Word Hy-phen-a-tion by Neural Networks

Pavel Smrz and Petr Sojka

Faculty of Informatics, Masaryk University Brno
Botanicka 68a, 602 00 Brno, Czech Republic

E-mail: {smrz,sojka}@fi.muni.cz, phone: ++420-5-41512{362,352}

Abstract

We are discussing our experiments we made to learn feed-forward neural network for

task of finding valid hyphenation points in all words of given language. Multilayer neu-

ral networks were succesfully used for solving of this difficult problem. The structure

of the network used is given, together with a discussion about training sets, influence

of input coding and results of experiments done for the Czech language. We end up

with pros and cons of tested approach—nhybrid architecture suitable for a multilingual
system.

Keywords: neural networks, hyphenation, back propagation, generalisation, typeset-
ting

1 Introduction

“The invention of the alphabet was one of the greatest advances in the history of
civilisation. However, the ancient Phcenicians probably did not anticipate the fact
that, centuries later, the problem of word hyphenation would become a major
headache for computer typesetters all over the world.”

(Liang, 1983) (Liang 1983, page 39)

The problem of finding all valid hyphenation points in all words of a given
language has been tackled for decades. Most of the approaches used sofar are de-
terministic. A rule-driven hyphenation algorithm for English was implemented in
TeX78 (Liang 1981). The method was improved by Liang (Liang 1983, Knuth 1986)
for use in EX82. It is based on the generalisation of the prefix, suffix and vowel-
consonant-consonant-vowel rules. The progm4mGEN (Liang and Breitenlohner
1991) enables the process of pattern generation from a set of already hyphenated
words to be automated. This algorithm or its derivatives are used in many DTP sys-

1

tems liketroff (Emerson and Paulsell 1981)out, QuarkXpress, 3B2 and many
others today.

Liang’s algorithm performs well for nonflexive languages with small number of
compounds like English but there is still lack of good methods for other languages,
especially for flexive languages (all Slavonic languages, Dutch, German etc). Sojka
and Sevéek (Sojka 1995, Sojka and S&ek 1995) state that in Czech, on average,
20-30 different word forms—inflexions—can be derived from one word stem. This
number can be almost doubled if negatives are formed from many words (adjectives,
verbs, adverbs, some nouns) by adding the prefix hus, from a 170,000 stem word-
list about 5,000,000 inflexions may be generated in Czech.

For multilingual documents usually several separate algorithms for every lan-
guage used are needed, even if the languages are dialects only, leading to high com-
puter memory demands. Typesetting in narrow columns brings the necessity to find
very high percentage of all valid hyphenation points.

From the DTP world and prominent publishers another need is being heard of:
several classes of hyphenation points are called for, to make a distinction e.g. between
valid and not recommended, but possible one, as published in (R. E. Allen 1990).

This leads to the stochastic approaches rather than deterministic ones — Brunak
and Lautrup (S. Brunak and B. Lautrup 1990) shows that a neural network is likely to
be a way leading quickly to the working solution.

2 Hyphenation Problem with Neural Networks

2.1 Hyphenation of Czech Words

We performed our experiments with multilayer neural networks trained on hyphen-
ation for Czech language. The problem of word hyphenation in Czech is rather com-
plex. Hyphenation rules for Czech language are described in Ekdelavsa et al

1993) and (Haller 1956). In (Haller 1956) also a list of exceptions is given including
about 10,000 words. Czech language has syllable hyphenation with “etymological” ex-
ceptions. Hyphenation is preferred between a prefix and the stem and on the boundary
of compound words.

2.2 Neural Net Architecture

The architecture of the networks used in the experiments is similar to that of NET-
talk (Sejnowski and Rosenberg 1987)—multilayer feedforward nets. We use usual no-
tation here: 7-30-1 means NN topology with 7 neurons in input layer, 30 neurons in
the middle layer and 1 neuron in output layer. Layers are fully interconnected.

The input of our network is a series of seven consecutive letters from one of
the training words. The central letter in this sequence is the “current” one for which
the output is to be produced. Three letters on either side of this central letter provide

2

context that helps to determine the hyphenation point. Individual words are moved
through the input window so that each letter in the word with the exception of the last
two is “seen” in the central position. Blanks are added before and after the word as
needed.

One type of tested networks uses unary encoding. For each of the seven letter
positions in the input, the network has a set of 43 input units: one for each of 41 letters
in Czech, one for letters from other languages, and one for blank. Thus, there are
43 x 7 = 301 input units. Other tested type uses real numbers rather than binary
ones for encoding the input. The letters are coded in the form of numbers from the set
{0.02,0.04, ..., 0.98}. The exact coding of a particular letter will be given later.

The networks have one or two output neurons. In the first case, the meaning of
the output value is O for ‘do not hyphenate’ and 1 for ‘insert hyphenation point'. In the
second case the output 0 1 means ‘*hyphenate’, 1 0 ‘do not hyphenate’.

2.3 Training Set Used

We had a set of 169,888 hyphenated Czech words to experiment with. The problem
with this set was considerably large number of errors. There are two types of errors.
The first type is probably the worse one—the hyphen is placed in the position where
the word cannot be hyphenated. In case of errors of the second type the algorithm is
not able to find an allowed hyphenation point. These errors are a big complication of
typesetting in narrow columns.

3 Empirical Results—Brute Force Trial

For the first group of experiments the networks with the topologies 301-30-1 and 301-
100-1 were employed. In both cases each layer was completely interconnected with
the next one. The training set was divided into 170 parts each containing 1000 words.
Totally, 1,581,183 training patterns were generated.

The network was trained with each part of the training set. The training was
carried out until the network error dropped below the value of 0.1 or until 100 cycles
was reached. The learning rate was initially set to the value of 0.7. Then it was stepwise
decreased in each training by 0.1 to the final value of 0.3 which was used for the rest
of learning.

Naturally, this learning process was extremely time consuming. The training of
the network 301-30-1 took about 17 days of user time on Sun SparcStation 10 not
taking into account the time for generating patterns. For the training of the network
301-100-1 the supercomputer Silicon Graphics POWER Challenge L was used. De-
spite its computing power the training took about 18 days of user time.

The results of the experiments described above are summarised in Tables 1
and 2. Although in the latter case the network contained more than three-fold num-

3

ber of connections, the amount of wrong patterns was almost the same. It is obvious
that, in this case, the performance of the network cannot be significantly improved by
increasing the number of hidden layer neurons only.

STATISTICS (1581183 patterns) || STATISTICS (1581183 patterns)
wrong: 3.43), (54282 patterns) || wrong: 3.26% (51599 patterns)
right:96.57% (1526901 patterns) || right:96.74) (15629584 patterns)

Table 1: Results of learning of the networkable 2: Results of learning of the net-
301-30-1 with 1,581,183 training patternaork 301-100-1 with 1,581,183 training
patterns

As stated earlier, the biggest problem with the training of word hyphenation is to
obtain a good training set. It seems to be unrealistic to avoid all errors but it is neces-
sary to try to find patterns with the least number of wrongly hyphenated words and with
the maximum of correctly marked hyphenation points. The file of 169,888 hyphenated
words contained many errors. Therefore, when the network was tested using this file,
some correctly hyphenated words were considered erroneous by the system. Remain-
ing errors mainly occurred in words which belong to the exceptions from hyphenation
rules, especially in words adapted from foreign languages.

To test if a network can even learn all the exceptions from hyphenation rules, all
54,282 training patterns wrongly hyphenated by the network 301-30-1 were used as
one big training set and presented to another network of the type 301-30-1. Learning
rate decreased stepwise from the value 0.8 to 0.2. After 100 cycles the network learned
all but 4 training patterns which is an excellent result.

4 The Influence of Input Coding: Use of Real Numbers

All the following experiments were carried out with the training set containing 78,809
hyphenated words beginning with the lettefThe amount of errors in these data was
very low. The number of errors of the first type was negligible and the relative num-
ber of errors of the second type was less too. A subset of 1000 words was chosen in
which the errors were corrected was used for most of shorter experiments. They were
performed with the networks with 7 input layer neurons for 7 consecutive letters. Each
letter was coded as a real number. In the beginning, the codes of letters were assigned
according to the alphabet (see Table 3).

The results of experiments with the network 7-30-9-2 are summarised in Ta-
ble 4. It is obvious that these results are not satisfactory as the network error is too
high. The network wrongly hyphenated even often used words with simple syllable
hyphenation. It did not recognise the rules of making syllables, did not take into ac-

4

U a a b c o d
0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.14
d e é e f g h
0.16 | 0.18 | 0.20 | 0.22 | 0.24 | 0.26 | 0.28
[i j k I m n
0.30| 0.32| 0.34 | 0.36 | 0.38| 0.40 | 0.42
n o] o] p q r f
0.44 | 046 | 0.48 | 0.50 | 0.52 | 0.54 | 0.56
S $ t t u a u
0.58 | 0.60 | 0.62 | 0.64 | 0.66 | 0.68 | 0.70
v w X y % z z
0.72 | 0.74| 0.76 | 0.78 | 0.80 | 0.82 | 0.84

Table 3: Coding of letters according to the alphabet

count which letters are vowels and which consonants. Therefore, this approach proved
to be inapplicable due to poor generalisation achieved.

STATISTICS (8411 patterns)
wrong : 14.12 j (1188 patterns)
right : 85.88 % (7223 patterns)

Table 4: Results of experiments with the network 7-30-9-2 and coding according to
Table 3

In order to improve results, learning with another input coding of letters was
used. It is shown in Table 5. All the vowels in Czech were coded as small num-
bers in the range 0f0.02, 0.28), all the consonants exceptand1 as numbers from
(0.50, 0.98). Lettersr and1 are consonants but can make syllables in Czech. There-
fore, they were coded using using numbers 0.40 and 0.42 separately from the other
consonants. Blank was coded as 0.34, i.e. as a number between code numbers of vow-
els and consonants.

The results of the experiments with the network 7-30-9-2 and the coding de-
scribed above are shown in Table 6. The comparison of results with both coding alter-
natives is given in Figure 1.

Information about the type of a letter (consonant or vowel) helped the network to
generalise. The different coding of letterandl also improved learning. The results
with this network could be probably further improved by another sorting of input letter
codes. Many errors were caused by a special nature of joined letd@ch. In Czech
they both are used together as a two-character symbol of one sound and, in fact, they
form a sort of a single letter. Thus andh cannot be separated by a hyphen. A solution

5

3500+

3000+

2500+

2000+

1500+

1000+

500
0 200 200 600 800 1000

Figure 1. Comparison of the results of experiments with the network 7-30-9-2 using
both coding alternatives. Upper curve: Coding according to Table 3. Lower curve:
Coding according to Table 5.

—_

a a e é e i
0.02 | 0.04| 0.06 | 0.08 | 0.10| 0.12 | 0.14
o] o] u a u y %
0.16 | 0.18 | 0.20 | 0.22 | 0.24 | 0.26 | 0.28
u r |
0.34 0.40 | 0.42
b c ¢ d
0.50 | 0.52 | 0.54 | 0.56

d f g h] k m
058 | 0.60 | 0.62 | 0.64 | 0.66 | 0.68 | 0.70
n n p q ¥ S S
0.72 | 0.74| 0.76 | 0.78 | 0.80 | 0.82 | 0.84
t t % w X z z

086 | 0.88| 0.90| 092 | 0.94| 0.96 | 0.98

Table 5: Alternative coding of letters

STATISTICS (8411 patterns)
wrong : 3.41 % (287 patterns)
right : 96.59 J, (8124 patterns)

Table 6: Results of experiments with the network 7-30-9-2 and coding according to
Table 5

of this problem may be to code joinedandh by a special number differing from the
codes of both single letters.

5 Comparison of Various Topologies

Next series of experiments was designed to compare the abilities of networks with
different topology. Networks 301-30-1, 301-60-1, 7-30-1, 7-30-9-2, and 7-60-2 were
compared. In case of networks with 7 input neurons the alternative coding was used
(as described in Table 5). Detailed description of results can be found in (Smrz 1995).

No significant difference in learning performance was observed between the net-
works with topologies 301-30-1 and 301-60-1. Similar result was obtained earlier us-
ing the networks 301-30-1 and 301-100-1 and the other training set (see Section 3).

The results obtained with the network 301-30-1 are distinctly better than those
with networks consisting of a less number of neurons and synapses for which different
coding was necessary. On the other hand, this network needs much more memory for
weight storage.

Learning and generalization performance of a network is significantly influenced
not only by the number of hidden layer neurons but also by the network topology. Us-
ing the network 7-30-9-2 with two hidden layers, better results were obtained though
the total number of neurons and connections was less than that of the network 7-60-2
with only one hidden layer.

Next, the generalisation ability of the networks 7-30-9-2 and 301-30-1 was stud-
ied. The networks were trained with the subset of 1000 words. Then the whole set of
78,809 words was used for testing. The results are given in Tables 7 and 8. The per-
centage of wrongly hyphenated words can be considered very low if the number of
errors in the set used for testing is taken into account.

STATISTICS (648928 patterns) || STATISTICS (648928 patterns)
wrong: 4.91%, (31886 patterns) || wrong: 2.78), (18057 patterns)
right: 95.09% (647042 patterns) || right: 97.22) (630871 patterns)

Table 7: Generalisation ability of the neffable 8: Generalisation ability of the net-
work 7-30-9-2 work 301-30-1

To sum up our observation: to train a neural network to perform hyphenation in
a language one should:
1. create a training set with proofreaded hyphenated words without errors with all
exceptions from generalizable rules
2. make a clever ordering of letters in given language reflecting “similarity”/“ex-
changability” of letters
3. use a topology with two hidden layers might be cheaper in memory consumtion
but learning is then harder
The learning process itself can be used for finding errors in training data (proofreading
of words that were not learnt). This gradual bootstrapping process may lead to a perfect
network.

6 Syllable Hyphenation

Finally, it was tested how well a network would perform if only the type of letters
(consonants or vowels) was given. The network 7-30-1 was used. Consonants were
coded a9, vowels adl and blank a®.5. The results of these experiments are given in
Table 9. The results clearly show that the syllable hyphenation plays a dominant role
in Czech language. However, as the error was about 6%, it was obvious that if only the
syllable hyphenation was included in the algorithm, the results would be unsatisfactory
for everyday use.

8

STATISTICS (8411 patterns)
wrong : 6.08 % (511 patterns)
right : 93.92 % (7900 patterns)

Table 9: Results of experiments with the network 7-30-1 and consonant/vowel coding

7 Discussion

The results obtained for Czech hyphenation are close to those showed in (Sojka 1995,
Sojka and Seviek 1995) for “classical” approach. Testing the “syllable hyphenation
neural network” on “close” languages (e.g. syllable ones), preprocessed for accents,
gives similar results. This fact allows to build a modular hybrid system, in which sep-
arate neural networks will be trained to cover “close” languages, and hyphenation of
words not covered by them will be stored in the exception tries in the PATGEN fashion.
Such a system is able not only perform well if properly tuned up—in addition—it can
be trained to give a measure of suitability of hyphenation points found for the [DTP]
system.

8 Conclusion and Acknowledgements

We showed that solving word hyphenation problem with neural networks is possible
and that generalisation abilities of neural networks allow to build a working system
for given task. Combining with exception lists, we can build a quality system which is
able to store hyphenation points for several languages with moderate memory needs.

We acknowledge the possibility to use computer facilities of Supercomputing
Centre Brno.

References

Emerson, S. L. and Paulsell, K.: 198iff Typesetting founix™ SystemsPrentice-
-Hall, Inc., Englewood Cliffs, New Jersey.

Haller, J.: 1956Jak se @li slova (How the words get hyphenategjatni pedagogické
nakladatelstvi Praha.

Knuth, D. E.: 1986The EXbook Vol. A of Computers and Typesettirgyddison-Wes-
ley, Reading, MA, USA.

Liang, F. and Breitenlohner, P.: 199RATtern GENeration program for the gX82
hyphenator, Electronic documentation PATGEN program version 2.0 from
unix TEX distribution atftp. cs.umb. edu.

Liang, F. M.: 1981, EX and hyphenationfTUGboat2(2), 19-20.

Liang, F. M.: 1983 Word Hy-phen-a-tion by Com-put;éPhD thesis, Department of
Computer Science, Stanford University.

R. E. Allen: 1990,The Oxford Spelling Dictionaryol. 1l of The Oxford Library of
English UsageOxford University Press.

S. Brunak and B. Lautrup: 1990leural Networks: Computers with Intuitipivorld
Scientific, Singapore.

Sejnowski, T. J. and Rosenberg, C. R.: 1987, Parallel networks that learn to pronounce
english textComplex Systenis 145-168.

Smrz, P.: 1995, earning algorithms of neural networkislaster’s thesis, Masaryk Uni-
versity, Brno.

Sojka, P.: 1995, Hyphenation ipX— Quo Vadis?,TUGboat16(3), 280—289.

Sojka, P. and Sevek, P.: 1995, Notes on Compound Word Hyphenationgt, TUG-
boat16(3), 290-297.

Zderek Hlavsa et al: 1993Pravidla ¢eského pravopisu (The rules of the Czech
spelling) Academia Praha.

10

