He wrote the PATGEN program (Liang and
Breitenlohner, 1999), which takes

• a list of already hyphenated words (if any),
• a set of patterns (if any) that describes “rules”,
• a list of parameters for the pattern generation process,
• a character code translation file — added in PATGEN 2.1; for details

see Haralambous (1994),
and generates

• an enriched set of patterns that “covers” all hyphenation points in the
given input word list,

• a word list hyphenated with the enriched set of patterns (optional).
The patterns are loaded into TEX’s memory and stored in a data

structure (cf. Knuth (1986a, parts 40 – 43)), which is also efficient for retrieval —
a variant of trie memory (cf. Knuth (1998, pp. 492 – 512)). This data structure
allows to search a hyphenation pattern in linear time with respect to the
pattern length. The algorithm using a trie that “outputs” possible hyphenation
positions may be formally viewed as the finite automaton with output (Mealy
automaton or transducer).

72

Chapter 9 9.3 Pattern Development

9.3 Pattern Development
. . . problems [with hyphenation] have more or less disappeared,

and I’ve learnt that this is only because, nowadays, every hyphenation
in the newspaper is manually checked by human proof-readers.

— Jarnefors (1995)

Studying patterns that are available for various languages shows that PATGEN
has only been used for about half of the hyphenation pattern files on CTAN
(cf. Tables 6.1 and 6.2).

There are two approaches to hyphenation pattern development, de-
pending on user preferences. Single authors using TEX as an authoring tool
want to minimize system changes and want TEX to behave as a fixed point so
that retypesetting of old articles is easily done, thanks to backwards compati-
bility. For such users, one set of patterns that is fixed once and for all might be
sufficient.

On the other hand, for publishers and corporate users with high-
-volume output, it is more efficient to make a long-term investment into
development of hyphenation patterns for particular purposes. I remember one
TEX user saying that my suggestion to enhance standard hyphenation patterns
with custom-made ones to allow better hyphenation of chemical formulæ
would save his employer thousands of pounds per year. Of course, with this
approach, one has to archive full sources for every publication, together with
hyphenation patterns and exceptions.

One of the possible reasons PATGEN has not been used more exten-
sively may be the high investment needed to create hyphenated lists of words,
or better, a morphological database of a given language.

9.4 Pattern Bootstrapping and Iterative Development
The road to wisdom? Well it’s plain and simple to express:

Err and err and err again but less and less and less. — Hein (1966)

When developing new patterns, it is good to iterate the following boot-
strapping technique. It could avoid the tedious task of manually marking hy-
phenation points in huge lists of words:

1. write down the most obvious initial patterns, if any, and/or collect “the
closest” ones (e.g., consonant-vowel rules),

2. extract a small word list for the given language,
3. hyphenate the current word list with current set patterns,
4. check all hyphenated words and correct them; in the case of errors

return to step 3,

73

Chapter 9 9.4 Pattern Bootstrapping and Iterative Development

5. collect a bigger word list,
6. use the previously generated set of patterns to hyphenate the words in

this bigger list,
7. check hyphenated words, and if there are no errors, move to step 9,
8. correct the word list and return to step 6,
9. generate final patterns with PATGEN with parameters fitted the partic-

ular purpose (tuned for space or yielding efficiency),
10. merge/combine new patterns with other modules of patterns to fit the

particular publishing project.
To find an initial set of patterns, some basic rules of hyphenation in the

specific language should be known. The language can be grouped into one of
two categories: those that derive hyphenation points according to morphology
(etymology) and those that derive hyphenation according to pronunciation —
“syllable-based” (syllabic) hyphenation. For the first group of languages,
one should start with patterns for most frequent prefixes and suffixes and
endings. For syllable-based hyphenation, patterns based on sequences of
consonants and vowels might be used (cf. Anonymous (1993, Section 6.44),
and Haralambous (1999)) as first approximation of hyphenation patterns.

As using TEX itself for hyphenation of word lists and development of
patterns may be preferred to other possibilities, we will start with this portable
solution, using hyphenation of phonetic transcriptions as an example of a
syllable-based “language”.

Let us start with some plain TEX code to define consonant-vowel (CV)
patterns:

% ... loading plain.tex

% without hyphen.tex patterns ...

\patterns{cv1cv cv2c1c ccv1c cccv1c

ccccv1c cccccv1c v2v1 v2v2v1 v2v2v2v1

...

}

There is a way to typeset words together with their hyphenation points in TEX;
the code from Olšák (1997, with minor modifications) looks like this:

\def\showhyphenspar{\begingroup

\overfullrule=0pt \parindent0pt

\hbadness=10000 \tt

\def\par{\setparams\endgraf\composelines}%

\setbox0=\vbox\bgroup

\noindent\hskip0pt\relax}

\def\setparams{\leftskip=0pt

74

Chapter 9 9.4 Pattern Bootstrapping and Iterative Development

\rightskip=0pt plus 1fil

\linepenalty1000 \pretolerance=-1

\hyphenpenalty=-10000}

\def\composelines{%

\global\setbox1=\hbox{}%

\loop

\setbox0=\lastbox \unskip \unpenalty

\ifhbox0 %

\global\setbox1=\hbox{%

\unhbox0\unskip\hskip0pt\unhbox1}%

\repeat

\egroup % close \setbox0=\vbox

\exhyphenpenalty=10000%

\emergencystretch=4em%

\unhbox1\endgraf

\endgroup}

Now, we will typeset our word list in the typewriter font without ligatures. To
use the CV patterns defined above we need to map word characters properly:

% vowels maping

\lccode‘\a=‘v \lccode‘\e=‘v

\lccode‘\i=‘v \lccode‘\o=‘v

...

% consonants

\lccode‘\b=‘c \lccode‘\c=‘c

\lccode‘\d=‘c \lccode‘\f=‘c

...

\raggedbottom \nopagenumbers

\showhyphenspar

The need to fully automate the

batch typesetting process increases

with the use of word in wordlist

...

\par\bye

Finally, extracting hyphenated words from dvi the file via the dvitype pro-
gram, we get our word list hyphenated by our simple CV patterns.

Another way to get the initial word list hyphenated is to use PATGEN
with initial patterns and no new level, letting PATGEN hyphenate the word list
that was input. PERL or RUBY addicts may want to use hyphenation modules
by Pazdziora (2005) or Ziegler (2005) for the task.

75

Chapter 9 9.5 Modularity of Patterns

Once the job of proofreading of the word list is finished, we can generate
new patterns and collect other words in the language. Using new patterns on
the new collection will show the efficiency of the process.

Fine tuning of patterns may be iterated, once PATGEN parameters are
set, so that nearly 100% coverage of hyphenation points is achieved in every
iteration. The setting of such PATGEN parameters may be difficult to find
on the first attempt. Setting of these parameters is discussed in (Sojka and
Ševeček, 1995).

9.5 Modularity of Patterns
It is tractable for some languages to create patterns by hand, simply by
writing patterns according to the rules for a given language. This approach
is, however, doomed to failure for complex languages with several levels
of exceptions. Nevertheless, there are special cases in which we may build
pattern modules and concatenate patterns to achieve special purpose behavior.
This applies especially when additional characters (not handled when patterns
have been built originally) may occur in words that we still want to hyphenate.

Patterns generated by Raichle (1997) may serve as an example that can
be used with any fonts in standard LATEX eight-bit T1 font encoding, to allow
hyphenation after an explicit hyphen. Similar pattern modules can be written
for words or chemical formulæ that contain braces and parentheses. These
can be combined with “standard” patterns in the needed encodings. Some
problems might be caused by the fact that TEX does not allow metrics to be
defined for \lefthyphenmin and \righthyphenmin properly — we might want
to say that ligatures, for instance, only counted as a single letter. We may want
that some characters should not affect hyphenation at all (e.g., parentheses in
words like colo(u)r). We must wait until some naming mechanisms for output
glyphs (characters) is adopted by the TEX community for handling these issues.

Adding a new primitive for the hyphenmin code — let’s call it \hccode,
a calque on \lccode— would cause similar problems: changing it in the mid-
paragraph would have unpredictable results.1

It is advisable to create modules or libraries of special-purpose hyphen-
ation patterns, such as the ones mentioned above, to ease the task of pattern
development. These patterns might be written in such a way to be easily adapt-
able for use with core patterns of a different language.

1. ε-TEX v2 has a new feature to fix the \lccode values during the pattern reading phase.

76

Chapter 9 9.6 Common Patterns for More Languages

9.6 Common Patterns for More Languages
Having large hyphenated word lists of several languages the possibility
then exists to make multilingual or special-purpose patterns from collections
of words by using PATGEN. Joining word lists and generating patterns
for particular publications on demand is especially useful when the word
databases are structured and split into sublists of personal names, geographic
names, abbreviations, etc. These patterns are requested when typesetting
material in which language switching is not properly done (e.g., on the
WWW).

Czech and Slovak are very closely related languages. Although they do
not share exactly the same alphabet, rules for hyphenation are similar. That
has led us to the idea of making one set of hyphenation patterns to work for
both languages, saving space in a format file that supports both. In the Czech/
Slovak standard TEX distribution there is support for different font encodings.
For every encoding, hyphenation patterns have to be loaded as there is no
character remapping on the level of trie possible. Such Czechoslovak patterns
would save patterns for each encoding in use.

It should be mentioned that this approach cannot be taken for any
set of languages as there may be, in general, identical words that hyphenate
differently in different languages; thus, simply merging word lists to feed
PATGEN is not sufficient without degrading the performance of patterns by
forbidding hyphenation in these conflicting words (e.g., re-cord vs. rec-ord).

9.7 Phonetic Hyphenation
As an example of custom-made hyphenation patterns, the patterns for hy-
phenating phonetic (IPA) transcription are described in this section. Dictio-
naries use this extensively — see Figure 9.1 on the following page,2 taken from
Kirsteinová.

The steps used to develop the hyphenation patterns for this dictionary
were similar to those described in Section 9.4 on page 73:

1. write down the most obvious (syllabic) patterns,
2. extract all phonetic words from available texts,
3. hyphenate this word list with the initial set of patterns,
4. check and correct all hyphenated words,
5. generate final quality patterns.

In bigger publishing projects efforts like this pay off very quickly.

2. IPA font used is TechPhonetic downloadable from
http://www.sil.org/ftp/PUB/SOFTWARE/WIN/FONTS/.

77

http://www.sil.org/ftp/PUB/SOFTWARE/WIN/FONTS/

Chapter 9 9.8 Hyphenation for an Etymological Dictionary

akkompagnement sb [æk^mpænj{-
'ma4] -et, -er hudebnı́ doprovod m

alimentationsbidrag sb [ælimEntæ-
'šo:’ns,bi,dra:’w] -et, - alimenty pl,
přı́spěvek m na výživné dı́těte

befolkningseksplosion sb [be'f^l’g-
ne4s-] -en, -er populačnı́ exploze f

-tilvækst -en, -er přı́růstek m
obyvatelstva -tæthed -en, -er
hustota f obyvatelstva

bemærkelsesværdig adj [be'mæR-
g{ls{s,væR’di] -t, -e pozoruhodný

beslutningsdygtig adj [be'slud-
ne4s,døgdi] -t, -e schopný
rozhodovat; den lovgivende for-
samling var ˜ zákonodárné shro-
mážděnı́ bylo schopné se usnášet

Figure 9.1: Example of phonetic hyphenation in (Kirsteinová and Borg, 1999).

9.8 Hyphenation for an Etymological Dictionary
In some publications as in (Rejzek, 2001), a different problem can arise: the
possibility of having more than 256 characters used within a single paragraph.
This problem cannot be, in general, easily solved3 within the frame of TEX82.
For this purpose we thus tried OMEGA, the typesetting system by Plaice
and Haralambous (Plaice, 1994; Haralambous and Plaice, 1994; Plaice and
Haralambous, 1996; Haralambous, 1996; Haralambous and Plaice, 1998). One
has to create special virtual fonts (e.g., by using the fontinst package) on top
of the OMEGA ones, in order to typeset it — see Figure 9.2 on the following
page.

3. One could try to reencode all fonts used in parallel in some paragraph so that they share
the same \lccode mappings, but this exercise would have to be done for each multilingual-
intensive publication, again and again.

78

Chapter 9 9.9 More Hyphenation Classes

���������	�
��������������������� ��� �"!#���$�%���& ��(') +*�,.-�/
01-324,�56*�,.-70989,�:<; !��#=�>% !#@?BA *�,.-70DCFE �GA *�,.-IH J
��KLA NM��K�����% !#O�� !�P$3��� C #9% ��� ����RQ�K�����K ��('@C(S Q��PA
*UT,�2VTWX01Y�Z �� !�P$3��� C #@% ��(' ��� *UT,.2�Y�Z[5 �\� !C^] #U !� �_ !��A
���P(A`��� *UT,�ZGa�TW �b������$3�c�R# ' A@d.����KLAfe *�,�ag-4h�*ji,.k4l9:
� ���m@n !o ���U�pq�rK �Q ! ��%�$�K ��" ��$ S % !# C Q`�] Q`� ��(') L*ji,./
stYvuw -X0\h�Zx23:zy #@% !��A{d�����K�$V� �_|� !��A����PA h.stY}uw iW
� C`~ ���]f =C`~ �RQ�!% % �Q�!�@$�% �_ '(� K.!�R#=� S A���A ; � S Ag&���!��#@%� /�sL�h��c/������15��O�9� %�#] �� �_ ! ���R����K�$V� �_�� S $3��A �-�s�,�*./
�O�Y=Z ����P����& ��('������ � �s	i,�*��.2�-7Z �3�� !#9���.Q`� ')
s[l@*g���.2�-7Z ����� � ����Q`�L�R# ') =s�,�*��O�, �� !� �_V�������]f % �Q9�
�������]@') � �Q S #OQ1��$��R#���� !�P��%LA s�,�*�a ��� � ��� S ��� K �_I�
!��$�K �� .��� ��~^') % !#@?BA s[l@*�8\l@* ��.��� ��~ ��K�Q`�L�R#
&������ !C $�K !#��R#9? �IQ@? ') Q�%�� S A<� s[l@*�a9� �����P�.�
%������ K � &���������$3� ') K ! �R# ~�� �I� ~���S ������$�#�A�` Y�s[l@*��c/ ��&���������$4� ��� ���~ Q`� ' Q¡K C � �Q S #9%L!#U�!� �_I�
~ � C % �# ~��¢~.��S �¢£ 0=s���,�23:
��¤@¥(¦ o ¤ o§�rK��P� �Q`&¨%�Q©� !��#@K�� '75�*�l9ª�h w iW w l@8\:

�«S A *�¬@l9ª�h w 5 � S %(A *�,�ª<h w l9a\:\; !��#] Q`�I� C ��#@�P?BA
E ����?®Q ~.� ��&.Q C ��K�Q S Q�Q !C %�Q���#���?BA � *�,�ª�,./
/���,c- w , !��#9� C ? !#@%���� / w /[¯�/Pst/°�r±O²�5������)5
&���#�� �Q³� !C®] #´�����K�#9��#@%�Q³Kµ������%LA *�,�ª�,��¶Tlgs
� %(!#9?¢A�·´¸,�ª�lgs ��KLA���A ; ��K�% �_}!� �Q=���L��#���?BA�� S ��K.Q
�������K �_�� �Q¶% !#@?BA�· ,�ª�lO� K�$ C e *ji,�ª�h�¬ � ���P��� �Q
% !#@?BA����PA�¹ lgsNC � �����A � ��,c- w ,c/ �r% !#\�9� !���$!�\Q`� �#\�
�.� ' A

Figure 9.2: Using OMEGA to typeset paragraphs in which words from lan-
guages with more than 256 different characters may appear and be hyphen-
ated in parallel.

9.9 More Hyphenation Classes
But at least I can point out a minor weakness of TEX’s algorithm:

all possible hyphenations have the same penalty. This might be ok
for English, but for languages like German that have a lot of composite words

there should be the ability to assign lower penalties between parts of a composite
i.e. Um-brechen should be favored against Umbre-chen. — Hars (1999)

Some suggestions on handling multiple hyphenation classes were suggested
by Sojka (1995). A prototype implementation of ε-TEX and PATGEN has recently
been done (Classen, 1998). For a wider adoption of such improvements

79

Chapter 9 9.10 Speed Considerations

availability of large word lists and development of new patterns is crucial.
Many of the methods mentioned above could be used to develop such multi-
class/multi-purpose patterns. (Allen, 1990) contains such a word list, which
shows that some publishers do pay attention to line-breaking details.

9.10 Speed Considerations
Even though hyphenation searches using a trie data structure are fast, search-
ing for unnecessary hyphenation points is a waste of time. It is advisable to
tell TEX where words shouldn’t be hyphenated. Comparing several possibili-
ties for suppressing hyphenation, the option of setting \lefthyphenmin to 65
is slightly faster than switching to \language, which has no patterns. These so-
lutions outperform the \hyphenpenalty 10000 solution by a fair amount (Ar-
senau, 1994).

9.11 Reuse of Patterns
Sometimes we need the same patterns with different \lefthyphenmin and
\righthyphenmin parameters. The suggested approach is not to limit hyphens
close to word boundaries during the pattern generation phase but to use TEX’s
\setlanguage primitive. This can be done to achieve special hyphenation
handling for the last word in a paragraph (e.g., a higher \righthyphenmin)
given proper markup by a preprocessing filter. For example:

\newcount\tmpcount

\def\lastwordinpar#1{%

\tmpcount=\righthyphenmin \righthyphenmin=5

\setlanguage\language #1

\expandafter\righthyphenmin\the\tmpcount

\setlanguage\language}

\showhyphens{demand}

\lastwordinpar{demand\showhyphens{demand}}

\bye

80

Chapter 9 9.12 Future Work

9.12 Future Work
If you find that you’re spending almost all your time on practice,

start turning some attention to theoretical things; it will improve your practice.
— Knuth (1989b)

It seems inevitable that embedding of language-specific support modules will
be necessary for the typesetting system in the future. These demands must
not only be applied to hyphenation but also to spelling or even grammar
checkers. As even people using WYSIWYG systems may use tools that help
to visualize possible typos (in color, etc.) on the fly, the computing power of
today’s machines is surely sufficient to do the same in batch processing with
even better results.

The idea of using patterns to capture mappings specific for particular
languages or dialect modules can be further generalized for different purposes
and mappings. The use of the theory of finite-state transducers (Mohri, 1996;
Mohri, 1997; Roche and Schabes, 1997; Roche and Schabes, 1995) to implement
other classes of language modules looks promising.

Applicability of outlined pattern-driven approach remains to be shown
in other areas of NLP and LE e.g., for syllabification, a word sense or semantic
disambiguation, simply speaking, in any area based on finite-state models of
any kind.

References
R. E. Allen. 1990. The Oxford Spelling Dictionary, volume II of The Oxford Library

of English Usage. Oxford University Press.
Donald Arsenau. 1994. Benchmarking paragraphs without hyphenation. Posting to

the Usenet group news:comp.text.tex on December 13.
Matthias Classen. 1998. An extension of TEX’s hyphenation algorithm.

ftp://peano.mathematik.uni-freiburg.de/pub/etex/hyphenation/.
Charles F. Goldfarb. 1990. The SGML handbook. Clarendon Press, Oxford.
Yannis Haralambous and John Plaice. 1994. First applications of Ω: Adobe Poetica,

Arabic, Greek, Khmer. TUGboat, 15(3):344–352, September.
Yannis Haralambous and John Plaice. 1998. The Design and Use of a

Multiple-Alphabet Font with Ω. In Roger D. Hersch, Jacques André, and
Heather Brown, editors, Lecture Notes in Computer Science 1375, pages
126–137. Springer-Verlag, April.

Yannis Haralambous. 1996. ΩTimes and ΩHelvetica fonts under development: Step
One. TUGboat, 17(2):126–146, June.

Blanka Kirsteinová and Blanka Borg. 1999. Dánsko-český slovník, Dansk-Tjekkisk
Ordbog [Danish-Czech Dictionary]. LEDA, Prague, Czech Republic.

Donald E. Knuth. 1986. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA.

81

news:comp.text.tex
ftp://peano.mathematik.uni-freiburg.de/pub/etex/hyphenation/

Chapter 9 9.12 Future Work

Franklin M. Liang and Peter Breitenlohner. 1999. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.3
from web2c distribution on CTAN.

David Megginson. 1998. Structuring XML Documents. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Mehryar Mohri. 1996. On some applications of finite-state automata theory to
natural language processing. Natural Language Engineering, 2:61–80.
Originally appeared in 1994 as Technical Report, Institut Gaspard Monge,
Paris.

Mehryar Mohri. 1997. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2):269–311, June.

John Plaice and Yannis Haralambous. 1996. The latest developments in Ω. TUGboat,
17(2):181–183, June.

John Plaice. 1994. Progress in the Omega project. TUGboat, 15(3):320–324,
September.

Jan Rejzek. 2001. Etymologický slovník českého jazyka (Ethymological Dictionary of
Czech Language). LEDA, Prague, Czech Republic.

Emmanuel Roche and Yves Schabes. 1995. Deterministic Part-of-Speech Tagging.
Computational Linguistics, 21(2):227–253.

Emmanuel Roche and Yves Schabes. 1997. Finite-State Language Processing. MIT
Press.

Karel Skoupý. 1998. NTS: a New Typesetting System. TUGboat, 18(3):318–322.
Petr Sojka and Pavel Ševeček. 1995. Hyphenation in TEX — Quo Vadis? TUGboat,

16(3):280–289.
Petr Sojka. 1995. Notes on Compound Word Hyphenation in TEX. TUGboat,

16(3):290–297.
Robert S. Sutor and Angel L. Díaz. 1998. IBM techplorer: Scientific Publishing for the

Internet. Cahiers GUTenberg, (28–29):295–308, March.

82

Chapter 10

Competing Patterns for Language Engineering

Methodology for handling and storing language data is described in a paper
presented at the TSD 2000 conference in Brno (Sojka, 2000):

Petr Sojka. 2000. Competing Patterns for Language Engineering. In
Petr Sojka, Ivan Kopeček, and Karel Pala, editors, Proceedings of the
Third International Workshop on Text, Speech and Dialogue—TSD
2000, Lecture Notes in Artificial Intelligence LNCS/LNAI 1902, pages
157–162, Brno, Czech Republic, September. Springer-Verlag.

This chapter contains slightly modified version of the above paper.

83

Chapter 10 10.1 Introduction

Competing Patterns for Language Engineering

Petr Sojka

Abstract: In this paper we describe a method of effective han-
dling of linguistic data by means of a covering and inhibiting
patterns — patterns that “compete” with each other. A method-
ology of developing such patterns is outlined. Applications in
the areas of morphology, hyphenation and part-of-speech tag-
ging are shown. This pattern-driven approach to language en-
gineering allows the combination of linguist expertise with the
data learned from corpora — layering of knowledge. Search-
ing for information in pattern database (dictionary problem) is
blindingly fast — linear with respect to the length of searching
word as with other finite-state approaches.

We anticipate that experimental computer science will continue
and develop, and that, through experimentation, we will
enjoy a renaissance in interaction of theory and practice.

— Introduction to special issue of TCS (Salomaa et al., 2000, page 3)

10.1 Introduction
There is a need to store empirical language data in almost all areas on natural
language engineering (LE). Finite-state methods (Roche and Schabes, 1997;
Kornai, 1999; Mohri, 1996; Mohri, 1997; Karttunen et al., 1996) have found
their revival in the last decade. The theory of finite-state automata (FSA) and
transducers (FST) is a well developed part of theoretical computer science (for
an overview, see e.g. (Gruska, 1997; Büchi, 1989)). As the finite-state machines
(FSM) tend to grow with increased demand for quality of language processing,
more attention is being given to the efficiency of the handling of FSM (Mohri,
2000; Câmpeanu et al., 1998). The size of some FSM used in natural language
processing exceeds ten million states (e.g., weighted finite automata and
transducers for speech recognition). The practical need to reduce the size
of these data structures without losing their expressiveness and excellent
time complexity of operations on them is driving new research activities —
trend of experimental Computer Science is seen. Several FSM-based software
tools (Mohri et al., 1998; Silberztein, 2000; Watson, 1999; Hobbs et al., 1997)
have already been implemented for LE.

84

Chapter 10 10.2 Patterns

In this paper we explore a method of FSM decomposition that allows
a significant size reduction of FSM — the idea of storing empirical data
using competing patterns . The data structure trie and pattern technique have
been developed by Liang (1983) for hyphenation algorithm in TEX (Knuth,
1986, Appendix H). We defined several kinds of patterns and our extensive
experiments showed that the method is applicable in several areas of language
engineering. Bootstrapping and stratification techniques allow us to speed up
the development of such machines — space savings and time of development
savings are enormous.

This paper is organized as follows. In Section 10.2, we give basic
definitions and a short overview of known results. Section 10.3 on page 87
discusses pattern development methodology. Section 10.4 on page 87 describes
in detail applications in the area of Czech morphology. An overview of results
for hyphenation and compound word division is given in Section 10.5 on
page 88. Possible applications like part-of-speech (POS) tagging are described
in Section 10.6 on page 88.

10.2 Patterns
We start by formally introducing different kinds of patterns and basic notions
(for a detailed discussion and examples, see e.g. (Büchi, 1989; Jiang et al.,
1995)).
Definition 10.1 (pattern). Let us have two disjoint alphabets Σ (the alphabet
of terminals) and V (the alphabet of variables). Patterns are words over
the free monoid 〈(Σ ∪ V)∗, ε, ·〉. Length of the empty word ε, |ε|, is zero.
Patterns consisting of terminals only called terminal patterns . The language
L(α) defined by pattern α consists of all words obtained from α by leaving
the terminals unchanged and substituting a terminal word for each variable v.
The substitution in our case has to be uniform : different occurences of v are
replaced by the same terminal word. If the substitution replaces variables
always by nonempty word, such language LNE is non-erasing , and such
pattern is called NE-pattern . Similarly, we define erasing language LE as a
language generated by E-pattern such that substitution of variable v by empty
word ε is allowed.

As an example of E-pattern may serve pattern SVOMPT for English
sentences where the variables denote Subject, Verb, Object, Manner, Place,
Time. An obvious useful task is to infer a pattern common to all input words
in a given sample by the process of inductive inference . It has been shown
in (Jiang et al., 1995) that inclusion problem is undecidable for both erasing
and non-erasing pattern languages. It is easy to show that the decidability

85

Chapter 10 10.2 Patterns

h y p h e n a t i o n
l1 1n a
l1 1t i o
l2 n2a t
l2 2i o
l2 h e2n
l3.h y3p h
l4 h e n a4
l5 h e n5a t

.h0y3p0h0e2n5a4t2i0o0n.
h y-p h e n-a t i o n

In this example 〈A,≤〉 is � (natural
numbers). There are 5 pattern levels —
l1. . .l5. Patterns in odd levels are cov-
ering , in an even levels inhibiting . Win-
ner pattern is .h0y3p0h0e2n5a4t2i0o0n.

Pattern h e n5a t wins over n2a t, thus
hyphenation is possible.

Figure 10.1: Competing patterns and pattern levels.

of equivalence problem for non-erasing languages is trivial. The decidability
status of the equivalence problem for E-patterns remains open. These results
show that trying to infer language description in the form of set of patterns
(or the whole grammar) automatically is very difficult task. It has been shown
that decomposition of the problem by using local grammars (Gross, 1997) or
building cascades of FSM (Hobbs et al., 1997) is a tractable, but very time-
consuming task. Methods for the induction of patterns (from corpora) are
needed.
Definition 10.2 (classifying pattern). Let 〈A,≤〉 be a partially ordered system,
≤ be a lattice order (every finite non-empty subset of A has lower and upper
bound). Let . be a distinguished symbol in Σ′ = Σ ∪ {.} that denotes the
beginning and the end of word — begin of word marker and end of word
marker . Classifying patterns are the words over Σ′ ∪ V ∪ A such that dot
symbol is allowed at the beginning or end of patterns.

Terminal patterns are “context-free” in that, they apply anywhere in the
classified word — dot symbol in a pattern specifies pattern at the beginning
and end of a word. Classifying patterns allows us to build tagging hierarchies
on patterns.
Definition 10.3 (word classification, competing word patterns). Let P be
a set of patterns over Σ′ ∪ V ∪ A (competing patterns , pattern base). Let
w = w1w2 . . . wn be a word to classify with P. Classification classify(w, P) =
a0w1a1w1 . . . wnan of w with respect to P is computed from pattern base P
by competition. All patterns whose projection to Σ match a substring of w
are collected. ai is supremum of all values between characters wi and wi+1 in
matched patterns. classify(w, P) is also called a winning pattern .

An example of competing patterns is shown in Figure 10.1. Competing
pattern sets can be used on all levels of natural language processing —
covering structures used in morphology, their exploration is seen on both

86

Chapter 10 10.3 Methodology

syntax (parsing) and semantic (WSD) levels. Competing patterns extend the
power of FST somewhat like adding the complement operator with respect
to A. Ideally, instead of storing full FST, we make patterns that embody
the same information in an even more compact manner. Collecting patterns
matching a given word can be done in linear time, using a trie data structure
for pattern storage.

10.3 Methodology
10.3.1 Pattern Generation
There are several pattern generation strategies that allow the choice between
size-optimal or coverage-optimal patterns (Sojka and Ševeček, 1995) with the
PATGEN program (Liang and Breitenlohner, 1999). A generation process can
be parametrised by several parameters whose tuning strategies are beyond
the scope of this paper; see (Sojka and Ševeček, 1995; Sojka, 1995) for details.
Parameters could be tuned so that virtually all hyphenation points are covered,
leading to about 99.9 % efficiency, and size is not far from optimum. Further
investigation and research is necessary to find sufficient conditions for finding
optimal results.

10.3.2 Stratification Technique
As word lists from which patterns are generated are rather big (5,000,000 for
Czech morphology or hyphenation, even more for other tasks such as POS
tagging), they may be stratified. Stratification means that from ‘equivalent’
words only one or a small number of representatives are chosen for the pattern
generation process.

10.3.3 Bootstrapping Technique
Developing patterns is usually an iterative process. One starts with hand-
written patterns, uses them on input word list, sees the results, makes the
correction, generates new patterns, etc. This technique succeeded in acceler-
ating the pattern development process by the order of magnitude. We usually
do not start from scratch, but use some previously collected data (e.g., word
list).

10.4 Application to Czech Morphology
For the information extraction, information retrieval systems, indexing and
similar tasks we need information on many kinds of sub-word divisions:

87

Chapter 10 10.5 Application to Hyphenation and Compound Words

dividing a word into atoms (cutting of prefixes, compound words recognition
etc.) (Kodydek, 2000). We have created several competing pattern sets using
the word database of Czech morphological analyser ajka (Sedláček, 1999). We
have taken a word list of 564,974 Czech words (6.6 MB) with marked prefix
segmentation and added 51,816 similar ones (starting with the same letters,
but morphologically different). We were able to build patterns that were able
to perform prefix segmentation on 100% of words of our input word list and
98% of words in our test set.

In comparison to naïve storage of word segmentation, there is a com-
pression ratio of several order of magnitude higher. Even compared to stor-
age of FSM using suffix compression in a trie, patterns compacted in trie data
structure gives a tenfold space reduction, still with linear access time.

10.5 Application to Hyphenation and Compound Words
We have used the pattern technique to cover Czech and German hyphenation
points and compound word borders. From a Czech word list (372,562 words,
approx. 4 MB), we were able to create 8,239 patterns (40 kB) that cover 99.63%
hyphenation points. From a German word list (368,152 words, 5 MB), we were
able to create 4,702 patterns (25.2 kB) that cover 98.37% hyphenation points.

Covering compound word hyphenation was more difficult, as longer
patterns are needed. With slightly different parameters of pattern generation,
we were able to create patterns for German compound words with 8,825
patterns (70.2 kB) with 95.28% coverage. Higher coverage is at the expense of
pattern size growth.

For details of hyphenation pattern generation for compound words in
Czech and German using PATGEN, see (Sojka and Ševeček, 1995; Sojka, 1995;
Sojka, 1999).

10.6 Outline of an Application to Part-of-Speech Tagging
Two mainstream approaches are being used for the POS task: linguistic,
based on hand-coded linguistic rules (constraint grammars) (Karlsson et al.,
1995; Oliva et al., 2000) and machine learning (statistical, transformation-
based) approaches, based on learning the language model from corpora. Their
combination is probably what is needed — the ‘built-in’ linguistic knowledge
should be communicated to and take preference over, for example, statistical
knowledge acquired during learning. We hope that ordered and competing
patterns will be a viable unifying carrier of information that will allow
combination of both approaches.

88

Chapter 10 10.7 Conclusion

Finite-state cascaded methods have already been applied to the POS
task (Abney, 1997). Let us outline one possible approach. Given sentence
w1 w2 . . . wn, an ambiguous tagger gives various possible tags: p11 . . . p1a1 for
the first word, p21 . . . p2a2 for the second, etc. Writing output as (p11 . . . p1a1)(p11
. . . p2a2). . . (pn1 . . . pnan), the task is to choose the right POS pij for every wi.
Taking the tag set from Brown corpus (the Brown University Standard Corpus
of Present-day American English) (Francis and Kučera, 1982) for the sentence
“The representative put chairs on the table.”, we get the output
. AT (NN - JJ) (NN VBD -) (NNS - VBZ) IN AT NN .

The representative put chairs on the table .

Hyphenation markers immediately after POS tag show good solutions for
training. Such ‘word lists’ (for each sentence from training corpus we get
one ‘hyphenated word’) are used by PATGEN for disambiguation patterns
generation. Sentence borders are explicitly coded. This or similar notation
can be used for both formulation of ambiguous tagging decision strategies
of variable context length by linguists. In comparison to classical constraint
grammars, our experience shows that the obligation to write only rules
which are true in any context is very difficult and only a few linguists
are able to do so. Having pattern/rule levels/hierarchy helps to develop
disambiguation strategies more easily and quickly. Generalisation for patterns
over tree hierarchies is worked on.

10.7 Conclusion
We have shown effective methods for empirical language data storage and
handling by means of competing patterns. Our pattern-driven approach to
language engineering has been tested in several areas — hyphenation and
morphology using prototype solution — programs PATGEN and TEX and their
algorithms and data structures were used. Searching the pattern database
is blindingly fast (linear with respect to the text length). It remains to be
shown, that this approach is applicable and useful in areas as phonology,
syllabification, speech segmentation, word sense or semantic disambiguation
and speech processing. We believe that the pattern-driven approach will be
explored in NLP systems for various classification tasks soon.

Acknowledgement
The author would like to thank reviewers for their suggestions to improve
wording of the paper, and Radek Sedláček for providing a prefixed word list
for experiments described in Section 10.4 on page 87.

89

Chapter 10 10.7 Conclusion

References
Steven Paul Abney. 1997. Part-of-Speech Tagging and Partial Parsing. pages 118–136,

Dordrecht. Kluwer Academic Publishers Group.
J. Richard Büchi. 1989. Towards a Theory of Formal Expressions. Springer-Verlag,

New York, U.S.A.
Cezar Câmpeanu, Nicolae Sânteau, and Sheng Yu. 1998. Minimal cover-automata for

finite languages. In Jean-Marc Champarnaud, Denis Maurel, and Djelloul
Ziadi, editors, Lecture Notes in Computer Science 1660, pages 43–56, Berlin,
Heidelberg. Springer-Verlag.

Nelson W. Francis and Henry Kučera. 1982. Frequency Analysis of English Usage:
Lexicon and Grammar. Houghton Mifflin.

Maurice Gross. 1997. The Construction of Local Grammars. (Roche and Schabes,
1997), pages 329–354.

Jozef Gruska. 1997. Foundations of Computing. International Thomson Computer
Press.

Jerry R. Hobbs, Douglas Appelt, John Bear, David Israel, Megumi Kameyama, Mark
Stickel, and Mabry Tyson. 1997. FASTUS: A Cascaded Finite-State Transducer
for Extracting Information from Natural-Language Text. (Roche and Schabes,
1997), pages 383–406.

Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu. 1995. Decision problems for
patterns. Journal of Computer and Systems Sciences, 50(1):53–63.

Fred Karlsson, A. Voutilainen, J. Heikkilä, and A. Antilla. 1995. Constraint Grammar:
A Language-Independent System for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller. 1996.
Regular Expressions for Language Engineering. Natural Language
Engineering, 2(4):305–328.

Donald E. Knuth. 1986. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA.

Gabriele Kodydek. 2000. A Word Analysis System for German Hyphenation, Full
Text Search, and Spell Checking, with Regard to the Latest Reform of German
Orthography. In Sojka et al. (Sojka et al., 2000), pages 39–44.

András Kornai. 1999. Extended Finite State Models of Language. Cambridge
University Press.

Franklin M. Liang and Peter Breitenlohner. 1999. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.3
from web2c distribution on CTAN.

Mehryar Mohri, Fernando C. N. Pereira, and Michael D. Riley. 1998. FSM Library —
General-purpose finite-state machine software tools.
http://www.research.att.com/sw/tools/fsm/.

Mehryar Mohri. 1996. On some applications of finite-state automata theory to
natural language processing. Natural Language Engineering, 2:61–80.

90

http://www.research.att.com/sw/tools/fsm/

Chapter 10 10.7 Conclusion

Originally appeared in 1994 as Technical Report, Institut Gaspard Monge,
Paris.

Mehryar Mohri. 1997. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2):269–311, June.

Mehryar Mohri. 2000. Minimization algorithms for sequential transducers.
Theoretical Computer Science, 234:177–201, March.

Karel Oliva, Milena Hnátková, Vladimír Petkevič, and Pavel Květoň. 2000. The
Linguistic Basis of a Rule-Based Tagger of Czech. In Sojka et al. (Sojka et al.,
2000), pages 3–8.

Emmanuel Roche and Yves Schabes. 1997. Finite-State Language Processing. MIT
Press.

Kai Salomaa, Derick Wood, and Sheng Yu, editors. 2000. Implementing Automata,
volume 231.

Radek Sedláček. 1999. Morphological Analyzer of Czech (in Czech). Master’s thesis,
Masaryk University in Brno, April.

Max Silberztein. 2000. INTEX: an FST toolbox. Theoretical Computer Science,
234:33–46.

Petr Sojka and Pavel Ševeček. 1995. Hyphenation in TEX — Quo Vadis? TUGboat,
16(3):280–289.

Petr Sojka, Ivan Kopeček, and Karel Pala, editors. 2000. Proceedings of the Third
International Workshop on Text, Speech and Dialogue—TSD 2000, Lecture
Notes in Artificial Intelligence LNCS/LNAI 1902, Brno, Czech Republic,
September. Springer-Verlag.

Petr Sojka. 1995. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297.

Petr Sojka. 1999. Hyphenation on Demand. TUGboat, 20(3):241–247.
Bruce W. Watson. 1999. Implementing and using finite automata toolkits. (Kornai,

1999), pages 19–36.

91

Chapter 11

Pattern Generation Revisited

Problems of machine learning of competing patterns are tackled in this
chapter. The method of generating competing patterns are revisited.

The results were presented at the EuroTEX 2001 conference in
Kerkrade (Antoš and Sojka, 2001):

David Antoš and Petr Sojka. 2001. Pattern Generation Revisited. In
Simon Pepping, editor, Proceedings of the 16th European TEX
Conference, Kerkrade, 2001, pages 7–17, Kerkrade, The Netherlands,
September. NTG.

This chapter contains a slightly modified version of the above paper.
The present author’s proportion on the presented results is 50%.

92

Chapter 11 11.1 Introduction

Pattern Generation Revisited

David Antoš, Petr Sojka

Abstract: The PATGEN program, being nearly twenty years old,
doesn’t suit today’s needs:
• it is nearly impossible to make changes, as the program is

highly optimized (like TEX),
• it is limited to eight-bit encodings,
• it uses static data structures,
• reuse of the pattern technique and packed trie data struc-

ture for problems other than hyphenation (context depen-
dent ligature handling, spell checking, Thai syllabification,
etc) is cumbersome.

Those and other reasons explained further in the paper led
us to the decision to reimplement PATGEN from scratch in
an object-oriented manner (like NTS–New Typesetting System
reimplementation of TEX) and to create the PATtern LIBrary PAT-
LIB and the (hyphenation) pattern generator based on it.
We argue that this general approach allows the code to be used
in many applications in computer typesetting area, in addition
to those of pattern recognition, which include various natural
language processing, optical character recognition, and others.

Key Words: patterns • UNICODE • hyphenation • tagging • transformation •
OMEGA • PATGEN • PATLIB • reimplementation • templates • C++

11.1 Introduction
The ultimate goal of mathematics is to eliminate all need for intelligent thought.

— Graham, Knuth, Patashnik (Graham et al., 1989, page 56)
The ultimate goal of a typesetting engine is to automate as much as possible
of what is needed for a given design, allowing the author to concentrate on
the content of the text. The author maps her/his thoughts in linear writing,
a sequence of symbols. Symbols (characters, words or even sentences) can be
combined into patterns (of characters, words or sentences). Patterns describe
“higher rules” and dependencies between symbols, depending on context.

The technique of covering and inhibiting patterns used in the PATGEN
program (Liang and Breitenlohner, 1999) is highly effective and powerful. The

93

Chapter 11 11.1 Introduction

pattern technique is an effective way to extract information out of large data
files and to recognize the structures again. It is used in TEX as an elegant
and language-independent solution for high-quality word hyphenation. This
effective approach found its place in many other typesetting systems including
the commercial ones. We think this method should be studied well, as many
other applications are possible, in addition to those in the field of typesetting
and natural language processing.

The generation of hyphenation patterns using the PATGEN program
does not satisfy today’s needs. Many generalizations are needed for wider
use. The OMEGA system (Haralambous and Plaice, 1997; Plaice and Hara-
lambous, 1996) was introduced. One of its goals is to make direct typesetting
of texts in UNICODE possible, hence enabling the hyphenation of languages
with more than 256 characters. An example of such a language is Greek, where
345 different combinations of Greek letters with accents, breathings, syllable
lengths and the subscript iota are needed (Haralambous and Plaice, 1994).
Therefore, OMEGA needs a generator capable of handling general/universal
hyphenation patterns. Those new possibilities and needs in computer typeset-
ting, together with the detailed analysis described below, led us to revise the
usage of pattern recognition and to design new software to meet these goals.

The organization of the paper is as follows. The next section (page 95)
defines the patterns, using a standard example of hyphenation. Then an
overview (Section 11.3 on page 96) of the process of pattern generation is
given. The following Section 11.4 on page 97 describes one possible use for
patterns and is followed by a Section 11.5 on page 98, in which the limitations
for exploiting the current version of PATGEN are argued.

The second part of this paper starts with a Section 11.6 on page 98 which
describes the design of the new software library for pattern handling. Then
packed digital trees, the basic data structure used in PATLIB, are presented
(Section 11.7 on page 99). Some thoughts about implementing the transla-
tion/tagging process using pattern based techniques are summarized in the
Section 11.8 on page 101. The final Section 11.9 on page 103 contains a sum-
mary and suggestions for future work.

94

Chapter 11 11.2 Patterns

11.2 Patterns
Middle English patron ‘something serving as a model’, from Old French.

The change in sense is from the idea of a patron giving an example to be copied.
Metathesis in the second syllable occurred in the 16th century. By 1700 patron

ceased to be used on things, and the two forms became differentiated in sense.
— Origin of word pattern : (Hanks, 1998)

Patterns are used to recognize “points of interest” in data. A point of interest
may be the inter-character position where hyphenation is allowed, or the
border between water and forest on a landscape photograph, or something
similar. The pattern is a sub-word of a given word set and the information of
the points of interest is written between its symbols.

There are two possible values for this information. One value indicates
the point of interest is here, the other indicates the point of interest is not here.
Natural numbers are the typical representation of that knowledge; odd for yes,
even for no. So we have covering and inhibiting patterns. Special symbols are
often used, for example a dot for the word boundary.

Below we show a couple of hyphenation patterns, chosen out of the
English hyphenating pattern file. For the purpose of the following example, we
deal with a small subset of the real set of patterns. Note that the dot represents
a word boundary.

.li4g .lig5a 3ture 1ga 2gam

Using the patterns goes as follows. All patterns matching any sub-word
of the word to be hyphenated are selected. Using the above subset of patterns
with the word “ligature” we get:

. l i g a t u r e .

. l i4g

. l i g5a

3t u r e

1g a

The pattern 2gam matches no sub-word of “ligature”. The patterns
compete and the endresult is the maximum for inter-character positions of
all matching patterns, in our example we get:

. l0i4g5a3t0u0r0e .

According to the above we may hyphenate lig-a-ture.
To sum up: with a “clever” set of patterns, we are able to store a

mapping from sequences of tokens (words) to an output domain — sequence
of boolean values — , in our case positions of hyphenation points. To put it in
another way: tokens (characters) emit output, depending on the context.

95

Chapter 11 11.3 Pattern Generation

For a detailed introduction to TEX’s hyphenation algorithms see (Knuth,
1986, Appendix H). We now need to know how patterns are generated to
understand why things are done this way.

11.3 Pattern Generation
An important feature of a learning machine is that

its teacher will often be very largely ignorant of quite what is going on inside,
although he may still be able to some extent to predict his pupil’s behavior.

— Turing (1950)
We want to cover as much hyphenation points as possible, with no errors,
and generate a minimal set of competing patterns. Even when giving up the
minimality requirement, we may get surprisingly good results compressing
the input data information into a pattern set iteratively. Let us now describe
the generating process.

We need a large input data file with marked points of interest. Hyphen-
ating words, we use a large dictionary with allowed hyphenation points. Now
we repeat going through the data file in several levels. We generate covering
patterns in odd levels and inhibiting ones in even levels.

We have a rule how to choose pattern candidates at each level. In our
case it may be “an at most k characters long substring of the word containing
the hyphenation point”. We choose pattern candidates and store them into a
suitable data structure. Not all candidates are good patterns, so we need a
pattern choosing rule. Usually we remember the number of times when the
candidate helps and spoils finding a correct hyphenation point. We always
test new candidates according to all patterns selected so-far. We are interested
in the functionality of the whole set. The pattern choosing rule may be a
linear function over the number of good/bad word efficiency of the candidate
compared to a threshold. This heuristic is used in PATGEN, but other heuristics
may lead to better (e.g., with respect to space) pattern sets with the same
functionality. The candidates marked as good by the previous process are
included into the set of patterns. The pattern set still makes mistakes. We
continue generating another level, an even level this time, when we create
inhibiting patterns. The next level will be covering and so on. A candidate
at a certain level is good if it repairs errors made by previous levels.

This is also the way how PATGEN works. A PATGEN user has no chance
to change the candidate and/or pattern choosing rules, which are similar to
the ones previously described. Hyphenating patterns for TEX were created for
several dozens of languages (Sojka and Ševeček, 1995), usually created from a
list with already hyphenated words. There are languages where the patterns
were created by hand, either entirely, or in part.

96

Chapter 11 11.4 Tagging with Patterns

How successful is this technique? The natural language dictionary has
several megabytes of data. Out of such dictionary patterns having only tens
of kilobytes may be prepared, covering more than 98% of the hyphenation
points with an error rate of less than 0.1%. Experiments show that four or
five levels are enough to reach those parameters. By using various strategies
of setting linear threshold parameters we may optimize the patterns to the
size, the covering ratio and/or errors (Sojka, 1995). As not many lists with
hyphenated words are publicly available for a serious research on pattern
generation heuristics, we think that most available patterns are suboptimal.
For more information on pattern generation using PATGEN have a look at
tutorial (Haralambous, 1994).

11.4 Tagging with Patterns
The solution of the hyphenation problem and the techniques involved were
studied extensively (Sojka and Ševeček, 1995) and together with long-lasting
usage in TEX and other typesetting systems, their advantages have been
verified. The application of the techniques of bootstrapping and stratifica-
tion (Sojka, 1995; Sojka, 1999) made them even more attractive. However, to
the best of our knowledge, nobody has so far suggested and used a context
dependent task for the resolution of other context dependent tasks.

We may look at the hyphenation problem as at the problem of tagging
the possible hyphenation positions in finite sequences of characters called
words. On a different level of abstraction, the recognition of sentence borders
is nothing more than “tagging” the beginnings and ends of sentences in
sequences of words.

Yet another example: in high-quality typography, it is often necessary
to decide, whether a given sequence of characters is to be typeset as a ligature
(such as ĳ, fi, fl) and not as separate characters (ij, fi, fl). This ambiguity has to
be resolved by tagging of appropriate occurrences, depending on the context:
ligatures are, e.g., forbidden on compound word boundaries.

All these tasks (and many others, see page 101) are “isomorphic” — the
same techniques developed and used for hyphenation may be used here as
well. The key issue in applicability of the techniques for the variety of context-
dependent tagging tasks is understanding and effective implementation of the
pattern generation process. The current implementation of PATGEN is not up
to these possible new uses.

97

Chapter 11 11.5 PATGEN Limitations

11.5 PATGEN Limitations
What man wants is simply independent choice,

whatever that independence may cost and wherever it may lead.
— Fedor Dostoevsky, Notes from Underground (1864)

The PATGEN program has several serious restrictions. It is a monolithic struc-
tured code, which, although very well documented (documented PASCAL,
WEB), is very difficult to change. PATGEN is also “too optimized”, necessary
to make it possible to run in the core of the PDP-10, so understanding the code
is not easy. In this sense PATGEN is very similar to TEX itself. The data struc-
tures are tightly bound to the stored information: high-level operations are
performed on the data structures directly without any levels of abstraction.

The data structures of PATGEN are hardwired for eight-bit charac-
ters. Modification to handle more characters — full UNICODE — is not straight-
forward. The maximum number of PATGEN levels is nine. When generating
patterns, you can collect candidates of the same length at the same time only.
The data structures are static, running out of memory requires the user to
change constants in the source code and recompile the program.

Of course PATGEN may be used to generate patterns on other phe-
nomenons besides word hyphenation, but only if you transform the problem
into hyphenation. This might be non-trivial and moreover, it’s feasible only for
problems with small alphabets, fewer than approximately 240 symbols (PAT-
GEN uses some ASCII characters for special and output purposes).

11.6 PATLIB
My library was dukedom large enough.

— Shakespeare, The Tempest (1611), act 1, sc. 2, l. 109

We decided to generalize PATGEN and to implement the PATtern LIBrary
PATLIB for general pattern manipulation. We hope that this will make the
techniques easily accessible. A UNICODE word hyphenation pattern generator
is the testbed application.

For portability and efficiency reasons we chose C++ as the implemen-
tation language. The C++ code is embedded in CWEB to keep the code docu-
mented as much as possible. Moreover, the code “patterns” called templates
in C++ allow us to postpone the precise type specification to higher levels of
development which turned out to be a big advantage during the step-wise
analysis. We do hope that templates increase flexibility of the library.

The PATLIB library consists of two levels, the finite language store
(which is a finite automaton with output restricted to finite languages, im-

98

Chapter 11 11.7 Packed digital tree (trie)

plemented using packed trie) and the pattern manipulator. The language store
handles only basic operations over words, such as inserting, deleting, getting
iteratively the whole stored language and similar low-level operations. The
output of a word is an object in general, so is the input alphabet.

The pattern manipulator handles patterns, it means words with multi-
ple positioned outputs. We also prepared a mechanism to handle numbers of
good and bad counts for pattern candidates.

The manipulator and the language store work with objects in general,
nevertheless to keep efficiency reasonable we suggest to use numbers as
internal representation for the external alphabet. Even if the external alphabet
is UNICODE, not all UNICODE characters are really used in one input data file.
So we can collect the set of all used characters and build a bijection between
the alphabet and the internal representation by numbers {1, . . . , n}, where all
the numbers are really used.

We separated the semantics from the representation. We don’t have to
care what the application symbols are. An application using this library may
implement any strategy for the generation of patterns.

Of course, we have to pay for more generality and flexibility with
performance loss. As an example, the output of a pattern in PATGEN is a
pointer to a hash table containing pairs 〈level_number, position〉, we must
have an object with a copy constructor.

11.7 Packed digital tree (trie)
The trie data structure we use to store patterns is well known — the idea of
representing a family of strings by an abstract concept of a trie is credited to
Axel Thue and his paper Skrifter ugivne af Videnskabs-Selkabet i Christiania
from 1912 published in Mathematisk-Naturvidenskabelig Klasse, No. 1. Its
practically usable variant — being described only seldom in programming
books — is much less known.

A trie is usually presented and described as in (Knuth, 1998) as an
m-ary tree. Its nodes are m-ary vectors indexed by a sorted alphabet. A node
in depth l from the root corresponds to the prefix of length l. Finding a word
in a trie starts at the root node. We take the next symbol of the word, let it
be k. Then the k-th member of the node points to the lower level node, which
corresponds to the unread rest of the word. If the word is not in the trie, we
get the longest prefix.

Trie containing the words ba, bb, bbb, and da over the alphabet {a, b, c, d}
is shown in Figure 11.1 on the next page. Underlining indicates the end of a
word.

99

Chapter 11 11.7 Packed digital tree (trie)

a b c d

a b c d

a b c d

a b c d
?

?

R

Figure 11.1: Trie — an example.

It is not difficult to implement this data structure. Nodes may be put
into a linear array one by one, pointers going to the start of the next nodes. But
this approach wastes memory, especially if the words are long and the nodes
sparse. Using dynamic memory does not change this property.

The advantage of a trie is that the time needed for the look-up and
insertion of a word is linear to the length of the word, this means the time
needed does not depend on the number of words stored.

The need for memory may be reduced (paying with a small amount of
time), as shown by Liang (1983). In practical applications the nodes are sparse,
hence we want to store them mixed into one another into a linear array. One
node uses the fields which are left empty by another node.

When working with this structure, we must have a way to decide which
field belongs to a certain node. This may be done with a little trick. To each
field we add information about which alphabet symbol is related to the array
position. Moreover, two nodes must never start at the same position of the
array. We must add one bit of information if the position is a base position and
when inserting, we never pack two nodes at the same base position.

Table 11.1: Packed trie.
Index 1 2 3 4 5 6 7 8 9
Character a b c d a b b a
Pointer 5 8 6
Base position? Y Y Y Y
End of word? Y Y Y Y

In Table 11.1 the same language as previously used is stored. The trie
starts on position 1, this is the base position. The trie root is treated specially
for implementation reasons, it is always fully stored in the array, even if there

100

Chapter 11 11.8 Pattern Translation Processes

are no words starting with the appropriate character. Only the pointer is null
in that case.

We assert numerical values to the alphabet symbols: a = 1, b = 2, c = 3,
d = 4. How do we distinguish the fields belonging to a node? Let the node start
at base position z. We go through positions z + a, . . . , z + d and check where the
condition “the character on position z + i is i” holds. For the root this is always
true. In the root, there is a pointer under character b (on position 3). It points
to base position 5. Moreover, the root says we have a word starting with d. Let
us go through the positions belonging to base position 5, this means relating
to prefix b. They are:

• position 6, this should be related to a, this holds, the pointer is null,
the end-of-word flag is true, hence ba belongs to the language and any
other word starting with ba does not.

• position 7, which is related to b, so the position belongs to the node,
the position is end-of-word, therefore bb belongs to the language and
there are words starting with bb continuing as said by the node on base
position 6.

• positions 8 and 9 should belong to the characters c and d, this is not the
case, these positions do not belong to the current node.
The reader may easily check that Table 11.1 on the previous page

contains the same language as shown in Figure 11.1 on the preceding page.
Sixteen fields are needed to store the language naïvely, we need nine when
packing. The ratio is not representative, it depends on the language stored.

The trie nodes may be packed using the first-fit algorithm. This means
when packing a node, we find the first position where it can be done, where we
do not interfere with existing nodes and we do not use the same base position.
We can speed up the process using the following heuristics. If the node we
want to store is filled less than a threshold, we don’t loose time finding an
appropriate position but store it at the end of the array. Otherwise we use the
first-fit method as described. Our experience shows that array usage much
better than 95% may be obtained without significant loss of speed.

11.8 Pattern Translation Processes
If all you have is a hammer, everything looks like a nail. — popular aphorism

Let us review several tasks related to computer typesetting, in order to see
whether they could be implemented as Pattern Translation Processes (PTP),
implemented using PATLIB. Most of them are currently being tackled via
external ΩTPs in OMEGA (Haralambous and Plaice, 2001).

101

Chapter 11 11.8 Pattern Translation Processes

Hyphenation of compound words The plausibility of the approach was
shown for German in (Sojka, 1995).

Context-dependent ligatures In addition to the already mentioned ligatures
at the compound word boundaries, another example exists:

Fraktur long s versus short s In the Gothic letter-type there are two types of
s-es, a long one and the normal one. The actual usage depends on
the word morphology. Another typical context-dependent auto-tagging
procedure implementable by PTP.

End of sentence recognition To typeset a different width space at the end of
a sentence automatically, one has to filter out abbreviations that do not
normally appear at the end of a sentence. A hard, but doable task for
PTP.

Spell checking Storing a big word list in a packed digital tree is feasible and
gives results comparable to spelling checkers like ispell. For languages
with inflection, however, several hierarchical PTP’s are needed for
better performance. We are afraid that PTP’s cannot beat specialized
fine-tuned morphological analyzers, though.

Thai segmentation There is no explicit word/sentence boundary, punctua-
tion and inflexion in Thai text. This information, implicitly tagged by
spaces and punctuation marks in most languages, is missing in stan-
dard Thai text transliteration. It is, however, needed, during typesetting
for line-breaking. It has yet to be shown that the pattern-based technol-
ogy is at least comparable to the currently used probabilistic trigram
model (Sornlertlamvanich et al., 1999).

Arabic letter hamza Typesetting systems for Arabic scripts need to have built-
in logic for choosing one of five possible appearances of the letter
hamza, depending on the context. This process can easily be formulated
as a PTP.

Greek accents In (Haralambous and Plaice, 2001, page 153) there is an algo-
rithm — full of exceptions and context dependent actions — for the pro-
cess of adding proper accents in Greek texts. Most parts of it can easily
be described as a sequence of pattern-triggered actions and thus be im-
plemented as a PTP.
Similarly, there are many Czech texts written without diacritics from
the times when email mailers only supported seven-bit ASCII, which
wait to be converted into a proper form. Even for this task PTP’s could
be trained.
We believe that PTP implementation based on PATLIB could become

the common ground for most, if not all, ΩTP’s. Hooking and piping various
PTP’s in OMEGA may lead to uniform, highly effective (all those mapping are
linear with respect to the length of the text) document processing. Compared

102

Chapter 11 11.9 Summary and Future Work

to external ΩTP’s, PTP implementation would win in speed. To some extent,
we think that a new version of PATGEN based on PATLIB will not only be
independent of language (for hyphenation), but of application, too.

11.9 Summary and Future Work
Write once, use everywhere. — paraphrase of a well known slogan

We have discussed the motivation for developing a new library for the
handling and generation of patterns, and we have presented its design and
first version. We argue that the pattern-based techniques have a rich future in
many application areas and hope for PATLIB to be playing a rôle there.

Readers are invited to download the latest version of PATLIB and the
PATGEN reimplementation at http://www.fi.muni.cz/~xantos/patlib/.

References
Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1989. Concrete

Mathematics. Addison-Wesley, Reading, MA, USA.
Patrick Hanks, editor. 1998. The New Oxford Dictionary of English. Oxford

University Press, Oxford.
Yannis Haralambous and John Plaice. 1994. First applications of Ω: Adobe Poetica,

Arabic, Greek, Khmer. TUGboat, 15(3):344–352, September.
Yannis Haralambous and John Plaice. 1997. Methods for Processing Languages with

Omega. In Proceedings of the Second International Symposium on
Multilingual Information Processing, Tsukuba, Japan. Available as
http://omega.enstb.org/yannis/pdf/tsukuba-methods97.pdf.

Yannis Haralambous and John Plaice. 2001. Traitement automatique des langues et
composition sous Omega. Cahiers GUTenberg, (39–40):139–166, May.

Yannis Haralambous. 1994. A Small Tutorial on the Multilingual Features of
PATGEN2. In electronic form, available from CTAN as
info/patgen2.tutorial, January.

Donald E. Knuth. 1986. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA.

Donald E. Knuth. 1998. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, third edition.

Franklin M. Liang and Peter Breitenlohner. 1999. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.3
from web2c distribution on CTAN.

John Plaice and Yannis Haralambous. 1996. The latest developments in Ω. TUGboat,
17(2):181–183, June.

Petr Sojka and Pavel Ševeček. 1995. Hyphenation in TEX — Quo Vadis? TUGboat,
16(3):280–289.

103

http://www.fi.muni.cz/~xantos/patlib/
http://omega.enstb.org/yannis/pdf/tsukuba-methods97.pdf

Chapter 11 11.9 Summary and Future Work

Petr Sojka. 1995. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297.

Petr Sojka. 1999. Hyphenation on Demand. TUGboat, 20(3):241–247.
Virach Sornlertlamvanich, Thatsanee Charoenporn, and Hitoshi Isahara. 1999.

Building a Thai Part-Of-Speech Tagged Corpus. The Journal of the Acoustical
Society of Japan (E), 20(3):140–189, May.

104

Chapter 12

Context Sensitive Pattern Based Segmentation:
A Thai Challenge

Segmentation of stream of Thai characters is the main problem any NLP or
typesetting system faces before further processing. This chapter shows how
the problem of segmentation of Thai text has been successfully solved by the
developed techniques of competing patterns, beating techniques used so far.

The results were presented by the first author at the EACL 2003
conference in Budapest (Sojka and Antoš, 2003):

Petr Sojka and David Antoš. 2003. Context Sensitive Pattern Based
Segmentation: A Thai Challenge. pages 65–72, Budapest, April.

This chapter contains an extended version of the above paper. The
present author proportion on the results presented is 75%.

105

Chapter 12 12.1 Motivation and Problem Description

Context Sensitive Pattern Based Segmentation:
A Thai Challenge

Petr Sojka, David Antoš

Abstract: A Thai written text is a string of symbols without an
explicit word boundary markup. A method for a development
of a segmentation tool from a corpus of an already segmented
text is described. The methodology is based on the technology
of competing patterns. A new UNICODE pattern generation pro-
gram, OPATGEN, is used for the learning phase. We show fea-
sibility of our methodology by generating patterns for Thai seg-
mentation from already segmented text of the Thai corpus OR-
CHID: the segmentation algorithm quickly reaches F-score of
93%. Finally, we enumerate possible new applications based on
the pattern technique, and conclude with the suggestion of a gen-
eral Pattern Translation Process. The technology is general and
can be used for any other segmentation tasks as phonetic, mor-
phologic segmentation, word hyphenation, sentence segmenta-
tion and text topic segmentation for any language.

12.1 Motivation and Problem Description
From Latin segmentum, from secare ‘to cut’ (as term in geometry).

— Origin of word segmentation (Hanks, 1998)
Many natural language processing applications need to cut strings of letters,
words or sentences into segments: phonetic, morphologic segmentation, word
hyphenation, word phrase and sentence segmentation may serve as examples
of this segmentation task. In Thai, Japanese, Korean and Chinese languages,
where there are no explicit word boundaries in written texts, performing
character stream segmentation is the first crucial step in the natural language
processing of written texts. An elegant way of solving this task is to learn
the segmentation from an already segmented corpus by a supervised machine
learning technique.

12.1.1 The Thai Segmentation Problem
A Thai paragraph is a string of symbols (44 consonants, 28 vowels). There
are neither explicit syllable, word and sentence boundaries, nor punctuation

106

Chapter 12 12.2 Patterns

in Thai text streams. For a lexical, semantic analysis or typesetting, the
first crucial step is to find syllable, word and sentence boundaries. The
Thai typesetting engine has to be able to segment the text in order to
break lines automatically, too. Similarly, tools are needed to insert the <wbr>

HTML tag automatically for the web browser rendering engine. A good word
segmentation is a prerequisite for any Thai text processing including Part-of-
Speech (POS) tagging (Murata et al., 2002).

12.1.2 Existing Approaches to Thai Segmentation
There is a program SWATH (Smart Word Analysis for THai) with
three implemented dictionary based algorithms (longest matching, maxi-
mal matching, bigram model). It is used by the Thai Wordbreak Inser-
tion service http://ntl.nectec.or.th/services/www/thaiwordbreak.html

at NECTEC, the Thai National Electronics and Computer Technology Center.
These methods have limited performance because of problems with handling
unknown words. There are other approaches based on the probabilistic lan-
guage modeling (Sornlertlamvanich, 1998; Sukhahuta and Smith, 2001), log-
ically combined neural networks (Ma et al., 1996), or machine learning with
C4.5 learning algorithm (Sornlertlamvanich et al., 2000).

Mamoru and Satoshi (2001) reported that their Thai syllable recognizer,
in which knowledge rules based on heuristics derived from the analysis of
unsuccessful cases were adapted, gave a ratio of segmentation of 93.9% in
terms of sentences for the input of Thai text. The Thai text used was Kot Mai
Tra Sarm Duang (Law of Three Seals), and had 20,631 sentences (Jaruskulchai,
1998, Chapter 3).

The feature based approach using RIPPER and Winnow learning algo-
rithms is described in (Meknavin et al., 1997). Aroonmanakun (2002) recently
reported the approach based on a trigram model of syllables and syllable
merging, with very high precision and recall. His Thai word segmentation on-
line service on http://www.arts.chula.ac.th/~ling/wordseg/ is performed
using maximum collocation approach.

All these attempts show the need and importance of highly efficient and
quality solution of the Thai word segmentation problem.

12.2 Patterns
Patterns are used to recognize “points of interest” (segment boundaries) in
data. The pattern is a sub-word of a given word set and the information of the
points of interest is written between its symbols.

107

http://ntl.nectec.or.th/services/www/thaiwordbreak.html
http://www.arts.chula.ac.th/~ling/wordseg/

Chapter 12 12.2 Patterns

There are two possible values for this information. The first value
indicates the point of interest is here, the latter indicates the point of interest
is not here. Natural numbers are the typical representation of that knowledge;
odd for yes, even for no. So we have covering and inhibiting patterns. Special
symbols are often used, e.g., a dot for the word boundary. Patterns are as
short as possible to store the information: the context of the variable length
is modeled by this approach.

12.2.1 Competing Patterns
More formally, let us have an alphabet Σ. Patterns are words over the free
monoid 〈Σ∗, ε, ·〉 where ε is the empty word, and · (centered dot) is the
operation of concatenation . Let 〈A,≤〉 be a partially ordered system, ≤ be a
lattice order (every finite non-empty subset of A has lower and upper bound).
Let . be a distinguished symbol (dot) in Σ′ = Σ∪{.} that denotes the beginning
and the end of a word: begin of word marker and end of word marker .
Classifying patterns are the words over Σ′ ∪ A such that the dot symbol is
allowed at the beginning or end of patterns only.

Let P be a set of patterns over Σ′ ∪ A (competing patterns , pattern base).
Let w = w1w2 . . . wn be a word to classify with P. Classification classify(w, P) =
a0w1a1w1 . . . wnan of w with respect to P is computed from the pattern base P
by the following competition . All patterns whose projection to Σ match a sub-
string of w are collected. ai is the supremum of all values between characters wi
and wi+1 in matched patterns. classify(w, P) is also called the winning pattern .
The Winning pattern holds the definitive information (hyphenation, segmen-
tation) about w with respect to the pattern base P. There can be several pattern
bases for the same w that “compete” as well.

12.2.2 Example
An example of competing patterns used for hyphenation of English words
is shown in Figure 12.1 on the next page. In this example the ordered
system 〈A,≤〉 used for classification of candidates for hyphenation border is

� (natural numbers). There are five pattern levels used in the example —
Level 1. . . Level 5. There were eight patterns that matched the input (1na,
1tio,. . .). Patterns in odd levels are covering , in an even levels inhibiting .
Inhibiting patterns specify the exceptions with respect to the knowledge
acquired in lower levels. The winner pattern is .h0y3p0h0e2n5a4t2i0o0n.:
the pattern h e n5a t wins over n2a t, thus possible segmentations are
hy-phen-ation.

Competing pattern sets can be used on all levels of natural language
processing — covering structures used in morphology, their exploration is seen
on both syntax (parsing) and semantic (word sense discrimination) levels.

108

Chapter 12 12.2 Patterns

h y p h e n a t i o n
Level 1 1n a
Level 1 1t i o

Level 2 n2a t
Level 2 2i o
Level 2 h e2n

Level 3 .h y3p h

Level 4 h e n a4

Level 5 h e n5a t
.h0y3p0h0e2n5a4t2i0o0n.
h y-p h e n-a t i o n

Figure 12.1: Competing patterns and pattern levels for segmentation of English
word hyphenation.

For detailed definitions and more examples see (Liang, 1983; Sojka,
2000).

12.2.3 Comparison with Finite-State Approaches
Competing patterns technology can be viewed as one of the finite-state
approaches, with their pros and cons. Competing patterns extend the power
of Finite-State Transducers (FST) similarly as addition of the complement
operator with respect to Σ does. Ideally, instead of storing full FST, we make
patterns that embody the same information in even more compact manner.
Collecting patterns matching a given word can be done in linear time, using
the trie data structure for pattern storage.

It was shown that decomposition of the problem by using local gram-
mars (Gross, 1997) or building cascades of Finite-State Machines (Hobbs et
al., 1997) is a tractable, but a very time-consuming task. Supervised learning
methods for the induction of patterns from segmented text are needed.

12.2.4 Pattern Generation — Programs PATGEN and OPATGEN

Liang (1983) wrote a pattern generation program PATGEN for the generation of
hyphenation patterns from the list of already hyphenated words. The method
for generation of patterns is not only independent of a language for which
(hyphenation) patterns are generated, but of an application domain, too. PAT-
GEN was used for the preparation of quality hyphenation patterns for several
dozens of languages (Sojka and Ševeček, 1995). A new enriched UNICODE
version of PATGEN called OPATGEN, was developed at Masaryk University in
Brno (Antoš and Sojka, 2001). The program opens new possibilities for pattern
generation and new applications. The only thing that must be done to create

109

Chapter 12 12.3 Thai Texts in ORCHID Corpus

patterns is to map the problem in mind to the alphabet used by OPATGEN
(UNICODE). OPATGEN is based on separate PATLIB (Antoš, 2002) library, so
even making a new special purpose frontend for a new application should be
straightforward.

12.3 Thai Texts in ORCHID Corpus
Literally ‘free’. — Origin of word Thai : (Hanks, 1998)

There is a freely available corpus of already segmented Thai texts called
ORCHID (Sornlertlamvanich et al., 1997). Parts of speech are tagged, too, using
the bootstrapping technique, manual editing and proofreading. There are 9,967
paragraphs in the corpus (6 MB in TIS-620 encoding).

Even native Thai speakers do not agree on the definition of the main
notion — Thai word (Jaruskulchai, 1998). Problems appear whether a “com-
pound word” should be considered as single entity or not. We have based our
machine learning experiments purely on the data available in the ORCHID cor-
pus, showing the power of the machine learning technique. We cannot com-
ment on the quality of the corpus tagging, as we are not Thai native speakers.

The corpus consists of articles. Every article has headers containing
meta-information, usually in Thai and English, followed by the text, consisting
of paragraphs. Paragraphs are numbered and tagged with #Pn marks. Para-
graphs contain sentences. The sentences are tagged with #n. Each sentence
appears twice, first untagged. The second occurrence is tagged with part-of-
speech tags. Each word is followed by the tag, e.g., /VACT for the active verb.

12.3.1 Corpus Preprocessing
In order to create patterns recognizing Thai word boundaries we had to pre-
process the corpus. We used a simple Perl script. The word boundaries are
marked in the second occurrences of sentences in the corpus. Therefore, we
cut out only the marked parts. The “points of interest” should be denoted
with ‘-’ sign for OPATGEN. We substituted all part-of-speech tags with the
minus signs. There are also text entities marked with single angle bracket tags,
e.g., <space>. All of them act as word separators in the corpus and we also
substituted them with our word boundary mark. That is also what we did with
numbers, we silently removed them as there is no reason to encounter them
into patterns. When applying patterns, numbers are trivially word boundaries.

Finally, we joined the whole paragraphs up. The places between sen-
tences are also word boundaries. We decided not to join larger portions of the
text (like several paragraphs or even articles) as we did not want the words
OPATGEN had to deal with to be longer than hundreds of symbols. It would

110

Chapter 12 12.3 Thai Texts in ORCHID Corpus

Figure 12.2: ORCHID loaded into Emacs.

slow the pattern generation down and we would add only a bit of information,
only the word boundaries that appear between words finishing and starting
a paragraph. The preprocessed starting paragraphs from ORCHID (input for
OPATGEN) look like this:

-¡ÒÃ-»ÃÐªØÁ-·Ò§-ÇÔªÒ¡ÒÃ-¤ÃÑé§-·Õè-â¤Ã§¡ÒÃÇÔ¨ÑÂáÅÐ¾Ñ²¹Ò-ÍÔàÅç¡·ÃÍ¹Ô¡Ê�-áÅÐ-
¤ÍÁ¾ÔÇàµÍÃ�-»�§º»ÃÐÁÒ³-àÅ�Á-

-ÇÑ¹-·Õè-ÊÔ§ËÒ¤Á-Ë�Í§»ÃÐªØÁ-ªÑé¹-
-ÊÒÃ-
-Ï¾³Ï-ÃÑ°Á¹µÃÕÇ�Ò¡ÒÃ-¡ÃÐ·ÃÇ§ÇÔ·ÂÒÈÒÊµÃ�-à·¤â¹âÅÂÕáÅÐ¡ÒÃ¾ÅÑ§§Ò¹-

111

Chapter 12 12.4 Methodology

-»ÃÐà·Èä·Â-ä´�-ÁÕ-¡ÒÃ-»ÃÑºà»ÅÕèÂ¹-â¤Ã§ÊÃ�Ò§-ã¹-¡ÒÃ-¾Ñ²¹Ò-àÈÃÉ°¡Ô¨-
¢Í§-»ÃÐà·È-¨Ò¡-»ÃÐà·È-à¡ÉµÃ¡ÃÃÁ-ä»ÊÙ�-¤ÇÒÁ-à»�¹-»ÃÐà·ÈÍØµÊÒË¡ÃÃÁ-
ÁÒ¡-ÂÔè§¢Öé¹-ã¹-¡ÒÃ-´íÒà¹Ô¹¡ÒÃ-à¾×èÍãË�-ºÃÃÅØ-ÇÑµ¶Ø»ÃÐÊ§¤�-´Ñ§¡Å�ÒÇ-¨Ð-µ�Í§-
ÍÒÈÑÂ-»�¨¨ÑÂ¾×é¹°Ò¹-ËÅÒÂ-»ÃÐ¡ÒÃ-ã¹-¡ÒÃ-à»�¹-µÑÇàÃ�§-áÅÐ-à»�¹-°Ò¹-àª�¹-¡ÒÃ-
¾Ñ²¹Ò-à·¤â¹âÅÂÕ-·Õè-ãª�-ã¹-¡ÒÃ-¼ÅÔµ-¢Í§-ÀÒ¤ÍØµÊÒË¡ÃÃÁ-¡ÃÐ·ÃÇ§ÇÔ·ÂÒÈÒÊµÃ�-
à·¤â¹âÅÂÕáÅÐ¡ÒÃ¾ÅÑ§§Ò¹-¨Ö§-ä´�-ãË�¤ÇÒÁÊÓ¤Ñ-à»�¹-ÅíÒ´Ñº-ÊÙ§-ã¹-¡ÒÃ-¾Ñ²¹Ò-
ÍØµÊÒË¡ÃÃÁ-ÍÔàÅç¡·ÃÍ¹Ô¡Ê�-áÅÐ-¤ÍÁ¾ÔÇàµÍÃ�-«Öè§-ÍØµÊÒË¡ÃÃÁ-¹Õé-¨Ð-ÁÕ-º·ºÒ·-
·Õè-ÊÓ¤Ñ-ÁÒ¡-ã¹-ÀÒ¤ÍØµÊÒË¡ÃÃÁ-â´Â-à»�¹-»�¨¨ÑÂ¾×é¹°Ò¹-ËÃ×Í-Ê�Ç¹»ÃÐ¡Íº-·Õè-
ÊÓ¤Ñ-¢Í§-¡ÒÃ-¼ÅÔµ-¼ÅÔµÀÑ³±�ÍØµÊÒË¡ÃÃÁ-á·º-·Ø¡-ÊÒ¢Ò-

. . .

12.4 Methodology
Problems worthy of attack prove their worth by hitting back.

— Piet Hein: Grooks
An important question is what kind of evaluation measures is most appropri-
ate to compare the segmentation proposed by automated tools with the correct
segmentations in the test set. A widely used evaluation scheme is the PARSE-
VAL scheme, based on the notions of precision and recall .

12.4.1 Evaluation Measures
The definition of the measures for our application is as follows:

Precision =
found well

found well + # bad
(12.1)

Recall =
found well

found well + # missed
(12.2)

A segment is correct if both the start and the end of the segment is
correctly predicted.

The precision and recall scores are combined into a single measure,
known as the F-score (Manning and Schütze, 1999):

F-score =
2 × Precision × Recall

Precision + Recall
(12.3)

Other possibilities of an evaluation metric for segmentation are Pk met-
ric (Beeferman et al., 1997; Beeferman et al., 1999) or WindowDiff (Pevzner
and Hearst, 2002). We do not use them, as they are appropriate for the topic

112

Chapter 12 12.4 Methodology

text segmentation, where small errors in positions of segment cuts are accept-
able.

Table 12.1: Results of Thai segmentation pattern generation (6,000 paragraphs
from ORCHID).

level length param % correct % wrong # patterns UTF-8 size (kB)
1 1–5 1 6 1 97.98 4.87 +12907 130
2 2–6 1 1 1 96.83 0.69 + 2,091 156

3 3–11 1 3 1 99.58 0.82 + 2,578 204
4 4–12 4 1 1 97.83 0.03 + 685 217

5 9–19 1 3 1 99.58 0.15 + 1,689 270
6 10–20 1 1 1 99.56 0.04 + 119 274

12.4.2 Experiments
We have divided the corpus into the training set (3/5) and the test set
(2/5) and used the training set (6,000 paragraphs) for pattern generation.
Ideally, we strive for smallest patterns solving the task with the highest
F-score as possible. As a general procedure how to achieve this goal is
not known, parameters for the generation were chosen after some trial and
error (one has to find good-working thresholds for adding new patterns).
Using the knowledge about threshold parameters used for the generation of
hyphenation patterns we quickly reached 100% precision (patterns were able
to cover segmentation in training set without errors).

Table 12.2: Results of Thai segmentation pattern generation (8,000 paragraphs
from ORCHID).

level length param % correct % wrong # patterns UTF-8 size (kB)
1 1–5 1 6 1 97.92 4.86 +15,443 161
2 2–6 1 1 1 96.53 0.65 + 2,596 196

3 3–11 1 3 1 99.57 0.79 + 3,448 267
4 4–12 4 1 1 97.87 0.03 + 953 286

5 9–19 1 3 1 99.68 0.12 + 2,468 364
6 10–20 1 1 1 99.67 0.04 + 129 368

Parameters used for pattern generation are shown in Table 12.1. In the
second column, there are lengths of pattern candidates. A generation process

113

Chapter 12 12.4 Methodology

Table 12.3: Precision, recall, and F-score on unseen text.
trained on # para good bad missed precision recall F-score

4,000 139,788 11,231 15,529 92.56% 90.00% 91.26
6,000 98,243 7,951 9,432 92.51% 91.24% 91.87
8,000 46,361 3,358 3,703 93.25% 92.60% 92.92

can be parametrized by several parameters whose tuning strategies are beyond
the scope of this paper; see (Sojka and Ševeček, 1995; Sojka, 1995) for details.
Setting of the thresholds could be tuned so that virtually all hyphenation
points are covered.

As there are quite long words in Thai (10 to 20-syllable word is not an
exception), to achieve 100% precision, we may probably need patterns as long
as 20 characters to model long distance dependencies. This increases the time
of pattern generation, but not above the achievable level (it took half a day on
Pentium 4 class PC).

The ‘param’ column contains the pattern choosing the rule weights.
The percentages show the behavior of the patterns on the corpus during
generation. Finally, there is the number of patterns added in particular level
and the pattern size in kilobytes (coded in UTF-8 encoding). It is seen that
most of the work is done by short patterns.

Next, we increased the training set to 8,000 paragraphs. Results are
shown in Table 12.2 on the previous page. Both precision and recall slightly
increased with bigger training sets.

The behavior of the patterns on data they were generated from does
not show how they act on previously unseen data (generalization abilities).
Therefore we tested performance on the test set (3,967 paragraphs). The
obtained recall is above 90%. With the bigger training corpus we do get better
performance measures as shown in Table 12.3. From the main results given in
this table it follows that the the ORCHID Corpus is quite small for our task:
given the bigger training corpus one would have even better performance.

Resulting 19424 patterns look like this:
.o1m .p1me .pre1p .s1f .s2mo .s1mp .st1in .x1p .x1y .¡1¡ .¡1Á
.¡1Ë .¡ÒÃ¨�ÒÂ3 .¡ÒÃ5¾Ñ²¹Ò .¡ÒÃ¾Ñ²¹ÒÃÐºº5 .¡ÒÃ¾Ñ²¹Òâ»Ãá¡ÃÁ5Ê .¡ÒÃÃÑº4
.¡ÒÃ1Ç .¡ÒÃ5ÈÖ¡ÉÒ .¡ÒÃÍÍ¡áºº5 .¡ÒÃÍÍ¡áººáÅÐ5 .¡ÒÃÍÍ¡áººáÅÐ¾Ñ²¹Ò5
.¡ÒÃ5àÃÔèÁ .¡�Í¹·Õè3 .¤³Ð5¡ÃÃÁ¡ÒÃ¹âÂºÒÂ. .¤³Ð¡ÃÃÁ¡ÒÃ5ºÃÔËÒÃ.
.¤³Ð¡ÃÃÁ¡ÒÃÍÓ¹ÇÂ¡ÒÃ6 .¤³Ð¼Ù�5·íÒ5 .¤³Ð3ÇÔÈ .¤³Ð5Í¹Ø¡ÃÃÁ¡ÒÃ· .¤íÒ3¡
.¤íÒ1À .§1¡ .§Ò¹1¤ .§Ò¹1° . . .

To sum up the properties of pattern technique, even with small data
like ORCHID Corpus we have got 1:20 compression of the information stored

114

Chapter 12 12.5 Data-Driven Approach Based on Competing Patterns

and hidden there. The patterns can be trained to 100% precision on the
training data and to making essentially no error (one can always add the
pattern for the whole paragraph). One can balance tradeoff between recall and
precision measured on testing data. Moreover, the application of patterns is
very efficient. The speed of the segmentation is linear with respect to the length
of the word we apply them on: in our case with the length of the paragraph.
It makes them one of the first choices in cases where the processing speed is
important. The speed of the segmentation using developed Thai patterns is at
the range of 10,000 words per second (wps) on a Pentium 4 class PC. Memory
consumption using compact digital trie implementation used in TEX for this
performance is much below 0.3 MB.

The generation process may be optimized with respect to the resulting
pattern size; the tradeoff among size, covering ratio, and error is adjustable.
Nevertheless, good patterns may be small in size and therefore applicable for
handhelds, mobile phones and other small equipment. There is no reason for
SMS’s to have awfully broken words on the display of a cellular phone.

Creating patterns is possible due to availability of large tagged corpora.
The technique of competing pattern generation might be useful for corpora
builders as well. The thresholds set for pattern generation can be tuned up in
such a way that highly improbable (bad?) segmentation points are not learnt.
This way, the pattern generation process may serve as a filter selecting possible
errors in input corpus tagging. These errors are a traditional nightmare for
anybody who deals with large experimental data. Creating patterns for a
phenomenon appearing in the corpus thus may help to clean the errors when
the error list reported by the generator is checked manually. The size of
the error list may be tuned by the number of levels and by the setting the
thresholds appropriately.

12.5 Data-Driven Approach Based on Competing Patterns
If all you have is a hammer, everything looks like a nail.

— Abraham Maslow
Let us comment on the technology of competing patterns from different points
of view. The application of the techniques of bootstrapping and stratifica-
tion (Sojka, 1995; Sojka, 1999) made it even more attractive.

12.5.1 Pattern Translation Processes
A process based on competing patterns that adds markup to the string of
symbols is called Pattern Translation Process, PTP, (Antoš and Sojka, 2001).
In the terminology of automata theory, it is a special type of the finite

115

Chapter 12 12.5 Data-Driven Approach Based on Competing Patterns

state transducer. With this finite state approach (Roche and Schabes, 1997),
quite powerful engines could be designed, with an exceptional speed: time
complexity of the PTP implementation based on digital tries is linear with
respect to the input length (length of input sentence). Putting PTP’s in a
cascade, we still stay in linear time. In addition to PATLIB, there are quite
efficient digital trie publicly available implementations as JUDY (Silverstein,
2002). Such PTP implementations are very memory efficient.

Although many natural language special purpose tools are being devel-
oped, their implementation using competing patterns technology with boot-
strapping, stratification and pattern generation techniques (Sojka and Ševeček,
1995; Sojka, 1995; Sojka, 1999) is possible. We believe that in addition to the
one of the hardest problems — Thai segmentation — many other NLP prob-
lems can be solved by our competing pattern data-driven approach. Let us
add couple of notes about applications in the Computer Typesetting area.

12.5.2 Applications in Computer Typesetting
A good list of tough problems in the area of the computer typesetting, most
of which are tractable by OPATGEN, is presented in (Haralambous and Plaice,
2001). A new typesetting system OMEGA (Haralambous and Plaice, 1997),
gradually developed from the well known TEX typesetting system, is designed
to be able to typeset a text in all languages of the world. To solve typesetting
problems that are not supported by the OMEGA engine itself external special
purpose programs outside of OMEGA are invoked as so called external OTP’s
(OMEGA Translation Processes).

When we analyze most of the problems and application of computer
typesetting described in (Haralambous and Plaice, 2001), we see that most of
them could be formulated as a string rewriting of regular languages with a
varying context length. They can be seen as translation processes that typically
add information to a token (character or word) stream.

In the typesetting engine application, the main idea is the usage of
pattern recognition in the middle of the digestive process of a typesetting
engine. A cascade of PTP’s is able to efficiently solve the hardest problems
known so far, in linear time, given the sets of competing patterns.

The process should take part just after macro expansion phase. The pat-
terns are recognized and the token list is changed appropriately on places
denoted by the set of patterns. Note that mere pre-processing is not strong
enough to simulate such a process due to macroexpansion, allowing genera-
tion of visible material.

The system OMEGA allows similar kind of processing, OMEGA
Translation Processes (OTP’s). There are two kind of OTP’s, internal and
external. Internal processes allow regular expression substitutions. External

116

Chapter 12 12.6 Conclusion and Future Work

ones use external programs to change the stream of tokens and are of course
more general than PTP’s. The question is why to implement a more specialized
process. There are several good arguments to do so.

• Internal implementation of pattern translation would be significantly
quicker than calling external programs (note the ideas of incorporating
METAPOST into [Ex]TEX).

• In any case, the pattern recognizing machinery is needed to provide
word hyphenation.

• Having a component for pattern recognition, it would be easy to
provide Hyphenation on Demand, it means loading the hyphenation
pattern on the fly, not only when generating format files.

• We think that using UN*X-like filters with text interfaces is too big
overhead for natural binary data like token lists.

• Constructing relatively small components from which the whole sys-
tem is built is a good software engineering practice.
We think of a typesetting engine created out of relatively independent

components with precisely defined interfaces. The components can be con-
nected with regard to user’s wishes. If the user wants to use pattern transla-
tion, he/she would use the component. Similarly, if someone extensively uses
embedded graphics, he would use METAPOST component. The idea is an ex-
act analogy of modular operating system architecture with small kernel that
turns out to be stable, maintainable and efficient.

12.6 Conclusion and Future Work
We are all apprentices in a craft where no-one ever becomes a master.

— Ernest Hemingway
We have shown the feasibility of technology of competing patterns to tackle
the Thai word segmentation problem.

To evaluate next steps of the technology — bootstrapping and stratifica-
tion techniques — we are looking for (native Thai) partners to pursue further
research. Improving consistency of tagging of the corpus will even improve
the system performance. Application for Thai sentence segmentation prob-
lem (Charoenpornsawat and Sornlertlamvanich, 2001) is straightforward, too,
but a bigger corpus is needed for learning.

Having a tagged corpus freely available, one may try an easier task of
not only word segmentation, but syllable segmentation. This may be needed
for typesetting engine to use, due to long Thai words. The most promising
approach thus seems to be using competing patterns for syllable segmentation,

117

Chapter 12 12.6 Conclusion and Future Work

and then parse the text upwards, merging syllables into words and words into
sentences.

Other general questions remain open. How to set the OPATGEN pa-
rameters to get space-minimal, level-minimal, highest-precision, highest recall
patterns given the data? We are still looking for a rigorous theory for setting
the parameters of the pattern generation process. We also think of an auto-
mated pattern generation, performing the parameter setting using an expert
system or statistical methods.

We have also spent some effort on developing better generation strate-
gies. The implicit strategy used by OPATGEN is basically brute-force testing
of all reasonable pattern candidates. It is not straightforward how to optimize
the process, but using bigram or trigram statistics of wordlist is an idea worth
trying.

The choice of best fitting data structure for patterns needs further inves-
tigation, even though keeping the set of patterns is a general dictionary prob-
lem, studied for years by computer scientists. There are other approaches than
those used in TEX, PATGEN and OPATGEN, namely packed dynamic tries LC-
tries (Nilsson and Karlsson, 1999) and new digital trie library implementations
like JUDY (Silverstein, 2002).

Also the idea of a hardware accelerated pattern generation engine (for
generation only) might become a solution for people who use time of their
CPU’s with pattern generation.

Acknowledgment
Support of the grant CEZ:J07/98:143300003 is acknowledged.

References
David Antoš and Petr Sojka. 2001. Pattern Generation Revisited. In Simon Pepping,

editor, Proceedings of the 16th European TEX Conference, Kerkrade, 2001,
pages 7–17, Kerkrade, The Netherlands, September. NTG.

David Antoš. 2002. PATLIB, Pattern Manipulation Library.
http://www.fi.muni.cz/~xantos/patlib/.

Douglas Beeferman, Adam Berger, and John Lafferty. 1997. Text segmentation using
exponential models. In Proceedings of the 2nd Conference on Empirical
Methods in Natural Language Processing, pages 35–46, Providence, RI.

Douglas Beeferman, Adam Berger, and John Lafferty. 1999. Statistical Models of Text
Segmentation. Machine Learning, 34(1–3):177–210.

Paisarn Charoenpornsawat and Virach Sornlertlamvanich. 2001. Automatic Sentence
Break Disambiguation for Thai. In Proceedings of ICCPOL 2001, pages
231–235, May.

118

http://www.fi.muni.cz/~xantos/patlib/

Chapter 12 12.6 Conclusion and Future Work

Maurice Gross. 1997. The Construction of Local Grammars. (Roche and Schabes,
1997), pages 329–354.

Patrick Hanks, editor. 1998. The New Oxford Dictionary of English. Oxford
University Press, Oxford.

Yannis Haralambous and John Plaice. 1997. Methods for Processing Languages with
Omega. In Proceedings of the Second International Symposium on
Multilingual Information Processing, Tsukuba, Japan. Available as
http://omega.enstb.org/yannis/pdf/tsukuba-methods97.pdf.

Yannis Haralambous and John Plaice. 2001. Traitement automatique des langues et
composition sous Omega. Cahiers GUTenberg, (39–40):139–166, May.

Jerry R. Hobbs, Douglas Appelt, John Bear, David Israel, Megumi Kameyama, Mark
Stickel, and Mabry Tyson. 1997. FASTUS: A Cascaded Finite-State Transducer
for Extracting Information from Natural-Language Text. (Roche and Schabes,
1997), pages 383–406.

Chuleerat Jaruskulchai. 1998. Automatic Indexing for Thai Text Retrieval. Ph.D.
thesis, School of Engineering and Applied Science, George Washington
University, August.

Franklin M. Liang. 1983. Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis,
Department of Computer Science, Stanford University, August.

Qing Ma, Hitoshi Isahara, and Hiromi Ozaku. 1996. Automatic part-of-speech
tagging of thai corpus neural networks. In Lecture Notes in Computer
Science 1112, pages 275–280. Springer-Verlag.

Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press.

Surapant Meknavin, Paisarn Charoenpornsawat, and Boonserm Kijsirikul. 1997.
Feature-based Thai Word Segmentation. In Proceedings of the Natural
Language Processing Pacific Rim Symposium (NLPRS 1997), pages 41–46.

Masaki Murata, Qing Ma, and Hitoshi Isahara. 2002. Comparision of Three
Machine-Learning Methods for Thai Part-of-Speech Tagging. ACM
Transactions on Asian Language Information Processing, 1(2):145–158.

Stefan Nilsson and Gunnar Karlsson. 1999. IP-Address Lookup Using LC-Tries.
IEEE Journal on Selected Areas in Communications, 17(6):1083–1092.

Lev Pevzner and Marti A. Hearst. 2002. A Critique and Improvement of an
Evaluation Metric for Text Segmentation. Computational Linguistics,
28(1):19–36.

Emmanuel Roche and Yves Schabes. 1997. Finite-State Language Processing. MIT
Press.

Alan Silverstein. 2002. Judy IV Shop Manual.
http://judy.sourceforge.net/application/shop_interm.pdf.

Petr Sojka and Pavel Ševeček. 1995. Hyphenation in TEX — Quo Vadis? TUGboat,
16(3):280–289.

119

http://omega.enstb.org/yannis/pdf/tsukuba-methods97.pdf
http://judy.sourceforge.net/application/shop_interm.pdf

Chapter 12 12.6 Conclusion and Future Work

Petr Sojka. 1995. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297.

Petr Sojka. 1999. Hyphenation on Demand. TUGboat, 20(3):241–247.
Petr Sojka. 2000. Competing Patterns for Language Engineering. In Petr Sojka, Ivan

Kopeček, and Karel Pala, editors, Proceedings of the Third International
Workshop on Text, Speech and Dialogue—TSD 2000, Lecture Notes in
Artificial Intelligence LNCS/LNAI 1902, pages 157–162, Brno, Czech
Republic, September. Springer-Verlag.

Virach Sornlertlamvanich, Thatsanee Charoenporn, and Hitoshi Isahara. 1997.
ORCHID: Thai Part-Of-Speech Tagged Corpus. Technical Report
TR-NECTEC-1997-001, Thai National Electronics and Computer Technology
Center, Thailand, December. http://www.links.nectec.or.th/.

Virach Sornlertlamvanich, Tanapong Potipiti, and Thatsanee Charoenporn. 2000.
Automatic Corpus-Based Thai Word Extraction with the C4.5 Learning
Algorithm. In COLING, pages 802–807. Morgan Kaufmann.

Virach Sornlertlamvanich. 1998. Probabilistic Language Modeling for Generalized
LR Parsing. Ph.D. thesis, Department of Computer Science, Tokyo Institute of
Technology, September.

Rattasit Sukhahuta and Dan Smith. 2001. Information Extraction Strategies for Thai
Documents. International Journal of Computer Processing of Oriental
Languages (IJCPOL), 14(2):153–172.

120

http://www.links.nectec.or.th/

Bibliography

Steven Paul Abney. 1997. Part-of-Speech Tagging and Partial Parsing. In Young and
Bloothooft (Young and Bloothooft, 1997), pages 118–136.

R. E. Allen. 1990. The Oxford Spelling Dictionary, volume II of The Oxford Library
of English Usage. Oxford University Press.

AMS. 1993. Instructions for Author-Prepared Books.
Anonymous. 1993. The Chicago Manual of Style. University of Chicago Press,

fourteenth edition.
David Antoš and Petr Sojka. 2001. Pattern Generation Revisited. In Simon Pepping,

editor, Proceedings of the 16th European TEX Conference, Kerkrade, 2001,
pages 7–17, Kerkrade, The Netherlands, September. NTG.

David Antoš. 2002. PATLIB, Pattern Manipulation Library.
http://www.fi.muni.cz/~xantos/patlib/.

Susan Armstrong, Kenneth Church, Pierre Isabelle, Sandra Manzi, Evelyne
Tzoukermann, and David Yarowsky, editors. 1999. Natural Language
Processing Using Very Large Corpora. Kluwer Academic Publishers Group.

Wirote Aroonmanakun. 2002. Collocation and Thai Word Segmentation. In
Proceedings of SNLP-Oriental COCOSDA 2002, pages 68–75.

Donald Arsenau. 1994. Benchmarking paragraphs without hyphenation. Posting to
the Usenet group news:comp.text.tex on December 13.

Giorgio Ausiello, Giorgio Gambosi, Pierluigi Crescenzi, and Viggo Kann. 1999.
Complexity and Approximation. Springer-Verlag.

Wilhelm Barth and H. Nirschl. 1985. Implementierung eines Verfahrens für die
Silbentrennung. Technical Report Bericht Nr. 26, Institut für Praktische
Informatik, September.

Wilhelm Barth and Helmut Steiner. 1992. Deutsche Silbentrennung für TEX 3.1
(German hyphenation for TEX 3.1). Die TEXnische Komödie, (Heft 1). Journal
of DANTE (Deutschsprachige Anwendervereinigung TEX e.V.); Group of
German-speaking TEX Users.

Wilhelm Barth, Helmut Steiner, and H. Herbeck. 1993. ISITEX Interaktive
Silbentrennung für die deutsche Sprache unter TEX 3.14 und 3.141 unter
UNIX (Interactive hyphenation for German and TEX 3.14 and 3.141 under
UNIX). Electronic documentation of ISITEX from
http://www.apm.tuwien.ac.at/, August.

121

http://www.fi.muni.cz/~xantos/patlib/
news:comp.text.tex
http://www.apm.tuwien.ac.at/

Chapter 12 12.6 Conclusion and Future Work

Claudio Beccari, Radu Oprea, and Elena Tulei. 1995. How to make a foreign
language pattern file: Romanian. TUGboat, 16(1):30–41.

Claudio Beccari. 1992. Computer Aided Hyphenation for Italian and Modern Latin.
TUGboat, 13(1):23–33, April.

Douglas Beeferman, Adam Berger, and John Lafferty. 1997. Text segmentation using
exponential models. In Proceedings of the 2nd Conference on Empirical
Methods in Natural Language Processing, pages 35–46, Providence, RI.

Douglas Beeferman, Adam Berger, and John Lafferty. 1999. Statistical Models of Text
Segmentation. Machine Learning, 34(1–3):177–210.

Barbara Beeton. 1984. Hyphenation exception log. TUGboat, 5(1):15, May.
Barbara Beeton. 1985. Hyphenation exception log. TUGboat, 6(3):121, November.
Barbara Beeton. 1986. Hyphenation exception log. TUGboat, 7(3):146–147, October.
Barbara Beeton. 1989. Hyphenation exception log. TUGboat, 10(3):336–341,

November.
Barbara Beeton. 1992. Hyphenation exception log. TUGboat, 13(4):452–457,

December.
Branimir Boguraev and James Pustejovsky. 1996. Corpus Processing for Lexical

Acquisition. MIT Press.
Bert Bos. 1999. Internationalization/localization.

http://www.w3.org/International/O-HTML-hyphenation.html.
Johannes Braams. 1991a. Babel, a multilingual style-option system for use with

LATEX’s standard document styles. TUGboat, 12(2):291–301, June.
Johannes Braams. 1991b. Babel, a multilingual style-option system. Cahiers

GUTenberg, 10–11:71–72, September.
Johannes Braams. 1993. An update on the babel system. TUGboat, 14(1):60–62,

April.
Peter Breitenlohner. 1988. German TEX, a next step. TUGboat, 9(2):183–185, August.
Eric Brill and Mihai Pop. 1999. Unsupervised learning of disambiguation rules for

part-of-speech tagging. (Armstrong et al., 1999), pages 27–42.
Eric Brill, Radu Florian, John C. Henderson, and Lidia Mangu. 1998. Beyond

N-Gram: Can Linguistic Sophistication Improve Language Modeling? In
Proceedings of the ACL ’98.

Eric Brill. 1993. A Corpus-Based Approach to Language Learning. Ph.D. thesis,
University of Pennsylvania.

S. Brunak and B. Lautrup. 1990. Neural Networks: Computers with Intuition. World
Scientific, Singapore.

J. Richard Büchi. 1989. Towards a Theory of Formal Expressions. Springer-Verlag,
New York, U.S.A.

Guido Bugmann, Petr Sojka, Michael Reiss, Mark Plumbley, and John G. Taylor.
1992. Direct Approaches to Improving the Robustness of Multilayer Neural
Networks. pages 1063–1066, Brighton, UK, September. Elsevier Science
Publishers B.V.

122

http://www.w3.org/International/O-HTML-hyphenation.html

Chapter 12 12.6 Conclusion and Future Work

Cezar Câmpeanu, Nicolae Sânteau, and Sheng Yu. 1998. Minimal cover-automata for
finite languages. In Jean-Marc Champarnaud, Denis Maurel, and Djelloul
Ziadi, editors, Lecture Notes in Computer Science 1660, pages 43–56, Berlin,
Heidelberg. Springer-Verlag.

G. Canzii, F. Genolini, and Dario Lucarella. 1984. Hyphenation of Italian words.
TUGboat, 5(1):14, May.

Claudio Carpineto and Giovanni Romano. 2004. Concept Data Analysis: Theory and
Applications. Wiley, July.

František Čermák. 1998. Czech National Corpus: Its Character, Goal and
Background. In Petr Sojka, Václav Matoušek, Karel Pala, and Ivan Kopeček,
editors, Text, Speech and Dialogue, pages 9–14, Brno, Czech Republic,
September. Masaryk University Press.

Paisarn Charoenpornsawat and Virach Sornlertlamvanich. 2001. Automatic Sentence
Break Disambiguation for Thai. In Proceedings of ICCPOL 2001, pages
231–235, May.

Janka Chlebíková. 1991. Ako rozdělit’ (slovo) Československo (How to Hyphenate
(word) Czechoslovakia). CSTUG Bulletin, 1(4):10–13, April.

Noam Chomsky. 1956. Three Models for the Description of Language. IEEE
Transactions on Information Theory, IT-2:113–124.

Noam Chomsky. 1957. Syntactic Structures. Mouton, The Hague.
Václav Chvátal. 1979. A Greedy Heuristic for the Set Covering Problem.

Mathematics of Operations Research, 4:233–235.
Matthias Classen. 1998. An extension of TEX’s hyphenation algorithm.

ftp://peano.mathematik.uni-freiburg.de/pub/etex/hyphenation/.
Jacques Désarménien. 1984. How to run TEX in a French environment: Hyphenation,

fonts, typography. TUGboat, 5(2):91, November.
Zuzana Došlá, Roman Plch, and Petr Sojka. 1999. Matematická analýza s programem

Maple: 1. Diferenciální počet funkcí více proměnných (Mathematical Analysis
with Program Maple: 1. Differential Calculus). CD-ROM,
http://www.math.muni.cz/~plch/mapm/, December.

Zuzana Došlá, Roman Plch, and Petr Sojka. 2002. Matematická analýza s programem
Maple: 2. Nekonečné řady (Mathematical Analysis with Maple: 2. Infinite
Series). CD-ROM, http://www.math.muni.cz/~plch/nkpm/, December.

DUDEN. 1991. Duden Band 1 — Rechtschreibung der Deutschen Sprache.
Dudenverlag, 20., neu bearbeitete und erweiterte Auflage edition.

Sandra L. Emerson and Karen Paulsell. 1987. troff Typesetting for UNIXTM Systems.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

M. Fanton. 1991. TEX: les limites du multilinguisme. Cahiers GUTenberg,
10–11:73–80, September.

Michael J. Ferguson. 1985. A multilingual TÊX. TUGboat, 6(2):57–58, July.
Michael J. Ferguson. 1988. TEX is Multilingual. In Thiele (Thiele, 1988), pages

179–189.

123

ftp://peano.mathematik.uni-freiburg.de/pub/etex/hyphenation/
http://www.math.muni.cz/~plch/mapm/
http://www.math.muni.cz/~plch/nkpm/

Chapter 12 12.6 Conclusion and Future Work

Michael J. Ferguson. 1990. Fontes latines européennes et TEX 3.0. Cahiers
GUTenberg, 7:29–32, November.

Nelson W. Francis and Henry Kučera. 1982. Frequency Analysis of English Usage:
Lexicon and Grammar. Houghton Mifflin.

Bernard Gaulle. 1994. Requirements in multilingual environments. in electronic
form (version 1.02) on CTAN as file vt15d02.tex, March.

Peter Géczy, Petr Sojka, and Jan Blatný. 1993. Robustness and Generalization of
Multilayer Neural Networks. In Igor Mokriš, editor, Proceedings of the
International Conference Image Processing and Neural Networks, Liptovský
Mikuláš, 1993, pages 163–170, Liptovský Mikuláš. Military Technical
University in Liptovský Mikuláš, Slovak Electrotechnical Society of Military
Technical University.

Charles F. Goldfarb. 1990. The SGML handbook. Clarendon Press, Oxford.
John Goldsmith. 2001. Unsupervised Learning of the Morphology of a Natural

Language. Computational Linguistics, 27(2):153–198, June.
Michel Goossens, editor. 1994. Proceedings of the TEX Users Group 15th Annual

Meeting, Santa Barbara, 1994, Portland, Oregon, U.S.A. TEX Users Group.
Philip Babcock Gove and Merriam Webster. 2002. Webster’s Third New International

Dictionary of the English language Unabridged. Merriam-Webster Inc.,
Springfield, Massachusetts, U.S.A, January.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1989. Concrete
Mathematics. Addison-Wesley, Reading, MA, USA.

Ulf Grenander. 1993. General Pattern Theory. Clarendorn Press, Oxford.
Maurice Gross. 1997. The Construction of Local Grammars. (Roche and Schabes,

1997), pages 329–354.
Jozef Gruska. 1997. Foundations of Computing. International Thomson Computer

Press.
Petr Hájek and Tomáš Havránek. 1978. Mechanising hypothesis formation —

Mathematical foundations for a general theory. Springer-Verlag.
Petr Hájek, Jan Rauch, David Coufal, and Tomáš Feglar. 2004. The GUHA Method,

Data Preprocessing and Mining. In Database Support for Data Mining
Applications, volume LNAI 2862, pages 135–153.

Jiří Haller. 1956. Jak se dělí slova (How the Words Get Hyphenated). Státní
pedagogické nakladatelství Praha.

Hans van Halteren, editor. 1999. Syntactic Wordclass Tagging. Kluwer Academic
Publishers Group.

Patrick Hanks, editor. 1998. The New Oxford Dictionary of English. Oxford
University Press, Oxford.

Yannis Haralambous and John Plaice. 1994a. First applications of Ω: Greek, Arabic,
Khmer, Poetica, ISO-10646/Unicode, etc. In Goossens (Goossens, 1994), pages
256–264.

124

Chapter 12 12.6 Conclusion and Future Work

Yannis Haralambous and John Plaice. 1994b. First applications of Ω: Adobe Poetica,
Arabic, Greek, Khmer. TUGboat, 15(3):344–352, September.

Yannis Haralambous and John Plaice. 1997. Methods for Processing Languages with
Omega. In Proceedings of the Second International Symposium on
Multilingual Information Processing, Tsukuba, Japan. Available as
http://omega.enstb.org/yannis/pdf/tsukuba-methods97.pdf.

Yannis Haralambous and John Plaice. 1998. The Design and Use of a
Multiple-Alphabet Font with Ω. In Roger D. Hersch, Jacques André, and
Heather Brown, editors, Lecture Notes in Computer Science 1375, pages
126–137. Springer-Verlag, April.

Yannis Haralambous and John Plaice. 2001. Traitement automatique des langues et
composition sous Omega. Cahiers GUTenberg, (39–40):139–166, May.

Yannis Haralambous. 1991. ScholarTEX. Cahiers GUTenberg, 10–11:69–70,
septembre.

Yannis Haralambous. 1992a. TEX Conventions Concerning Languages. TEX and TUG
News, 1(4):3–10.

Yannis Haralambous. 1992b. Hyphenation patterns for ancient Greek and Latin.
TUGboat, 13(4):457–469, December.

Yannis Haralambous. 1993a. DC fonts — questions and answers. TEX and TUG
News, 2(1):10–12.

Yannis Haralambous. 1993b. Using PATGEN to Create Welsh Patterns. Submitted to
TUGboat, July.

Yannis Haralambous. 1994. A Small Tutorial on the Multilingual Features of
PATGEN2. In electronic form, available from CTAN as
info/patgen2.tutorial, January.

Yannis Haralambous. 1996. ΩTimes and ΩHelvetica fonts under development: Step
One. TUGboat, 17(2):126–146, June.

Yannis Haralambous. 1999. From Unicode to Typography, a Case Study: the Greek
Script. Proceedings of 14th International Unicode Conference, available from
http://omega.enstb.org/yannis/pdf/boston99.pdf, March.

Florian Hars. 1999. Typo-l email discussion list, 4 January.
Piet Hein. 1966. Grooks. MIT Press, Cambridge, Massachusetts.
Zdeněk Hlavsa et al. 1993. Pravidla českého pravopisu (The Rules of the Czech

Spelling). Academia Praha.
Jerry R. Hobbs, Douglas Appelt, John Bear, David Israel, Megumi Kameyama, Mark

Stickel, and Mabry Tyson. 1997. FASTUS: A Cascaded Finite-State Transducer
for Extracting Information from Natural-Language Text. (Roche and Schabes,
1997), pages 383–406.

Douglas R. Hofstadter. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. Basic
Books.

Douglas R. Hofstadter. 1983. Artificial intelligence: Subcognition as computation.

125

http://omega.enstb.org/yannis/pdf/tsukuba-methods97.pdf
http://omega.enstb.org/yannis/pdf/boston99.pdf

Chapter 12 12.6 Conclusion and Future Work

Jan Holeček and Petr Sojka. 2004. Animations in a pdfTEX-generated PDF. In
Apostolos Syropoulos, Karl Berry, Yannis Haralambous, Baden Hughes,
Steven Peter, and John Plaice, editors, TEX, XML, and Digital Typography,
volume 3130 of Lecture Notes in Computer Science, pages 179–191, Berlin,
Heidelberg, August. Springer-Verlag.

Olle Jarnefors. 1995. ISO-10646 email discussion list, April.
Chuleerat Jaruskulchai. 1998. Automatic Indexing for Thai Text Retrieval. Ph.D.

thesis, School of Engineering and Applied Science, George Washington
University, August.

Alan Jeffrey. 1993. A PostScript font installation package written in TEX. TUGboat,
14(3):285–292, October.

Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu. 1995. Decision problems for
patterns. Journal of Computer and Systems Sciences, 50(1):53–63.

Fred Karlsson, A. Voutilainen, J. Heikkilä, and A. Antilla. 1995. Constraint Grammar:
A Language-Independent System for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin.

Fred Karlsson. 1993. Automatic Hyphenation of Finnish. Technical Report 13,
University of Helsinki, Department of General Linguistics.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller. 1996.
Regular Expressions for Language Engineering. Natural Language
Engineering, 2(4):305–328.

Blanka Kirsteinová and Blanka Borg. 1999. Dánsko-český slovník, Dansk-Tjekkisk
Ordbog [Danish-Czech Dictionary]. LEDA, Prague, Czech Republic.

Donald E. Knuth and Michael F. Plass. 1981. Breaking Paragraphs into Lines.
Software—Practice and Experience, 11(11):1119–1184, November.

Donald E. Knuth. 1973a. Fundamental Algorithms. The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition.

Donald E. Knuth. 1973b. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, USA.

Donald E. Knuth. 1983. A note on hyphenation. TUGboat, 4(2):64, September.
Donald E. Knuth. 1986a. TEX: The Program, volume B of Computers and

Typesetting. Addison-Wesley, Reading, MA, USA.
Donald E. Knuth. 1986b. The TEXbook, volume A of Computers and Typesetting.

Addison-Wesley, Reading, MA, USA.
Donald E. Knuth. 1988. The Errors of TEX. Technical Report STAN-CS-88-1223,

Department of Computer Science, Stanford University, September.
Donald E. Knuth. 1989a. The Errors of TEX. Software — Practice and Experience,

19(7):607–685.
Donald E. Knuth. 1989b. Theory and practice. keynote address for the 11th World

Computer Congress (Information Processing ’89), August.
Donald E. Knuth. 1991. 3 : 16 Bible texts illuminated. A-R Editions, Inc.

126

Chapter 12 12.6 Conclusion and Future Work

Donald E. Knuth. 1998. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, third edition.

Donald E. Knuth. 1999. Digital Typography. CSLI Lecture Notes 78. Center for the
Study of Language and Information, Stanford, California.

Gabriele Kodydek and Martin Schönhacker. 2003. Si3Trenn and Si3Silb: Using the
SiSiSi Word Analysis System for Pre-Hyphenation and Syllable Counting in
German Documents. Lecture Notes in Artificial Intelligence LNCS/LNAI
2807, pages 66–73, České Budějovice, Czech Republic, September.
Springer-Verlag.

Gabriele Kodydek. 2000. A Word Analysis System for German Hyphenation, Full
Text Search, and Spell Checking, with Regard to the Latest Reform of German
Orthography. In Sojka et al. (Sojka et al., 2000), pages 39–44.

Hanna Kołodziejska. 1987. Dzielenie wyrazów polskich w systemie TEX. Technical
Report 165, Sprawozdania Instytutu Informatyki Uniwersytetu
Warszawskiego.

Hanna Kołodziejska. 1988. Le traitement des textes polonais avec le logiciel TEX.
Cahiers GUTenberg, (0):3–10, April.

Helmut Kopka. 1991. LATEX—Erweiterungsmöglichkeiten mit einer Einführung in
METAFONT. Addison-Wesley Verlag, Bonn, Germany, second edition.

András Kornai. 1999. Extended Finite State Models of Language. Cambridge
University Press.

Cvetana Krstev. 1991. Serbo-Croatian hyphenation: a TEX point of view. TUGboat,
12(2):215–223, June.

Gerard D.C. Kuiken. 1990. Additional Hyphenation Patterns. TUGboat, 11(1):24–25,
April.

Ladislav Lhotka. 1991. České dělení pro TEX (Czech Hyphenation for TEX). CSTUG
Bulletin, (4):8–9, April.

Franklin M. Liang and Peter Breitenlohner. 1991. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.0
from UNIXTEX distribution at ftp://ftp.cs.umb.edu, November.

Franklin M. Liang and Peter Breitenlohner. 1999. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PATGEN program version 2.3
from web2c distribution on CTAN.

Franklin M. Liang. 1981. TEX and hyphenation. TUGboat, 2(2):19–20, July.
Franklin M. Liang. 1983. Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis,

Department of Computer Science, Stanford University, August.
John W. Lloyd. 2003. Learning Comprehensible Theories from Structured Data. In

S. Mendelson and A.J. Smola, editors, Advanced Lectures on Machine
Learning, LNAI 2600, pages 203–225.

Qing Ma, Hitoshi Isahara, and Hiromi Ozaku. 1996. Automatic part-of-speech
tagging of thai corpus neural networks. In Lecture Notes in Computer
Science 1112, pages 275–280. Springer-Verlag.

127

ftp://ftp.cs.umb.edu

Chapter 12 12.6 Conclusion and Future Work

David Macháček. 2003. Přebíjející vzory ve zpracování přirozeného jazyka
(Competing Patterns in Natural Language Processing). Master’s thesis,
Masaryk University in Brno, Faculty of Informatics, Brno, Czech Republic.

Pierre A. MacKay. 1988. Turkish hyphenations for TEX. TUGboat, 9(1):12–14, April.
Basil Malyshev, Alexander Samarin, and Dimitri Vulis. 1991a. Russian TEX. Cahiers

GUTenberg, 10–11:1–6, September.
Basil Malyshev, Alexander Samarin, and Dimitri Vulis. 1991b. Russian TEX.

TUGboat, 12(2):212–214, June.
Shibayama Mamoru and Hoshino Satoshi. 2001. Thai Morphological Analyses Based

on the Syllable Formation Rules. Journal of Information Procesing,
15(04–007).

Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press.

Olga Martincová, Zdeněk Hlavsa, Zdenka Hrušková, Jiřina Hůrková, Jiří Kraus,
Alena Polívková, Miloslav Sedláček, Ivana Svobodová, and Věra Vlková.
1993. Pravidla českého pravopisu (The Rules of the Czech Spelling). Pansofia
Praha.

David Megginson. 1998. Structuring XML Documents. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Surapant Meknavin, Paisarn Charoenpornsawat, and Boonserm Kijsirikul. 1997.
Feature-based Thai Word Segmentation. In Proceedings of the Natural
Language Processing Pacific Rim Symposium (NLPRS 1997), pages 41–46.

Ryszard Spencer Michalski, Jaime Guillermo Carbonell, and Tom Michael Mitchell.
1983a. Machine Learning: An Artificial Intelligence Approach. Tioga
Publishing Company, Palo Alto.

Ryszard Spencer Michalski, Jaime Guillermo Carbonell, and Tom Michael Mitchell.
1983b. Machine Learning: An Artificial Intelligence Approach, volume 2.
Morgan Kaufmann Publishers, Inc., Los Altos, California.

Tom Michael Mitchell. 1997. Machine Learning. McGraw-Hill.
Frank Mittelbach and Chris Rowley. 1992a. The future of high quality typesetting:

structure and design. In Zlatuška (Zlatuška, 1992), page 255.
Frank Mittelbach and Chris Rowley. 1992b. The pursuit of quality — How can

automated typesetting achieve the highest standards of craft typography? In
C. Vanoirbeek and G. Coray, editors, Proceedings of the International
Conference on Electronic Publishing, Document Manipulation & Typography,
Lausanne, Switzerland, 1992, pages 261–273, New York. Cambridge
University Press.

Mehryar Mohri, Fernando C. N. Pereira, and Michael D. Riley. 1998. FSM Library —
General-purpose finite-state machine software tools.
http://www.research.att.com/sw/tools/fsm/.

Mehryar Mohri. 1996. On some applications of finite-state automata theory to
natural language processing. Natural Language Engineering, 2:61–80.

128

http://www.research.att.com/sw/tools/fsm/

Chapter 12 12.6 Conclusion and Future Work

Originally appeared in 1994 as Technical Report, Institut Gaspard Monge,
Paris.

Mehryar Mohri. 1997. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2):269–311, June.

Mehryar Mohri. 2000. Minimization algorithms for sequential transducers.
Theoretical Computer Science, 234:177–201, March.

Masaki Murata, Qing Ma, and Hitoshi Isahara. 2002. Comparision of Three
Machine-Learning Methods for Thai Part-of-Speech Tagging. ACM
Transactions on Asian Language Information Processing, 1(2):145–158.

Zuzana Nevěřilová and Petr Sojka. 2005. XML-Based Flexible Visualisation of
Networks: Visual Browser. Submitted.

Stefan Nilsson and Gunnar Karlsson. 1999. IP-Address Lookup Using LC-Tries.
IEEE Journal on Selected Areas in Communications, 17(6):1083–1092.

NTS-L. 1992–1995. New typesetting system discussion list. Archived in
CTAN/digests/nts-l/.

Walter Obermiller. 1991. TEX in Germany. TUGboat, 12(2):211–212, June.
Karel Oliva, Milena Hnátková, Vladimír Petkevič, and Pavel Květoň. 2000. The

Linguistic Basis of a Rule-Based Tagger of Czech. In Sojka et al. (Sojka et al.,
2000), pages 3–8.

Petr Olšák. 1997. TEXbook naruby (in Czech). Konvoj, Brno, Czech Republic.
Karel Pala, Pavel Rychlý, and Pavel Smrž. 1997. DESAM — Annotated Corpus for

Czech. pages 523–530, Milovy, November. Springer-Verlag.
Hubert Partl. 1988. German TEX. TUGboat, 9(1):70–72, April.
Hubert Partl. 1990. How to make TEX and LATEX international. In J. Nadrchal, editor,

Man-Machine Interface in the Scientific Environment. Proceedings of the 8th
European Summer School on Computing Techniques in Physics. Skalský
Dvur, Czecholsovakia, 19–28 September 1989, volume 61 of Computer
Physics Communications, pages 190–200, Amsterdam, The Netherlands.
European Summer Schools on Computing Techniques in Physics,
North-Holland Publishing Company; Elsevier Science Publishers B. V. In
addition to the papers presented at the colloquium, each paper is followed by
a summary of the discussion about that paper.

Jan Pazdziora. 2005. TeX::Hyphen – hyphenate words using TEX’s patterns.
http://search.cpan.org/src/JANPAZ/TeX-Hyphen-0.140/.

Lev Pevzner and Marti A. Hearst. 2002. A Critique and Improvement of an
Evaluation Metric for Text Segmentation. Computational Linguistics,
28(1):19–36.

Charles P. Pfleger. 1973. State Reduction in Incompletely Specified Finite-State
Machines. IEEE Trans. Computers C, 22(4):1099–1102.

John Plaice and Yannis Haralambous. 1996. The latest developments in Ω. TUGboat,
17(2):181–183, June.

John Plaice. 1993. Language-dependent ligatures. TUGboat, 14(3):271–274, October.

129

http://search.cpan.org/src/JANPAZ/TeX-Hyphen-0.140/

Chapter 12 12.6 Conclusion and Future Work

John Plaice. 1994a. Progress in the Omega Project. In Goossens (Goossens, 1994),
pages 190–193.

John Plaice. 1994b. Progress in the Omega project. TUGboat, 15(3):320–324,
September.

John Plaice. 1998. pdftex email discussion list.
http://www.tug.org/archives/pdftex/msg01913.html, 14 March.

Bernd Raichle. 1995. Kurzbeschreibung – german.sty (version 2.5), April. Available
from CTAN archives.

Bernd Raichle. 1997. Hyphenation patterns for words containing explicit hyphens.
CTAN/language/hyphenation/hypht1.tex.

Jan Rejzek. 2001. Etymologický slovník českého jazyka (Ethymological Dictionary of
Czech Language). LEDA, Prague, Czech Republic.

Pedro de Rezende. 1987. Portuguese hyphenation table for TEX. TUGboat,
8(2):102–102, July.

Emmanuel Roche and Yves Schabes. 1995. Deterministic Part-of-Speech Tagging.
Computational Linguistics, 21(2):227–253.

Emmanuel Roche and Yves Schabes. 1997. Finite-State Language Processing. MIT
Press.

Jan Michael Rynning. 1991. Swedish Hyphenation for TEX. Received in electronic
form from author via email mailto:jmr@nada.kth.se, November.

Kauko Saarinen. 1988. Experiences with TEX in Finland. In Thiele (Thiele, 1988),
pages 189–194.

Kai Salomaa, Derick Wood, and Sheng Yu, editors. 2000. Implementing Automata,
volume 231.

Alexander Samarin and A. Urvantsev. 1991. CyrTUG, le monde TEX en cyrillique.
Cahiers GUTenberg, 12:71–74, December.

Kevin Patrick Scannell. 2003. Hyphenation patterns for minority languages.
TUGboat, 24(2):236–239.

Michail I. Schlesinger and Václav Hlaváč. 2002. Ten Lectures on Statistical and
Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht, The
Netherlands, May.

Joachim Schrod. 1991. An International Version of MakeIndex. Cahiers GUTenberg,
10–11:81–90, September.

Bernd Schulze. 1984. German hyphenation and Umlauts in TEX. TUGboat, 5(2):103,
November.

Radek Sedláček. 1999. Morphological Analyzer of Czech (in Czech). Master’s thesis,
Masaryk University in Brno, April.

Terry J. Sejnowski and C. R. Rosenberg. 1987. Parallel Networks that Learn to
Pronounce English Text. Complex Systems, 1:145–168.

Yong Shi, Weixuan Xu, and Zhengxin Chen, editors. 2004. Data Mining and
Knowledge Management: Chinese Academy of Sciences Symposium

130

http://www.tug.org/archives/pdftex/msg01913.html
mailto:jmr@nada.kth.se

Chapter 12 12.6 Conclusion and Future Work

CASDMKM, volume LNCS 3327 of Lecture Notes in Computer Science.
Springer-Verlag, July.

Max Silberztein. 2000. INTEX: an FST toolbox. Theoretical Computer Science,
234:33–46.

Alan Silverstein. 2002. Judy IV Shop Manual.
http://judy.sourceforge.net/application/shop_interm.pdf.

Karel Skoupý. 1998. NTS: a New Typesetting System. TUGboat, 18(3):318–322.
Pavel Smrž and Petr Sojka. 1996. Word Hy-phen-a-tion by Neural Networks.

Technical Report FIMU-RS-96-04, Masaryk University in Brno, Faculty of
Informatics, August.

Pavel Smrž and Petr Sojka. 1997. Word Hy-phen-a-tion by Neural Networks. Neural
Network World, 7:687–695.

Pavel Smrž. 1995. Learning Algorithms of Neural Networks. Master’s thesis,
Masaryk University in Brno, April.

Petr Sojka and David Antoš. 2003. Context Sensitive Pattern Based Segmentation:
A Thai Challenge. pages 65–72, Budapest, April.

Petr Sojka and Pavel Ševeček. 1994. Hyphenation in TEX — Quo Vadis? In Włodek
Bzyl and Tomek Przechlewski, editors, Proceedings of the 9th European TEX
Conference, Gdańsk, 1994, pages 59–68, September.

Petr Sojka and Pavel Ševeček. 1995a. Hyphenation in TEX — Quo Vadis? TUGboat,
16(3):280–289.

Petr Sojka and Pavel Ševeček. 1995b. Hyphenation in TEX — Quo Vadis? In Michel
Goossens, editor, Proceedings of the TEX Users Group 16th Annual Meeting,
St. Petersburg, 1995, pages 280–289, Portland, Oregon, U.S.A. TEX Users
Group.

Petr Sojka, Ivan Kopeček, and Karel Pala, editors. 2000. Proceedings of the Third
International Workshop on Text, Speech and Dialogue—TSD 2000, Lecture
Notes in Artificial Intelligence LNCS/LNAI 1902, Brno, Czech Republic,
September. Springer-Verlag.

Petr Sojka. 1995a. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297.

Petr Sojka. 1995b. Notes on Compound Word Hyphenation in TEX. Technical Report
FIMU-RS-95-04, Masaryk University in Brno, Faculty of Informatics, August.

Petr Sojka. 1998a. An Experience from a Digitization Project. Cahiers GUTenberg,
(28–29):276–281, March.

Petr Sojka. 1998b. Publishing Encyclopaedia with Acrobat using TEX. In Towards the
Information-Rich Society. Proceedings of the ICCC/IFIP conference Electronic
publishing ’98, pages 217–222, Budapest, Hungary, April. ICCC Press.

Petr Sojka. 1999a. Hyphenation on Demand. TUGboat, 20(3):241–247.
Petr Sojka. 1999b. Hyphenation on Demand. pages 1085–1091, Vancouver, August.

The University of British Columbia.

131

http://judy.sourceforge.net/application/shop_interm.pdf

Chapter 12 12.6 Conclusion and Future Work

Petr Sojka. 2000. Competing Patterns for Language Engineering. In Sojka et al.
(Sojka et al., 2000), pages 157–162.

Petr Sojka. 2003a. Animations in PDF. In Proceedings of the 8th SIGCSE Annual
Conference on Innovation and Technology in Computer Science Education,
ITiCSE 2003, page 263, Thessaloniki. Association of Computing Machinery.

Petr Sojka. 2003b. Interactive Teaching Materials in PDF using JavaScript. In
Proceedings of the 8th SIGCSE Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2003, page 275,
Thessaloniki. Association of Computing Machinery.

Petr Sojka. 2003c. Rapid Evaluation using Multiple Choice Tests and TEX. In
Proceedings of the 8th SIGCSE Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2003, page 265,
Thessaloniki. Association of Computing Machinery.

Petr Sojka. 2004. Slovenské vzory dělení: čas pro změnu? (Slovak Hyphenation
Patterns: A Time for Change?). CSTUG Bulletin, 14(3–4):183–189.

Virach Sornlertlamvanich, Thatsanee Charoenporn, and Hitoshi Isahara. 1997.
ORCHID: Thai Part-Of-Speech Tagged Corpus. Technical Report
TR-NECTEC-1997-001, Thai National Electronics and Computer Technology
Center, Thailand, December. http://www.links.nectec.or.th/.

Virach Sornlertlamvanich, Thatsanee Charoenporn, and Hitoshi Isahara. 1999.
Building a Thai Part-Of-Speech Tagged Corpus. The Journal of the Acoustical
Society of Japan (E), 20(3):140–189, May.

Virach Sornlertlamvanich, Tanapong Potipiti, and Thatsanee Charoenporn. 2000.
Automatic Corpus-Based Thai Word Extraction with the C4.5 Learning
Algorithm. In COLING, pages 802–807. Morgan Kaufmann.

Virach Sornlertlamvanich. 1998. Probabilistic Language Modeling for Generalized
LR Parsing. Ph.D. thesis, Department of Computer Science, Tokyo Institute of
Technology, September.

Wilhelm Steiner. 1995. Automatische Silbentrennung durch Wortbildungsanalyse.
Ph.D. thesis, Technisch-Naturwissenschaftliche Fakultät.

Rattasit Sukhahuta and Dan Smith. 2001. Information Extraction Strategies for Thai
Documents. International Journal of Computer Processing of Oriental
Languages (IJCPOL), 14(2):153–172.

Robert S. Sutor and Angel L. Díaz. 1998. IBM techplorer: Scientific Publishing for the
Internet. Cahiers GUTenberg, (28–29):295–308, March.

Philip Taylor. 1992. The Future of TEX. In Zlatuška (Zlatuška, 1992), pages 235–254.
Hàn Thế Thành, Petr Sojka, and Jiří Zlatuška. 1996. TEX2PDF — Acrobatics with an

Alternative to DVI Format. TUGboat, 17(3):244–251.
Christina Thiele, editor. 1988. Proceedings of the TEX Users Group 9th Annual

Meeting, Montréal, 1988, Portland, Oregon, U.S.A. TEX Users Group.
Anders Thulin. 1987. More hyphenation exceptions. TUGboat, 8(1):76–76, April.
Alan Turing. 1950. Computing Machinery and Intelligence. Mind, (59):433–460.

132

http://www.links.nectec.or.th/

Chapter 12 12.6 Conclusion and Future Work

Andrew J. Viterbi. 1967. Error Bounds for Convolutional Codes and an
Asymptotically Optimal Decoding Algorithm. IEEE Transactions on
Information Theory, IT-13:260–267, April.

Dimitri Vulis. 1989. Notes on Russian TEX. TUGboat, 10(3):332–336, November.
Bruce W. Watson. 1999. Implementing and using finite automata toolkits. (Kornai,

1999), pages 19–36.
Steve Young and Gerrit Bloothooft, editors. 1997. Corpus-Based Methods in

Language and Speech Processing. Kluwer Academic Publishers Group,
Dordrecht.

Chengqi Zhang and Shichao Zhang. 2002. Association Rule Mining, volume LNAI
2307 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

Austin Ziegler. 2005. Text::Hyphen package.
http://rubyforge.org/projects/text-format.

Jiří Zlatuška. 1991. Automatic generation of virtual fonts with accented letters for
TEX. Cahiers GUTenberg, 10–11:57–68, September.

Jiří Zlatuška, editor. 1992. Proceedings of the 7th European TEX Conference, Prague,
1992, Brno, September. Masarykova Universita.

133

http://rubyforge.org/projects/text-format

Author Index

Aavatsmark, Ivar 33
Abney, Steven Paul 89, 121
Aleksander, Igor 67, 122
Allen, R. E. 29, 41, 61, 80, 121
AMS 121
André, Jacques 78, 125
Anonymous 121
Antilla, A. 88, 126
Antoš, David 24, 92, 105, 109, 110, 115,

121, 131
Appelt, Douglas 9, 84, 86, 109, 125
Armstrong, Susan 2, 18, 19, 21, 121, 122
Aroonmanakun, Wirote 121
Arsenau, Donald 80, 121
Ausiello, Giorgio 10, 121

Badenes, Goncal 32
Barth, Wilhelm 30, 121
Bear, John 9, 84, 86, 109, 125
Beccari, Claudio 27, 33, 121, 122
Beeferman, Douglas 112, 122
Beeton, Barbara 34, 122
Berger, Adam 112, 122
Berry, Karl 3, 125
Bilková, Silvie v
Blatný, Jan 3, 124
Bloothooft, Gerrit 2, 89, 121
Boguraev, Branimir 2, 122
Borg, Blanka 78, 126
Bos, Bert 122
Braams, Johannes 31, 122
Breitenlohner, Peter 13, 29, 32, 41, 50, 60,

72, 87, 93, 122, 127
Brill, Eric 3, 19, 122

Brown, Heather 78, 125
Brunak, S. 122
Büchi, J. Richard 84, 85, 122
Bugmann, Guido 67, 122
Bzyl, Włodek 27, 32, 33, 47, 50, 53, 131

Câmpeanu, Cezar 84, 123
Canzii, G. 32, 123
Carbonell, Jaime Guillermo 3, 128
Carmona, Francesc 32
Carpineto, Claudio 7, 123
Čermák, František 18, 123
Champarnaud, Jean-Marc 84, 123
Chanod, Jean-Pierre 19, 84, 126
Charoenporn, Thatsanee 18, 102, 107, 110,

120, 132
Charoenpornsawat, Paisarn 107, 117, 123,

128
Chen, Zhengxin 3, 130
Chlebíková, Janka 33, 123
Chomsky, Noam 123
Church, Kenneth 2, 18, 19, 21, 121, 122
Chvátal, Václav 11, 123
Chytil, Michal 11
Classen, Matthias 79, 123
Coray, G. 128
Coufal, David 3, 124
Crescenzi, Pierluigi 10, 121

Désarménien, Jacques 32, 123
Díaz, Angel L. 71, 132
Došlá, Zuzana 3, 123
DUDEN 123

Ederveen, Derk 32

134

Author Index

Emerson, Sandra L. 29, 60, 123

Fanton, M. 31, 123
Feglar, Tomáš 3, 124
Ferguson, Michael J. 30, 31, 123, 124
Filippone, Salvatore 32
Flipo, Daniel 32
Florian, Radu 3, 19, 122
Francis, Nelson W. 18, 21, 89, 124

Gambosi, Giorgio 10, 121
Gaulle, Bernard 31, 32, 124
Géczy, Peter 3, 124
Genolini, F. 32, 123
Goldfarb, Charles F. 71, 124
Goldsmith, John 2, 124
Goossens, Michel 27, 41, 43, 44, 124,

129–131
Gove, Philip Babcock 20, 124
Graham, Ronald L. 93, 124
Grefenstette, Gregory 19, 84, 126
Grenander, Ulf 7, 124
Gross, Maurice 9, 86, 109, 124
Gruska, Jozef 84, 124

Hájek, Petr 3, 11, 124
Hall, Pat 24, 105, 131
Haller, Jiří 35, 61, 124
Halteren, Hans van 18, 124
Hanks, Patrick 95, 106, 110, 124
Haralambous, Yannis 3, 18, 30–33, 35, 41,

55, 78, 94, 97, 101, 102, 116, 124, 125,
129

Hars, Florian 125
Havránek, Tomáš 3, 11, 124
Hearst, Marti A. 112, 129
Heikkilä, J. 88, 126
Hein, Piet 112, 125
Henderson, John C. 3, 19, 122
Herbeck, H. 30, 121
Hersch, Roger D. 78, 125
Hill, Michael L. G. v
Hlaváč, Václav 3, 130
Hlavsa, Zdeněk 61, 125, 128

Hnátková, Milena 88, 129
Hobbs, Jerry R. 9, 84, 86, 109, 125
Hofstadter, Douglas R. 2, 125
Holeček, Jan 3, 125
Hoover, Anita 70, 131
Hrušková, Zdenka 128
Hughes, Baden 3, 125
Hůrková, Jiřina 128

Isabelle, Pierre 2, 18, 19, 21, 121, 122
Isahara, Hitoshi 18, 102, 107, 110, 120,

127, 129, 132
Israel, David 9, 84, 86, 109, 125

Jarnefors, Olle 126
Jaruskulchai, Chuleerat 107, 110, 126
Jeffery, Keith G. 18, 129
Jeffrey, Alan 31, 126
Jensen, Frank 32
Jiang, Tao 85, 126

Kameyama, Megumi 9, 84, 86, 109, 125
Kann, Viggo 10, 121
Karlsson, Fred 88, 126
Karlsson, Gunnar 118, 129
Karttunen, Lauri 19, 84, 126
Kijsirikul, Boonserm 107, 128
Kirsteinová, Blanka 78, 126
Knuth, Donald E. 29–31, 34, 46, 47, 51, 52,

57, 60, 72, 85, 93, 96, 99, 124, 126, 127
Kodydek, Gabriele 46, 88, 127
Kołodziejska, Hanna 33, 127
Kopeček, Ivan 18, 83, 88, 90, 91, 109, 120,

123, 127, 129, 131, 132
Kopka, Helmut 32, 127
Kornai, András 19, 84, 91, 127, 133
Kraus, Jiří 128
Krstev, Cvetana 32, 33, 127
Kuiken, Gerard D.C. 33, 127
Kučera, Henry 18, 21, 89, 124
Květoň, Pavel 88, 129

Lafferty, John 112, 122
Lautrup, B. 122
Lhotka, Ladislav 32, 127

135

Author Index

Liang, Franklin M. 11, 13, 15, 29, 33, 34,
41, 50, 52, 60, 72, 87, 93, 109, 127

Lloyd, John W. 11, 127
Lucarella, Dario 32, 123

Ma, Qing 107, 127, 129
Macháček, David 21, 127
MacKay, Pierre A. 33, 128
Malyshev, Basil 33, 128
Mamoru, Shibayama 128
Mangu, Lidia 3, 19, 122
Manning, Christopher D. 9, 19, 112, 128
Manzi, Sandra 2, 18, 19, 21, 121, 122
Martincová, Olga 128
Matoušek, Václav 18, 46, 123, 127
Maurel, Denis 84, 123
Mautner, Pavel 46, 127
Megginson, David 71, 128
Meknavin, Surapant 107, 128
Mendelson, S. 11, 127
Michalski, Ryszard Spencer 3, 128
Mitchell, Tom Michael 3, 128
Mittelbach, Frank 128
Mohri, Mehryar 19, 81, 84, 128, 129
Mokriš, Igor 3, 124
Murata, Masaki 107, 129

Nadrchal, J. 129
Nevěřilová, Zuzana 3, 129
Nilsson, Stefan 118, 129
Nirschl, H. 121
Novák, Petr 35
NTS-L 129

Obermiller, Walter 32, 129
Oliva, Karel 88, 129
Olšák, Petr 129
Oprea, Radu 27, 121
Ozaku, Hiromi 107, 127

Pala, Karel 18, 83, 88, 90, 91, 109, 120, 123,
127, 129, 131, 132

Partl, Hubert 32, 129
Patashnik, Oren 93, 124
Paulsell, Karen 29, 60, 123

Pazdziora, Jan 129
Pepping, Simon 92, 109, 115, 121
Pereira, Fernando C. N. 84, 128
Peter, Steven 3, 125
Petkevič, Vladimír 88, 129
Pevzner, Lev 112, 129
Pfleger, Charles P. 129
Pind, Jorgen 32
Plaice, John 3, 18, 41, 78, 94, 101, 102, 116,

124, 125, 129, 130
Plass, Michael F. 51, 126
Plášil, František 18, 129
Plch, Roman 3, 123
Plumbley, Mark 67, 122
Polívková, Alena 128
Pop, Mihai 19, 122
Potipiti, Tanapong 107, 120, 132
Przechlewski, Tomek 27, 32, 33, 47, 50, 53,

131
Pustejovsky, James 2, 122

Raichle, Bernd 32, 56, 130
Rao, Durgesh D. 24, 105, 131
Rauch, Jan 3, 124
Reiss, Michael 67, 122
Rejzek, Jan 78, 130
Rezende, Pedro de 33, 130
Riley, Michael D. 84, 128
Roche, Emmanuel 19, 81, 84, 90, 116, 119,

124, 125, 130
Romano, Giovanni 7, 123
Rosenberg, C. R. 61, 130
Rowley, Chris 128
Rychlý, Pavel 18, 129
Rynning, Jan Michael 33, 130

Saar, Enn 32
Saarinen, Kauko 32, 130
Salomaa, Arto 85, 126
Salomaa, Kai 84, 85, 126, 130
Samarin, Alexander 33, 128, 130
Sânteau, Nicolae 84, 123
Satoshi, Hoshino 128
Scannell, Kevin Patrick 25, 27, 46, 130

136

Author Index

Schabes, Yves 19, 81, 84, 90, 116, 119, 124,
125, 130

Schiller, Anne 19, 84, 126
Schlesinger, Michail I. 3, 130
Schönhacker, Martin 46, 127
Schrod, Joachim 31, 130
Schulze, Bernd 32, 130
Schütze, Hinrich 9, 19, 112, 128
Schwarz, Norbert 32
Sedláček, Miloslav 128
Sedláček, Radek 20, 88, 130
Sejnowski, Terry J. 61, 130
Ševeček, Pavel 13, 27, 32, 33, 47, 50, 53,

60, 68, 72, 76, 87, 88, 96, 97, 109, 114,
116, 131

Shakespeare, William 18, 98
Shi, Yong 3, 130
Silberztein, Max 84, 131
Silverstein, Alan 116, 118, 131
Skoupý, Karel 71, 131
Smith, Dan 107, 120, 132
Smola, A.J. 11, 127
Smrž, Pavel 18, 36, 59, 66, 129, 131
Sojka, Petr iv, 3, 13, 17, 18, 24, 27, 32, 33,

36, 46, 47, 50, 53, 59, 60, 67, 68, 70, 72,
76, 83, 87, 88, 90–92, 96, 97, 102, 105,
109, 114–116, 120–125, 127, 129, 131,
132

Sornlertlamvanich, Virach 18, 102, 107,
110, 117, 120, 123, 132

Statulevicius, Vitautas 33
Steiner, Helmut 30, 121
Steiner, Wilhelm 30, 132
Stickel, Mark 9, 84, 86, 109, 125
Sukhahuta, Rattasit 107, 120, 132
Sutor, Robert S. 71, 132
Svobodová, Ivana 128
Syropoulos, Apostolos 3, 125

Taylor, John G. 67, 122
Taylor, Philip 132

Thành, Hàn Thế 3, 132
Thiele, Christina 30, 32, 43, 45, 70, 123,

130–132
Thomas, James v
Thompson, Ken 35
Thue, Axel 99
Thulin, Anders 34, 132
Tonev, Ognyan 32
Tulei, Elena 27, 121
Turing, Alan 132
Turon, Francina 32
Tyson, Mabry 9, 84, 86, 109, 125
Tzoukermann, Evelyne 2, 18, 19, 21, 121,

122

Urvantsev, A. 33, 130

Vanoirbeek, C. 128
Vanroose, Peter 33
Viterbi, Andrew J. 19, 132
Vlková, Věra 128
Voutilainen, A. 88, 126
Vulis, Dimitri 33, 128

Ward, William Arthur v
Watson, Bruce W. 84
Webster, Merriam 20, 124
Wood, Derick 84, 130
Wujastyk, Dominik 33

Xu, Weixuan 3, 130

Yarowsky, David 2, 18, 19, 21, 121, 122
Young, Steve 2, 89, 121
Yu, Sheng 84, 85, 123, 126, 130

Zhang, Chengqi 3
Zhang, Shichao 3
Ziadi, Djelloul 84, 123
Ziegler, Austin
Zlatuška, Jiří 3, 31, 128, 132

137

Subject Index

ajka, 13, 20, 88
ancetedent, 11
ASCII, 18, 98, 102

back propagation, 60
begin of word marker, xiii, 8, 86, 108
bootstrapping, 14, 85, 87
Brown Corpus, 89

characters, 7
classifying patterns, 8, 86, 108
competing patterns, 8, 85, 86, 108
competition, 108
compound word hyphenation, 88
compound words, 88
concatenation, 108
constraint grammar, 89
corpus Brown, 89
cover-optimal pattern set, 87
covering, 86, 108
cross validation, 10
CTAN, 31, 73
CV, 74, 75
CWEB, 98
Czech

hyphenation, 88
morphological analyser ajka, 88
morphology, 84, 87

E-pattern, 7, 85
elementary conjunction, 11
elementary disjunction, 11
end of word marker, xiii, 8, 86, 108
equivalence problem, 8, 86

erasing, 7, 85

F-score, 9, 112
feasible solution, 10
finite-state

automata, 19, 84
machine decomposition, 85
methods, 19, 84
transducer, 19, 84

FOP, 29
formal concept analysis, 7
FSA, 84
FSM, 84
FST, 84

general pattern theory, 7
German hyphenation, 88
greedy approach, 12
GUHA method, 11

hidden Markov models, 19
hyphenation, 84

inclusion problem, 8, 85
inductive inference, 8, 85
information fusion, 15
inhibiting, 86, 108
IPA, 77

JUDY, 116, 118

language
L(α), 7, 85
engineering, 84

lattice order, 8, 86, 108

138

Subject Index

literal patterns, 7
literals, 7
local grammar, 9, 86
lossless compression, 10
LOUT, 29

morphosyntactic segmentation, 20
multilayer perceptron, 60

N-gram models, 19
natural language engineering, 19, 84
natural language processing, 18
NE-pattern, 7, 85
NETtalk, 61
neural networks, 36, 59, 60
non-erasing, 7, 85
nonempty, 7, 85
NP, 10, 11
NPO, 10, 11, 24

OMEGA, 28, 29, 42, 78, 79, 93, 94, 101, 102,
116

OPATGEN, 25, 106, 109–111, 116, 118
OPENOFFICE.ORG, 25, 29
ORCHID, 14, 24, 106, 110, 111, 113, 114

p-truth, 11
packed trie, 52, 99
part-of-speech

disambiguation, 84
tagging, 84

PASCAL, 98
PATGEN, 13, 14, 21, 28–30, 32, 33, 35–42,

50, 53, 55–57, 68, 71–77, 79, 87–89,
93, 94, 96–99, 103, 109, 118

PATLIB, 93, 94, 98, 101–103, 110, 116
pattern, 7, 85

base, 86, 108
bootstrapping, 87
generation, 84, 87
language, 7, 85
set, 8
technique, 84

pattern-driven approach, 84, 89

patterns, 108
PDF, 5, 126
PERL, 75
POS

disambiguation, 84
tagging, 84

precision, 9, 14, 19, 24, 112
propositional logic, 11
PTP, 101–103
p-truth pattern, 12

QuarkXPress, 29

recall, 9, 14, 24, 112
RIPPER, 107
RUBY, 75

SCRIBUS, 25, 29
SGML, 71
size-optimal pattern set, 87
stratification, 13, 85, 87
stratified sampling, 13
succedent, 11
SWATH, 107
syllabic hyphenation, 35, 39, 67

tagging
hierarchies, 86

tagging hierarchies, 8
templates, 19
terminal patterns, 7, 85
terminals, 7, 85
TEX, 89
Thai segmentation problem, 106
trie, 32, 33, 52, 56, 72, 77, 80, 85, 87, 88, 93

indexed, 8, 11
packed, 11

TROFF, 29

UNICODE, 93, 94, 98, 99, 106, 109, 110
uniform, 7, 85
universal syllabic hyphenation, 39
UNIX, 30, 34, 42–44, 58, 69, 121, 123, 127

variables, 7, 85

139

Subject Index

WindowDiff, 112
winning pattern, 8, 86, 108
Winnow, 107
word

classification, 8, 86
compounds, 88

hyphenation, 88
problem, 8

WWW, 71, 77
WYSIWYG, 81

XML, 71

140

	I The Theory of Competing Patterns
	1 Introduction
	1.1 Thesis Organization
	 References

	2 Formalization of Competing Patterns
	2.1 Basic Notions
	 References

	3 Methodology of Competing Patterns
	3.1 Stratification
	3.2 Bootstrapping
	3.3 Pattern Generation
	3.4 Pattern Parameter Setting Optimization
	3.5 Layering of Disambiguation Patterns
	 References

	4 Applications of Competing Patterns
	4.1 Competing Patterns in Computer Typesetting
	4.2 Competing Patterns in Natural Language Processing
	4.2.1 Pattern Mining
	4.2.2 Hyphenation versus Morphological Segmentation
	4.2.3 Segmentation in Speech Processing
	4.2.4 Encoding of Patterns for Part of Speech Tagging
	4.2.5 Results

	 References

	5 Conclusions
	5.1 Author's Contributions
	5.2 Mission Statement and Future Work
	 References

	II Papers
	6 Competing Patterns for Czech and Slovak Hyphenation
	6.1 Motivation
	6.2 Hyphenation Development
	6.2.1 English
	6.2.2 Those Other Languages
	6.2.3 Exception Logs
	6.2.4 The Need to Regenerate US English Patterns

	6.3 Making Czech and Slovak Hyphenation Patterns
	6.3.1 Czech Hyphenation Rules
	6.3.2 Stratified Sampling
	6.3.3 Compound Words
	6.3.4 Generalization

	6.4 Future Work
	6.4.1 Compound Word Hyphenation Support in a Successor to TeX
	6.4.2 Pattern Generalization
	6.4.3 Suggestions for e-TeX

	6.5 Conclusions
	 References

	7 Compound Word Hyphenation
	7.1 Motivation
	7.2 Problems
	7.2.1 Compounds
	7.2.2 Dependency of Hyphenation Points on Semantics
	7.2.3 Exceptions
	7.2.4 Discretionary Hyphenation Points
	7.2.5 Language Evolution

	7.3 Solutions
	7.3.1 Compounds
	7.3.2 Discretionary Hyphenation Points
	7.3.3 Exceptions

	7.4 Experiments
	7.4.1 Non-Uniformity of Languages
	7.4.2 Compounds in German
	7.4.3 Discretionary Hyphenation Points

	7.5 Conclusions
	7.6 Summary
	 References

	8 Word Hy-phen-a-tion by Neural Networks
	8.1 Introduction
	8.2 Hyphenation Problems with Neural Networks
	8.2.1 Hyphenation of Czech Words
	8.2.2 Neural Net Architecture
	8.2.3 Training Sets Used

	8.3 Empirical Results---Brute Force Trial
	8.4 The Influence of Input Coding: Use of Real Numbers
	8.5 Comparison of Various Topologies
	8.6 Syllabic Hyphenation
	8.7 Discussion
	8.8 Conclusion and Acknowledgments
	 References

	9 Hyphenation on Demand
	9.1 Motivation
	9.2 Pattern Generation
	9.3 Pattern Development
	9.4 Pattern Bootstrapping and Iterative Development
	9.5 Modularity of Patterns
	9.6 Common Patterns for More Languages
	9.7 Phonetic Hyphenation
	9.8 Hyphenation for an Etymological Dictionary
	9.9 More Hyphenation Classes
	9.10 Speed Considerations
	9.11 Reuse of Patterns
	9.12 Future Work
	 References

	10 Competing Patterns for Language Engineering
	10.1 Introduction
	10.2 Patterns
	10.3 Methodology
	10.3.1 Pattern Generation
	10.3.2 Stratification Technique
	10.3.3 Bootstrapping Technique

	10.4 Application to Czech Morphology
	10.5 Application to Hyphenation and Compound Words
	10.6 Outline of an Application to Part-of-Speech Tagging
	10.7 Conclusion
	 References

	11 Pattern Generation Revisited
	11.1 Introduction
	11.2 Patterns
	11.3 Pattern Generation
	11.4 Tagging with Patterns
	11.5 PatGen Limitations
	11.6 PatLib
	11.7 Packed digital tree (trie)
	11.8 Pattern Translation Processes
	11.9 Summary and Future Work
	 References

	12 Context Sensitive Pattern Based Segmentation: A Thai Challenge
	12.1 Motivation and Problem Description
	12.1.1 The Thai Segmentation Problem
	12.1.2 Existing Approaches to Thai Segmentation

	12.2 Patterns
	12.2.1 Competing Patterns
	12.2.2 Example
	12.2.3 Comparison with Finite-State Approaches
	12.2.4 Pattern Generation---Programs PatGen and OPatGen

	12.3 Thai Texts in Orchid Corpus
	12.3.1 Corpus Preprocessing

	12.4 Methodology
	12.4.1 Evaluation Measures
	12.4.2 Experiments

	12.5 Data-Driven Approach Based on Competing Patterns
	12.5.1 Pattern Translation Processes
	12.5.2 Applications in Computer Typesetting

	12.6 Conclusion and Future Work
	 References

	 Bibliography
	 Author Index
	 Subject Index

