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Abstract. Many tasks in natural language processing (NLP) require seg-
mentation algorithms: segmentation of paragraph into sentences, segmen-
tation of sentences into words is needed in languages like Chinese or
Thai, segmentation of words into syllables (hyphenation) or into morpho-
logical parts (e.g. getting word stem for indexing), and many other tasks
(e.g. tagging) could be formulated as segmentation problems. We eval-
uate methodology of using competing patterns for these tasks and decide
on the complexity of creation of space-optimal (minimal) patterns that
completely (100 %) implement the segmentation task. We formally define
this task and prove that it is in the class of non-polynomial optimization
problems. However, finding space-efficient competing patterns for real
NLP tasks is feasible and gives efficient scalable solutions of segmenta-
tion task: segmentation is done in constant time with respect to the size
of segmented dictionary. Constant time of access to segmentations makes
competing patterns attractive data structure for many NLP tasks.

Keywords: competing patterns, segmentation, hyphenation, NP prob-
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Everything is a symbol, and symbols can be combined to form patterns.
Patterns are beautiful and revelatory of larger truths. These are the central ideas

in the thinking of Kurt Gödel, M. C. Escher, and Johann Sebastian Bach,
perhaps the three greatest minds of the past quarter-millennium. (Hofstadter [1])

1 Introduction

Many tasks in NLP require segmentation algorithms: segmentation of paragraph
into sentences, segmentation of sentences into words is needed in languages
like Chinese or Thai, segmentation of words into syllables (hyphenation) or into
morphological parts (e.g. getting word stem for indexing), phoneme (speech)
segmentation, and many other tasks (e.g. tagging) could be expressed as
segmentation problems. Solution of segmentation task is an important brick
in every NLP framework.
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As the available computing power steadily grows, new approaches recently
deemed impossible are becoming reality – empirical approaches are used for ma-
chine learning of language phenomena: from huge language data (corpora,
wordlists), language models and patterns are learnt by sophisticated algo-
rithms through machine learning techniques. As examples of this shift, successful
unsupervised learning of natural language morphology from language word
lists has been reported in [2], and as overviewed in [3], supervised learning ap-
proaches are very successful for various types of segmentation. These merely
statistical approaches work quite well for many tasks in the area of computa-
tional linguistics, and quickly reach above 90% efficiency in tasks such as part
of speech tagging, sentence segmentation, speech recognition or probabilistic
parsing. The main drawback of a solely statistical approach is that the results
of learning methods are usually not understandable by expert linguists, as the
language models are hidden in weights of synapses of neural nets or in zillions
of probabilities or conditioned grammar rules. It appears that going the “last
mile”, increasing the remaining few percent purely statistically is not feasible,
and ways to cover the remaining exceptions by usage of symbolic, linguistic
descriptions are being sought [4].

Recognition of patterns is considered as the central issue in intelligence. Ar-
tificial intelligence needs statistical emergence [5]: for real semantics, symbols
must be decomposable, complex, autonomous – active. A rule-based approach,
such as, when the results of the learning process are human-understandable
rules or patterns, allows for the merging of hand-crafted and machine learnt
knowledge. It is becoming clear that a close cooperation between computer sci-
entists and linguists is necessary [6] – both sides need each other. Neither rigor-
ous computational analysis and formal models nor linguistic introspection and
language models should be absent in successful approaches. First, symbolical
descriptions should be sought, and only when not sufficient a dice should be
drawn.

Patterns can be identified as a set of objects that share some common
property. During the emergence of patterns covering the rules in data, some
exceptions may occur. Remaining errors and exceptions covered in the first level
can be viewed again as set of objects and described by inhibiting patterns. The
next layer of covering patterns may describe the patterns in the data not handled
by previous rules, and so on. By this process, knowledge from the data can
be learnt, either by an automatic procedure, or by information fusion from
different sources.

There is plethora of methods of machine learning, data mining and knowl-
edge management. However, up to now, we are not aware of an system-
atic attempt made to deal with the large-scale exception handling that is so
widespread across linguistic data in machine learning methods and data min-
ing. This work is one of the first attempts to formalize and fully employ the
theory of competing patterns for the utilization of language data in the areas of
natural language processing and computer typesetting.
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2 Basic Notions

The two fundamental problems are pattern definition and pattern recognition/
generation from input data. There are many ways of formalizing patterns – sets
of objects sharing some recognizable properties (attributes, structure, . . . ).

Definition 1 (pattern). By alphabet we mean a finite, nonempty set. Let us have
two disjoint alphabets Σ (the alphabet of terminals, called also called characters or
literals) and V (the alphabet of variables). Patterns are words over the free monoid
〈(Σ ∪ V)∗, ε, ·〉. The length |ε| of an empty word ε is zero. Patterns having only
terminals are called terminal patterns or literal patterns. The length of a literal
pattern p, denoted by |p|, is the number of literals in it. The language L(α) defined by
a pattern α consists of all words obtained from α by leaving the terminals unchanged
and substituting a terminal word for each variable v. The substitution in our case has
to be uniform: different occurences of v are replaced by the same terminal word. If
the substitution always replaces variables by a nonempty word, such language LNE is
non-erasing, and such pattern is called NE-pattern. Similarly, we define an erasing
language LE as a language generated by an E-pattern such that substitution of variable
v by empty word ε is allowed.

The pattern SVOMPT for English sentences where the variables denote
Subject, Verb, Object, Mood, Place, Time may serve as an example of E-pattern.
A useful task is to infer a pattern common to all input words in a given sample
by the process of inductive inference. It has been shown by Jiang et al. [7] that
the inclusion problem is undecidable for both erasing and non-erasing pattern
languages. It is easy to show that the decidability of the equivalence problem
for non-erasing languages is trivial. The decidability status of the equivalence
problem for E-patterns remains open. These results show that trying to infer
language description in the form of a set of patterns (or the whole grammar)
automatically is very difficult task.

We focus our attention in the further study to literal patterns only.

Definition 2 (classifying pattern). Let A be alphabet, let 〈A,≤〉 be a partially
ordered system, ≤ be a lattice order (every finite non-empty subset of A has lower
and upper bound). Let . be a distinguished symbol in Σ′ = Σ ∪ {.} that denotes the
beginning and the end of word – begin of word marker and end of word marker.
Classifying patterns are the words over Σ′ ∪ V ∪ A such that dot symbol is allowed
only at the beginning or end of patterns.

Terminal patterns are “context-free” and apply anywhere in the classified
word. It is important to distinguish patterns applicable at the beginning and
end of word by the dot symbol in a pattern.1 Classifying patterns allow us to
build tagging hierarchies on patterns.

1 It is itmrnopt to dgtusisinh ptatren apcbliplae at the bngninieg and end of wrod by
the dot sobmyl in a ptarten.
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Definition 3 (word classification, competing word patterns).
Let P be a set of patterns over Σ′ ∪ V ∪ A (competing patterns, pattern set). Let
w = w1w2 . . . wn be a word to be classified with P. Classification classify(w, P) =
a0w1a1w1 . . . wnan of w with respect to P is computed from a pattern set P by a
competing procedure: all patterns whose projection to Σ match a substring of w are
collected. ai is supremum of all values between characters wi and wi+1 in matched
patterns. classify(w, P) is also called the winning pattern.

It is worth noting that the classification procedure can be implemented very
efficiently even for large pattern bases. Its effectiveness depends on the data
structure where the patterns are stored. When an indexed trie is used, the
classification of a word can be realized in linear time with respect to the word
length |w| and does not depend on |P|.

Our motivation for studying of competing patterns was the word division
(hyphenation) problem. It is related to a dictionary problem – the problem
of effective storage of a huge word list. An enumerated list of Czech words
may have well above 6,000,000 words. Storage of such a large table even
using hashing requires considerable space. Another idea is to use finite-state
methods – finite-state automata and transducers. It has been shown that
decomposition of the problem by using local grammars [8] or building cascades
of finite state machines [9] is a tractable, even though very time-consuming task.
The main problem with these approaches is that they do not generalize well –
they do not perform well on unseen words. A structural decomposition of W
into patterns is the key idea here, and brings better generalization qualities:

Definition 4 (word division problem). Let W be a set of words over Σ ∪ {0, 1}
such that placing 1 between two letters in w denotes the possibility of word division
at that point (placing 0 or nothing means the opposite). We want to find pattern set P
such that winning patterns classify(w, P) encode the same information as w. In this
case we say that P or classify(w, P) covers w.

We want to find a pattern set that is minimal in size and maximal in
performance; we have to define these performance measures.

Definition 5 (precision, recall, F-score). Let W = (Σ ∪ {0, 1})∗, and P a set
of patterns over Σ′ ∪ N. Let good(w, P) is the number of word divisions where
classify(w, P) covers w, good(W, P) = ∑w∈W good(w, P). bad(w, P) is the number
of word divisions where classify(w, P) classifies word division that is not in w,
bad(W, P) = ∑w∈W bad(w, P). missed(w, P) is the number of word divisions
where classify(w, P) fails to classify word division that is in w, missed(W, P) =
∑w∈W missed(w, P). The definition of the measures is then as follows:

precision(W, P) =
good(W, P)

good(W, P) + bad(W, P)
(1)

recall(W, P) =
good(W, P)

good(W, P) + missed(W, P)
(2)
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The precision and recall scores can be combined into a single measure,
known as the F-score [10]:

Definition 6 (F-score).

F(W, P) =
2× precision(W, P)× recall(W, P)

precision(W, P) + recall(W, P)
(3)

An F-score reaches its maximum when both precision and recall is maximal;
in the case F(W, P) = 1 all information about word division is compressed into
the pattern base P.

Definition 7 (lossless compression, cross validation). If F(W, P) = 1 we say
that we losslessly compressed W into P. We can test performance of P on an unseen
word list W ′ to measure the generalization properties of pattern set P – in the machine
learning community, the term cross validation is used.

3 Generation of Minimal Patterns is Non-Polynomial Task

Here we see one advantage of the pattern approach. In the case where we have
solved the hyphenation problem by storing all the words with the division
point in a hash table or using a finite state transducer, we do not know how
to segment new, unseen words. On the other hand, pattern P trained on W can
perform well on unseen words (typically new long words or compounds) – as
in patterns the rules are generalized.

There are many pattern sets P that losslessly compress (cover) W; one
straightforward solution is having just one pattern for every word w ∈ W
by putting dot symbol around the word with division points marked by 1.
Such a pattern set P is a feasible solution. But we want to obtain minimal pattern
set. Minimality can be measured by the number of patterns, by the number of
characters in patterns, or by the space the patterns occupy when stored in some
data structure. Even if we take the simplest measure by counting the patterns,
and try to find a minimal set of patterns that cover W, we will show how hard
the task is. To formulate it more precisely, we need to define:

Definition 8 (minimum set cover problem). An instance of set cover problem is
finite set X and a family F of subsets of X, such that X =

⋃
S∈F S. The problem is to

find a set C ⊆ F of minimal size which covers X, i.e. X =
⋃

S∈C S.

The minimum set cover problem (MSCP) is known to be in the class of NPO
problems (optimization problems analogical to NP decision problems), [11]. A
variant of MSCP, in which the subsets have positive weights and the objective
is to minimize the sum of the weights in a set cover, is also NPO. Weighted
version of minimum set cover problem is approximable within 1 + ln|X| as
shown by Chvátal [12].
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Theorem 1 (pattern minimization problems). Let W be a set of words with one
division only. Problem of finding minimal number of patterns P that losslessly compress
W is equivalent to the (weighted) minimum set cover problem.

Proof. We show that the problem reduces to the minimal set cover problem. For
every subset C ∈ W there exists at least one feasible solution PC such that PC
covers C and does not cover any word in W r C, e.g., pattern set {.c.| c ∈ C}.
Between all such feasible solutions we choose a canonical representative P′C –
a set which is smallest by some measure (e.g., number of patterns, or number
of characters in the pattern set). We now have a one to one correspondence
between all pattern sets that cover exactly C represented by P′C and C. Thus
we showed that a pattern coverage minimization problem is equivalent to the
weighted minimum set cover [12] in NPO class.

We have shown that even a pattern covering problem without competition
is already NPO. When trying to cover W by competing patterns, complicated
interactions may arise – we need some approximation of the optimal solution.

Liang’s main concern in the pattern covering problem was the size of the
patterns stored in a packed trie (indexed trie with packing the different families
of the trie into a single large array in computer memory. He discusses NP-
completeness of finding a minimum size trie [13, page 25] by pointing to the
problem transformation from graph coloring by Pfleger [14].

Competing patterns extend the power of finite state transducer somewhat
like adding the “not” operator to regular expressions.

Methods for the induction of covering patterns from W are needed.
Attempts to catch the regularities in empirical data (W in our case) can

be traced back to the 1960s, when Chytil and Hájek started to generate unary
hypotheses on finite models using the GUHA method [15].

Definition 9 (matrix representation of the data). Let us have m × n matrix
W = wij of data that describe m objects with n binary attributes P1, P2, . . . , Pn (unary
predicates). Either Pj or ¬Pj holds. Elementary conjunction is a conjuction of literals
Pj, 1 ≤ j ≤ n, where every predicate appears once at most. Similarly, Elementary
disjunction is a disjunction of literals Pj with the same condition. We say that the
object i fulfills elementary conjunction Φ if the formula exactly describes the attributes
in line i of W. We say that Φ holds for W if Φ holds for all objects (lines in W). We say
that formula Φ is p-truth if Φ holds for at least 100p% of objects, p ∈ R, 0 < p ≤ 1.

We immediately see that we can represent our hyphenation problem by a
matrix W: the attribute in column j, Pj tells whether a word can be divided
(true or 1) or not (false or 0).

GUHA method searches for such elementary conjunctions A (antecedents)
and elementary disjunctions S (succedents) with no common predicates, such
that implication A → S is p-truth; it searches for hypotheses with highest p to
detect dependencies in data. Observational language in this case is propositional
logic. There are many general approaches using first-order predicate calculus or
even higher formalisms [16], but these are not necessary for our task.
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Definition 10 (p-truth pattern α). Let us have m hyphenated words represented in
matrix W as in Definition 9 on the facing page. We say that pattern α is p-truth
pattern if it covers at least 100p% of applicable word segmentation points.

The greedy approach for pattern search consists in collecting p-truth pat-
terns with the highest p of the shortest length. Short patterns give a high gener-
alization and good minimalization of space for pattern storage. But during its
generation some heuristics have to be used, as maximal coverage of covering
patterns does not imply good performace in the succeeding phases of pattern
generation (of inhibiting patterns). Further discussion on pattern preparation
could be found in [13,17,3].

4 Methods of Competing Patterns Generation

The idea of competing patterns is taken from the method developed by
Liang [13] for his English hyphenation algorithm. It has been shown by
extensive studies [18,19,20] that the method scales well and that parameters
of the pattern generator – PATGEN program [21] – could be fine-tuned so that
virtually all hyphenation points are covered, leading to about 99.9% efficiency.

The methodology consists of several parts:

stratification – for repetitive pattern generation, it is practical to have a
stratified word list with ‘information bearing’ samples only;

bootstrapping – input data (word list with marked hyphenation points) prepa-
ration;

goal-driven threshold setting heuristics – the quality of generated patterns
depends on many parameters that have to be set in advance;

data filtering by threshold setting heuristics – we can filter out ‘dangerous’
data – data that are hard to learn for manual inspection.

4.1 Stratification

Word lists from which patterns are generated may be rather big. A full list of
Czech word forms has about 6,000,000 entries when generated by the Czech
morphological analyzers ajka or majka. It may be even more than that for
other tasks with huge input data collections such as POS tagging, or Thai text
segmentation [22]. Context necessary for ambiguity resolution is often repeated
several times – a word list may be stratified. Stratification means that from
‘equivalent’ words only one or small number of representatives are chosen for
the pattern generation process.

With the stratification procedure described in [19] we have downsampled
3,300,000 Czech word forms to a word list of 372,562 word forms (samples) for
PATGEN input. The same approach was used also for Slovak.

Stratified sampling is less important when we insist on lossless compres-
sion, or when we have enough computing power for pattern generation.
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4.2 Bootstrapping

The preparation of data for machine learning is often a time-consuming task
and for extremely large data sets, a technique called bootstrapping is used. It
was used for tagging the ORCHID corpus [22] and for tagging word divisions
it is also usefull. The idea is to tag only small initial data set (word list), and
generate patterns from this input. Then, these bootstrap patterns are used for
the automatic tagging of a bigger input list, and checked before the next pattern
generation phase.

Bootstrapping may bring errors especially with overlapping prefixes (ne-,
nej-, po-, pod-). It is worth the trouble marking these points separately, e.g.,
with the help of a morphological analyzer.

4.3 Pattern Generation

Pattern generation processes are driven by several threshold parameters whose
settings are essential for the quality and properties (precision and recall) of
generated patterns. Our experience shows that parameter setting not only
depends on the requested pattern behaviour but to a certain extent on the
problem at hand. Parameter setting has to be tuned for every pattern generation
project.

PATGEN runs at various levels. At every level, a new set of patterns is
generated. It starts with short patterns (counting frequencies of substrings of
a given length), generating longer ones in the next level as ‘exceptions’, and
making ‘exceptions of exceptions’ in the next level, etc. With this model, we
can learn exact dependencies between contexts of hyphenation points in words
that are used in a much wider context than can standard (bi|tri)gram or other
statistical methods taken into consideration – there are examples when the
segmentation decision depends on the word segment that is six characters
away.

There is no known algorithm that helps with setting of the parameters of the
learning process. Liang’s original patterns (hyphen.tex) that are in every TEX
distribution as a default patterns for (American) English are very inefficient
and have very low recall. They cover only 89.3% [13, page 37] – of very small
word list (Webster’s Pocket Dictionary) of 49,858 words. The threshold used in
pattern generation were not tuned at all, and better choices can lead to smaller
pattern size and higher (actually complete) coverage of hyphenation points in
an input word list.

4.4 Pattern Parameter Setting Optimization

Our extensive experience shows that parameter setting is highly language
dependent – it differs when generating patterns for Thai segmentation [22]
for Czech and Slovak hyphenations [19] Scannel [23] reports that using this
methodology he generated a new pattern for Irish that does not produce any
hyphen points which are not in the database and miss just 10 out of 314,639
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hyphen points. This is consistent with our findings that the methodology is
usable as very effective lossless compression algorithm, and there is the power
of competing patterns to cover all exceptions from data.

We may experiment with parameter setting so that generated patterns are
nearly lossless. Words that were not covered in this phase are in some way
different than the rest. This difference may well be right, but usually show an
input data tagging error. We suggest manually checking this small set of words
esspecially when developing and marking new word lists from scratch.

4.5 Layering of Disambiguation Patterns

There can be a different version of the input data (different variants of
segmentation, tagging), with different patterns. As competing patterns are
decomposable into layers, we can “plug-in” patterns developed by experts on
the problem and merge or compare them with those generated. We can let the
patterns “compete” – or adjust them so that, for example, expert knowledge
takes preference over generated patterns, or we can take the expert patterns as
initial set of patterns and generate the patterns to cover the rest of the input
data. It has been shown [19] that hyphenation patterns were often done by
hand, or by a combination of hand crafted and generated patterns. Having
several layers of expert patterns, we can easily set up their priorities by
changing the classification numbers in the patterns. This priority handling is
necessary in most information fusion tasks.

5 Summary and Conclusions

In this paper, we have formally proved the hardness of creation of space-
optimal competing patterns for segmentation tasks. Even though the theoretical
result seems negative, in practical applications like hyphenation, we are still
able to find space efficient patterns that are able to solve segmentation task in
constant time, e.g. irrespectively of the number of segmented inputs.

Techniques like bootstrapping, stratification and parameter generation set-
ting heuristics allows for efficient working with language data to be seg-
mented – a work for language experts. Fixing errors in data then allows for
better and smaller pattern sets that are close to the theoretical optimum.

This all opens new horizons on usage of competing patterns as a new
compact data structure in many NLP tasks.
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