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Abstract. Building corpora of technical texts in Science, Technology,
Engineering, and Mathematics (STEM) domain has its specific needs,
especially the handling of mathematical formulae. In particular, there is
no widely accepted format to represent and handle math.
We present an approach based on multiple representations of mathemati-
cal formulae that has been used for math retrieval, similarity and cluster-
ing of mathematical corpus. We provide an overview of our toolset, sum-
marize our experiments to date and propose further research directions
and approaches.
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1 Introduction

Leading research in empirical linguistics builds on the large (e.g. web-scale) cor-
pora such as those created by Google (Google Books Corpus, Google Scholar)
or by the Sketch Engine (TenTen Corpora). Such corpora allow for natural lan-
guage processing (NLP) of a new quality level to solve such tasks as more rel-
evant information retrieval, document clustering, classification and similarity,
thesauri and ontology building, better word sense disambiguation, machine
translation and many others. However, in these research mainstream activities,
minority languages or domain specifics are neglected. Such a neglected ‘lan-
guage’ is the language of mathematics – typical in Science, Technology, Engi-
neering, and Mathematics (STEM) documents.

Mainstream NLP workflow for building corpora starts with tokenization,
which is usually not aware of mathematical formulae or equations. Math is
usually supported neither by optical character recognition (OCR) tools, nor
by applications that generate PDF or (X)HTML. The use and representation
of math on the web is far from settled. As a consequence, no mainstream tools
support this niche market of ‘the Queen of sciences’.

In previous projects that involved building Digital Mathematics Libraries
(DML) such as DML-CZ [1] and EuDML [2], we had to deal with the fact that
NLP corpora tools were unable to handle corpora of math texts, let alone build
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them. We therefore devised some tools for adequate support of mathematical
formulae in NLP and information retrieval (IR) tasks. Proper semantic and
math-aware representation is a necessary prerequisite for efficient and effective
NLP processing of STEM corpora.

This task involved as the first step the design of math formulae representa-
tion (Section 2). Then, to build mathematical corpora, we had to preprocess and
normalize heterogenious inputs (Section 3) into this new representation. It was
also necessary to design ways of math retrieval (index and search are crucial, cf.
Section 4). Our aim is to support math-aware document clustering, similarity
and disambiguation (Section 5). We summarize our findings in the Section 6.

2 Math Representations

Mathematicians and other authors of STEM documents encode quantities and
relations using formulae and equations in compact, often two-dimensional,
notation. These objects have to be represented in unique way in the global
STEM document handling system.

There are numerous ways of notating the same mathematical object, that
has evolved in some geographical location or language. This is an example of
different notations for a binomial coefficient:(

n
r

)
=

n!
r!(n − r)!

= nCr =
nCr = C(n, r)

When searching STEM documents, it should be possible to find the same objects
within a corpus, and assign them the same representation even though authors
have used different notation. As is the case with text handling, where words
with the same meaning are treated and indexed the same, formulae require the
same treatment.

The matter is complicated by the fact that there are different formats for
handling mathematics: TEX, MathML, OpenMath, etc.

2.1 TEX

Authors prefer the compact and logical notation of TEX. The American Math-
ematical Society (AMS) extended standard plain TEX and LATEX notation with
AMS packages (so called AMSLATEX) for commutative diagrams, aligned equa-
tions, etc. The namespace of AMSLATEX macros is nowadays the de facto stan-
dard for the typesetting of mathematical documents, and this namespace is also
supported in ithe metadata of DML-CZ (only this namespace is allowed and
supported there, e.g. by conversion to MathML).

TEX math notation is in such demand that even for Word there is plug-in
by Design Science that allows entering the formulae in TEX notation. This is
much quicker, and more convenient than choosing the symbols from numerous
menus and symbol tables. Nevertheless, using TEX notation for indexing
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purposes is a disaster, as an example of LaTeXSearch application by Springer
(http://latexsearch.com) shows. Authors are so creative in macroexpansion
use or TEX language formatting that different notations cannot be coped with
by simple string similarity. A formulae structure and other types of similarity
has to be used in formulae representation for similarity computation. For this,
the tree structure of XML (MathML) is better, as it is understood by the majority
of math-aware software developers.

2.2 MathML

In the world of applications and software interfaces, MathML usually wins,
as it is supported by W3C and AMS. TEX’s macro namespace extensibility
is a nightmare to support by software without the full TEX macroexpansion
complex engine, and here MathML clearly wins. MathML DTD allows easy
formulae validation and processing with XML tools. There are even recently
developed portable tools like MathJax, a JavaScript library that displays
mathematics in web browsers, supporting both LATEX and MathML markup as it
attempts to convert LATEX on-the-fly into appropriate markup language–HTML
or MathML.

2.3 Set of M-terms

A mathematical document contains mathematical formulae, which are integral
to the content of the document. As mentioned in the previous sections, these
formulae are usually represented in TEX if authored by humans, or in MathML
(presentation or mixed content-presentation) if produced by machines.

To be able to search for such structural information using a fulltext index-
ing approach as in the Math Indexer and Searcher (MIaS) system [3,4], a con-
venient representation needs to be selected. This representation needs to be a
trade-off between the TEX powered authors’ part of the world and machine-
friendly, preserve-as-most-information-as-possible, structural and semantic no-
tation such as Content MathML. In MIaS system we opted for Presentation
MathML as it stands, we find, exactly halfway. It is relatively easy to obtain
by converting the author’s TEX markup and it still holds the necessary struc-
tural information for machine processing. It is still easily extensible by Content
MathML trees capturing the formulae semantics.

Such mathematical markup needs to be preprocessed before the indexing.
This is mainly to accommodate the best user search experience as possible. For
each formula in the text, the system produces several representations which are
stored in the index and are searchable in the same way as regular textual terms.
These are called M-terms.

M-terms are translated from XML to a linear string form. In this form they
are stored by the indexing core. This representation omits any XML markup
that would be redundant in such a form, such as start and end tags, and replaces
it with brackets to prevent ambiguity. Also most of the attributes setting the
visual behaviour of the expression can be left out, since it does not hold any

http://latexsearch.com
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information pertaining to the meaning of the formula. This representation
can be further compacted by substituting tag names for single characters to
decrease storage space requirements.

For example, simple expression a2 + b in its XML form

<math>
<mrow>

<msup><mi>a</mi><mn>2</mn></msup>
<mo>+</mo>
<mi>b</mi>

</mrow>
</math>

is translated to the linear form mrow(msup(mi(a)mn(2))mo(+)mi(b)) and based
on a custom tag name dictionary, where mrow = R; msup = J; mi = I; mn = N
and mo = O. This is further compacted to R(J(I(a)N(2))O(+)I(b)). A set of
sub-M-terms is generated for each input formula. It consists of subformula-
weight pairs. For this particular expression, it is:
{
(mi(a),0.08166666),
(mn(2),0.08166666),
(msup(mi(a)mn(2)),0.11666667),
(mo(+),0.11666667),
(mi(b),0.11666667),
(mrow(mi(b)mo(+)msup(mi(a)mn(2))),0.16666667),
(msup(mi(1)mn(2)),0.093333334),
(mrow(mi(1)mo(+)msup(mi(2)mn(2))),0.13333334),
(msup(mi(a)mn(¶)),0.058333334),
(mrow(mi(b)mo(+)msup(mi(a)mn(¶))),0.083333336),
(msup(mi(1)mn(¶)),0.046666667),
(mrow(mi(1)mo(+)msup(mi(2)mn(¶))),0.06666667)
}
These formulae are derived from the original one and their level of similarity is
expressed by the weight factor.

This representation not only grabs the structural similarity of mathematical
formulae, it also copes with different variable names, and with mathematical
properties of operators (commutativity). As such, representation of formulae
by an M-term set with weights is directly useable for indexing or for document
similarity computations.

To provide these and other uses of this representation, we have set up a
RESTful web service, where for each input formula one can get a set of M-terms
as they would be indexed in the MIaS system. An example of use can be found
here:
http://aura.fi.muni.cz:8085/mias4gensim/mathprocess?mterm=<math><mrow>
<mi>a</mi><mo>+</mo><mi>b</mi></mrow></math>

http://aura.fi.muni.cz:8085/mias4gensim/mathprocess?mterm=<math><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></math>
http://aura.fi.muni.cz:8085/mias4gensim/mathprocess?mterm=<math><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></math>
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3 Mathematical Corpora

3.1 Normalization

When building mathematical corpora using MathML as a language for mathe-
matical formulae preservation, it emerges that it is very useful to process and
normalize MathML that is being stored. It is necessary as one mathematical for-
mula can be encoded in MathML in different forms – using different sequences
of characters in the source code–but its meaning is the same.

For example, the formula x2 + y2 can be encoded in MathML in the form:

<math xmlns=" h t t p : //www. w3 . org /1998/Math/MathML">
<msup>

<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<msup>

<mi>y</mi>
<mn>2</mn>

</msup>
</math>

But some other author can use this form:

<math xmlns=" h t t p : //www. w3 . org /1998/Math/MathML">
<mrow>

<msup>
<mi>x</mi><mn>2</mn></msup>

<mo>+</mo>
<msup>

<mi>y</mi><mn>2</mn></msup>
</mrow>

</math>

To be able to find documents that contains our formula in any of these codings
we need one normalized form that will be stored in the index. Subsequently,
any query for this formula in any coding has to be transformed to the
normalized form at the beginning.

Moreover, examples of documents from the real world (PubMed Central
digital library workflow) show that validation of MathML source codes is not
enough. Elbow et al. [5] demonstrate a well-known fact that current authors’
main target is print output – consequently one can find MathML fragment
<mml:mn>7</mml:mn><mml:mn>5</mml:mn> as source code of the number ‘75’
for example. These anomalies have to be sorted out before publishing and
indexing in a repository.

For the semantically same formalae there exist infinitely many ways of
representing them in MathML. For NLP handling it would be convenient to
have one canonical representation of a formulae.
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3.2 Canonicalization

Proper MathML normalization (canonicalization) is not easy given that
MathML is a very complex markup language. Some existing tools we have
tested fail when run over a set of MathML test documents [6] that were de-
signed to cover a wide range of MathML features.

Our approach to MathML normalization has so far involved a trial use
of UMCL (Universal Maths Conversion Library; http://inova.ufr-info-p6.
jussieu.fr/maths/umcl). [7,8] The main purpose of the UMCL tool set is
to enable transcription of the MathML formulae to Braille national codes.
Related to this task is also the need for MathML formulae unification. UMCL
transformation of the MathML to Canonical MathML is carried out using a set
of XSL stylesheets [9].

With minor modifications, the UMCL MathML transformation was used in
the WebMIaS interface [10] (see Section 4) that can be used to search over our
MREC corpus (see Section 3.3). This showed benefits of formulae normalization
in practice – search form x2 + y2 formula using the first form of MathML code
from the previous section found no results. However, for the second form of
MathML – the form that is the result of UMCL XSL transformation from the
first form–there were 36,817 hits in MREC corpus version 2011.4.

Unfortunately, the MathML canonicalization module of the UMCL tool set
is not as powerful as we thought at the beginning. Using the W3C MathML Test
Suite mentioned in the previous section, some weak points in UMCL normal-
ization process have been identified. Among other things, there are problems
with MathML tags like ‘mphantom’, ‘mfenced’, ‘mglyphe’, ‘mmultiscripts’,
‘mover’ and ‘mstyle’ that are not properly converted. Furthermore, attributes
of MathML elements are not reported in the UMCL canonicalized MathML.

These problems were consulted with UMCL developers but no fast and
clear solution seems to be available. Due to these problems, UMCL in the
current version does not seem to be directly applicable to MREC corpus and
further research in this area is definitely necessary.

3.3 Corpus MREC

To provide a test platform for mathematical search tools, we are building a
corpus of mathematical texts. We call this corpus MREC.

MREC is based on arXMLiv [11] – a project of Michael Kohlhase’s group at
Jacobs University Bremen. arXMLiv documents came from arXiv.org but have
been translated to XML by arXMLiv project. These documents cover different
STEM areas – Physics, Mathematics, Computer Science, Quantitative Biology,
Quantitative Finance and Statistics.

However, MREC is not an exact copy of the arXMLiv content. MREC con-
tains just a subset of the arXMLiv – arXMLiv puts transformed documents into
several classes – successful, complete with errors and incomplete, depending
on the results of the transformations. MREC contains papers from conversion
classes, successful and complete with errors (missing macros) – see Table 1. We

http://inova.ufr-info-p6.jussieu.fr/maths/umcl
http://inova.ufr-info-p6.jussieu.fr/maths/umcl
http://kwarc.info/projects/arXMLiv/
http://kwarc.info/contact.html
http://arxiv.org/
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have collected 439,423 documents in well-formed XHTML, containing mathe-
matical formulae in valid MathML.

Table 1. Documents collected from arXMLiv

arXMLiv transformation result class Quantity
successful (no problem) 65,874
successful (warning) 291,879
complete with errors (missing macros) 81,670
All documents 439,423

Moreover, there were several modifications of the files that from our point
of view were necessary in order to make the documents well-formed and
valid. These modifications include removing unnecessary attributes, names-
pace proxies, ‘div’ elements nested in ‘span’ elements and so on.

MREC consists of well-formed XHTML documents. MathML is used for
representation of mathematical formulae.

Although MREC is under constant development, it is necessary for both
archive and comparison purposes to produce a stable release versions. For
this reason, there are several version of MREC corpora available at http:
//nlp.fi.muni.cz/projekty/eudml/MREC/.

The first public version of MREC, version 2011.3.324, consists of 324,060
documents. The resulting corpus size was 53 GB uncompressed, 6.7 GB
compressed. Documents contained 112,055,559 formulae in total, of which
2,129,261,646 mathematical expressions were indexed. The resulting index size
was approximately 45 GB.

The newer version of MREC, version 2011.4.439, consists of 439,423 scien-
tific documents containing 158,106,118 mathematical formulae. 2,910,314,146
expressions were indexed and the resulting size of the index is 63 GB. The sizes
of uncompressed and compressed corpora are 124 GB and 15 GB, respectively.

4 Math Retrieval

Searching functionality is nowadays a key form of getting orientated in the
vast amount of information "out there" and obtaining the information we seek.
Just as websites providing special content such as images and videos enable
searching for these tokens, portals providing mathematical content such as
EuDML [12] should also be able to search for the formulae.

In our view, the optimal way of doing so is to provide a simple Google-
like interface where one can pose mathematical and textual query tokens one
alongside the other. Search results returned to a textual query can then be
finely constrained by adding a formula to the query and, in fact, vice-versa.
We present this approach in the WebMIaS interface [10].

http://nlp.fi.muni.cz/projekty/eudml/MREC/
http://nlp.fi.muni.cz/projekty/eudml/MREC/
http://eudml.eu/
http://147.251.48.4:8085/webmias/
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For example, by posting a simple query x2 + y2 in our web interface, the
system returns 36,817 results. Addition of one more keyword Euclid reduces the
number of results to only 97 – all of them contain this textual term. Conversely,
searching only for Euclid returns 848 results and by adding x2 + y2 expression,
we get the same 97 matches (MREC 2011.4.439).

To implement math-aware IR system in addition to the web-interface it was
necessary to create an index to be consulted during query evaluation. We use
our M-term representation for this, as described in detail in [3,4]. We have
evaluated the system’s speed. As is shown in Table 2, the performance of the
MIaS system scales linearly. This gives feasible response times even for our
billions of indexed subformulae.

Table 2. Indexing scalability test results (run on 448 GiB RAM, eight 8-core 64bit
processors Intel XeonTM X7560 2.26 GHz driven machine).

# Docs Input formulae Indexed formulae run-time [ms] CPU time [ms]
10,000 3,406,068 64,008,762 2,145,063 2,102,770
50,000 18,037,842 333,716,261 11,382,709 10,871,500

100,000 36,328,126 670,335,243 23,066,679 21,992,100
200,000 72,030,095 1,326,514,082 46,143,472 44,006,180
300,000 108,786,856 2,005,488,153 71,865,018 66,998,550
350,000 125,974,221 2,318,482,748 83,199,724 77,886,160
439,423 158,106,118 2,910,314,146 104,829,757 97,393,301

5 Further Research Directions in Math Similarity, Clustering
and Disambiguation

In mathematics, Mathematical Subject Classification (MSC) is used by most
journals today, being supported and developed by both Mathematical Reviews
(MR) and Zentralblatt Math (ZMath). Our research so far [13] has shown
that machine-learned classification and similarity tasks are tractable to be
supported by DMLs. However, previous research paid very little attention to
the representation of mathematics. Either textual tokens alone were used, or
the formulae were split into variables, constants and operators, and used in a
‘bag of words’ for documents. Such representation is insufficient given that it
does not convey the structure of formulae, and neither does it pay attention to
semantically similar formulae (e.g. written in different variable names, sorted
differently as a + b vs. b + a, etc.).

We are currently using the Gensim [14] system to evaluate the possibility
of using M-terms instead of the usual tokenization and comparing the effects
this new representation has on similarity and clustering improvements over
non math-aware representations. We believe that M-term representation will
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significantly improve the quality of document similarity metrics computed by
Gensim.

Further improvements could be achieved by employing cutting edge results
on semantic disambiguation. Symbol f might play the rôle (have meaning) of a
variable, functional, (linear) function, and potentially a dozen other meanings.
To have a greater relevance to searching and better document clustering, even
mathematical formulae should be disambiguated at this level, as authors are
usually reluctant to do so in the (LATEX) sources or in Content MathML. Our
representation method is easily inclusive with respect to these refinements –
one just needs to add a notation and weighting for similarity of new terms
representing Content MathML (semantics).

There were attempts to bring NLP approaches to math corpora handling
recently [15,16]. The most consistent problem remains the high degree of am-
biguity in mathematical formulae and nonexistence of tagged disambiguated
math data.

There is a promising approach to distinguishing roles of words (math to-
kens) which depends on the contexts of use in a corpus called LDA-frames [17].
It uses statistics to distinguish different roles based on different structural pat-
terns of word usage in corpora. We are considering the possibility of using
a fuzzy version of Formal Concept Analysis (FCA) [18] to identify the rôles
of math tokens in formulae, and in combination with LDA-frames to disam-
biguate them.

6 Summary and Conclusions

In this paper, we have identified and described the problems we have faced
when building nontrivial corpora of STEM documents MREC. We have sug-
gested M-term representation for math-aware indexing and similarity compu-
tations. We have reported current results in imath-aware indexing and isearch-
ing. We have discusses future research directions towards fully fledged math-
aware corpora processing like math-aware document similarity or disambigua-
tion of math symbols in formulae.
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7. Archambault, D., Stöger, B., Batušić, M., Fahrengruber, C., Miesenberger, K.: A

software model to support collaborative mathematical work between Braille and
sighted users. In: Proceedings of the ASSETS 2007 Conference (9th International
ACM SIGACCESS Conference on Computers and Accessibility), ACM (2007) 115–
122 http://portal.acm.org/ft_gateway.cfm?id=1296864&type=pdf.

8. Archambault, D., Berger, F., Moço, V.: Overview of the “Universal Maths Conversion
Library”. In: Pruski, A., Knops, H., eds.: Assistive Technology: From Virtuality to
Reality: Proceedings of 8th European Conference for the Advancement of Assistive
Technology in Europe AAATE 2005, Lille, France, Amsterdam, The Netherlands,
IOS Press (2005) 256–260.

9. Archambault, D., Moço, V.: Canonical MathML to Simplify Conversion of MathML
to Braille Mathematical Notations. In: Miesenberger, K., Klaus, J., Zagler, W.,
Karshmer, A., eds.: Computers Helping People with Special Needs. Volume 4061 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2006) 1191–1198
http://dx.doi.org/10.1007/11788713_172.
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