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Abstract. This paper surveys approaches and systems for searching mathematical
formulae in mathematical corpora and on the web. The design and architecture
of our MIaS (Math Indexer and Searcher) system is presented, and our design
decisions are discussed in detail. An approach based on Presentation MathML
using a similarity of math subformulae is suggested and verified by implementing
it as a math-aware search engine based on the state-of-the-art system, Apache
Lucene.
Scalability issues were checked based on 324,000 real scientific documents from
arXiv archive with 112 million mathematical formulae. More than two billions
MathML subformulae were indexed using our Solr-compatible Lucene extension.
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I do not seek. I find.
Pablo Picasso1 Introduction

The solution to the problem of mathematical formulae retrieval lies at the heart of
building digital mathematical libraries (DML). There have been numerous attempts to
solve this problem, but none have found widespread adoption and satisfaction within the
wider mathematics community. And as yet, there is no widely accepted agreement on
the math search format to be used for mathematical formulae by library systems or by
Google Scholar.

MathML standard by W3C has become the standard for mathematics exchange
between software tools. Almost no MathML is written directly by authors—they typically
prefer a compact notation of some TEX flavour such as LATEX or 𝒜ℳ𝒮-LATEX. The
designer of a search system for mathematics is thus faced with the task of converting data
to a unifying format, and allowing DML users to use their prefered notation when posing
queries. [𝒜ℳ𝒮]LATEX or other TEX flavour are the typical preferences; Presentation
MathML or Content MathML are used only when available as outputs of a software
system.

During the integration of existing DMLs into larger projects such as EuDML [15],
the unsolved math search problem becomes evident—DML without math search support
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is an oxymoron. As our subject matter search has not lead to a satisfactory solution, we
have designed and implemented [7] new robust solutions for retrieval of mathematical
formulae.

Section 2 explores published facts about research done in the area of mathematics
retrieval. Pros and cons of existing approaches are outlined, most of them being neither
applicable nor satisfactory for digital library deployment. In Section 3 we present our
design of scalable and extensible system for searching mathematics, taking into account
not only inherent structure of mathematical formulae but also formula unification and
subformulae similarity measures. Our evaluation of prototypical implementation above
the Apache Lucene open source full-featured search engine library is presented in
Section 4. The paper closes listing future work directions in Section 5 and a conclusion
is summarised in Section 6.

Computers are useless. They can only give you answers.
Pablo Picasso

2 Approaches to Searching Mathematics

A great deal of research on has been already undertaken on searching mathematical
formulae in digital libraries and on the web. Several such Mathematical Search Engines
(MSE) have been designed in the past: MathDex, EgoMath, LATEXSearch, LeActiveMath
or MathWebSearch. In this section, we will briefly comment on each of these.

MathDex1 (formerly MathFind [9]) is a result of a NSF-funded project headed by
Robert Miner of Design Science2. It encodes mathematics as text tokens, and uses
Apache Lucene as if searching for text. Using similarity with search terms, ranked results
are produced by the search algorithm, matching n-grams of presentation MathML. The
creators of MathDex report that most of the work was due to a necessary and extensive
normalization of MathML—because of the fact that it uses several converters and
filters to convert to XHTML + MathML—HTML (jtidy), TEX/LATEX (blahtex, LATEXML,
Hermes), Word (Word+MathType), PDF (pdf2tiff+Infty). The algorithm of n-gram
ranking has several drawbacks. For one thing, it cannot take many kinds of elementary
mathematical equivalences into account, and it puts undue weight on variable names.

Contrary to its intentions, MathDex has not become a sustainable service to the
mathematical community, although it has fueled research in the area of mathematics
searching [16,17,1].

EgoMath3 is being developed by Josef Mišutka as an extension of a full text websearch
core engine Egothor (by Leo Galamboš, MFF UK Prague) [8] licenced under GPL. It
uses presentation MathML for indexing and develops generalization algorithms and
relevancy calculation to cope with normalization. As part of EgoThor evaluation, an
MSE evaluation dataset is also being developed.4

1 www.mathdex.com/ 2 www.ima.umn.edu/2006-2007/SW12.8-9.06/activities/Miner-Robert/index.html
3 egomath.projekty.ms.mff.cuni.cz/egomath/ 4 egomath.cythres.cz/dataset.py

http://lucene.apache.org/java/docs/index.html
http://www.mathdex.com/
http://www.ima.umn.edu/2006-2007/SW12.8-9.06/activities/Miner-Robert/index.html
http://egomath.projekty.ms.mff.cuni.cz/egomath/
http://egomath.cythres.cz/dataset.py
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LATEXSearch5 is a search tool offered by Springer in SpringerLink. It searches directly
in the TEX math string representations as provided by the authors of papers submitted to
Springer in LATEX sources. Some kind of text similarity matching is probably used. Since
it is not open source, one can only guess the strategy for posing queries. Our experiments
typically lead to a very low precision. Neither is there any definition of the article dataset
available.

LeActiveMath6 search has been developed as part of the ActiveMath-EU project. It
is Lucene based, indexing string tokens from OMDoc with an OpenMath semantic
notation. The document database format is internal since only documents authored for
LeActiveMath learning environments are indexed.

MathWebSearch7 is an MSE developed in Bremen/Saarbrücken by Kohlhase et al. [2]
It is not based on full text searching, rather it adopts a semantic approach: it uses substi-
tution trees in memory. Both presentation and content MathML is supported, together
with OpenMath. It is exceptional in the fact that it primarily deals with semantics and
uses its own engine, not being built on the Lucene engine, for math. Further development
is now being pursued under LaMaPun architecture [6].

The comparison of math search systems is summarized in Table 1. All of the MSEs
reviewed had some drawbacks regarding their employment in a digital mathematical
library such as EuDML. This was our main motivation for designing a new one, primarily
for the use in large scale libraries, such as EuDML or ArXiv.

Everything you can imagine is real.
Pablo Picasso3 Design of MIaS

We have developed a math-aware, full-text based search engine called MIaS (Math
Indexer and Searcher). It processes documents containing mathematical notation in
MathML format. MIaS allows users to search for mathematical formulae as well as the
textual content of documents.

Since mathematical expressions are highly structured and have no canonical form,
our system pre-processes formulae in several steps to facilitate a greater possibility of
matching two equal expressions with different notation and/or non-equal, but similar
formulae. With an analogy to natural language searching, MIaS searches not only for
whole sentences (whole formulae), but also for single words and phrases (subformulae
down to single variables, symbols, constants, etc.). For calculating the relevance of the
matched expressions to the user’s query, MIaS uses a heuristic weighting of indexed
terms, which accordingly affects scores of matched documents and thus the order of
results.

3.1 System Workflow

The top-level indexing scheme is shown in Figure 1 on page 232. A detailed view of the
mathematical part is shown in Figure 2 on page 233.

5 www.latexsearch.com/ 6 devdemo.activemath.org/ActiveMath2/ 7 search.mathweb.org/index.xhtml

http://www.activemath.org/eu/
search.mathweb.org/index.xhtml
http://www.latexsearch.com/
http://devdemo.activemath.org/ActiveMath2/
http://search.mathweb.org/index.xhtml
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Fig. 1: Scheme of the system workflow

3.2 Indexing

MIaS is currently able to index documents in XHTML, HTML and TXT formats. As
Figure 1 shows, the input document is first split into textual and mathematical parts. The
textual content is indexed in a conventional way.

Mathematical expressions, on the other hand, are pre-analyzed in several steps to
facilitate searches not only for exact whole formulae, but also for subparts (tokenization)
and for similar expressions (formulae modifications). This addresses the issue of the
static character of full-text search engines and creates several representations of each
input formula all of which are indexed. Each indexed mathematical expression has a
weight (relevancy score) assigned to it. It is computed throughout the whole indexing
phase by individual processing steps following this basic rule of thumb—the more
modified a formula and the lower the level of a subformula, the less weight is assigned
to it.

At the end of all processing methods, formulae are converted from XML nodes to a
compacted linear string form, which can be handled by the indexing core. Start and end
XML tags are substituted by the tag name followed by an argument embraced by opening
and closing parentheses. This creates abbreviated but still unambiguous representation
of each XML node. For example, formula a + b2, in MathML written as:
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Fig. 2: Scheme of the MIaS workflow of math processing

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>a</mi>
<mo>+</mo>
<msup> <mi>b</mi><mn>2</mn></msup>

</mrow>
</math>

is converted to “math(mrow(mi(a)mo(+)msup(mi(b)mn(2))))” and this string is
then indexed by Lucene.

3.3 Tokenization

Tokenization is a straightforward process of obtaining subformulae from an input formula.
MIaS makes use of Presentation MathML markup where all logical units are enclosed
in XML tags which makes obtaining all subformulae a question of tree traversal. The
inner representation of each formula is an XML node encapsulating all the member
child nodes. This means the highest level formula—as it appears in the input document—
is represented by a node named “math”. All logical subparts of an input formula are
obtained and passed on to modification algorithms.
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3.4 Formulae Modifications

MIaS performs three types of unification algorithms, the goal of which is to create
several more or less generalized representations of all formulae obtained through the
tokenization process. These steps allow the system to return similar matches to the user
query while preserving the formula structure and α-equality.

3.5 Ordering

Let us take a simple example: a+3 and the query 3+a. This would not match even though
it is perfectly equal. This is why a simple ordering of the operands of the commutative
operations, addition and multiplication, is used. It tries to order arguments of these
operations in the alphabetical order of the XML nodes denoting the operands whenever
possible—it considers the priority of other relevant operators in the formula. The system
applies this function to the formula being indexed as well as to the query expression.
Applied to the example above, the XML node denoting variable a is named “mi”, the
node denoting number 3 is named “mn”. “mi”<“mn” therefore 3+a would be exchanged
for a + 3 and would match.

3.6 Unification of Variables

Let us take another example: a+ba and x+yx. Again, these would not match even though
the difference is only in the variables used. MIaS employs a process that unifies variables
in expressions while taking bound variables into account. All variables are substituted for
unified symbols (ids) in both the indexing and searching phases. Applied to the example,
both expressions would unify to id1 + idid1

2 and would match. This process is not applied
to single symbols—this would lead to the indexing of millions of ids and searching for
any symbol would end up matching all of the documents containing it.

3.7 Unification of Constants

This is a strightforward process of substituting all the numerical constants for one unified
symbol (const). This obviates the need for the exact values of constants in user queries.
In some situations however, this can be too much of a generalization. As well as in
the case of the variables, stand-alone numerical constants are not unified for the same
obvious reason.

3.8 Formulae Weighting

During the searching phase, a query can match several terms in the index. However one
match can be more important to the query than another, and the system must consider
this information when scoring matched documents. For mathematical formulae the
system makes use of the processing operations described above since they all produce
expressions more generalized than the input ones.

It is impossible to assemble a weighting function that is exactly right. Such a function
should consider a document base on which the system will run as well as the established



Indexing and Searching Mathematics in Digital Libraries 235

customs in a particular scientific field. We tried to create a complex and robust weighting
function that would be appropriate to many fields.

The original unchanged untokenized formula should of course have the greatest
weight, but the precision of the ordered representation is not compromised at all, so it
should have the same weight. In fact, if the ordering process changes the order of some
members in an expression, the original formula is not indexed at all. The starting weight
for such a representation is 1.

The tokenization process should naturally lower the weight of the subformulae since
they are deeper in the structure and therefore less important to the overall formula. When
a user who is searching for a + b finds two documents, the first containing a + b and the
second containing 2

a+b , the first should score more and appear higher in the results, as
it matches in higher level of MathML expression tree. Hence the tokenization process
reduces the weight of the subformulae according to the level coefficient l < 1.

Both unification algorithms produce representations that are more generalized than
their input expressions. They have a higher probability of matching, and should there-
fore score less. The unification of variables alters the weight of the result formula by
coefficient v < 1, unification of number constants uses coefficient c < 1.

Theoretically, two equally unified subformulae matched on the same level of differ-
ently complex parent formulae would have the same score. For example

a + b3+a

and
∞∫︀
0

25b2 db

3 + a
+

d − e
b

+ 100ab

with the query 3 + a. Both matches are not unified, and both are found on the third level.
Analogously to conventional full-text engines which discriminate documents with more
tokens than others, we use information about the complexity of parent formulae. More
specifically, an initial weight of 1 is multiplied by the inverse number of nodes of a
whole parent expression.

According to this model, each formula has a weight attribute indexed alongside itself,
which belongs to the interval (0, 1⟩. Weight w of the subformula contained on a certain
level in a parent formula with the number of nodes (n) can be calculated in particular
situations as follows:

– no changes made: w =
llevel(1+v+c+vc)

n

– unified variables: w =
llevel(v+vc)

n

– unified constants: w =
llevel(c+vc)

n

– unified both variables and constants: w =
llevel(vc)

n .

See Section 3.9 for details.
To fine tune the weighting parameters, we developed a tool with verbose output in

which the behavior of the model can be observed and tested. A sample from the tool
mentioned above is shown in Table 2 on page 237.
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(a+b2+c , 0.125)

(a+bc+2 , 0.125)

(“mi” <  “mn” ⇒  2 <-> c)

(a , 0.0875) (+, 0.0875) (bc+2 , 0.0875)

(b , 0.06125) (c+2, 0.06125)

(c , 0.042875)
(+, 0.042875)

(2, 0.042875)

(id 1+2, 0.0343)

(c+const , 0.030625)

(id 1+const , 0.01715)

(id 1
id 2+2 , 0.07)

(bc+const , 0.04375)

(id 1
id 2+const , 0.035)

(id 1+id 2
id 3+2 , 0.1)

(a+bc+const , 0.0625)

(id 1+id 2
id 3+const , 0.05)

input:

arranged:

tokenization:

variables
unification:

constants
unification:

Fig. 3: Example of formula preprocessing. Ordered pairs are (<expression written nat-
urally>, <it’s weight>). All expressions as shown are indexed, except for the original
one.

We have come to the conclusion that the unification of variables interferes less with
original formula meaning than the unification of number constants. For this reason, its
coefficient should be higher—i.e., less discriminating. The main question then became,
how discriminating the level coefficient should be. Our empirical deduction is that going
deeper in a structural tree should be discriminating, the precise match on a lower level
should still score more than any unified formula on the level above, as could be seen in
Table 2: 1

a+3 (row 5) is an exact match on the second level and its score is higher than
unified expressions matched on the first level (rows 2, 3 and 4).

This led us to the valuation of level weighting coefficient l = 0.7, unification
weighting coefficient v = 0.8 and constant weighting coefficient c = 0.5.

In Figure 3 the whole formula preprocessing process is illustrated together with its
subformulae weightings.

3.9 Searching

In the search phase, user input is again split into mathematical and textual parts. Formulae
are then reprocessed in the same way as in the indexing phase, except for tokenization—
which we doubt that users are likely to query, for example a+b

c wanting to find documents
only with occurrences of variable c. That means the queried expressions are first ordered,
then unified. This produces several representations which are connected to the final query
by the logical OR operator.

Textual query terms are connected to the final query by the logical AND operator.
Therefore by specifying a text term we can narrow down the results, because each
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Table 2: Example of weighting function on several formulae. Original query is a+3—all
queried expressions are a + 3, id1 + 3, a + const, id1 + const.
Formula Indexed Expressions Score Matched

a + 3
0.25=[a + 3], 0.2=[id1 + 3], 0.175=[a, 3, +],
0.125=[a + const], 0.1=[id1 + const] 2.7

0.1[id1 + const] + 0.25[a + 3] +

0.2[id1 + 3] + 0.125[a + const]

b + 3
0.25=[b + 3], 0.2=[id1 + 3], 0.175=[b,+, 3],
0.125=[b + const], 0.1=[id1 + const] 1.2 0.1[id1 + const] + 0.2[id1 + 3]

a + 5
0.25=[a + 5], 0.2=[id1 + 5], 0.175=[a,+, 5],
0.125=[a + const], 0.1=[id1 + const] 0.9 0.1[id1 + const] + 0.125[a + const]

c + 10
0.25=[c + 10], 0.2=[id1 + 10],
0.175=[c,+, 10], 0.125=[c + const],
0.1=[id1 + const]

0.4 0.1[id1 + const]

1
a+3

0.16667=[ 1
a+3 ], 0.13334=[ 1

id1+3 ],
0.11667=[1, a + 3], 0.09334=[id1 + 3],
0.08334=[ const

a+const ], 0.08167=[+, 3, a],
0.06667=[ const

id1+const ], 0.05833=[a + const],
0.04667=[id1 + const]

1.26
0.04667[id1 + const] + 0.11667[a +

3] + 0.09334[id1 + 3] + 0.05833[a +

const]

1
b+3

0.16667=[ 1
b+3 ], 0.13334=[ 1

id1+3 ],
0.11667=[b + 3, 1], 0.09334=[id1 + 3],
0.08334=[ const

b+const ], 0.08167=[b, 3,+],
0.06667=[ const

id1+const ], 0.05833=[b + const],
0.04667=[id1 + const]

0.56
0.04667[id1 +const] + 0.09334[id1 +

3]

1
a+5

0.16667=[ 1
a+5 ], 0.13334=[ 1

id1+5 ],
0.11667=[1, a + 5], 0.09334=[id1 + 5],
0.08334=[ const

a+const ], 0.08167=[a, 5,+],
0.06667=[ const

id1+const ], 0.05833=[a + const],
0.04667=[id1 + const]

0.42
0.04667[id1 + const] + 0.05833[a +

const]

1
c+10

0.16667=[ 1
c+10 ], 0.13334=[ 1

id1+10 ],
0.11667=[1, c + 10], 0.09334=[id1 + 10],
0.08334=[ const

c+const ], 0.08167=[+, c, 10],
0.06667=[ const

id1+const ], 0.05833=[c + const],
0.04667=[id1 + const]

0.19 0.04667[id1 + const]

returned document must have the term contained. When more than one text term is
specified, they are implicitly connected to the text query by the OR operator which means
at least one term should occur in the result. We can also explicitly state preferences about
each text term—whether it needs to occur in the result or not.

As stated above, the final query, without having explicitly stated occurrences of text
terms, is in the logical form of (formula1 ∨ . . .∨ formulan) ∧ (term1 ∨ . . .∨ termn).

In order to counterbalance the weight of the textual and mathematical parts of the
query, the score of the matched formulae are additionally multiplied by number of nodes
the matching query consists of. This results in more complex mathematical queries
scoring more.
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A very positive value has its price in negative terms. . . the genius of Einstein leads to Hiroshima.
Pablo Picasso

4 Evaluation

For large scale evaluation, we needed an experimental implementation and a corpus of
mathematical texts.

4.1 Implementation

The Math Indexer and Searcher is written in Java. The role of full-text indexing and
searching core is performed by Apache Lucene 3.1.0. The mathematical part of document
processing can be seen as a standalone pluggable extension to any full-text library,
however it would need custom integration for each one. In the case of Lucene, a custom
Tokenizer (MathTokenizer) has been implemented.

For the textual content of documents, Lucene’s StandardAnalyzer is employed. In
MathTokenizer, TermAttributes are used for carrying strings of math expressions and
PayloadAttribute for storing weights of formulae.

The question now is, how should the weights of formulae be taken into consideration
in the overall score of matched documents. Lucene’s practical scoring function for every
hit document d by query q with each query term t is as follows:

score(q, d) = coord(q, d)·queryNorm(q)·
∑︁
t in q

(︁
tf (t in d) · idf (t)2 · t.getBoost() · norm(t, d)

)︁
It is described in detail at http://lucene.apache.org/java/3_1_0/api/core/
index.html?org/apache/lucene/search/Similarity.html.

When searching for mathematical formulae, their weights need to be considered
in the final score of the document. The resulting MIaS scoring function adds another
parameter to the basic function—weight w of one matched formula:

score(q, d) = coord(q, d) · queryNorm(q) ·

·
∑︁
t in q

(︁
tf (t in d) · avg(w) · idf (t)2 · t.getBoost() · norm(t, d)

)︁
(1)

If a document contains the same formula more than once (each occurrence can have
different weight assigned), the average value of all the weights is taken into consideration
(avg(w)).

Let’s take a simplified version of the function (1). Specifically, let us not to consider
normalization factor queryNorm(q), inverse document frequency idf (t)2 and document/
field boost and length factor norm(t, d):

score(q, d) = coord(q, d) ·
∑︁
t in q

(tf (t in d) · avg(w) · t.getBoost()) (2)

and follow the example in Table 2 on the previous page. Let’s consider we query a
document containing only two formulae b + 3 and 1

a+3 (rows 2 and 5). During indexing

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/3_1_0/api/core/index.html?org/apache/lucene/search/Similarity.html
http://lucene.apache.org/java/3_1_0/api/core/index.html?org/apache/lucene/search/Similarity.html
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time, preprocessing creates several more representations, all of which are indexed (shown
in the second column). The query is a + 3 which is expanded by query preprocessing to
the final query that takes the form of a + 3 ∨ id1 + 3 ∨ a + const ∨ id1 + const. Column 4
shows which actual expressions will match the query for each particular input formula.
coord(q, d) will be 4

4 because all four of the four query terms found a match. Query terms
a + 3 matched only one indexed term and its weight is 0.11667; query term a + const also
matched only one indexed term and its weight 0.05833; query term id1 + 3 matched two
indexed terms with weights 0.2 and 0.09334 so its average is 0.14667; finally the last
query term id1 + const matched two indexed expressions with weights 0.1 and 0.04667
so its average is 0.07335. t.getBoost() is a query time boosting factor and as stated in
Section 3.9, we use the number of XML nodes of the original query formula—in this
example it is 4. The resulting score of the whole document is then

4
4
·
(︁
(1 · 0.11667 · 4) + (1 · 0.05833 · 4) + (2

1
2 · 0.14667 · 4) + (2

1
2 · 0.07335 · 4)

)︁
4.2 Corpus of Mathematical Documents MREC

A document corpus MREC with 324,060 scientific documents (version 2011.3.324) was
initially used to evaluate the behaviour of the system we modelled. The documents come
from the arXMLiv project that is converting document sets from arXiv into XHTML +

MathML (both Content and Presentation) [13]. At the time of testing, our system was
not yet able to process mixed MathML markup so preprocessing in the sense of filtering
out unwanted markup was needed. The resulting corpus size was 53 GB uncompressed,
6.7 GB compressed. Documents contained 112,055,559 formulae in total, of which
2,129,261,646 mathematical expressions were indexed. The resulting index size was
approx. 45 GB.

We were able to gather even greater amount of documents in MREC corpus version
2011.4.439 to test our indexing system. This corpus consists of 439,423 arXMLiv
documents containing 158,106,118 mathematical formulae. 2,910,314,146 expressions
were indexed and the resulting size of the index is 63 GB. Sizes of uncompressed and
compressed corpora size are 124 GB and 15 GB, respectively.

Mentioned MREC corpora are available to the community for download from MREC
web page http://nlp.fi.muni.cz/projekty/eudml/MREC/ so that other math in-
dexing engines could be compared with MIaS on the same data.

4.3 Results

Math Indexer and Searcher demonstrated the ability to index and search a relatively
vast corpus of real scientific documents. Its usability is highly elevated thanks to its
preprocessing functions together with formulae weighting model. The ability to search
for exact and similar formulae and subformulae, more so with customizable relevancy
computation, demonstrates an unquestionable contribution to the whole search experi-
ence.

It is very difficult, if not impossible, to completely verify the correctness of the
theoretical considerations made in the previous sections and thus correctness of search

http://kwarc.info/projects/arXMLiv/
http://nlp.fi.muni.cz/projekty/eudml/MREC/
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Table 3: Scalability test results (run on 32 GB RAM, quad core AMD OpteronTM

Processor 850 driven machine).
Documents Input formulae Indexed formulae Indexing time [min] Average query time [ms]

10,000 3,450,114 65,194,737 39.15 32
50,000 17,734,342 334,078,835 201.68 178

200,000 70,102,960 1,316,603,055 889.28 576
324,060 112,055,559 2,129,261,646 1,292.16 789

results. For this purpose, a sufficiently large corpus of documents with fully controlled
content would be needed. For any assembled query, there should exist beforehand a
complete list of the documents ordered by their relevance to the query to compare the
actual results to.

We have applied an empirical approach to the evaluation so far. For these purposes
we have created a demo web interface WebMIaS which is publicly available on the
MIaS web page http://nlp.fi.muni.cz/projekty/eudml/mias/. It works over
MREC corpora discussed in the Section 4.2 Additionally, for the latest MREC corpus
we have implemented and added demanded snippet generation and mathematical match
highlighting in hit list. Preliminary version of this functionality is available.

Our WebMIaS interface supports queries in two different notations—in𝒜ℳ𝒮-LATEX
and MathML. Mathematical queries are additionally canonized using XSLT transfor-
mations from UMCL library [4,3] to improve the query and to avoid notation flaws
restraining proper results retrieval. Portability of the interface is increased by using
MathJax for rendering of mathematical formulae in snippets.

4.4 Scalability Testing and Efficiency

We have devised a scalability test to see how the system behaves with an increasing
number of documents and formulae indexed. Subsets containing 10,000, 50,000, 200,000
and the complete 324,060 documents were gradually indexed and several values were
measured: the number of input formulae, the number of indexed formulae, the indexing
time and the average query time.

The number of input formulae indicate how rich a particular subset was in formulae;
the number of indexed formulae should illustrate their complexity. Moreover both should
indicate whether indexing and query time are dependent on the number of documents
or specially on the formulae they contain. For measuring the average query time, we
queried each created index with the same set of differently complex queries (mixed,
non-mixed, more/less complex single/multiple formulae) computing the average time.
The results are shown in Table 3 and in the form of diagrams in Figure 4 on the next
page.

MREC version 2011.4.439 was indexed using improved and optimised algorithms
and ran on a different machine. Therefore it cannot be compared to measured values
shown in tables 3 and 4 on the next page. Indexing time of this corpus was 1378.82 min,
e.g. almost 23 hours.

http://nlp.fi.muni.cz/projekty/eudml/mias/
http://mathjax.org
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(a) Number of input formulae vs. indexing
time

(b) Number of input formulae vs. query time

(c) Number of documents vs. query time (d) Number of formulae vs. number of docu-
ments

Fig. 4: Scalability diagrams

He can who thinks he can, and he can’t who thinks he can’t.
This is an inexorable, indisputable law.

Pablo Picasso

5 Open Issues, Future Work

We are now awaiting heterogeneous MathML data collected by the EuDML project, that
has been generated from born-digital [meta]data [10], from born-digital PDFs [5] or
from math OCR [14].

It is evident that some kind of normalization of MathML will be a necessity. We
have opted for Canonical MathML [4,3] as normalization MathML format and are using
software library UMCL supporting it. Our latest experiments with canonical form of
MathML generated by UMCL shows that it not only increases fairness of similarity
ranking, but also helps to match a query against the indexed form of MathML. We are
also working hard on snippets generation and on matched formulae visualization.

Another area of long-term research planned is supporting Content MathML, in a
way similar to the current handling of Presentation MathML. The architectural design is
open to it, but as most of math within EuDML will be in Presentation MathML taken
from PDFs, this is not currently a high priority.

http://sourceforge.net/projects/umcl/
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I am always doing that which I can not do, in order that I may learn how to do it.
Pablo Picasso6 Conclusions

We have presented an approach to mathematics searching and indexing—the architecture
and design of the MIaS system. The feasibility of our approach has been verified on large
corpora of real mathematical papers from arXMLiv. Scalability tests have confirmed that
the computing power needed for fine math similarity computations is readily available;
this would allow the use of this technology for projects on a European or world-wide
scale.
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