
RASLAN 2008
Recent Advances in Slavonic
Natural Language Processing

Masaryk University
http://nlp.fi.muni.cz/raslan/2008/

P. Sojka, A. Horák (Eds.)

RASLAN 2008

Recent Advances in Slavonic Natural
Language Processing

Second Workshop on Recent Advances in
Slavonic Natural Language Processing,
RASLAN 2008
Karlova Studánka, Czech Republic,
December 5–7, 2008
Proceedings

Masaryk University
Brno 2008

Proceedings Editors

Petr Sojka
Faculty of Informatics, Masaryk University
Department of Computer Graphics and Design
Botanická 68a
CZ-602 00 Brno, Czech Republic
Email: sojka@fi.muni.cz

Aleš Horák
Faculty of Informatics, Masaryk University
Department of Information Technologies
Botanická 68a
CZ-602 00 Brno, Czech Republic
Email: hales@fi.muni.cz

Katalogizace v knize – Národní knihovna ČR

RASLAN 2008 (2. : Karlova Studánka, Česko)

RASLAN 2008 : Recent Advances in Slavonic Natural Language Processing :
second workshop on ..., Karlova Studánka, Czech Republic,
December 5-7, 2008 : proceeedings / P. Sojka, A. Horák (eds.).
– 1st ed. – Brno : Masaryk University, 2008. – viii, 102 s.

ISBN 978-80-210-4741-9

81’322 * 004.82/.83:81’322.2
- computational linguistics
- natural language processing

- proceedings of conferences

- počítačová lingvistika
- zpracování přirozeného jazyka
- sborníky konferencí

410 - Linguistics [11]
006.3 - Artificial intelligence [23]

81 - Lingvistika. Jazyky [11]
004.8 - Umělá inteligence [23]

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the Czech Copyright Law, in its current version, and permission for use
must always be obtained from Masaryk University. Violations are liable for prosecution under the Czech
Copyright Law.

c© Masaryk University, Brno, 2008
Printed in Czech Republic

ISBN 978-80-210-4741-9

Preface

This volume contains the Proceedings of the Second Workshop on Recent
Advances in Slavonic Natural Language Processing (RASLAN 2008), organized
by the the Center of Natural Language Processing at the Faculty of Informatics,
Masaryk University and held on December 5th–7th 2008 in Karlova Studánka,
Kurzovní chata, Jeseníky, Czech Republic.

The RASLAN Workshop is an event dedicated to exchange of information
between research teams working on the projects of computer processing
of Slavonic languages and related areas going on in the Centre. RASLAN
is focused on theoretical as well as technical aspects of the project work,
presentations of verified methods are welcomed together with descriptions of
development trends. The workshop also serves as a place for discussion about
new ideas. The intention is to have it as a forum for presentation and discussion
of the latest developments in the the field of language engineering, especially
for undergraduates and postgraduates affiliated to the NLP Center at FI MU.

Topics of the Workshop include (but are not limited to):

* text corpora and tagging
* syntactic parsing
* sense disambiguation
* machine translation, computer lexicography
* semantic networks and ontologies
* semantic web
* knowledge representation
* applied systems and software for NLP

RASLAN 2008 offers a rich program of presentations, short talks, technical
papers and mainly discussions. A total of 16 papers and abstracts were
accepted, contributed altogether by 23 authors. Our thanks go to the Program
Committee members and we would also like to express our appreciation to all
the members of the Organizing Committee for their tireless efforts in organizing
the Workshop and ensuring its smooth running. In particular, we would like
to mention the work of Pavel Rychlý, Aleš Horák and Dana Hlaváčková.
The TEXpertise of Petr Sojka resulted in the extremely speedy and efficient
production of the volume which you are now holding in your hands. Last
but not least, the cooperation of Masaryk University as publisher of these
proceedings, and of tribun.eu as printer is gratefully acknowledged.

Brno, November 2008 Karel Pala

Table of Contents

Towards Czech Morphological Guesser . 1
Pavel Šmerk (Masaryk University, Brno, CZ)

Semi-automatic Approach to Building Dictionary between Slavonic
Languages . 5

Marek Grác (Masaryk University, Brno, CZ)

A Lexicographer-Friendly Association Score . 6
Pavel Rychlý (Masaryk University, Brno, CZ)

Corpus Architect . 10
Jan Pomikálek (Masaryk University, Brno, CZ)

The Saara Framework . 11
Vašek Němčík (Masaryk University, Brno, CZ)

TIL and Logic Programming . 17
Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík
(VŠB–Technical University Ostrava, CZ)

TIL in Knowledge-Based Multi-Agent Systems . 31
Tomáš Frydrych, Ondřej Kohut, Michal Košinár (VŠB–Technical
University Ostrava, CZ)

Can Complex Valency Frames be Universal? . 41
Karel Pala, Aleš Horák (Masaryk University, Brno, CZ)

Processing Czech Verbal Synsets with Relations to English WordNet 49
Vašek Němčík, Dana Hlaváčková, Aleš Horák, Karel Pala, Michal
Úradník (Masaryk University, Brno, CZ)

Extraction of Syntactic Structures Based on the Czech Parser Synt 56
Miloš Jakubíček (Masaryk University, Brno, CZ)

Test Suite for the Czech Parser Synt . 63
Vojtěch Kovář, Miloš Jakubíček (Masaryk University, Brno, CZ)

Computing Idioms Frequency in Text Corpora . 71
Jan Bušta (Masaryk University, Brno, CZ)

Plagiarism Detection through Vector Space Models Applied to a
Digital Library . 75

Radim Řehůřek (Masaryk University, Brno, CZ)

VIII Table of Contents

Automatic Web Page Classification . 84
Jiří Materna (Masaryk University, Brno, CZ)

Building Big Czech Corpus . 94
Pavel Hančar (Masaryk University, Brno, CZ)

Towards Natural Natural Language Processing . 98
Petr Sojka (Masaryk University, Brno, CZ)

Author Index . 101

Towards Czech Morphological Guesser

Pavel Šmerk

Faculty of Informatics, Masaryk University
Botanická 68a, CZ-602 00 Brno, Czech Republic

smerk@mail.muni.cz

Abstract. This paper presents a morphological guesser for Czech based
on data from Czech morphological analyzer ajka [1]. The idea behind
the presented concept lies in a presumption that the new (and therefore
unknown to the analyzer) words in a language behave quite regularly
and that a description of this regular behaviour can be extracted from the
existing data of the morphological analyzer. The paper describes both the
construction of guesser data and the architecture of the guesser itself.

1 Introduction

An obvious disadvantage of traditional morphological analyzers is the finite-
ness of their dictionaries. There is no way to catch all words of the particular
language in a dictionary of an analyzer, because new and new words continue
to appear in the language. Thus, almost allways there will be some words on
which the analyzer will not be able to return any information.

If we want to process even these words unrecognized by the analyzer,
we have two possibilities. Either to guess possible lemma (or lemmata) and
appropriate tags from the context of the word, or to guess it from the form of
the word, i. e. from its resemblance to some word known to the analyzer.

In this paper we describe the second of these two possible approaches. First
of all, a general idea will be introduced. In the next section, we describe the
algorithm for construction of the data as well as the architecture of the guesser
in section 4. At the end we make some remarks on possible future development
of a guesser.

2 General Idea

The Czech language has many inflectional and derivational paradigms (espe-
cially if we count every “exception" as a separate paradigm, as the morpho-
logical analyzer ajka does), but only a smaller part of them is synchronically
productive in the sense that there are appearing (or at least may appear) new
words in the language which belong to that productive paradigms.

For instance, word husa (“goose") has an own, separate paradigm, because
of a doublet in genitive plural, hus and husí. There is no other word with the
same inflectional paradigm and no chance that any such word could appear in

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 1–4, 2008. c©Masaryk University, Brno 2008

2 Pavel Šmerk

Czech. All new feminines which end with vocal -a will belong to the paradigm
žena (“woman").

Of course, it is similar for the derivational relations. For instance, some older
adjectives with a meaning “made of material/substance" are created with suffix
-en(ý), e. g. dřevěný (“wooden”). But nowadays this suffix is not productive and
this meaning is expressed by productive suffix -ov(ý).

Obviously, the non-productive paradigms are quite useless for the guessing
the possible lemma and tags, or even more than that: these paradigms might
serve as an undesirable bias if we would not ignore them. Unfortunately, we
do not have the information, which paradigms are productive and which are
not.

As was said above, we may assume that all Czech words unrecognized by
the analyzer are regular, i. e. belong to some productive paradigm. Or, in other
words, that the words with irregular behaviour are either already known to
the analyzer or they are quite infrequent in real texts and thus irrelevant for
our task. Moreover, we may assume that absolute majority of the actually used
lexicon is covered by the dictionary of the analyzer, which means that there is
enough examples of all productive behaviour in that dictionary. Then we may
conclude that “productive" significantly correlates with “frequent in existing
data" and our goal will be to sort out the frequent behaviour from the analyzer’s
dictionary.

3 Construction of the Guesser Data

In this section, the algorithm of the guesser data construction will be described
in detail.

– First of all, we count numbers of lemmata for each paradigm from the
dictionary of Czech morphological analyzer ajka,

– then we pick out all lemmata (from that dictionary) which belong to any
paradigm which has at least 20 lemmata (this will reduce the number
of lemmata from 389,831 to 382,994, i. e. by 1.75 %, but the number of
paradigms from 1,830 to 387, i. e. by 78.85 %),

– we let the morphology analyzer generate all word forms for each lemma
picked out in the previous step, if the lemma belongs to some of the
open POS categories (i. e. nouns, adjectives, verbs or adverbs — other POS
categories are closed, so we need not expect any new words which would
belong to them),

– moreover we discard all colloquial word forms, all negations and superla-
tives and all word forms of length 6 letters or less,

– each word form we turn into a triplet word form, lemma and tag in the
following form: akzeřuo:ka:ek:k1gMnSc2,k1gMnSc4 where the akzeřuo is
the reversed (letter by letter) word form ouřezka, the next two strings ka
and ek specifies a lemma (one has to remove the first string from the end of
the word form and append the second string, i. e. lemma in the example is
ouřezek) and the last is a list of possible morphological tags,

Towards Czech Morphological Guesser 3

– we sort the triplets lexicographically (the actual sort order is not important),
– then we go through the list of triplets and collect information on possible

word forms’ ends of various length and corresponding lemmata and tags:
• we use two arrays, both of length 10. The elements of the first array

represent letters from the end of the processed word form so that each
left “subarray" represents the end of the word form of the given length.
The elements of the second array are hashes, in which the keys are
triplets without the word form (e. g. ka:ek:k1gMnSc2,k1gMnSc4) and
values indicates for how many word forms (from the list of triplets)
with the given end the analyzer returns this lemma and tag(s),

• it would be difficult to describe the following steps in general, that is
why we illustrate it on example,

• let us suppose that after the processing of the triplet
akzeřuo:ka:ek:k1gMnSc2,k1gMnSc4, the content of the first array is

1 2 3 4 5 6 7 8 9 10
a k z e - - - - - -

(which means that the first hash from the second array stores possible
interpretations [lemma and tag(s)] of words which end with -a, the
second hash is information on words which end with -ka etc.),

• and that the next two triplets are akzeřýv:ka:ek:k1gMnSc2,k1gMnSc4
and akzjapš:::k1gFnSc1,

• we assume that at least the first (or the last, in reversed string) three
letters represent the root of the word form, that is, none of these letters
are part of any derivational suffix of flectional ending and thus we
can (and should) ignore them. In addition, we assume, that eventual
combinations of suffixes and ending longer than 10 letters are not
interesting for the guesser,

• it follows that in our example we ignore ouř, výř and špa and take only
the ends ezka (akze) and jzka (akzj),

• for each of such ends we compare its letters with the letters in the first
array. We do it from the highest index (10) to the lowest (1). There are
three possibilities1:
∗ both positions are empty (“-” signs emptiness). We do nothing,
∗ both positions are nonempty, but equal. We take the rest of the

triplet (e. g. ka:ek:k1gMnSc2,k1gMnSc4) as a key in the correspond-
ing hash in the second array and increase the associated value,

∗ positions are different. We empty the corresponding hash and
replace the content of the array element with the letter from the end
of the word. Before emptying the hash, we store the information it
contains, but only if total sum of values exceeds 20 and at least one
value exceeds 10. In such case we generate a string by joining the
following data with some separator: given end of the word form,
total sum of values and for each key its value and the key itself.

1 In fact, things are even a little bit more complicated.

4 Pavel Šmerk

Moreover, all numbers, which we store in the generated string, has
to be subtracted from the corresponding values in all hashes with
lower index than the current hash has,

• back to our example: the word end akze (word form výřezka) is the same
as the letters in the first array, so we only update the first four hashes by
adding 1 to the value associated with key ka:ek:k1gMnSc2,k1gMnSc4.
But the next word end akzj (word form špajzka) differs at the fourth po-
sition. Therefore we empty the hash, generate something like akze 50
30:ka:ek:k1gMnSc2,k1gMnSc4 20:::k1gFnSc1 (just an example, not
the real data) and put j into the fourth element of the first array,

– we sort the generated strings lexicographically, do some optimizations
(merge some very similar data etc.), strip the numbers, reverse the sort
order and the data for the guesser are done.

4 Guesser Architecture

The guesser itself is rather simple. During the start, it reads the data and
creates a regular expression from word ends and a hash, in which the keys
are the word ends and values are the information about possible lemmata
and tags. Words, which are not recognized by the morphological analyzer, are
reversed and their last three letters are cut off. The rest is matched against the
regular expression, the eventual match (which is always the longest possible
one, because of reversed sort order of the data) is found in the hash and the
corresponding value is sent to the output.

5 Future Development

The main problem of this approach is that it works well only for word forms
which have some derivational suffixes or inflectional endings, i. e. which are
integrated into the Czech language system. It will not success in guessing
indeclinable words such as expressions from other languages, foreign proper
names etc. It seems that proper handling of these words will require some
contextual information.

Acknowledgements. This work has been partly supported by the Academy
of Sciences of Czech Republic under the project 1ET200610406, by the Ministry
of Education of CR within the Center of Computational Linguistics LC536, by
the Czech Science Foundation under the project GA407/07/0679, and in the
National Research Programme II project 2C06009.

References

1. Radek Sedláček and Pavel Smrž. 2001. A New Czech Morphological Analyser ajka.
In Proceedings of the 4th International Conference TSD 2001. LNCS 2166, Springer-
Verlag, pp. 100–107.

Semi-automatic Approach to Building Dictionary
between Slavonic Languages

Abstract

Marek Grác

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic

xgrac@fi.muni.cz

Abstract. Machine translation between Slavonic languages is still in its
early stages. Existence of bilingual dictionaries have big impact on quality
of translation. Unfortunately creating such language resources is quite
expensive. For small languages like Czech, Slovak or Slovenian is almost
sure that large-enough dictionary will not be commercially successful.
Slavonic languages tends to range between close and very close languages
so it is possible to infer some translation pairs. Our presentation focus on
describing semi-automatic approach using ‘cheap’ resources for Czech-
Slovak and Serbian-Slovenian dictionary. These resources are stacked so
in earlier phases we will receive results of higher precision. Our results
show that this approach improves effectivity of building dictionaries for
close languages.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 5–5, 2008. c©Masaryk University, Brno 2008

A Lexicographer-Friendly Association Score

Pavel Rychlý

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

pary@fi.muni.cz

Abstract. Finding collocation candidates is one of the most important
and widely used feature of corpus linguistics tools. There are many sta-
tistical association measures used to identify good collocations. Most of
these measures define a formula of a association score which indicates
amount of statistical association between two words. The score is com-
puted for all possible word pairs and the word pairs with the highest
score are presented as collocation candidates. The same scores are used in
many other algorithms in corpus linguistics.
The score values are usually meaningless and corpus specific, they cannot
be used to compare words (or word pairs) of different corpora. But end-
users want an interpretation of such scores and want a score’s stability.
This paper present a modification of a well known association score which
has a reasonable interpretation and other good features.

1 Introduction

Finding collocation candidates is one of the most important and widely used
feature of corpus linguistics tools [1]. There are many statistical association
measures used to identify good collocations. Most of these measures define a
formula of a association score which indicates amount of statistical association
between two words. The score is computed for all possible word pairs and
the word pairs with the highest score are presented as collocation candidates.
The same scores are used in many other algorithms in corpus linguistics, for
example to compute collocations in grammatical relations and an importance
of grammatical relations in the Sketch Engine [2].

There are two general problems of most association scores:

1. A score is fine-tuned to one particular corpus size and/or key word
frequency. If we use a score for a corpus with very different number of
tokens the resulting list is not satisfying enough or is completely wrong.

2. The score values are usually meaningless and corpus specific, they cannot
be used to compare words (or word pairs) of different corpora. But end-
users want an interpretation of such scores and want a score’s stability.
They want to compare collocation scores of different words and on different
corpora or subcorpora.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 6–9, 2008. c©Masaryk University, Brno 2008

A Lexicographer-Friendly Association Score 7

The article is organized as follows. The following section describe notation
and the most widely used association scores. The Section 3 illustrates these two
problems on real examples. The next section defines a new score logDice, which
is a modification of the well known association score Dice [3]. The logDice score
has a reasonable interpretation, scales well on a different corpus size, is stable
on subcorpora, and the values are in reasonable range.

2 Association Scores for Collocations

Almost all association score formulas use frequency characteristics from a
contingency table, which records the relationship between two words (W1, W2).
Table 1 shows an example of a contingency table. The numbers in the right-
hand column and the bottom row are called marginal frequencies and the
number in the bottom right-hand corner is the size of the corpus.

In the rest of this paper we will uses the following symbols (the meaning is
also summarized in Table 1):

– fx = number of occurrences of word X
– fy = number of occurrences of word Y
– fxy = number of co-occurrences of words X and Y

– Rx = fxy
fx

= relative frequency of word X

– Ry = fxy
fy

= relative frequency of word Y

Table 1. Notation of frequencies of words X and Y

W1 = X W1 6= X
W2 = Y fxy fy − fxy fy
W2 6= Y fx − fxy N − fxy N − fy

fx N − fx N

3 Widely Used Association Scores

This section summarize formulas of some association scores and gives its
main characteristics. More scores, motivations, discussion of their mathematical
background and full references could be find in [4].

T-score: fxy−
fy fB

N√
f xy

MI-score: log2
fxy N
fx fy

MI3-score: log2
f 3
xy N
fx fy

8 Pavel Rychlý

Minimum Sensitivity: min Rx, Ry

Dice coefficient: D = 2 fxy
fx+ fy

MI log Freq: MI-score× log fxy, used as salience in the first version of Word
Sketches [2].

Table 2 lists the collocation candidates on lemmas to the verb break in the
window from 5 tokens to the left to 5 tokens to the right. They were computed
on the British National Corpus by the Manatee system [5].

Table 2. Collocation lists for different association scores

Fxy T-score Fxy MI-score Fxy MI3-score
the 11781 99.223 spell-wall 5 11.698 the 11781 30.591
. 8545 83.897 deadlock 84 10.559 down 2472 29.882
, 8020 80.169 hoodoo 3 10.430 . 8545 29.558
be 6122 69.439 scapulum 3 10.324 , 8020 29.193
and 5183 65.918 Yasa 7 10.266 be 6122 28.311
to 5131 65.798 intervenien 4 10.224 to 5131 28.268
a 3404 52.214 preparedness 21 10.183 and 5183 28.246
of 3382 49.851 stranglehold 18 10.177 into 1856 27.854
down 2472 49.412 logjam 3 10.131 up 1584 26.967
have 2813 48.891 irretrievably 12 10.043 a 3404 26.717
in 2807 47.157 Andernesse 3 10.043 have 2813 26.593
it 2215 43.314 irreparably 4 10.022 of 3382 26.255
into 1856 42.469 Thief 37 9.994 in 2807 26.095
he 1811 39.434 THIEf 4 9.902 it 2215 25.876
up 1584 39.038 non-work 3 9.809 out 1141 25.821

Fxy Min. Sens. Fxy MI log Freq Fxy Dice
down 2472 0.027 down 2472 57.340 down 2472 0.0449
silence 327 0.018 silence 327 48.589 silence 327 0.0267
leg 304 0.016 deadlock 84 46.909 into 1856 0.0210
law 437 0.014 barrier 207 46.389 leg 304 0.0203
heart 259 0.014 into 1856 46.197 off 869 0.0201
rule 292 0.013 off 869 42.411 barrier 207 0.0191
off 869 0.013 up 1584 42.060 law 437 0.0174
news 236 0.013 leg 304 41.980 up 1584 0.0158
into 1856 0.012 neck 180 39.336 heart 259 0.0155
barrier 207 0.011 law 437 38.805 neck 180 0.0148
away from 202 0.011 out 1141 38.783 news 236 0.0144
war 294 0.010 bone 151 38.263 rule 292 0.0142
ground 182 0.010 heart 259 37.327 out 1141 0.0135
record 287 0.010 Thief 37 36.353 away from 202 0.0135
neck 180 0.010 news 236 36.296 bone 151 0.0130

A Lexicographer-Friendly Association Score 9

4 logDice

As one can see from the previous section, Dice score gives very good results of
collocation candidates. The only problem is that the values of the Dice score are
usually very small numbers. We have defined logDice to fix this problem.

logDice = 14 + log2 D = 14 + log2
2 fxy

fx + fy

Values of the logDice have the following features:

– Theoretical maximum is 14, in case when all occurrences of X co-occur with
Y and all occurrences of Y co-occur with X. Usually the value is less then 10.

– Value 0 means there is less than 1 co-occurrence of XY per 16,000 X or
16,000 Y. We can say that negative values means there is no statistical
significance of XY collocation.

– Comparing two scores, plus 1 point means twice as often collocation, plus
7 points means roughly 100 times frequent collocation.

– The score does not depend on the total size of a corpus. The score combine
relative frequencies of XY in relation to X and Y.

All these characteristics are useful orientation points for any field linguist
working with collocation candidate lists.

5 Conclusion

In this paper, we have presented the new association score logDice. The logDice
score has a reasonable interpretation, scales well on a different corpus size, is
stable on subcorpora, and the values are in reasonable range.

Acknowledgments. This work has been partly supported by the Academy of
Sciences of Czech Republic under the projects 1ET200610406, 1ET100300419
and by the Ministry of Education of CR within the Centre of basic research
LC536 and National Research Programme 2C06009.

References

1. Smadja, F.: Retrieving Collocations from Text: Xtract. Computational Linguistics
19(1) (1994) 143–177.

2. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The Sketch Engine. Proceedings of
Euralex (2004) 105–116.

3. Dice, L.: Measures of the Amount of Ecologic Association Between Species. Ecology
26(3) (1945) 297–302.

4. Evert, S.: The Statistics of Word Cooccurrences: Word Pairs and Collocations. Un-
published Ph.D. dissertation, University of Stuttgart (2004).

5. Rychlý, P.: Manatee/Bonito – A Modular Corpus Manager. In: P. Sojka, A. Horák
(Eds.): RASLAN 2007 Proceedings (2007), pp. 65–70.

Corpus Architect
Abstract

Jan Pomikálek

Faculty of Informatics, Masaryk University, Brno, Czech Republic
xpomikal@fi.muni.cz

Abstract. In the Corpus Architect project we are developing a system for
creating text corpora, which will be easy to use even for non-technical
users. The system creates corpora from two data sources – users’ own
text documents and web pages. Users can upload their texts in various
formats or ask the system for adding domain specific web texts into their
corpora in an automated way. In the latter case the domain of the web
texts is defined in terms of key words.
Once all the desired texts are collected for the corpus, with a single click
users can have the texts part-of-speech tagged, lemmatized and loaded
into the Sketch Engine corpus manager. With the corpus manager, users
can instantly make use of fast searching in the corpus. They also immedi-
ately get access to important corpus derived statistical information, such
as word sketches and statistical thesaurus.
The interface of the Corpus Architect is designed with an emphasis
on simplicity and easiness of use. The user is asked for as little input
as possible. No decisions are requested for options if the value can be
detected in an automated way or a reasonable default can be used.
A live demo of the system will be presented. However, as long as this is
a work in progress and many features are still unimplemented, only the
basic functionality will be shown.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 10–10, 2008. c©Masaryk University, Brno 2008

The Saara Framework
Work in Progress

Vašek Němčík

NLP Laboratory
Faculty of Informatics, Masaryk University

Brno, Czech Republic
xnemcik@fi.muni.cz

Abstract. The determination of reference and referential links in dis-
course is one of the important challenges in natural language under-
standing. The first commonly adopted step towards this objective is to
determine coreference classes over the set of referring expressions. We
present a modular framework for automatic anaphora resolution which
makes it possible to specify various anaphora resolution algorithms and
to use them to build AR systems, in principle, for any natural language.
The functionality of the system is shown on selected salience-based algo-
rithms customized for Czech.

1 Introduction

In this work, we present Saara (System for Automatic Anaphora Resolution
and Analysis), a framework for anaphora resolution (AR) which is modular in
many ways. Modularity in the context of AR has many obvious advantages.
It allows easy experimentation on various algorithms, their evaluation using
various metrics, and easy use of already implemented algorithms with vari-
ous languages and data formats. In our framework, this was achieved mainly
by defining multiple abstraction levels and separate modules for individual
phases of processing. The architecture is in accord with the principles formu-
lated by Byron and Tetreault [1] for their own system.

Space and time constraints do not permit an investigation across the whole
spectrum of AR algorithm types. We chose to focus on traditional algorithms
based on the concept of salience. Salience-based algorithms serve as a sensible
initial probe for a language and at the same time provide a good basis for
further implementations exploiting more complex resources. We evaluate the
performance of these approaches for Czech.

At the moment, we decided to disregard grammatical coreference and
rather concentrate on textual anaphora. Whereas grammatical coreference
phenomena are typically subject to language-specific constraints applicable to
particular syntactic constructions, textual reference phenomena tend to follow
similar principles across languages, and therefore it makes sense to experiment
with cross-linguistic reuse of algorithms.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 11–16, 2008. c©Masaryk University, Brno 2008

12 Vašek Němčík

In the next section, we briefly review other modular AR systems and
AR systems for Czech proposed in existing literature. Section 3 describes the
architecture of our framework, sketches the algorithms re-implemented and
provides evaluation figures. Finally, the last section suggests directions for
future work.

2 Related Work

At present, mechanisms for performing anaphora resolution are becoming
integral parts of modern NLP systems. Also for Czech, several AR algorithms
have been formulated (e.g. [2,3,4]), however, the efforts to implement them
have been substantially discouraged by the lack of Czech data suitable for
evaluating AR.

The situation has changed only recently through the emergence of the
Prague Dependency TreeBank [5,6], which contains annotation of pronominal
coreference on its tectogrammatical level of representation. The Prague Depen-
dency TreeBank (PDT), in its version 2.0, contains tree-representations of about
50,000 sentences with approximately 45,000 manually annotated coreference
links (over 23,000 grammatical ones, and over 22,000 textual ones).

The only other relevant AR system for Czech known to me at this moment,
was presented in the master thesis of Linh [7]. Her system, called AČA,
contains a rule-based algorithm for resolving pronominal anaphors and defines
machine-learning algorithms for all types of anaphors annotated in PDT 2.0. In
our opinion, the only rather minor flaw that can be pointed out is the lack of
detail concerning the presented evaluation figures.

The figures given in [7] are rather difficult to compare with the figures for
our system presented below. Firstly, in AČA (unlike in Saara), the annotation
data is used to detect the anaphors. Secondly, it treats nodes in certain artifi-
cially generated constructions as textual anaphora, whereas in our system, we
exclude them either as nodes of technical character, or beyond the range of the
AR task at the analysis depth we aim at.

To avoid problems of this sort, we took inspiration from earlier modular
AR systems and their advantages. Here we mention at least the two which we
consider most notable.

The first one was developed at the University of Rochester by Byron
and Tetreault [1]. The authors emphasize the advantages of modularity and
encapsulation of the system modules into layers. For their system, they define
three: the AR layer containing functions addressing AR itself, the translation
layer for creating data structures, and the supervisor layer for controlling the
previous layers.

Another modular system was produced by Cristea et al. [8] and defines
layers from a different perspective. The representation of the discourse being
processed is divided into the text layer, containing the representation of the
individual referring expressions, the projection layer, consisting of feature
structures with attribute values describing the individual referring expressions,

The Saara Framework 13

and finally the semantic layer with representations of the individual discourse
entities.

We agree with the authors of the above-mentioned frameworks that mod-
ularity is an invaluable characteristic in the context of AR, and we have put
emphasis on this fact when laying the foundations for our own framework,
described in the following section.

3 Saara and the Algorithms Re-implemented

In this section, we briefly describe the main features of our modular AR
framework, sketch the algorithms used, and provide evaluation figures for
them.

The main aspects of modularity reside in encapsulation of the AR algo-
rithms. The encapsulation is achieved by defining two processing levels: mark-
able1 level and sentence structure level. All AR algorithms are formulated on
the markable level, and thus abstract away from the actual formalism and data
format used. Markable features and relations among them are accessible only
through an interface that “translates” the concept in question to the actual sen-
tence representation.

In other words, for each new data format, it is necessary to define methods
determining how to recognize referential expressions, anaphors and important
relationships between them (e.g. morphological agreement, embededness, the
syntactic role in the current clause). Then, in principle, any AR algorithm
implemented can be used with this data.

As already mentioned, we investigated classic (mainly salience-based) AR
algorithms dealing with textual pronominal anaphora and compared their
performance on Czech – using the annotation in PDT 2.0 as golden standard.
The following algorithms have been re-implemented:

Plain Recency As a baseline, we consider an algorithm based on plain
recency, which links each anaphor to the closest antecedent candidate agreeing
in morphology.

The Hobbs’ Syntactic Search [9] is one of the earliest yet still popular
AR approaches. Unlike all other approaches mentioned here, it does not build
any consecutive discourse model. It is formulated procedurally, as a search for
the antecedent by traversing the corresponding syntactic tree(s). The traversal
is specified by a number of straightforward rules motivated by research in
transformational grammar. In spite of the fact that the underlying ideas are
quite simple, the algorithm accounts for numerous common instances and its
performance on English is even today regarded as respectable.

The BFP Algorithm [10] employs the principles of centering theory, a
more complex theory for modeling local coherence of discourse. One of its
main claims is that each utterance has a single center of attention. Further it
postulates certain rules and preferences on how centers can be realized, referred

1 Markable is a collection of sentence representation tokens that correspond to phrases that are either themselves

anaphors, or have the potential to be their antecedents.

14 Vašek Němčík

Table 1. Performance of the system in traditional measures

Recency Haj87 HHS95 Hobbs BFP L&L
Classic
Precision 34.21 33.91 33.98 26.76 53.36 43.12
Recall 33.70 33.41 33.48 26.30 39.90 42.18
F-measure 33.95 33.66 33.72 26.53 45.66 42.64
Success rate 36.79 36.47 36.55 28.71 43.56 46.05
MUC-6
Precision 41.78 41.33 41.33 38.87 52.26 49.86
Recall 37.28 36.81 36.80 33.91 39.20 46.28

to etc. These rules account for numerous phenomena concerning anaphors,
such as certain garden-path effects. The BFP algorithm considers all possible
referential linking combinations between two neighbouring utterances and
applies the claims of centering theory to rule out the implausible ones and
subsequently to select the most preferred one among those left.

Activation models considering TFA2 were originally formulated in the
Praguian framework of Functional Generative Description. It stipulates that
the hearer and speaker co-operate during communication to build a common
structure, the so-called Stock of Shared Knowledge (SSK), which among other
things, reflects the fact that some entities previously mentioned in the discourse
are more activated, i.e. closer to the attention of the hearer, than others.
Hajičová [2] presented a simple model of SSK and a set of rules for updating
it based on the current utterance and its topic-focus articulation (TFA). These
rules are applied iteratively to preserve the correctness of the model at each
point of the discourse. An anaphor is linked to the most activated item of the
SSK agreeing in morphology. Hajičová, Hoskovec, and Sgall [4] extended the
previous model by defining a more fine-grained activation scale and certain
referential constraints.

The method of combining salience factors is inspired by the RAP system
presented by Lappin and Leass [11]. Its main idea is that the salience of a
discourse object is influenced by a variety of factors. Each of them contributes
to its salience in an uniform way and can be attributed to certain well-defined
features of the corresponding referring expression and its context. For example,
one factor “rewards” entities mentioned in the subject position. With each new
sentence, the salience values of all previously considered entities are cut by half
to account for salience fading through time. The antecedent of an anaphor is
identified as the most salient object according to the adopted factors.

The evaluation figures for the above-mentioned AR algorithms within Saara
are given in Table 1. The presented results offer an exceptional opportunity
to compare the individual algorithms. It is always difficult to compare results
given by different authors, or obtained through different systems, as it is

2 TFA stands for Topic-focus articulation; similar ideas are also known as information structure, or functional

sentence perspective.

The Saara Framework 15

usually not clear what exactly has been counted and taken into account,
and whether the choice of the data set used for evaluation did play a role.
In contrast, the figures provided here offer a basis for a straightforward
comparison, as they were acquired using the same pre-processing facilities, the
same linguistic assumptions and the same data.

4 Future Work

The main goal of our work is to arrive at a modular, state-of-the-art AR system
for Czech that would be readily used as a module in bigger NLP applications.
With regard to the figures presented in the previous section, it is obvious that
the precision of the algorithms needs to be improved. We would like to pursue
several means of achieving that.

Firstly, as error analysis revealed this to be an interesting point, we plan
to investigate the referential properties of Czech anaphors across clauses of
complex sentences. Next, we are interested in the role of TFA in anaphorical
relations. In spite of the abundant theoretical studies, practical experiments
haven’t confirmed any relevant theoretical claims based on TFA values. Finally,
we aim at improving the quality of the AR process by exploiting linguistic
resources available for Czech, especially the Verbalex valency lexicon [12] and
Czech WordNet [13].

Acknowledgments. This work has been partly supported by the Ministry of
Education of CR within the Center of basic research LC536 and in the National
Research Programme II project 2C06009.

References

1. Byron, D.K., Tetreault, J.R.: A flexible architecture for reference resolution. In:
Proceedings of the Ninth Conference of the European Chapter of the Association
for Computational Linguistics (EACL-’99). (1999).

2. Hajičová, E.: Focusing – a meeting point of linguistics and artificial intelligence. In:
Jorrand, P., Sgurev, V. (Eds.): Artificial Intelligence Vol. II: Methodology, Systems,
Applications. Elsevier Science Publishers, Amsterdam (1987), pp. 311–321.

3. Hajičová, E., Kuboň, P., Kuboň, V.: Hierarchy of salience and discourse analysis and
production. In: Proceedings of Coling ’90, Helsinki (1990).

4. Hajičová, E., Hoskovec, T., Sgall, P.: Discourse modelling based on hierarchy of
salience. The Prague Bulletin of Mathematical Linguistics (64) (1995), pp. 5–24.

5. Hajič, J., et al.: The Prague Dependency Treebank 2.0. Developed at the In-
stitute of Formal and Applied Linguistics, Charles University in Prague. (2005)
http://ufal.mff.cuni.cz/pdt2.0/.

6. Kučová, L., Kolářová, V., Žabokrtský, Z., Pajas, P., Čulo, O.: Anotování koreference
v pražském závislostním korpusu. Technical report, Charles University, Prague
(2003).

7. Linh, N.G.: Návrh souboru pravidel pro analýzu anafor v českém jazyce. Master’s
thesis, Charles University, Faculty of Mathematics and Physics, Prague (2006).

16 Vašek Němčík

8. Cristea, D., Postolache, O.D., Dima, G.E., Barbu, C.: AR-engine – a framework
for unrestricted co-reference resolution. In: Proceedings of The Third International
Conference on Language Resources and Evaluation, LREC 2002, Las Palmas, Spain
(2002).

9. Hobbs, J.R.: Resolving pronoun references. In: Grosz, B.J., Spärck-Jones, K.,
Webber, B.L. (Eds.): Readings in Natural Language Processing. Morgan Kaufmann
Publishers, Los Altos (1978), pp. 339–352.

10. Brennan, S.E., Friedman, M.W., rd, C.J.P.: A centering approach to pronouns. In:
Proceedings of the 25th Annual Meeting of the ACL, Stanford (1987), pp. 155–162.

11. Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Compu-
tational Linguistics 20(4) (1994), pp. 535–561.

12. Hlaváčková, D., Horák, A.: VerbaLex – New Comprehensive Lexicon of Verb Va-
lencies for Czech. In: Computer Treatment of Slavic and East European Languages,
Bratislava, Slovakia, Slovenský národný korpus (2006), pp. 107–115.

13. Pala, K., Smrž, P.: Building Czech Wordnet. Romanian Journal of Information
Science and Technology 7(2–3) (2004), pp. 79–88.

TIL and Logic Programming

Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

VŠB-Technical University Ostrava
17. listopadu 15, 708 33 Ostrava, Czech Republic

m.tina.cihal@gmail.com, nikola.ciprich@linuxbox.cz,
marie.duzi@vsb.cz, mensikm@gmail.com

Abstract. The paper introduces a method of transition from TIL into
Prolog system and vice versa, in order to utilize Prolog inference machine
in the deductive system of TIL. We specify a subset of the set of TIL
constructions the elements of which can be encoded in Prolog language,
and introduce the method of translation from TIL into Prolog. Since
Prolog is less expressive than TIL, we have to build up a TIL functional
overlay that makes it possible to realize the reverse transition from Prolog
into TIL in a near to equivalent way.

Key words: TIL, T IL-Script language, inference machine, Prolog

1 Introduction

Transparent Intensional Logic (TIL) is a highly expressive logical system apt
for the logical analysis of natural language.1 In our project ’Logic and Artificial
Intelligence for Multi-agent Systems’ we deal with the problem of agents’
communication with each other as well as with their environment. Human-
computer communication should be smooth and near to isomorphic to natural-
language communication. For this reason we voted for the language of TIL
constructions as a specification and communication language of a multi-agent
system. We develop the T IL-Script language, a computational variant of
TIL, which serves as a content language of agents’ messaging.2 T IL-Script
is a TIL dialect using only ASCII characters and slightly adjusted semantics.
On the other hand, a great expressive power is inversely proportional to
an easy implementation of a suitable automatic deductive system. Since TIL
is a logic based on the infinite ramified hierarchy of types, it is impossible
to create a complete logical calculus and make use of a standard automatic
theorem prover. Though TIL deductive system has been theoretically specified,
its implementation is still a work in progress. For this reason we decided to
specify a subclass of TIL and to utilize a first-order inference machine such as
Prolog. This is a feasible way due to TIL being a fully compositional system and
from this point of view extensional calculus.

1 See, for instance, [7] and [8]. 2 For details on the project, see [4]. T IL-Script and agents’ messaging is FIPA

compliant. For FIPA standards see [6]. More on T IL-Script , see [2] or [3].

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 17–30, 2008. c©Masaryk University, Brno 2008

18 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

The goal of this paper is to specify a subset of TIL constructions which
can be encoded in Prolog, together with the algorithm of their translation. The
transition from TIL into Prolog and vice versa has to be specified in a near to
equivalent way, i.e., without the loss of important information encoded by TIL
constructions. Thus prior to the translation proper, TIL functional overlay of the
Prolog machine has to be specified. In particular, we have to take into account
that standard Prolog does not work with modal and temporal parameters,
and with the types of denoted entities. Moreover, T IL-Script is a functional
language whereas Prolog a relational one, which is also a problem that has to
be dealt with prior to translation proper. In the paper we propose a general
strategy of adjusting TIL constructions into the form that can be processed by
Prolog.

The paper is organized as follows. Section 2 briefly describes basic princi-
ples of programming in logic using Prolog. The main Section 3 is a descrip-
tion of the transition from TIL into Prolog. We first describe the translation
of simple sentences into Prolog facts, rules and goals. Then we specify the
method of translating wh-questions and yes-no questions. Finally, an algorithm
of the specification of TIL subset of constructions transferable into Prolog is pre-
sented. Concluding Section 4 is an outline of future research.

2 A Brief Description of the Prolog System

Prolog can be defined as a couple (K, I), where K is the program base consisting
of facts, rules and queries encoded in a first-order language, and I is an
inference machine that makes it possible to derive consequences of K.3 The
inference machine is based on the general resolution algorithm for the first-
order predicate logic (FOL). An input for the resolution algorithm is a set of
formulas in the Skolem clausal form. Since FOL is only partly decidable,4 the
clauses of a Prolog language are limited to the decidable subset of FOL, namely
the set of Horn clauses. To put this description on a more solid ground, we
define:

Literal is an atomic formula or its negation. For instance, p(x, y), ¬q(f (x))
are literals. Clause is a disjunstion of (positive and/or negative) literals:

C = l1 ∨ l2 ∨ . . . ∨ ln ∨ ¬m1 ∨ . . . ∨ ¬mk .

Skolem clausal from of a formula is a conjunctive normal form without
existential quantifiers

SCF = ∀x1 . . . ∀xm(C1 ∧ . . . ∧ Cn),

where C1, . . . , Cn are clauses.

3 For details on Prolog see, e.g. [1]. 4 As a consequence of Gödel’s incompleteness theorem, there is no proof

calculus deciding FOL. Church proved that there are calculi that partly decide FOL; this means that if a

formula F is logically valid then it is provable, whereas if F is not logically valid then it can be the case that there

is no finite proof of F in the calculus.

TIL and Logic Programming 19

Each FOL formula F can be transformed into SCF in such a way that the
transformation is consistency preserving. In other words, if F has a model then
SCF has a model as well. And if SCF is a contradiction then F is a contradiction
as well. Thus the proof by general resolution is an indirect proof. The proof
method is guarded by the following rules:

General quantifier elimination: ∀xA(x) ` A(t/x), where the term t is
substitutable for the variable x.

General resolution rule: Let Ai, Bi, l1, l2 be atomic formulas of FOL, σ a
collision-less substitution such that l1σ = l2σ. Then the following rule is valid

A1 ∨ . . . ∨ Am ∨ l1, B1 ∨ . . . ∨ Bn ∨ ¬l2
A1σ ∨ . . . ∨ Amσ ∨ B1σ ∨ . . . ∨ Bnσ

An SCF formula is not satisfiable if and only if the empty clause (#) is
derivable from SCF by step-by-step application of the general resolution rule.

Method of Programming in Logic (Prolog) is a special case of the general
resolution method with three major restrictions. First, it works only with Horn
clauses, i.e. clauses with at most one positive literal:

HC = l ∨ ¬m1 ∨ . . . ∨ ¬mk.

Second, Prolog mostly applies a goal driven, depth-first strategy with back-
tracking for generating resolvents. Though this strategy is not complete, it is
more effective than other strategies evaluating the computational tree com-
pletely. Third, negation is dealt with as a failure to prove (the Close World As-
sumption).

Notation in Prolog.
Rule (Conditional statement): P:- Q1,. . . ,Qn.

Atomic formula P = p(t1,. . . ,tm) is the head of the rule, ti are its formal
parameters; atomic formulas Q1,. . . ,Qn is the body (tail) of the rule with the sub-
goals Qi.

Note that conditional statement is equivalent to

(Q1 ∧ . . . ∧Qn) ⊃ P or i(¬Q1 ∨ . . . ∨ ¬Qn ∨ P).

Fact: P. A Horn clause without negative literals, i.e., an atomic formula.
Goals: ?- Q1, . . . , Qn. A Horn clause without a positive literal: ¬Q1 ∨ . . . ∨ ¬Qn.

Note that this formula is equivalent to (Q1 ∧ . . . ∧Qn) ⊃ False.
An empty clause: #. (Contradiction, success).

Logic program is a sequence of rules and facts. Prolog inference machine
derives answers to the questions (goals) by applying respective substitutions
in order to instantiate variables in goals and generate resolvents. Derivation of
an empty clause is a success; the respective substitution is then an answer to
the goal.

20 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

3 Transition from TIL into Prolog

When encoding TIL constructions in Prolog, we focus on the constructions that
construct empirical entities of type oτω, (oα)τω and (oα1 . . . αn)τω, i.e., proposi-
tions, properties and relations-in-intension, respectively, or mathematical facts
of type o. Constructions of propositions are translated as Prolog facts/rules
or Yes–No questions according whether a respective message is of a kind ‘In-
form’ or ‘Query’. Constructions of properties and relations are translated as
Wh-questions.5

When creating a Prolog base of facts and rules we have to record the types
of entities that receive mention in TIL constructions. In particular, types of
intensions have to be distinguished from types of extensions. To this end we
use a special Prolog predicate ‘type’. Prolog base of facts and rules then contains
Prolog translation of TIL constructions v−constructing True (or False in case of
an incorrect data collection), i.e., values of the propositions in a given world w
at a time t of data collection. When querying on this base, we use a construction
of an intension and ask for its value in a state of affairs as recorded in or entailed
by the Prolog base.

3.1 Building up a Prolog base of facts and rules

Prolog base of facts and rules is created by transferring indicative messages of
the kind ‘Inform’, the content of which is encoded in the T IL-Script language.

For instance, the proposition that Charles is a professor constructed by the
Closure

λwλt[0Professorwt
0Charles]

and encoded in T IL-Script by6

[\w:World \t:Time [[’Professor@wt ’Charles]]].

is translated into a Prolog fact

prof(charles). (1)

By means of the Prolog predicate ‘type’ we remember TIL type of Professor, i.e.,
the type (oι)τω of an individual property, in order to reconstruct the original
proposition in the reverse translation into T IL-Script .

The proposition that all professors are employees constructed by the Clo-
sure

λwλt ∀x[[0Professorwt x] ⊃ [0Employeewt x]]

is translated into the Prolog rule (accompanied by the respective type predi-
cates)

empl(X):- prof(X). (2)

5 For details on the analysis of questions and answers in TIL see, e.g., [5]. 6 For details on the T IL-Script

language see, e.g., [1] or [2].

TIL and Logic Programming 21

Similarly the proposition that cars and bicycles are mobile agents constructed
by

λwλt ∀x[[[0Carwt x] ∨ [0Bikewt x]] ⊃ [[0Mobile 0Agent]wt x]]

is translated into the Prolog rule (accompanied by the respective type predi-
cates)

mobile_agent(X):- car(X); bike(X). (3)

So far so good. However, TIL is based on the functional approach whereas
Prolog is a relational language. Thus the translation of constructions containing
constituents v−constructing functions of types (αβ) and attributes (empirical
functions) of types (αβ)τω, where α 6= o, is not so straightforward. We have
to first transform them into constructions of relations of type (oαβ)τω by
introducing an auxiliary variable.

For instance, the fact that Charles’ only car is a mobile agent is con-
structed by

λwλt[[0Mobile 0Agent]wt [0The[0Car_of wt
0Charles]]]

Types. Mobile/((oι)τω(oι)τω) – modifier; Agent/(oι)τω; Car_of ((oι)ι)τω;
The/(ι(oι)) – the singulariser (‘the only . . . ’).
The respective code in the T IL-Script language is this:

[\w:World [\t:Time [
[’Mobile ’Agent]@wt [’Sing [’Car_of@wt ’Charles]]

]]].

We have to simplify this construction by ignoring the singulariser, and trans-
form this Closure into the Prolog rule

mobile_agent(Y):- car_of(Y,charles).

Gloss. For all y, if y is a car of Charles then y is a mobile agent.
In general, the pre-processing of constructions of empirical functions in TIL

is driven by this strategy. If Attr → (αβ)τω is a construction of an empirical
function, P → (oα)τω a construction of an α-property and b an entity of type β,
then the construction of a proposition of the form

λwλt[Pwt [Attrwt
0b]]

is modified into (x → α)

λwλt[∀x[[x = [Attrwt
0b]] ⊃ [Pwt x]]]

which is then translated into the Prolog rule

p(X) :- attr(X,b).

Moreover, TIL functional overlay over the so-created Prolog base of facts and
rules must also make it possible to distinguish between analytically necessary
facts and rules and empirical ones.

22 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

For instance, the above proposition that cars and bicycles are mobile agents
could be specified as an analytical one, meaning that necessarily, all cars or
bicycles are mobile agents. The respective TIL analysis is then this Closure

∀w∀t∀x[[[0Carwt x] ∨ [0Bikewt x]] ⊃ [[0Mobile 0Agent]wt x]].

However, the resulting Prolog rule will be the same as the above rule (3). In
such a case we must remember in the TIL ontology that the property of being a
mobile agent is a requisite of the properties of being a car and being a bicycle.

Another problem we meet when translating TIL constructions into Prolog
is the problem of equivalences. For instance, inserting a formula of the form
(p ≡ q) ⇔ (p ⊃ q) ∧ (q ⊃ p) into the Prolog base might cause the inference
machine to be kept in an infinite loop. Yet we need to record such equivalences
in TIL ontology. This is in particular the case of a meaning refined by definition.

Imagine, for instance, the situation of an agent a who does not have in its
ontology the concept of a car park with vacancies. Then a may learn by asking
the other agents that “A car park with vacancies is a car park some of whose
parking spaces nobody has occupied yet”. The content of a ‘query’ message
asking for the definition of ‘car park with vacancies’ is [0Unrecognized 0[0Vac
0Car_Park]]. The reply message content is

[0Refine 0[0Vac 0Car_Park]
0[λwλtλx[[0Car_Parkwt x] ∧ ∃y[[0Space_of wt y x] ∧ ¬[0Occupiedwt y]]]]].

Thus the constructions [0Vac 0Car_Park] and

[λwλtλx[[0Car_Parkwtx] ∧ ∃y[[0Space_of wt yx] ∧ ¬[0Occupiedwt y]]]]

are ex definitione equivalent by constructing one and the same property. This
fact can be encoded in Prolog only by a general rule:

vac_park(X,Y) :- park(X), space_of(Y,X), non_occupied(Y).

Gloss. (For all X, Y), X has a parking vacancy Y if X is a car park and Y is a space
of X and Y is not occupied.

3.2 Querying in Prolog

As stated above, messages of the kind ‘Query’ with the semantic content
constructing propositions represent Yes–No questions on the truth-value of the
respective proposition in a given state-of-affairs. The semantic core of a Yes–No
question (the content of the respective message) is thus the same as that of a
corresponding indicative sentence; a construction of a proposition.

For instance, the above example of the proposition that “Charles is a
professor” is encoded by a message with the same content as the corresponding
query “Is Charles a professor?”. The two messages differ only in their kind. The
former is of the kind ‘Inform’, the latter of the kind ‘Query’.

However, the Prolog code will differ. We now ask whether this proposition is
entailed by the recorded Prolog knowledge base. To this end we must translate

TIL and Logic Programming 23

the message as a negative Prolog fact so that Prolog inference machine can check
whether the negated proposition contradicts the base:

?- prof(charles).

In this case Prolog answers Yes providing the fact (1) is contained in its base.
We can also put Yes–No questions on the existence of individuals with such

and such properties. In such a case Prolog would answer not only simple Yes,
but also which individuals (according to its knowledge) are such and such.

For instance, the query “Are some employees professors?” is analysed by
TIL Closure (Employee, Professor/(oι)τω; x → ι)

λwλt[∃x[[0Employeewt x] ∧ [0Professorwt x]]].

The T IL-Script encoding is then

[\w:World [\t:Time [Exists x:Indiv [
’And [’Empl@wt x] [’Prof@wt x]

]]]].

And the respective Prolog code is this

?- empl(X), prof(X).

Now Prolog tries to succeed in deriving these two goals. To this end Prolog
searches its knowledge base for facts and rules containing the empl or prof
in their head, and if possible Prolog unifies the variable X with the respective
arguments of the found rules/facts. In our case empl(X) first matches with (2)
and then prof(X) with (1) resulting in the success by substituting charles for
X. Thus Prolog answer is Yes, X=charles.

When raising ‘wh-questions’ we ask for the value of an α-property or an
α-relation-in-intension in a given world w at time t. As explained in [5], the
analysis is driven by a possible answer. If an answer is a set of individuals, we
construct a property. In general, if an answer is a set of tuples of α1, . . . , αm-
objects, we construct a relation-in-intension of type (oα1 . . . αm)τω.

For instance, the answer to the question “Which professors are older than
60 years?” can be {Materna, Duží}, i.e., the set of individuals. Thus we have to
construct the property of individuals:

λwλtλx[[0Professorwt x] ∧ [0> [0Agewt x] 060]],

where Age is an attribute of type (τι)τω. Again, the respective T IL-Script code
is

[\w:World [\t:Time [\x:Indiv [
’And [’Prof@wt x] [’> [’Age@wt x] ’60]

]]]].

24 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

In order to translate this question into Prolog, we have to convert the attribute
Age into a binary relation using an auxiliary variable in a similar way as
described above. The resulting construction is

λwλtλx[∃y[[0Professorwt x] ∧ [[y = [0Agewt x]] ∧ [0> y 060]]]].

This Closure is transformed into three Prolog goals as follows:

?- prof(X), age(Y,X), Y>60.7

Now there is another problem generated by Prolog relational approach.
Whereas a functional program would return the value of the above prop-
erty recorded in a given knowledge base state, i.e., a set of individuals,
Prolog answer in case of the success in meeting these goals will be, e.g.,
Yes, X=Duzi, Y=60. If we want another individual instantiating the property,
we have to keep entering semicolon, ‘;’, until obtaining the answer No.

In order to overcome this difficulty, we may use Prolog ‘findall/3’ predicate
which has three arguments: (what, from where, to where). However, in such a
case we have to specify one goal (from where). Here is how. We create a new
unique name of the property the instances of which are asked for. For instance,
the above property can be coined ‘Aged_professor’, and the equality definition
“Aged professors are professors older than 60 years” inserted as follows:

λwλtλx[0Aged_professorwtx] = λwλtλx[[0Professorwtx] ∧ [0> [0Agewt x]060]].

However, as explained above, in Prolog we cannot deal with equivalences,
because equivalence would cause Prolog attempting to succeed in meeting a
goal ad infinitum. Thus we have to insert a new rule the head of which is the
definiendum and tail is the definiens of the inserted definition. The resulting
Prolog code is

?-assert(aged_prof(X):-prof(X), age(Y,X), Y>60.),
findall(X,aged_prof(X),Result),
retract(aged_prof(X):-prof(X), age(Y,X), Y>60.).8

The predicate assert serves for inserting the auxiliary rule into Prolog base,
and retract for erasing it.

The process of generating a generic property corresponding to a ‘wh-
-question’ is this:

1) Transform the TIL compound construction of a property into an equivalent
construction by inserting a new unique primitive concept of the property.
If C1, . . . , Cm are the respective constituents of the compound Closure, then
the schema of TIL pre-processing is as follows:
λwλtλx[0C_newwt x] = λwλtλx[[C1

wtx] ∧ . . . ∧ [Cm
wt x]].

2) Translate into Prolog: c_new(X):-c1(X),...,ck(X).

7 Due to Prolog depth-first, left-to-right evaluation strategy the order of the goals is important here.

The variable Y has to be instantiated first with the value of age_of X, and then compared with 60.
8 The method of processing the attribute Age_of is similar as above and it is described in Section 3.3.1.

TIL and Logic Programming 25

3) If the rule ‘cnew’ is contained in Prolog base, then
findall(X, c_new(X), Result).
Otherwise, i.e., if ‘cnew’ is not contained in Prolog base, then
?-not(c_new(X)), assert(c_new(X):-c1(X), ..., ck(X)),

findall(X, c_new(X), Result),
retract(c_new(X):-c1(X), ..., ck(X)).

3.3 Schema of the transition from TIL into Prolog

It should be clear by now that prior to the translation of TIL constructions into
Prolog, a lot of pre-processing has to be done in TIL. These modifications vary
according to the structure of constructions and the type of entities constructed
by primitive concepts, i.e., Trivialisations of non-constructive entities. These
primitive concepts fully determine a conceptual system within which we work,
and they have to be contained in the respective ontology together with their
types. The choice of a conceptual system depends, of course, on the domain
area and also on application goals and problems to be solved.

By way of summary we now present a general schema for TIL pre-
processing and translation of particular constructions into Prolog code accord-
ing to the type of entities that receive mention by constituents of a construction.
Recall that types of the entities have to be also remembered by Prolog, which
we do not indicate here.

Questions are expressed as constructions of intensions, the extension of
which in a particular world w and time t we want to know. In case of wh-
question the respective constructed entity is a property or relation. In case
of Yes–No question it is a proposition. In case of mathematical questions we
consider constructions of mathematical functions the value of which we want
to compute. In what follows we use double arrow ‘⇒’ for ‘translated or pre-
processed into’.

3.3.1 Analysis and translation of simple facts or wh-queries. First we
present a schema of pre-processing simple constructions that do not contain
constituents of truth-value functions and quantifiers. Let constructions P, Attr,
Rel and Calc be constructions of such a simple form.

1. Constitents of propositions. Let P → o, Then λwλtP ⇒ ?-p. or p.
Example. “Is Charles a professor?”;
λwλt [0Prof wt

0Charles] ⇒ ?- prof(charles).
2. Constituents of α-properties. Let P → (oα)τω; x → α. Then

λwλtλx[Pwtx] ⇒ ?-p(X).

Example. “Who are our the associate professors?”;
λwλtλx[[0Associate 0Prof]wt x] ⇒ ?-assoc_prof(X).

3. Constituents of (αβ)-attributes. Let Attr → (αβ)τω, P → (oα)τω; b/β; α 6= o;
x → β; y → α.
Now we have to distinguish two cases.

26 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

a) The constituent is used in an ‘Inform’ message, the content of which is
of the form λwλt [Pwt[Attrwt b]]. Then
λwλt [Pwt [Attrwt b]] ⇒ λwλt [∀y[[0 = y [Attrwt b]] ⊃ [Pwt y]]]
⇒ p(Y) :- attr(Y,b).
Example. “Charles’ father is a professor”.
λwλt [0Professorwt[0Father_of wt

0Charles]] ⇒
λwλt [∀y[[0 = y [0Fatherwt

0Charles]] ⊃ [0Professorwt y]]]
⇒ prof(Y) :- father(Y,charles).

b) The constituent is used in a ‘Query message’ and it is of the form
λwλtλx[Pwt[Attrwt x]]. Then
λwλtλx[Pwt[Attrwt x]] ⇒ λwλtλx[∃y[[0= y[Attrwt x]] ∧ [Pwt y]]]
⇒ ?- attr(Y,X), p(Y).
Example. “Whose father is a professor?”.
λwλtλx[0Professorwt[

0Father_of wt x]] ⇒
λwλtλx[∃y[[0= y[0Fatherwt x]] ∧ [0Professorwt y]]]]
⇒ :- father(Y,X), prof(Y).

4. Constituents of relations-in-intension. Let Rel → (oαβ)τω; x → α; y → β.
Then
λwλtλxλy[Relwt xy] ⇒ ?-rel(X,Y).
Example. “Who is affiliated to whom?”;
λwλtλxλy[0Affiliatewtxy] ⇒ ?-affiliate(X,Y).

5. Constituents of mathematical functions. Let Calc→ (ττ); x, y → τ; m/τ. Then
[Calc 0m] ⇒ ?- Y is calc(m).
λx [Calc x] ⇒ λxλy[0= y[Calc x]] ⇒ ?-Y is calc(X).
In general, constituents of n−ary mathematical functions are transferred as
follows. Let Calcn/(ττ . . . τ). Then
λx1. . . xn[Calc x1. . . xn] ⇒ λx1. . . xnλy[0= y[Calc x1. . . xn]] ⇒
?- Y is calc(X1,...,Xn).
Example. “Which is the value of the square root of 144?”;
[0Square_root 0144] ⇒ ?- Y is square_root(144).

3.3.2 Analysis and translation of more complex wh-queries. Since Prolog
queries can be only Horn clauses without a positive literal, i.e., clauses of a
form ¬l1 ∨¬l2∨ . . . ¬lm, their general form is ¬(l1 ∧ l2∧ . . . lm), which in Prolog
notation is recorded as ?- l1, l2, . . . ,lm. The clauses l1,. . . ,lm are the goals to be
met.

Thus a TIL construction to be translated must be a conjunctive construction
of a property or relation, or of an existential proposition. Let C1, . . . , Cm be
simple constructions not containing constituents of truth-value functions and
quantifiers. Then the general form of TIL construction translatable into a Prolog
wh-question is:

λwλtλx1 . . . xn[C1 ∧ . . . ∧ Cm], or λwλt[∃x1 . . . xn[C1 ∧ . . . ∧ Cm]].

Schema of the resulting Prolog wh-query is

?- c1, ..., ck.

TIL and Logic Programming 27

where the c1, ..., ck are simple goals created according to the items (1)–(5)
of the proceeding paragraph.

According to the complexity of a construction C we first create the structure
tree of C, leafs of which are simple constituents of C. The pre-processing and
translation of C is then executed bottom up, from leafs to the root of the tree.

Example. “Who are the professors older than 2× 30 years?”.
The analysis is a construction of the property of being a professor older than
2× 30 years:

λwλtλx[0∧[0Prof wt x][0> [0Age_of wt x][0× 02 030]]].

The structure tree is this:
Level 0 λwλtλx
Level 1

0
∧

Level 2 [0Prof wtx] 0
>

Level 3 [0Age of wtx] [0×0
2

0
30]

Beginning with the bottommost level 3, we transform leafs containing attributes
and mathematical functions in compliance with the above rules (3) and (5),
respectively, into constituents [0 = y [0Age_of wt x]] and [0 = z[0×02 030]]. The
auxiliary variables y, z become the arguments of the parent node at level 2:
[0 > y z]. The node [0Prof wt x] remains without change, as well as the parent
node 0∧ of level 1, because they v−construct a truth-value of type o. Finally we
have to adjust the root level 0 in compliance with (3) above into λwλtλxλyλz
. . . The resulting construction is

λwλtλxλyλz[0∧[0Prof wt x][0∧[0= y[0Age_ofwt x]][0∧[0= z[0× 02 030]][0> y z]]]].

The respective Prolog code is then

?- prof(X),age_of(Y,X), Z is ×(2,30), Y>Z.

As stated above, if we want all the professors older than 2 × 30 years, we
have to insert a new unique name of the property by the equation definition
λwλtλx[0Aged_professorwtx] =

λwλtλx[∃y∃z[0∧[0Prof wt x]
[0∧[0= y[0Age_of wt x]][0∧[0= z[0×02030]][0> yz]]]]].

The resulting Prolog code is
?-assert(aged_prof(X):-prof(X),age_of(Y,X),Z is ×(2,30),Y>Z.),
findall(X,aged_prof(X),Result).

3.4 Specification of a TIL subset transferable into Prolog code

Up to now we considered only constructions v−constructing entities of a
type (oβ), the structure tree of which is conjunctive. Using a terminology of
predicate logic, we considered only constructions which are in a generalised

28 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

conjunctive normal form λwλt λx1 . . . xm [C1 ∧ . . . ∧ Cm], where C1, . . . , Cm are
simple constructions not containing constituents of truth-value functions and
quantifiers.

In order to specify the subset of TIL that can be encoded in Prolog, we have
to specify restrictions on TIL propositional constructions implied by Prolog,
and describe an algorithm of transferring a closed construction C → oτω into
the Skolem clausal form (SCF). Here is how.

In what follows we now use ‘C(x,y,. . .)’ as a schema of a construction
containing free variables x, y, . . .

1. Eliminate w,t. [λwλtC(w, t)] ⇒ C
2. Eliminate unnecessary quantifiers that do not quantify any variable.

(For instance, Composition of the form [[∃y∀zP(z)] ∧ [∀x∃vQ(v)]] is
adjusted into [[∀zP(z)] ∧ [∃vQ(v)]].)

3. Apply α-rule in such a way that different λ-bound variables have different
names.
(For instance, Composition [[∀xP(x)] ∧ [∀xQ(x)]] is adjusted into the
Composition [[∀xP(x)] ∧ [∀yQ(y)]].)

4. Eliminate connectives ⊃ and ≡ by applying the rules [C ⊃ D] ` [¬C ∨ D]
and [C ≡ D] ` [[¬C ∨ D] ∧ [¬D ∨ C]].

5. Apply de Morgan laws:
¬[C ∧ D] ` [¬C ∨ ¬D],¬[C ∨ D] ` [¬C ∧ ¬D],
¬[∃x¬C(x)] ` [∀xC(x)],¬[∀x¬C(x)] ` [∃xC(x)].

6. If the resulting construction C contains now existential quantifiers, then
reject C as non-transferable.
(For instance, Composition of the form [[∃yP(y)] ∧ [∀x∃vQ(x, v)]] is not
transferable into Prolog.)

7. Move general quantifiers to the left.
(For instance, Composition [[∀xP(x)] ∧ [∀yQ(y)]] is adjusted into the
Composition [∀x[∀y [P(x) ∧Q(y)]]].)

8. Apply distributive laws:
[[C ∧ D] ∨ E] ` [[C ∨ E] ∧ [D ∨ E], [C ∨ [D ∧ E]] ` [[C ∨ D] ∧ [C ∨ E].

The resulting construction is now of the form

∀x1[∀x2 . . . [∀xn[C1 ∧ . . . ∧ Cm]]]],

where Ci are clauses, i.e., disjunctions of simple ‘positive/negative’ construc-
tions (not containing constituents of truth-value functions ∧, ∨,⊃,≡ and quan-
tifiers). If for some i the clause Ci contains more than one positive disjunct, then
reject the construction as not transferable into Prolog code. Otherwise, insert the
translation of C1, . . . , Cm into Prolog program base.
Example. Consider the base of sentences.

– “All mobile agents are cars or bicycles”.
– “If Charles is driving on highway D1 then he is a mobile agent”.
– “Paul is not a mobile agent or it is not true that if he lives in New York he

drives his car”.

TIL and Logic Programming 29

– “It is not true that some agents are neither mobile nor infrastructure
agents”.

a) Type-theoretical analysis.
Mobile,Infra(structure)/((oι)τω(oι)τω); Agent, Car, Bike, High_Way, Em-
ployee/(oι)τω; Live_in, Car_of /(oιι)τω; Charles, Paul, D1, NY/ι.

b) Synthesis and pre-processing.

First sentence. λwλt [∀x[[0Mobile 0Agent]wt x] ⊃ [[0Carwt x] ∨ [0Bikewt x]]]]
⇒ (Step 1) [∀x[[0Mobile 0Agent]x] ⊃ [[0Carx] ∨ [0Bikex]]]]
⇒ (Step 4) [∀x¬[[0Mobile 0Agent]x] ∨ [0Carx] ∨ [0Bikex]]]

This construction is not transferable into Prolog code, because it contains
two positive constituents, namely [0Carx] and [0Bikex].
Second sentence.
λwλt [[0Drivewt

0Charles 0D1]∧ [0High_Waywt
0D1]]]⊃ [[0Mobile Agent]wt

0Charles]]]
⇒ (1) [[0Drive 0Charles 0D1] ∧ [0High_Way 0D1]]] ⊃ [[0Mobile Agent] 0Charles]]]
⇒ (4) [¬[0Drive0Charles 0D1] ∨¬[0High_Way0D1]] ∨ [[0Mobile Agent]0Charles]]].
The construction is transferable into a Prolog rule:

mobile_agent(charles):-drive(charles,d1),high_way(d1).

Third sentence.
λwλt[¬[[0Mobile 0Agent]wt

0Paul]∨
¬[[0Live_inwt

0Paul 0NY] ⊃ [0Drivewt
0Paul [0Car_of wt

0Paul]]]
⇒ (1) [¬[[0Mobile 0Agent]0Paul] ∨

¬[[0Live_in 0Paul 0NY] ⊃ [0Drive0Paul [0Car_of 0Paul]]]
⇒ (4,5) [¬[[0Mobile 0Agent] 0Paul] ∨

[[0Live_in 0Paul 0NY] ∧¬[0Drive 0Paul [0Car_of 0Paul]]]
⇒ (8) [¬[[0Mobile 0Agent] 0Paul] ∨ [0Live_in 0Paul 0NY]] ∧

[¬[[0Mobile 0Agent]0Paul] ∨¬[0Drive 0Paul [0Car_of 0Paul]]]]
The construction is transferable into a Prolog rule and three goals:

Live_in(paul,ny):-mobile_agent(paul).
:-mobile_agent(paul), drive(paul,Y), car_of(Y,paul).9

Fourth sentence.
λwλt¬[∃x[[0Agentwt x] ∧ ¬[[0Mobile0Agent]wtx] ∧ ¬[[0Infra0Agent]wt x]]]
⇒ (1) ¬[∃x [[0Agentx] ∧¬[[0Mobile 0Agent]x] ∧¬[[0Infra 0Agent]x]]]
⇒ (5) [∀x [¬[0Agentx] ∨ [[0Mobile 0Agent]x] ∨ [[0Infra 0Agent]x]]]
The construction is not transferable into a Prolog rule.
Remark. The first step of pre-processing a construction consists in elimination of
variables w, t. The result is an improper construction due to wrong typing. For
instance, the Composition [0Agentx] is not well formed, because the property
Agent/(oι)τω has to be extensionalised first, and only then applied to an
individual. Yet, since together with the resulting Prolog rules, facts and goals
we remember TIL types, the reverse translation into TIL will be correct.

9 Since Car_of is an attribute, the Composition [0Drive0Paul [0Car_of 0Paul]] is processed by means of the auxiliary

variable y; see Section 3.3.1.

30 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

4 Conclusion

We have introduced a method of building up an interface between the func-
tional T IL-Script language and relational Prolog language. By the transition
of TIL into Prolog we gain the inference machine of Prolog. The value we have
to pay is rather high. We have to build a powerful TIL functional overlay in
order not to lose information, and to modify TIL constructions into the form
that can be processed by Prolog. Of course, due to the high expressive power
of TIL, only a subset of TIL constructions is transferable. Thus we also specified
an algorithm that decides which constructions are transferable, and as a result
it produces an adjusted construction specified in the Prolog code.

The direction for future research is clear. We have to extend the method to
involve partiality and hyper-intensional features of TIL in its full power. To
this end the restrictions applied by Prolog seem to be too tight. Thus we will
extend the method into an implementation of the full TIL inference machine.
Yet the clarity of this direction does not imply its triviality. The complexity
of the work going into building such an inference machine is almost certain
to guarantee that complications we are currently unaware of will crop up. A
sensible approach will be to develop the inference machine by involving the
methods of functional programming and extend them to involve partiality and
hyper-intensional, i.e., procedural features.

Acknowledgements. This research has been supported by the program ‘Infor-
mation Society’ of the Czech Academy of Sciences within the project “Logic and
Artificial Intelligence for multi-agent systems”, No. 1ET101940420.

References

1. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley, 2001.
2. Ciprich, N., Duží, M., Košinár, M.: T IL-Script : Functional Programming Based on

Transparent Intensional Logic. In: RASLAN 2007, Sojka, P., Horák, A., (Eds.), Masaryk
University Brno, 2007, pp. 37–42.

3. Ciprich, N., Duží, M. and Košinár, M.: The T IL-Script language. To appear in the
Proceedings i of the 18th European Japanese Conference on Information Modelling
and Knowledge Bases (EJC 2008), Tsukuba, Japan 2008.

4. Duží, M. Ďuráková, D., Děrgel, P., Gajdoš, P., Müller, J.: Logic and Artificial Intelli-
gence for multi-agent systems. In: Marie Duží, Hannu Jaakkola, Yasushi Kiyoki and
Hannu Kangassalo (editors), Information Modelling and Knowledge Bases XVIII, Ams-
terdam: IOS Press, pp. 236–244.

5. Duží, M. and Materna, P. Reprezentace znalostí, analýza tázacích vět a specifikace
dotazů nad konceptuálním schématem HIT. In: Dušan Chlápek (Ed.), Datakon 2002,
Brno, pp. 195–208.

6. Foundation for Intelligent Physical Agents. http://www.fipa.org/.
7. Tichý, P. The Foundations of Frege’s Logic. Walter de Gruyter, Berlin-New York, 1988.
8. Tichý, P. (2004): Collected Papers in Logic and Philosophy, V. Svoboda, B. Jespersen,

C. Cheyne (Eds.), Prague: Filosofia, Czech Academy of Sciences, and Dunedin:
University of Otago Press.

TIL in Knowledge-Based Multi-Agent Systems

Tomáš Frydrych, Ondřej Kohut, Michal Košinár

VŠB–Technical University Ostrava
17. listopadu 15, 708 33 Ostrava, Czech Republic

tomas.frydrych.st@vsb.cz, ondrej.kohut.fei@vsb.cz, michal.kosinar@vsb.cz

Abstract. Transparent Intensional Logic (TIL) is a highly expressive logic
system. Its potential applications in artificial intelligence and multi-
agent systems are broad. We introduce the TIL-Script language, which
is a computational variant of the language of TIL constructions. TIL-
Script can be used as an alternative to FIPA SL language, whenever
communication in a natural language is in need (e. g. human / computer
interaction) and/or another systems are insufficient in their expressive
power (for example in the area of knowledge representation for resource
bounded knowledge based agents).

Key words: TIL, TIL-Script, Transparent Intensional Logic, Multiagent Sys-
tems, content language, FIPA

1 Introduction

Multi-agent systems are a relatively new technology which is still rapidly
developing. One of the main problems a multi-agent system must deal with
is communication and reasoning of agents. Current content languages are
based on the first-order mathematical logic paradigm, extending the first-order
framework whenever needed. However, these extensions are mostly specified
syntactically, and their semantics is not very clear.

We propose the TIL-Script language based on Transparent Intensional Logic
(TIL) which is a general (philosophical) logic system primarily designed for the
logical analysis of natural languages. TIL-Script is well suited for the use as a
content language of agent messages and it has a rigorously defined semantics.
It can be also used as a general semantic framework for the specification and
semantic analysis of other formal languages.

The paper is organized as follows. Section 2 describes the basic principles
applied in agents’ communication and interaction with environment. In Sec-
tion 3 we discuss and critically examine FIPA SL content language. In Section 4
we briefly introduce the basic notions of TIL. In Section 5 ontologies and knowl-
edge base model for TIL Script are briefly described. Finally, an example of
agents’ communication is presented in Section 6, and concluding remarks in
Section 7.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 31–40, 2008. c©Masaryk University, Brno 2008

32 Tomáš Frydrych, Ondřej Kohut, Michal Košinár

2 Multi-Agent Systems and Communication

Technologies based on agents are relatively new and very promising. Numer-
ous applications of multi-agent technology can be found in artificial intelligence
and large computer systems. A road-map of this approach is presented in [5].
In this paper we do not intend to deal with multi-agent systems (MAS) in gen-
eral. Instead, we focus on communication in MAS and particularly on content
languages.

Basic standards for MAS are given by FIPA (The Foundation for Intelligent
Physical Agents, see [4,3]). According to it basic unit of communication is a
message. It can be of an arbitrary form, but it is supposed to have a structure
containing several attributes. Content of a message is one of these attributes.

From the point of view of communication logic the most important at-
tributes are:

Performative denotes a type of the message – its communicative act. Basic
performatives are: Query, Inform and Request.

Content carries the semantic of the message. It can be encoded in any suitable
language.

Ontology is a vocabulary of domain specific terms. These (and only these)
terms can be used in the content of the message.

2.1 Agent and Environment Interaction

In order to introduce communication based on agents’ knowledge, we are going
to describe agents’ reactions to the events in their environment, and interaction
with the environment in general. Figure 1 illustrates agents’ interaction with
the environment.

Fig. 1. Behaviour of agents in a real environment

Agents are autonomous, rational and goal-oriented. In order they can
actively react on the events in their environment, they have to be equipped
with:

TIL in Knowledge-Based Multi-Agent Systems 33

– Sensors – “Ears”, “Eyes”
– Acting parts – “Mouth” for communication, “Limbs” for an active reaction

(movement etc.)
– Knowledge-Base based on ontologies. This part serves as an agents’ memory

that makes it possible to store perceived or learnt facts, entailed knowledge
as well as general rules. (At least a minimal) ontology is needed to be shared
with other agents, so that the agents’ understand each other.

– Inference engine that is based on the TIL-Script language (or Description
Logic, FIPA SL, etc.)

– Goals are the purpose of agents’ life. An agent attempts to meet the
goal assigned to them by applying their explicit knowledge stored in the
knowledge base, and or inferred by the inference machine.

– Control part executes the actions to in accordance with a given agent’s goal.
In this way the agent influence its environment.

3 FIPA SL

One of the objectives of this paper is to propose a new content language for
agents’ communication in multi-agent systems. The languages like FIPA SL (Se-
mantic Language) and KIF are mostly based on the First-Order Logic (FOL)
paradigm, enriched with higher-order constructs wherever needed.1 The en-
richments extending FOL are well defined syntactically, while their semantics is
often rather sketchy, which may lead to communication inconsistencies. More-
over, the bottom-up development from FOL to more complicated cases yields
the versions that do not fully meet the needs of the MAS communication. In
particular, agents’ attitudes and anaphora processing create a problem. In the
paper we are going to demonstrate the need for an expressive logical tool of
Transparent Intensional Logic (TIL) in order to encode the semantic content of
messages in a near-to-natural language. Using TIL, the human-computer inter-
face and communication is designed in a smooth way.

In this section we now briefly discuss the existing standard, FIPA SL, which
is the only FIPA candidate content language for a ‘standard’.

One of advantages of the FOL approach is that FOL is a broadly used
and well elaborated logic. But there are disadvantages as well. First, FOL is a
mathematical logic. Its development was motivated by the program of logistic
in mathematics. FOL is thus well suited for describing algebraic structures.
But agents do not communicate in terms of algebraic structures. Moreover,
Formulas of FOL express only assertions. However, queries and requests are
also valid messages. Thus SL defines so-called identifying expressions. In SL we
can also express propositional attitudes, i.e. assertions about other assertions
like “John believes that it is raining.”. However, these attitudes are dealt with
as relations of a believer to a piece of syntax.

1 For details on FIPA SL, see http://www.fipa.org/specs/fipa00008; for KIF, Knowledge Interchange Format,

see http://www-ksl.stanford.edu/knowledge-sharing/kif/.

34 Tomáš Frydrych, Ondřej Kohut, Michal Košinár

SL is well defined syntactically, but problems appear when one wants
to know its semantics. There is no proper specification of semantics in the
standardization document; only the section “Notes on FIPA SL Semantics”
can be found, which is (as it says) just notes. The standard counts upon well-
known semantics of FOL, but due to numerous extensions it is not always
applicable. The lack of semantics can have very unpleasant consequences. Two
agents relying completely on the standard can understand the same message
differently and that can lead to serious misunderstandings between the agents.
This is in a direct conflict with the name – “Semantic Language”.

Another problem connected with the FIPA SL is that SL content is in general
not interconnected with the semantic web. On the other hand, in our TIL-Script
language we developed an interconnection between OWL concepts and TIL-
Script.

For these reasons we propose the TIL-Script language to be used as a FIPA
ACL content language.

4 Transparent Intensional Logic (TIL)

Transparent Intensional Logic (TIL) is the logical system founded by Pavel
Tichý (see [7]). It was designed to provide a fine-grained semantics for natural
language. Thus TIL is the system of a great expressive power applicable also
and primarily to non-mathematical, i.e. empirical domains. As an expressive
semantic tool it has a great potential in artificial intelligence and any other area
where both computers and humans are to be dealt together. More about the role
of logic in artificial intelligence can be found in [6].

TIL has the capacity of capturing almost all the semantic features of natural
language. It includes temporal and modal attitudes, epistemic logic, knowledge
representation (even modeling knowledge of resource bounded agents) and
dynamic aspects of these.

Here we are going to introduce TIL just briefly. For details see [1] and [2].

4.1 Basic Notions

The fundamental notion of TIL is the notion of construction. Constructions are
analogical to formulas and terms of traditional logics, but there are several
fundamental differences. Most logics make a strict border between semantics
and syntax. Formulas are used to be defined as well formed sentences of
some formal language. That means they are mere strings of characters, and an
interpretation is needed to reveal their meaning (semantics).

Constructions are not language expressions (strings of characters). They are
abstract procedures, i.e., algorithmically structured objects. Since constructions
are themselves semantic objects they do not need to be interpreted and they
contain both semantic and syntactic components.

TIL in Knowledge-Based Multi-Agent Systems 35

4.2 Types

Constructions are coded (and presented) in a language, which is formally
derived from the language of typed lambda-calculus. However, terms of a
lambda calculus are not constructions themselves; they are just forms of
presentation of constructions. All the entities (including constructions) receive
a type in TIL. Again, types are not strings of characters; rather they are objective
collections of particular objects. For a type α we denote its elements ‘α-objects’.

The infinite hierarchy of types in TIL arises from a type base. Type base is a
(finite) set of basic (atomic) types. For the purpose of a natural language analysis,
the standard type base of TIL is an epistemic base containing the following
types:

o – Truth values. The type consisting of two elements: True (T) and False (F).
ι – Individuals. Simple, bare individuals: the ‘lowest-level bearers of properties’.
τ – Time points. This type is just the set of real numbers.
ω – Possible worlds. The collection of all logically possible states of the world.

Over the basic atomic types molecular types are defined as the functional
closure over the atomic types. The collection (α β1 . . . βn of all (partial) functions
mapping types β1, . . . , βn to a type α is a type. These types not involving
constructions are called types of order 1. Since TIL constructions are objects sui
generis and thus receive a type, we need to define higher-order types as well.
However, first we define constructions.

4.3 Constructions

Constructions are the fundamental building blocks of TIL. Depending on valua-
tion v, any construction v−constructs an object of some type, or it is v-improper
(does not v-construct anything). TIL is a logic of partial functions. There are
two kinds of constructions, atomic and molecular. Atomic constructions do not
contain any other constituents but themselves. They supply objects on which
compound constructions operate. There are two atomic constructions:

Trivialization 0X is an elementary construction constructing the object Xa in
the simplest way, without a mediation of any other construction.

Variable x is a construction (‘x’ is just a name). It constructs an object of a
respective type dependently on a valuation v; it v-constructs.

Molecular (multiple-step) constructions are:2

Composition [FC1 . . . Cn] is an instruction to apply a function to its argu-
ments. If F v-constructs a function f of type (αβ1. . . βn), and Ci v-construct
objects ci of type βi, then the Composition v-constructs the value of f at the
tuple-argument 〈c1,. . . ,cn〉. Otherwise the Composition is v−improper.

Closure [λx1. . . xn C] is an instruction to construct a function in the manner
of lambda calculi. If variables x1,. . . ,xn range over β1, . . . , βn, respectively, and
C v-constructs an object of type α, Closure v-constructs the following function

2 And two others, Execution and Double Execution, which we are not going to use here.

36 Tomáš Frydrych, Ondřej Kohut, Michal Košinár

f : let v’ be a valuation that associates xi with bi and is identical to v otherwise.
Then f is undefined on b1, . . . , bn if C is v′ improper, otherwise the value of f
on b1, . . . , bn is what is v′-constructed by C.

4.4 Higher order types

Each construction is of some order. The order of a construction is the highest
order of the type of objects constructed by sub-constructions of the given
construction. Thus the basic type of order 2 is the type *1 – the collection
of all constructions of order 1 which v-construct non-constructional entities
belonging to a type of order 1. The type ∗2 is the type of constructions of
order 2 v−constructing entities belonging to a type of order 2 or 1. And so
on, ad infinitum. Any type of order n is also a type of order n + 1 (type rising).
Other types of order n are functional closures (αβ1 . . . βn) of defined types as
specified in Section 4.2.

5 TIL-Script as a Content Language

Transparent Intensional Logic is a suitable logic system for utilization as a
content language in multiagent systems. For this purpose its main advantages
arise from the following TIL features:

Semantic nature Constructions of TIL are themselves semantics objects. So
the semantics is naturally well defined. There is no danger of misunderstand-
ings as with the SL language.

High expressibility The expressive power of TIL is really high. TIL is capable
of analyzing almost any semantic feature of natural languages.

Original purpose TIL unlike mathematical logics was intended to be a tool for
logical analysis of language. Primarily it was designed for natural languages,
but this gives it a great potential even in other areas.

The TIL-Script language has been described in [8] and [9].

5.1 Ontologies for TIL-Script

OWL based Ontologies Any content language is tightly related to ontologies.
All concepts used or mentioned by a content language must be defined in an
ontology. And vice versa, the content language must be able to use any concept
from the ontology. FIPA definition of ontology is relatively vague. It just says
that ontology provides a vocabulary of domain specific concepts and relations
between them. This leads to diversity in implementations. Actually ontology
takes a frame-like structure, which is well suitable for the FIPA SL language
and developer frameworks like Jade support it.

The recent trend is to use well-proven technologies of semantic web,
in particular the OWL language, for defining ontologies. But the existing
implementation tools for multi-agent systems do not support OWL very well.
The way we have chosen for TIL-Script is to inter-connect the language with

TIL in Knowledge-Based Multi-Agent Systems 37

frame-like ontologies because of an implementation in Jade. Integration of
OWL into TIL-Script is a subject of our recent research.

Concepts (or classes) of ontologies are sets of so-called individuals. We
must not confuse these individuals with members of the TIL-Script type Indiv.
Ontology individuals can be objects of any TIL-Script type. For TIL-Script this
means that any ontology concept (class) which members are of type α is an
object of type (oα), i.e. a set of α-objects. Ontology individuals (members of
classes) are directly α-objects.

Inter-connection of TIL-Script with an ontology is mediated by the Trivial-
ization construction. You may Trivialize any object or individual defined by the
ontology. However, objects defined in the ontology cannot be Trivialised in TIL-
Script. The only demand for an ontology to be used together with TIL-Script is
that any class must have defined the TIL-Script type of its members.

GIS based Ontologies Geographic information systems (GIS) are generally
used for gathering, analysis and visualization of information on the space
aspects of real-world objects. The main advantage of GIS is the ability to
relate different kind of information obtained from different sources of a spatial
context. This feature enables agents to act in the real-world environment and
make decisions based on its state. Agents usually dwell in the virtual world of
a computer memory and they are not aware of their position, or of the objects
and other agents around. GIS ontology enables agents to receive, manipulate
and exchange spatial information.

Ontologies were developed to facilitate knowledge representation, sharing
and exchanging. Spatial agents make use of geographic information as the
input source for the decision-making mechanism. Situated agents are context-
aware. They are aware of their position in space, actual speed, surrounding
objects and relationships between them.

Agent actions are usually modelled by defining their behaviours. Each agent
can perform the limited amount of predefined actions which can be combined
into more complex behaviours. Creating ontology is then divided into two
steps.

1. Identification and definition of agent behaviours.
2. Creating behaviour-specific ontology.

Agents can perceive their environment by sensors or geographic database and
transform it into the symbolic representation of ontology.

Communication Reconstruction and Knowledge Base Summarizing the fea-
tures introduced up to now, we can now present an agents’ communication
scheme based on FIPA standards using Knowledge base and TIL-Script as a
content language. Figure 2 illustrates such a schema.

Example of a Knowledge Base:
Concept: “Nissan Skyline GTS-R”
Instance: The Nissan Skyline GTS-R, which I am parking outside.

38 Tomáš Frydrych, Ondřej Kohut, Michal Košinár

In the TIL-Script language we have two separate ontologies. First, speech-
act ontology is connected with the operative part of an agent. Agents are
“born” with a minimal ontology in order to be able to communicate with its
surroundings and learn by experience.

Second ontology that contains application domain is also replicated to an
agent knowledge base. It instantiates its knowledge base and all concepts and
roles are copied into it. It means that every agent has equal basic abilities at the
time of their creation.

Fig. 2. FIPA Inform message with TIL-Script in the content field

TIL in Knowledge-Based Multi-Agent Systems 39

6 Example

In this section we present a simple example scenario of communication of two
agents in a multi-agent system using the TIL-Script language.

Scenario. The situation is simple. There is a large car parking-site, a railway
station and two agents:

– Driver; an agent driving a car, who wants to park at the parking lot rather
close to the railway station.

– Dispatcher; a dispatcher of the parking-site managing the pull-ins.

A sketch of their communication is as follows:
Driver: I want you to park me somewhere near to the railway station.
Dispatcher: OK, I can park you at this pull-in (concrete id).
Driver: I accept.
Ontology. In order to analyze the communication using TIL-Script we need

to specify ontology of the used concepts.
TheDriver/Indiv – The driver agent.
TheDispatcher/Indiv – The dispatcher agent.
TheTrainStation/Indiv – The train station the driver wants to park

close to.
Pull-in/((Bool Indiv)Time)World – A property to be a pull-in at a car-

park. The pull-in has a slot Id, which is a number indentifying a concrete pull-
in.

Near/((Bool Indiv Indiv)Time)World – A binary predicate saying that
two places are near (at a given time and state of the world).

Arrange/(Bool (Indiv ((Bool)Time)World)) – This predicate means that
an agent need to perform an action. In our conception, an agent (Indiv) has to
arrange that a proposition ((Bool)Time)World)) become true.

Park/(Bool Indiv Indiv)Time)World – A binary predicate saying that a
given object parks at a car-park at a given pull-in.

Communication. Now we can reconstruct the communication between the
driver and the dispatcher precisely.

Driver. Call for a proposal:
\x:Indiv[’Arrange ’TheDispatcher \w\t[’And [’Park@w,t ’TheDriver

x] [’Near@w,t ‘TheTrainStation x]]]
Dispatcher. Proposal:
[\x:Indiv[’Arrange ’TheDispatcher \w\t[’And

[’Park@w,t ’TheDriver x] [’Near@w,t ’TheTrainStation x]]] [Id_36]]
Driver. I accept the proposal: (the content of the message is the same as in

proposal, only the performative is “accept proposal”).

7 Conclusion

Actual standards for communication in multi-agent systems are based on
syntax rather than semantics. This can slow down the progress in future

40 Tomáš Frydrych, Ondřej Kohut, Michal Košinár

research. As an option we propose the TIL-Script language, which is based
on a well elaborated Transparent Intensional Logic. This makes TIL-Script
a semantically based language suitable for communication in multi-agent
systems.

High expressive power of TIL-Script makes it also a suitable tool for
adopting other logics and languages into its semantic framework, so that TIL-
Script can be used as a specification language. A big potential of TIL-Script can
be also found in logical analysis of natural languages and communication with
human (non-expert) agents.

The TIL-Script language is being implemented and tested in multi-agent
systems using the Python language and Jade based simulation programs.
Ontology support is designed for frame-like ontologies supported by Jade.
Using OWL ontologies supported by Protége has been developed and tested
as a separate part of the research project. Storing ontologies into Knowledge
Base is arranged with SQLite DataBase Management System (it behaves as a
client application so that there is no centralized component in the system) with
application layer implemented in Python (Jython).

Acknowledgements. This research has been supported by the program ‘Infor-
mation Society’ of the Czech Academy of Sciences within the project “Logic and
Artificial Intelligence for multi-agent systems”, No. 1ET101940420.

References

1. Duží, M., Jespersen, B. and Muller, J. Epistemic closure and inferable knowledge. In
Libor Běhounek and Marta Bílková, (Eds.), the Logica Yearbook 2004. Prague: Filosofia,
2005.

2. Duží, M. and Materna, P. Constructions. Retrievable at
http://til.phil.muni.cz/text/constructions_duzi_materna.pdf, 2000.

3. Foundation for Intelligent Physical Agents. FIPA Abstract Architecture Specification.
http://fipa.org/specs/fipa00001, 2000.

4. Foundation for Intelligent Physical Agents. FIPA SL Content Language Specification.
http://fipa.org/specs/fipa00008, 2000.

5. Luck, M., McBurney, P., Shehory, O. and Willmott, S. Agent Technology: Computing
as Interaction. A Roadmap for Agent-Based Computing. AgentLink, 2005.

6. Thomason, R. Logic and artificial intelligence. In: Edward N. Zalta, (Ed.): The Stanford
Encyclopedia of Philosofy. Summer 2005.

7. Tichý, P. The Foundations of Frege’s Logic. Walter de Gruyter, Berlin-New York, 1988.
8. Ciprich, N., Duží, M., Košinár, M.: TIL-Script: Functional Programming Based on

Transparent Intensional Logic. In: RASLAN 2007, Sojka, P., Horák, A., (Eds.), Masaryk
University Brno, 2007, pp. 37–42.

9. Ciprich, N., Duží, M. and Košinár, M.: The TIL-Script language. To appear in the
Proceedings of the 18th European Japanese Conference on Information Modelling
and Knowledge Bases (EJC 2008), Tsukuba, Japan 2008.

Can Complex Valency Frames be Universal?

Karel Pala and Aleš Horák

Faculty of Informatics, Masaryk University Brno
Botanická 68a, 602 00 Brno, Czech Republic

pala@fi.muni.cz, hales@fi.muni.cz

Abstract. This paper deals with the comprehensive lexicon of Czech
verbs named VerbaLex. It contains complex valency verb frames (CVFs)
including both surface and deep valencies.
The most notable features of CVFs include two-level semantic labels with
linkage to the Princeton and EuroWordNet Top Ontology hierarchy and
the corresponding surface verb frame patterns capturing the morpholog-
ical cases that are typical of the highly inflected languages like Czech.
We take the position that CVFs can be suitable for a description of the
argument predicate structure not only of Czech verbs but also verbs in
other languages, particularly Bulgarian, Romanian and English.

1 Introduction

Semantic role annotation is usually based on the appropriate inventories of
labels for semantic roles (deep cases, arguments of verbs, functors, actants)
describing argument predicate structure of verbs. It can be observed that
the different inventories are exploited in different projects, e.g. Vallex [1],
VerbNet [2], FrameNet [3], Salsa [4], CPA [5], VerbaLex [6].

With regard to the various inventories a question has to be asked: how
adequately they describe semantics of the empirical lexical data as we can
find them in corpora? From this point of view it can be seen that some of the
inventories are rather syntactic than semantic (e.g. Vallex 1.0 or VerbNet). If we
are to build verb frames with the goal to describe real semantics of the verbs
then we should go ’deeper’. Take, e.g. verbs like drink or eat, – it is obvious that
the role PATIENT that is typically used with them labels cognitively different
entities – BEVERAGES with drink and FOOD with eat. If we consider verbs
like see or hear we can observe similar differences not mentioning the fact that
one can see anything. This situation can be improved if we use more detailed
subcategorization features which, however, in other lexicons (e.g. in VerbNet
or Vallex 1.0) are exploited only partially. If we are not able to discriminate the
indicated semantic distinctions the use of the frames with such labels in realistic
applications can hardly lead to the convincing and reliable results.

These considerations led us to design the inventory of two-level labels
which are presently exploited for annotating semantic roles in Czech verb
valency frames in lexical database VerbaLex containing now approx. 10,500
Czech verb lemmata and 19,500 frames.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 41–48, 2008. c©Masaryk University, Brno 2008

42 Karel Pala and Aleš Horák

1.1 Thematic Roles and Semantic types

A question may be asked what is the distinction between “shallow” roles such
as AGENT or PATIENT and “deep” roles such as SUBS(food:1), as we use
it in VerbaLex. We have already hinted that "shallow" roles seem to be very
similar to syntagmatic functions. At the same time it should be obvious that
information that a person functions as an agent who performs an action is not
only syntagmatic. That was the main reason why we included them in our list
of the roles. We do not think that SUBS(food:1) is a special case of the deep
role, rather, we would like to speak about a two-level role consisting of the
ontological part, i.e. SUBS(tance), and the subcategorization feature part, e.g.
beverage:1 which is also a literal in PWN 2.0 that can be reached by traversing
the respective hyperonymy/hyponymy tree.

In the Hanks’ and Pustejovsky’s Pattern Dictionary1 a distinction is made
between semantic roles and semantic types: “the semantic type is an intrinsic
attribute of a noun, while a semantic role has the attribute thrust upon it by the
context.” Also lexical sets are distinguished as “clusters of words that activate
the same sense of a verb and have something in common semantically.”

Introduction of the mentioned notions is certainly very inspiring in our
context, however, we think that at the moment the quoted ’definitions’ as they
stand do not seem to be very operational, they are certainly not formal enough
for computational purposes. What is needed are the lists of the semantic
roles and types but they are being created gradually along with building the
necessary ontology. Thus for time being we have to stick to our two-level
roles as they are. They are partly based on the TOP Ontology as used in
EuroWordNet project [8].

2 VerbaLex and Complex Valency Frames

The design of VerbaLex verb valency lexicon was driven mainly by the
requirement to describe the verb frame (VF) features in a computer readable
form that could be used in the course of automatic syntactic and semantic
analysis. After reviewing actual verb frame repositories for Czech, we have
decided to develop Complex Valency Frames (CVFs) that contain:

– morphological and syntactic features of constituents,
– two-level semantic roles,
– links to PWN and Czech WordNet hypero/hyponymic (H/H) hierarchy,
– differentiation of animate/inanimate constituents,
– default verb position,
– verb frames linked to verb senses,
– VerbNet classes of verbs.

1 cf. [5] and also [7]

Can Complex Valency Frames be Universal? 43

3 Role Annotation and EWN Top Ontology

Presently, our inventory contains about 30 general or ontological labels selected
from the EuroWordNet Top Ontology (EWN TO), with some modifications, and
the 2nd-level subcategorization labels taken mainly from the Set of Base Con-
cepts introduced in EuroWordNet Project (1999). The 2nd-level labels (approx.
200) selected from the Set of Base Concepts (BCs) are more concrete and they
can be viewed as subcategorization features specifying the ontological labels
obtained from EWN TO. The motivation for this choice is based on the fact that
WordNet has a hierarchical structure which covers approx. 110,000 English lex-
ical units (synsets). It is then possible to use general labels corresponding to se-
lected top and middle nodes and go down the hyperonymy/hyponymy (H/H)
tree until the particular synset is found or matched. This allows us to see what
is the semantic structure of the analyzed sentences using their respective va-
lency frames. The nodes that we have to traverse when going down the H/H
tree at the same time form a sequence of the semantic features which charac-
terize meaning of the lexical unit fitting into a particular valency frame. These
sequences can be interpreted as detailed selectional restrictions.

Two-level labels contain ontological labels taken from EWN TO (about
30) that include roles like AGENT, PATIENT, INSTRUMENT, ADDRESSEE,
SUBSTANCE, COMMUNICATION, ARTIFACT at the 1st level. The 2nd-level
labels that are combined with them are literals from PWN 2.0 together with
their sense number.

The nice property of the Czech valency frames is that the semantic restric-
tions are endogenous, i.e. they are specified in terms of other synsets of the
same WordNet.

The notation allows us to handle basic metaphors as well. An example of
CVFs for drink/pít may take the form:

who_nom*AGENT(human:1|animal:1) <drink:1/pít:1>
what_acc*SUBS(beverage:1)

4 Can CVFs be Universal?

The building VerbaLex database started during the EU project Balkanet (Balka-
net Project, 2002) when about 1,500 Czech verb valency frames were included
in Czech verb synsets. They were linked to English Princeton WordNet and to
the WordNets of other languages in Balkanet by means of the Interlingual In-
dex (ILI). We tested a hypothesis that the Czech complex valency frames can be
reasonably applied also to the verbs in other languages, particularly to Bulgar-
ian and Romanian. Thus, in the Balkanet project an experiment took place in
which CVFs developed for Czech verbs have been adopted for the correspond-
ing Bulgarian and Romanian verb synsets [9,10]. The results of the experiments
were positive (see below the Section 4.1), therefore a conclusion can be made
that this can be extended also for other languages.

44 Karel Pala and Aleš Horák

The question then remains whether CVFs developed for Czech can be
applied to English equally well. If we exploit ILI and have look at the VFs
for Czech/English verbs like pít/drink, jíst/eat and apply them to their English
translation equivalents we come to the conclusion that the Czech deep valencies
describe well their semantics. VerbaLex is incorporated into Czech WordNet
and through ILI also to PWN 2.0, thus we have the necessary translation pairs
at hand. This also can be applied to other WordNets linked to PWN v.2.0. Thus
we rely on the principle of translatability which means that the deep valencies
developed for Czech verbs can be reasonably exploited also for English (see
the Section 3). There is a problem with surface valencies which in English are
based on the fixed order SVOMPT and on morphological cases in Czech but we
consider this rather a technical issue at the moment.

4.1 Bulgarian example

The enrichment of Bulgarian WordNet with verb valency frames was initiated
by the experiments with Czech WordNet (CzWN) which, as we said above,
already contained approx. 1,500 valency frames (cf. [11]). Since both languages
(Czech and Bulgarian) are Slavonic we assumed that a relatively large part
of the verbs should realize their valency in the same way. The examples of
Bulgarian and Czech valency frames in the Figure 1 show that this assumption
has been justified (English equivalents come from PWN 1.7).

The construction of the valency frames of the Bulgarian verbs was per-
formed in two stages:

1. Construction of the frames for those Bulgarian verb synsets that have
corresponding (via Interlingual Index number) verb synsets in the CzWN
and in addition these CzWN synsets are provided with already developed
frames.

2. Creation of frames for verb synsets without analogues in the CzWN. The
frames for more than 500 Bulgarian verb synsets have been created and the
overall number of added frames was higher than 700. About 25 % of the
Bulgarian verb valency frames we used without any changes, they match
the Czech ones completely.

In our view the Bulgarian experiment is convincing enough and it shows suf-
ficiently that it is not necessary to create the valency frames for the individual
languages separately.

4.2 Romanian example

D. Tufis et al [10] investigated the feasibility of the importing the valency frames
defined in the Czech WordNet [12] into the Romanian WordNet. They simply
attached Czech valency frames from CzWn to the Romanian verbs. As we
hinted above the Czech CVFs specify syntactic and semantic restrictions on
the predicate argument structure of the predicate denoting the meaning of a

Can Complex Valency Frames be Universal? 45

produce, make, create – create or manufacture a man-made product
BG: {proizveždam} njakoj*AG(person:1)| neščo*ACT(plant:1)= neščo*OBJ(artifact:1)
CZ: {vyrábět, vyrobit} kdo*AG(person:1)| co*ACT(plant:1) = co*OBJ(artifact:1)

uproot, eradicate, extirpate, exterminate – destroy completely, as if down to the roots;
“the vestiges of political democracy were soon uprooted”

BG: {izkorenjavam, premachvam} njakoj*AG(person:1)| neščo*AG(institution:2)=
neščo*ATTR(evil:3)|*EVEN(terrorism:1)

CZ: {vykořenit, vyhladit, zlikvidovat} kdo*AG(person:1)|co*AG(institution:2) =
co*ATTR(evil:3)|*EVEN(terrorism:1)
carry, pack, take – have with oneself; have on one’s person

BG: {nosja, vzimam} njakoj*AG(person:1)= neščo*OBJ(object:1)
CZ: {vzít si s sebou, brát si s sebou, mít s sebou, mít u sebe} kdo*AG(person:1)=

co*OBJ(object:1)

Fig. 1. Common verb frame examples for Czech and Bulgarian

given synset. The valency frames also specify the morphological cases of the
arguments. Let us consider, for instance, the Romanian verbal synset ENG20-
02609765-v (a_se_afla:3.1, a_se_g’asi:9.1, a_fi:3.1) with the gloss “be located or
situated somewhere; occupy a certain position.” Its valency frame is described
by the following expression:(nom*AG(fiint’a:1.1)| nom*PAT(obiect_fizic:1)) =
prep-acc*LOC(loc:1).

The specified meaning of this synset is: an action the logical subject of which
is either a fiint’a (sense 1.1) with the AGENT role(AG), or a obiect_fizic (sense 1)
with the PATIENT role (PAT). The logical subject is realized as a noun/NP in the
nominative case (nom). The second argument is a loc (sense 1) and it is realized
by a prepositional phrase with the noun/NP in the accusative case (prep-acc).
Via the interlingual equivalence relations among the Czech verbal synsets and
Romanian synsets we imported about 600 valency frames. They were manually
checked against the BalkaNet test-bed parallel corpus (1984) and more than
500 complex valency frames were found valid as they were imported or with
minor modifications. This result supported by the real evidence is more than
promising. Czech CVFs also motivated Tufis’ group for further investigations
on automatically acquiring FrameNet structures for Romanian and associating
them with WordNet synsets.

4.3 English example

Let us take the complex valency frame for the Czech verb učit se (learn) and its
deep valency part describing the basic meaning of the verb:

kdo1*AG(person:1)=co4*KNOW(information:3)[kde]*GROUP(institution:1)
(ex.: učit se matematiku ve škole – to learn mathematics in the school)

If the translation pair učit se – learn is correct then we can conclude that this
frame is suitable both for Czech and English.

Similarly, take the Czech and English verb pít/drink with their basic meaning
again. The relevant deep part of the CVFs takes the following shape:

46 Karel Pala and Aleš Horák

kdo1*AG((person:1)|(animal:1))=co4*SUBS(beverage:1)
(ex.: bratr pije pivo, kůň pije vodu – my brother drinks beer, the horse drinks
water)

Again, it can be seen that this CVF describes well both Czech verb meaning and
the meaning of its English translation equivalent.

It may be argued that these are only two examples and there may be some
doubtful cases. When linking Czech and English verb synsets via ILI is finished
more examples can be adduced to show that the CVFs can serve for Czech and
English equally well not speaking about other languages. To get more necessary
evidence we are going to examine first selected semantic classes of the Czech
and English verbs (see the next section), such as verbs of drinking, eating, verbs
denoting animal sounds, putting, weather. Even brief comparison shows that
their CVFs appear suitable for both languages and not only for them.

In VerbaLex we presently have about 10,500 Czech verb lemmata. From
them approx. only 5,158 have been linked to the Princeton WordNet 2.0 via
ILI earlier. After processing all VerbaLex verbs we have linked to Princeton
WordNet further 3,686 Czech verbs. Altogether 8,844 Czech verbs are now
linked to Princeton WordNet. The processing of the VerbaLex verbs and their
linking to PWN v.2.0 shown however, that approx. 15 % of the Czech verb
synsets cannot be linked to PWN v.2.0 since it is not possible to find their
lexicalized translation equivalents in English. It should be remarked that this
is a serious problem which, however, has to be solved separately.

5 Semantic Classes of Czech Verbs

We have worked out semantic classes of Czech verbs that were inspired by
Levin’s classes [13] and VerbNet classes [2]. Since Czech is a highly inflectional
language the patterns of alternations typical for English cannot be straight-
forwardly applied – Czech verbs require noun phrases in morphological cases
(there are 7 of them both in singular and plural). However, classes similar to
Levin’s can be constructed for Czech verbs as well but they have to be based
only on the grouping of the verb meanings. Before starting the VerbaLex project
we had compiled a Czech-English dictionary with Levin’s 49 semantic classes
and their Czech equivalents containing approx. 3,000 Czech verbs.

In VerbaLex project we went further and tried to link Czech verbs with
the verb classes as they are used in VerbNet – they are also based on Levin’s
classification extended to almost 400 classes. This meant that for each Czech
verb in VerbaLex we had marked the VerbNet semantic class a verb belongs
to. The next step, however, was to have a look at the semantic roles introduced
in VerbaLex. This led us to the reduction of the VerbNet semantic classes to
89 – the semantic roles helped us to make the semantic classification of the
verbs more consistent. For example, if we take semantic role BEVERAGE – it is
yielding a homogeneous group containing 62 verbs. It can be seen that Levin’s
classes sometimes contain verbs that seem to form one consistent group but if
we look at them closer it becomes obvious that they inevitably call for further

Can Complex Valency Frames be Universal? 47

subclassification. For instance, if we take the class containing verbs of putting
(put-9 in VerbaLex notation) we can see that it contains verbs like to put on one
hand, but also to cover or to hang on the other. These differences in their meaning
have to be captured.

The basic assumption in this respect is that there is a mutual relation
between semantic classes of verbs and the semantic roles in their corresponding
CVFs. In this way both the consistency of the inventory of semantic roles and
consistency of the related semantic verb classes can be checked – obviously, in
one class we can expect the roles specific only for that class. For example, with
verbs of clothing the role like GARMENT with its respective subcategorizations
reliably predicts the respective classes and their subclasses. Similarly it works
for other verb classes, such as verbs of eating (FOOD), drinking (BEVERAGE),
emotional states, weather and many others.

In our view, the good news also is that if the semantic parts of the CVFs can
work for more languages (as we tried to show) the same can be extended for
the corresponding semantic verb classes.

The ultimate goal is to obtain semantic verb classes suitable for further
computer processing and applications.

6 Conclusions

In the paper we deal with the lexical database of Czech verbs VerbaLex
whose main contribution consists in the development complex valency frames
(CVFs) capturing the surface (morphological) and deep (semantic) valencies
of the corresponding verbs. For labeling the roles in the valency frames we
have worked out a list (ontology) of the two-level semantic labels which at
the moment contains approx. 30 ’ontological’ roles and 200 subcategorization
features represented by the literals taken from Princeton WordNet 2.0. At
present VerbaLex contains approx. 10,500 Czech verbs with 19,000 CVFs. From
them

Further, we pay attention to some multilingual implications and show that
originally ’Czech’ Complex Valency Frames can reasonably describe semantics
of the predicate argument structures of Bulgarian, Romanian and English
verbs and obviously also verbs in other languages. What has to be dealt
with separately are surface valencies because they heavily depend on the
morphological cases in Czech and Bulgarian and syntactic rules of Romanian
and English. The issue calls for further testing and validation, however, we
consider the presented analysis more than promising.

Acknowledgments. This work has been partly supported by the Academy of
Sciences of Czech Republic under the project 1ET100300419 and by the Ministry
of Education of CR in the National Research Programme II project 2C06009 and
project LC536.

48 Karel Pala and Aleš Horák

References

1. Straňáková-Lopatková, M., Žabokrtský, Z.: Valency Dictionary of Czech Verbs:
Complex Tectogrammatical Annotation. In: LREC 2002, Proceedings. Volume III,
ELRA (2002) 949–956.

2. Kipper, K., Dang, H.T., Palmer, M.: Class Based Construction of a Verb Lexicon. In:
AAAI-2000 17th National Conference on Artificial Intelligence, Austin TX (2000).

3. Fillmore, C., Baker, C., Sato, H.: Framenet as a ’net’. In: Proceedings of Language
Resources and Evaluation Conference (LREC 2004). Volume 4., Lisbon, ELRA (2004)
1091–1094.

4. Boas, H.C., Ponvert, E., Guajardo, M., Rao, S.: The current status of German
FrameNet. In: SALSA workshop at the University of the Saarland, Saarbrucken,
Germany (2006).

5. Hanks, P.: Corpus Pattern Analysis. In: Proceedings of the Eleventh EURALEX
International Congress, Lorient, France, Universite de Bretagne-Sud (2004).

6. Hlaváčková, D., Horák, A.: VerbaLex – New Comprehensive Lexicon of Verb
Valencies for Czech. In: Proceedings of the Slovko Conference, Bratislava, Slovakia
(2005).

7. Hanks, P., Pala, K., Rychlý, P.: Towards an empirically well-founded semantic
ontology for NLP. In: Workshop on Generative Lexicon, Paris, France (2007) in print.

8. Vossen, P., ed.: EuroWordNet: A Multilingual Database with Lexical Semantic
Networks. Kluwer Academic Publishers, Dordrecht (1998).

9. Koeva, S.: Bulgarian VerbNet. Technical Report part of Deliverable D 8.1, EU project
Balkanet (2004).

10. Tufis, D., Barbu, Mititelu, V., Bozianu, L., Mihaila, C.: Romanian WordNet:
New Developments and Applications. In: Proceedings of the Third International
WordNet Conference – GWC 2006, Jeju, South Korea, Masaryk University, Brno
(2006) 336–344.

11. Koeva, S., et al.: Restructuring wordnets for the balkan languages, design and de-
velopment of a multilingual balkan wordnet balkanet. Technical Report Deliverable
8.1, IST-2000-29388 (June 2004).

12. Pala, K., Smrž, P.: Building the Czech Wordnet. In: Romanian Journal of Information
Science and Technology. 7(2–3), (2004) 79–88.

13. Levin, B., ed.: “English Verb Classes and Alternations: A Preliminary Investigation”.
The University of Chicago Press, Chicago (1993).

Processing Czech Verbal Synsets with Relations
to English WordNet

Vašek Němčík, Dana Hlaváčková, Aleš Horák, Karel Pala, and Michal Úradník

NLP Centre, Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xnemcik,hlavack,hales,pala,xuradnik}@fi.muni.cz

Abstract. In the paper, we present the latest results of the process of final
work on preparing the second stable version of the large lexicon of Czech
verb valencies named VerbaLex.
VerbaLex lexicon is developed at the Masaryk University NLP Centre for
the last three years. The current stage of this unique language resource
aims at full interconnection with the pivot world semantic network, the
Princeton WordNet. The paper describes the techniques used to achieve
this task in a semi-automatic way.
We also describe interesting parts of preparation of a printed representa-
tive lexicon containing an important subset of VerbaLex with the valency
description adapted to human readable forms.

1 Introduction

One of the most difficult tasks of automatic language processing is the analysis
of meaning of language expressions or sentences. The central point of every
sentence analysis is formed by its predicate part, i.e. by the analysis of the
verb and its arguments. Within the process of design and development of the
Czech syntactic analyser [1], this assumption has led us to the creation of a
representative lexicon of Czech verbs and verb valency frames containing many
pieces of information suitable for computer processing of the verb arguments
from the point of view of their syntax as well as semantics (related to the content
of the central semantic network of English, the Princeton WordNet [2]).

In the current text, we show the details of discovering relations between
more than three thousands of new Czech verbal synsets and the respective
English synsets, which finally allows to incorporate all the VerbaLex synsets
to one of its original sources, the Czech WordNet [3].

2 VerbaLex Valency Lexicon

VerbaLex is a large lexical database of Czech verb valency frames and has
been under development at The Centre of Natural Language Processing at the
Faculty of Informatics Masaryk University (FI MU) since 2005. The organization

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 49–55, 2008. c©Masaryk University, Brno 2008

50 V. Němčík, D. Hlaváčková, A. Horák, K. Pala, M. Úradník

of lexical data in VerbaLex is derived from the WordNet structure. It has a
form of synsets arranged in the hierarchy of word meanings (hyper-hyponymic
relations). For this reason, the headwords in VerbaLex are formed by lemmata
in synonymic relations followed by their sense numbers (standard Princeton
WordNet notation).

The basic valency frames (BVF) with stressed verb position contain various
morpho-syntactic and semantic information. The types of verbal complementa-
tion (nouns, adjectives, adverbs, infinitive constructions or subordinate clauses)
are precisely distinguished in the verb frame notation. The type of valency rela-
tion for each constituent element is marked as obligatory (obl) or optional (opt).
BVF is followed by an example of verb usage in a sentence. Semantic informa-
tion of verbal complementation is represented by two-level semantic roles in
BVF. The first level contains the main semantic roles proposed on the 1st-order
Entity and 2nd-order Entity basis from the EuroWordNet Top Ontology. The 1st-
level semantic roles represent a closed list of 30 semantic tags. On the second
level, we use specific selected literals (lexical units) from the set of Princeton
WordNet Base Concepts with the relevant sense numbers. We can thus spec-
ify groups of words (hyponyms of these literals) suitable for relevant valency
frames. This concept allows us to specify valency frames notation with a large
degree of sense differentiability. The list of 2nd-level semantic roles is open, the
current version contains about 1,000 WordNet lexical unites.

VerbaLex captures additional information about the verbs, which is orga-
nized in complex valency frames (CVF):

– definition of verb meanings for each synset;
– verb ability to create passive form;
– number of meaning for homonymous verbs;
– semantic classes;
– aspect;
– types of verb use;
– types of reflexivity for reflexive verbs.

The current version of VerbaLex contains 6,360 synsets, 21,193 verb senses,
10,482 verb lemmata and 19,556 valency frames. The valency database is
developed in TXT format and available in XML, PDF and HTML formats.

3 Linking New VerbaLex Synsets to WordNet

Extending a valency lexicon such as VerbaLex is a complex task. It does not only
consist in editing valency frames of the individual verbs, but comprises also
linking the data to other linguistic resources, and eliminating duplicates and
inconsistencies. In the case of VerbaLex, each of the 3,686 newly added synsets
is linked to its counterpart in the English Princeton WordNet (PWN) and to
its hypernym in Czech WordNet. The linking procedure cannot be automated
reliably and requires very costly human lexicographers to do a great amount of
humdrum work.

Processing Czech Verbal Synsets with Relations to EWN 51

Fig. 1. WordNet Assistant

Based on our earlier experience, when linking new Czech synsets to PWN,
the human lexicographers typically look up English translations for the in-
dividual synset literals. Subsequently, they use the translations to query the
DEBVisDic WordNet browser and search for the corresponding English synset
within the query results. To alleviate the human lexicographers from such rou-
tine tasks and to speed up the linking process, certain procedures have been
semi-automated.

3.1 WordNet Assistant

WordNet Assistant (WNA) is a piece software that carries out certain steps,
that would have to be otherwise carried out by a human lexicographer,
automatically. This helps the lexicographer concentrate on crucial decisions and
thus work more efficiently.

First, WordNet Assistant obtains individual literal translations by looking
them up in a multi-lingual dictionary, in our case the GNU/FDL English-Czech
Dictionary compiled at the Technical University in Plzeň [4]. Then, it uses these
translations to query the English WordNet using the DEB server [5] interface, in
order to obtain the relevant English synsets. On top of that, it sorts the English
synsets yielded in the previous step according to their estimated relevance.
More relevant synsets are presented to the user in a more prominent way (i.e.
higher on the list). The user interface of WNA can be seen in Figure 1.

The heuristics used is not entirely accurate. It is based on the assumption
that the more translations of literals of the original synset the English synset
contains, the more relevant it is.

52 V. Němčík, D. Hlaváčková, A. Horák, K. Pala, M. Úradník

In addition to the above-mentioned functionality, WNA helps the lexicog-
rapher locate the hypernym of the new Czech synset in Czech WordNet. The
hypernym can be suggested based on the already determined English counter-
part in the following way:

– start at the English synset corresponding to the new Czech synset
– check whether the current synset has a Czech counterpart
– if there is no Czech counterpart, move to the hypernym of the current synset

and continue with the previous step
– if there is one, it is the resulting related synset

Like in the case of sorting the English synsets according to their relevance,
the suggested synset need not necessarily be the correct one. However, it is
more than sufficient when it is close enough to lead the lexicographer to the
relevant part of the hyper-hyponymic tree. It seems to be unavoidable anyway
that the human lexicographer inspects and compares a number of close synsets
before making the linking decision.

Generally, providing a hyper-hyponymic subtree of a reasonable size or
a number of synsets, rather than a single one, helps prevent and detect
inconsistencies. Given that the English synset may have been already linked
with some other Czech synset, the lexicographer may consider revising the
linking, merging the Czech synsets in question, or adding some distinctive
features that would make it possible to link one of the synsets to a more specific
English counterpart.

The work on the final version of linking the current VerbaLex synsets
to PWN is reaching its end, however, no precise evaluation is available yet.
We plan to analyze the information on the position of the synset chosen
by the human lexicographer on the list presented by WNA, and based on
that, to study the accuracy of the relevance heuristics. Nevertheless, for our
purposes, it is more appropriate to evaluate the system in terms of time
saved by the human lexicographers. Certain saving in time contributable to
WNA is in principle guaranteed, because the lexicographers need to gather the
information computed by WNA anyway.

3.2 Problems in Linking to PWN

The set of synsets newly added to VerbaLex contains a number of not partic-
ularly common verbs like “bručet” (“to grumble”) or “nachodit se” (“to have
a lot of walking around”), for which it is extremely hard, or even impossible
to find an English lexicalized counterpart. These synsets have been marked as
“unlinkable”, comprise approximately 15 % of all synsets and can be divided
into a number of categories:

– Perfective verbs (usually denoting an end of action)
doletět (“to arrive somewhere by flying”), dočesat (“to finish combing”),
dokrmit (“to finish feeding”)

Processing Czech Verbal Synsets with Relations to EWN 53

– Reflexive verbs
naběhat se (“to have a lot of running around”), nalítat se (“to have a lot
of rushing around”), načekat se (“to do a lot of waiting”), maskovat se (“to
disguise oneself”)

– Metaphoric expressions
nalinkovat (“to line something for somebody” meaning “to plan/determine
something for somebody”), žrát (“to eat somebody” meaning “to nag at
somebody”)

– Expressive verbs
ňafat se (“to argue”),

– Verbs with no direct English equivalent
přistavit (“to park/stop a vehicle somewhere”)

– Verbs with no equivalent in PWN
přepólovat (“to change the polarity of something”)

It should be remarked that similar problems have been already discussed
during building the first version of the Czech WordNet in the course of the
EuroWordNet project [6]. The issues of translatability between typologically
different languages have been also touched in the Balkanet project where the
notion of virtual nodes was suggested. They call for a special study.

Further, additional checks have been performed to detect duplicate Verba-
Lex synsets. Considering the size of the lexicon and the intricacies of Czech,
duplicities cannot be completely prevented. Thanks to the linking of VerbaLex
to PWN, it is possible to group semantically related synsets and further
improve the quality of the data. Such synsets are for example: baculatět:N1,
buclatět:N1 and kulatět se:N1, kulatit se:N1. These synsets are both linked to the
PWN synset “round:8, flesh out:3, fill out:6”,they are synonymous and need to
be merged.

4 Compressed Human Readable Form of Verb Valency Frames

The process of presentation and checking of the verb valency expressions is
a complicated task that can be partly done in an automatic manner, but in
case of the need of a small subset with 100 % certainty of correctness the work
must be done by human linguistic experts. That is why, for the purpose of
preparing a printed book of the most frequent and/or somewhat specific verbs
in VerbaLex, we have developed and implemented translation of VerbaLex
frames to a compressed human readable form, see an example in the Figure 2.
Such translation allows a human reader to grasp the meaning of the valency
frame(s) in a fast and intuitive way.

The semantic roles in the frames need to be substituted with words from the
particular language (Czech) and inflected in the correct form. This substitution
is done by translating each role to Czech obtaining the lemmatized form of the
role. The required inflected forms of the roles and verbs are then obtained using
the morphological analyzer ajka [7]. This tool can generate all forms of an input

54 V. Němčík, D. Hlaváčková, A. Horák, K. Pala, M. Úradník

One VerbaLex frame for připustit/připouštět (admit):
ORG(person:1)who_nom VERB STATE(state:4)what_acc
GROUP(institution:1)who_nom VERB STATE(state:4)what_acc
ORG(person:1)who_nom VERB STATE(state:4)that
GROUP(institution:1)who_nom VERB STATE(state:4)that

The compressed human readable form:
V: člověk/instituce – připustí, připouští – stav
person/institution – admits – a state

Fig. 2. An example of a translation of the VerbaLex frames to a compressed
human readable form.

word with the corresponding grammatical tags. With this process, the original
VerbaLex frame from the Figure 2 is translated to:

V: člověk – připustí, připouští – stav
V: instituce – připustí, připouští – stav
V: člověk – připustí, připouští – stav
V: instituce – připustí, připouští – stav

This form is already suitable for human reading, however, we can see that
there are duplicate and near-duplicate lines in the output. The “compression”
of these forms of verb frames then follows the procedure:

1. remove exact duplicate frames;
2. frames containing phraseologisms are gathered in a separate set;
3. all remaining frames are compared 1:1 as candidates for joining a tuple in

one new frame;
4. the best tuple is joined and forms a new frame
5. repeat from step 3 until no new frame can be created;
6. the result is formed by the compressed frames and the original set of frames

with phraseologic phrases.

As a result of this procedure, we will obtain the compressed human readable
frame for all the VerbaLex verb frames.

5 Conclusion

Within the final work on preparation of the second extended and improved ver-
sion of the VerbaLex verb valency lexicon, we have designed and implemented
the WordNet Assistant software tool. WordNet Assistant is aimed at support-
ing lexicographers in discovering new equivalents between (Czech) VerbaLex
synsets and (English) Princeton WordNet synsets. In this paper, we present the
process and problems in exploring such interlingual relations as well as their
reuse for merging of very similar synsets.

Finally, for the purpose of presentation and checking of the valency frames,
we have described an implemented tool that can offer a compressed human
readable form of the VerbaLex verb frames.

Processing Czech Verbal Synsets with Relations to EWN 55

We believe that the presented resources and implemented techniques prove
that we have achieved new and valuable results in the description of the
meaning of Czech verbs.

Acknowledgments. This work has been partly supported by the Academy
of Sciences of Czech Republic under the project 1ET100300419 and by the
Ministry of Education of CR within the Center of basic research LC536 and
in the National Research Programme II project 2C06009.

References

1. Horák, A.: Computer Processing of Czech Syntax and Semantics. Librix.eu, Brno,
Czech Republic (2008).

2. Fellbaum, C., ed.: WordNet. An Electronic Lexical Database. MIT Press, Cambridge
(1998).

3. Pala, K., Smrž, P.: Building the Czech Wordnet. Romanian Journal of Information
Science and Technology 7(2–3) (2004) 79–88.

4. Svoboda, M.: GNU/FDL English-Czech dictionary (2008) http://slovnik.zcu.cz/.
5. Horák, A., Pala, K., Rambousek, A., Povolný, M.: DEBVisDic – First Version of New

Client-Server Wordnet Browsing and Editing Tool. In: Proceedings of the Third
International WordNet Conference – GWC 2006, Brno, Czech Republic, Masaryk
University (2005) 325–328.

6. Vossen, P., Bloksma, L., Peters, W.: Extending the Inter-Lingual-Index with new
concepts. (1999) Deliverable 2D010 EuroWordNet, LE2-4003.

7. Sedláček, R.: Morphemic Analyser for Czech. Ph.D. thesis, Masaryk University, Brno,
Czech Republic (2005).

Extraction of Syntactic Structures
Based on the Czech Parser Synt

Miloš Jakubíček

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

xjakub@fi.muni.cz

Abstract. In this paper we describe the usage of the syntactic parser synt
(developed in the NLP Centre at Masaryk University) to gain information
about syntactic structures (such as noun or verb phrases) of common
sentences in Czech. These structures are from the analysis point of view
usually identical to nonterminals in the grammar used by the parser to
find possible valid derivations of the given sentence. The parser has been
extended in such a way that enables its highly ambiguous output to be
used for extracting those syntactic structures unambiguously and gives
several ways how to identify them. To achieve this, some previously
unused results of syntactic analysis have been evolved leading to more
precise morphological analysis and hence also deeper distinction among
various syntactic (sub)structures. Finally, we present an application for
shallow valency extraction.

1 Introduction

Usually, a derivation tree is presented as the main output of syntactic parsing of
natural languages, but currently most of the syntactic analysers for Czech lack
precision, i.e. there are more (actually, in some cases up to billions) trees given
on the output. However there are many situations in which it is not necessary
and sometimes even not desirable to have such derivation trees, may it be
information extraction and retrieval, transformation of sentences into a form
of predicate(arguments) or shallow valency extraction. In such cases we rather
need to process whole syntactic structures in the given sentence, especially
noun, prepositional and verb phrases, numerals or clauses. Moreover, so as not
to end up with the same problems as with the standard parser output, we need
to identify the structures unambiguously.

Therefore we modified the Czech parser synt so that it is possible to gain
syntactic structures corresponding to the given nonterminal in a number of
ways according to the user’s choice. To improve the structures detection, we
also employed the results of contextual actions used in synt as described in
Section 4, which increased the precision of morphological analysis by almost
30 %. We also present results of the extraction from sample sentences as well as
the usage for shallow valency extraction from annotated corpora.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 56–62, 2008. c©Masaryk University, Brno 2008

Extraction of Syntactic Structures Based on the Czech Parser Synt 57

2 Syntactic parser synt

Syntactic parser synt [1] has been developed for several years in the Natural
Language Processing Centre at Masaryk University. It performs a chart-type
syntactic analysis based on the provided context-free head-driven phrase-
structure grammar for Czech. For easy maintenance, this grammar is edited
in form of a metagrammar (having about 200 rules) from which the full
grammar can be automatically derived (having almost 4,000 rules). Contextual
phenomena (such as case-number-gender agreement) are covered using the
per-rule defined contextual actions.

In recent measures [2, p. 77] it has been shown that synt accomplishes
a very good recall (above 90 %) but the analysis is highly ambiguous: for
some sentences even billions of output syntactic trees can occur. There are two
main strategies developed to fight such ambiguity: first, the grammar rules are
divided into different priority levels which are used to prune the resulting set
of output trees. Second, every grammar rule has a ranking value assigned from
which the ranking for the whole tree can be efficiently computed in order to
sort the trees on the output accordingly.

For the purpose of the extraction, the internal parsing structure of synt is
used, the so called chart, an acyclic multigraph which is built up during the
analysis holding all the resulting trees. What is important about chart is its
polynomial size [3, p. 133] implying that it is a structure suitable for further
effective processing – as the number of output trees can be up to exponential
regarding to the length of the input sentence, processing of each tree separately
would be otherwise computationally infeasible. By processing of the chart we
refer to the result of the syntactic analysis, i.e. to the state of the chart after the
analysis.

3 Extraction of structures

Several ways how to identify the given syntactic structures have been devel-
oped respecting the (from the nature of language given) reality that these struc-
tures differ a lot in their inner form and thus no universal procedure can be used
for all of them. Since we want the output of the extraction to be unambiguous,
the extraction covers all possible structures and their combination that result
from the analysis. There are two very straightforward approaches for structures
detection which consist in extracting the biggest or smallest found structure,
however to achieve quality results, more sophisticated methods have to be em-
ployed for each structure/nonterminal separately. Speaking about biggest or
smallest we mean that regarding to the fact that many of the rules in the gram-
mar used by synt are recursive. The results for various nonterminals are listed
in Examples 1–4.

• Example 1. – clause (nested)
Input:

58 Miloš Jakubíček

Muž, který stojí u cesty, vede kolo.
(A man who stands at the road leads a bike.)
Output:
[0-9): Muž , , vede kolo (a man leads a bike)
[2-6): který stojí u cesty (who stands at the road)

• Example 2. – verb phrase
Input:
Kdybych to byl býval věděl, byl bych sem nechodil.
(If I had known it, I would not have come here.)
Output:
[0-5)1 : byl býval věděl (had known)
[6-10): byl bych nechodil (would not have come)

• Example 3. – clause (sequence)
Input:
Vidím ženu, která drží růži, která je červená.
(I see a woman who holds a flower which is red.)
Output:
[0-3): Vidím ženu , (I see a woman)
[3-7): která drží růži , (who holds a flower)
[7-10): která je červená (which is red)

• Example 4. – noun phrase
Input:
Tyto normy se však odlišují nejen v rámci různých národů a států, ale
i v rámci sociálních skupin, a tak považuji dřívější pojetí za dosti široké
a nedostačující.
(But these standards differ not only within the scope of various nations and coun-
tries but also within the scope of social groups and hence I consider the former
conception to be wide and insufficient.)
Output:
[0-2): Tyto normy (These standards)
[6-12): v rámci různých národů a států (within the scope of various nations
and countries)
[15-19): v rámci sociálních skupin (within various social groups)
[23-30): dřívější pojetí za dosti široké a nedostačující (former conception for
wide and insufficient)

4 Morphological refinement

In order to further divide big structures into separate meaningful segments
it is possible to part them according to the morphological agreement – i.e. in
such a way that words in each structure agree in case, number and gender. To

1 The numbering denotes a (left inclusive, right exclusive) range of the structure in the input sentence (i.e. words

indices).

Extraction of Syntactic Structures Based on the Czech Parser Synt 59

improve this technique some previously unused results of the syntactic analysis
have been involved, namely the contextual actions used by the parser to handle
the case-number-gender agreement. In each analysis step, the results of the
contextual actions are propagated bottom-up so that they can be used in the
next step to prune possible derivations.

Table 1. A comparison of morphological tagging before and after the refine-
ment. The whole sentence in English was: There was a modern shiny car standing
on a beautiful long street. Note that for readability purpose we abbreviate the tags
so that k7{c4,c6} stands for k7c4, k7c6.

word before after
Na (on) k7{c4, c6} k7c6
krásné (beautiful) k2eA{gFnPc1d1, gFnPc4d1, gFnPc5d1,

gFnSc2d1, gFnSc3d1, gFnSc6d1, gInPc1d1,
gInPc4d1, gInPc5d1, gInSc1d1wH,
gInSc4d1wH, gInSc5d1wH, gMnPc4d1,
gMnSc1d1wH, gMnSc5d1wH, gNnSc1d1,
gNnSc4d1, gNnSc5d1}

k2eAgFnSc6d1

dlouhé (long) k2eA{gFnPc1d1, gFnPc4d1, gFnPc5d1,
gFnSc2d1, gFnSc3d1, gFnSc6d1, gInPc1d1,
gInPc4d1, gInPc5d1, gInSc1d1wH,
gInSc4d1wH, gInSc5d1wH, gMnPc4d1,
gMnSc1d1wH, gMnSc5d1wH, gNnSc1d1,
gNnSc4d1, gNnSc5d1}

k2eAgFnSc6d1

ulici (street) k1gFnSc3, k1gFnSc4, k1gFnSc6 k1gFnSc6
stálo (stand) k5eAaImAgNnSaIrD k5eApNnStMmPaI2

moderní (modern) k2eA{gFnPc1d1, gFnPc4d1, gFnPc5d1,
gFnSc1d1, gFnSc2d1, gFnSc3d1, gFnSc4d1,
gFnSc5d1, gFnSc6d1, gFnSc7d1, gInPc1d1,
gInPc4d1, gInPc5d1, gInSc1d1, gInSc4d1,
gInSc5d1, gMnPc1d1, gMnPc4d1, gMnPc5d1,
gMnSc1d1, gMnSc5d1, gNnPc1d1, gNnPc4d1,
gNnPc5d1, gNnSc1d1, gNnSc4d1, gNnSc5d1}

k2eAgNnSc1d1, k2eAgNnSc4d1,
k2eAgNnSc5d1

nablýskané (shiny) k2eA{gFnPc1d1rD, gFnPc4d1rD, gFnPc5d1rD,
gFnSc2d1rD, gFnSc3d1rD, gFnSc6d1rD,
gInPc1d1rD, gInPc4d1rD, gInPc5d1rD,
gInSc1d1wHrD, gInSc4d1wHrD, gInSc5d1wHrD,
gMnPc4d1rD, gMnSc1d1wHrD, gMnSc5d1wHrD,
gNnSc1d1rD, gNnSc4d1rD, gNnSc5d1rD}

k2eAgNnSc1d1, k2eAgNnSc4d1,
k2eAgNnSc5d1

auto (car) k1gNnSc1, k1gNnSc4, k1gNnSc5 k1gNnSc1, k1gNnSc4, k1gNnSc5

So far these outcomes in form of morphological values have not been used
in any other way. Our enhancement backpropagates these values after the
analysis top-down to the chart nodes, i.e. input words, and prunes their original
morphological tagging. This leads to more precise morphological analysis and
hence it also enables more exact distinction between substructures according
to grammar agreement. A detailed example of the impact of morphological
refinement on particular sentence is provided in Table 1.

Testing on nearly 30,000 sentences from Czech annotated corpus DESAM [4]
has shown that it is possible to increase the number of unambiguously analysed

2 The inconsistence in tagging on this row has purely technical background – the tag set has been changed.

60 Miloš Jakubíček

words by almost 30 % using this method while the number of errors introduced
consequently remains very low, as shown in Table 2.

Table 2. Morphological refinement results on the DESAM corpus.

value before after
average unambiguous words 20,733 % 46,1172 %
average pruned word tags 38,3716 %
error rate 3 < 1,46 %
number of sentences 29 604

Parting structures according to their grammatical agreement is useful, for
example, when extracting noun or prepositional phrases, as can be seen in
Example 5 (compare with Example 4 where the same sentence is extracted
without morphological parting).

Example 5.
Input:
Tyto normy se však odlišují nejen v rámci různých národů a států, ale i v rámci
sociálních skupin, a tak považuji dřívější pojetí za dosti široké a nedostačující.
(But these standards differ not only within the scope of various nations and countries
but also within the scope of social groups and hence I consider the former conception to
be wide and insufficient.)
Output:
[0-4): Tyto normy se však
(But these standards)
[6-8): v rámci
(within the scope)
[8-12): různých národů a států
(various nations and countries)
[13-17): ale i v rámci
(but also within the scope)
[17-19): sociálních skupin
(social groups)
[23-25): dřívější pojetí
(former conception)
[25-30): za dosti široké a nedostačující
(for wide and insufficient)

Specific modifications how to extract nonterminals with important seman-
tical representation have been developed. Furthermore, these settings can be
extended to other (possibly new) nonterminals easily as they are available as
command-line parameters.
3 As an error we consider a situation when the correct tag has been removed during the refinement process.

Actually the error rate is even lower since many of the results marked as wrong were caused by an incorrect tag

in the corpus.

Extraction of Syntactic Structures Based on the Czech Parser Synt 61

5 Applications: shallow valency extraction

Currently, a new verb valencies lexicon for Czech, called Verbalex [5], is being
developed in the NLP Centre. As building of such a lexicon is a very time-
consuming long-term task for linguists professionals, it is extremely important
to use any possibilities to make this process easier for them. Therefore, we
extended the extraction of structures so that it performs a shallow valency
extraction from annotated corpora. The main idea is as follows: first, we extract
separate clauses, then we identify individual verbs or verb phrases and finally
we find noun and prepositional phrases within each clause. Sample output in
BRIEF format is provided in Example 6. Moreover, such basic extraction might
be used for approximating the coverage of the valency lexicon by finding verbs
that are not included there.

Example 6.
; extracted from sentence: Nenadálou finanční krizi musela
podnikatelka řešit jiným způsobem .
řešit <v>hPTc4,hPTc7
(The businessman had to solve the sudden financial crisis in another way.)
; extracted from sentence: Hlavní pomoc ale nacházela v dalších
obchodních aktivitách .
nacházet <v>hPTc4,hPTc6r{v}
(However she found the main help in further business activities.)
; extracted from sentence: U výpočetní techniky se pohybuje
v rozmezí od 8000 Kč do 16000 Kč .
pohybovat <v>hPTc2r{u},hPTc6{v}
(By IT [it] ranges between 8,000 Kč and 16,000 Kč.)

6 Conclusions

We presented recent improvements in the Czech parser synt that can be
used for extracting various syntactic (sub)structures. We also showed practical
usage of syntactic analysis for refining morphological tagging as well as
examples using the resulting tagging for structures distinction. Furthermore,
we presented an application of structures extraction, namely shallow extraction
of valencies.

In the future there will be further work on the development of this extrac-
tion. We would like to compare the results of morphological refinement with
similar oriented methods (e.g. with morphological disambiguation as described
in [6]) as well as perform more detailed experiments with the shallow valency
extraction on big annotated corpora.

Acknowledgements. This work has been partly supported by the Academy
of Sciences of Czech Republic under the project 1ET100300419 and by the
Ministry of Education of CR within the Center of basic research LC536 and
in the National Research Programme II project 2C06009.

62 Miloš Jakubíček

References

1. Kadlec, V., Horák, A.: New meta-grammar constructs in Czech language parser synt.
In: Proceedings of TSD 2005, LNCS 3658, Springer-Verlag (2005), pp. 85–92.

2. Kadlec, V.: Syntactic analysis of natural languages based on context-free grammar
backbone. Ph.D. thesis, Faculty of Informatics, Masaryk University, Brno (2007).

3. Horák, A.: The Normal Translation Algorithm in Transparent Intensional Logic for
Czech. Ph.D. thesis, Faculty of Informatics, Masaryk University, Brno (2001).

4. Pala, K., Rychlý, P., Smrž, P.: DESAM – Annotated Corpus for Czech. In: Proceedings
of SOFSEM ’97, Springer-Verlag (1997) 523–530.

5. Hlaváčková, D., Horák, A., Kadlec, V.: Exploitation of the Verbalex verb valency
lexicon in the syntactic analysis of Czech. In: Proceedings of TSD 2006, Brno,
Springer-Verlag (2006), pp. 85–92.

6. Šmerk, P.: Unsupervised learning of rules for morphological disambiguation. In:
Proceedings of TSD 2004, Brno, LNCS 3206, Springer-Verlag (2004), pp. 211–216.

Test Suite for the Czech Parser Synt

Vojtěch Kovář and Miloš Jakubíček

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
xkovar3@fi.muni.cz, xjakub@fi.muni.cz

Abstract. This paper presents a set of tools designed for testing the Czech
syntax parser that is being developed at the Natural Language Processing
Centre at the Masaryk University, synt. Testing the parser against a newly
created phrasal tree corpora is very important for future development of
the parser and its grammar. The usage of the test suite is not restricted
to the synt parser but is open to wide scope of applications that provide
similar output.

1 Introduction

Automatic syntactic analysis is one of the basic tasks in advanced natural
language processing. However, the syntactic analysers (or parsers) developed
for the Czech language deal with many serious problems, e.g. low precision or
high ambiguity of the parsing results. For this reason, the development of the
parsers must continue as effectively as possible and the qualities of the parsers
must be continually tested against the corpus data.

This paper concerns a Czech parser synt that is being developed at the
Natural Language Processing Centre at the Masaryk University (NLP Centre).
The parser is based on context-free backbone with additional contextual actions
and it features a developed meta-grammar formalism with a fast parsing
algorithm. It produces sets of possible derivation phrasal trees and the output
can be highly ambiguous. However, a tree-ranking algorithm is implemented
that enables the parser to select one “best” tree from the output set in a short
time that does not depend on the overall number of trees.

Until recently, there was no larger corpus of phrasal trees available. The only
huge treebank for the Czech language was the Prague Dependency Treebank [1]
but the dependency formalism is very different from the phrasal one and the
conversion between dependency and phrasal structures can produce a large
number of errors [2]. At the current time, a new treebank with phrasal trees has
been built at the NLP Centre and we plan to use this treebank intensively in the
process of the synt parser development.

In this paper, we introduce a set of tools (test suite) developed for testing the
synt parser (as well as any other parser that produces similar outputs) using the
new phrasal treebank. We briefly describe both the parser and the treebank and
then we characterize the test suite itself: the procedure of testing, used metrics,
comparison of a particular test with a reference one and related problems.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 63–70, 2008. c©Masaryk University, Brno 2008

64 Vojtěch Kovář, Miloš Jakubíček

2 The synt Parser

The synt parser is based on a large Czech meta-grammar with context-
free backbone and contextual actions. The involved parsing algorithm uses
a modification of head-driven chart parser [3] that provides very fast parsing
even in combination with big grammars. As mentioned in the introduction,
the parser output produces set of ranked trees that match the parser meta-
grammar.

Besides the parsing algorithm itself, many additional functions are imple-
mented in the system, such as algorithm for finding the best coverage (for sen-
tences that do not match the grammar), efficient selection of N best output trees
from the analysis results or using so called limits.

The limits function is used if the user wants to prune the set of resulting
trees according to their structure. The parser gets a set of limits on its input
that can look like 0 4 np and prints only the trees matching all the limits. In the
previous example, only the trees would be printed in that a “np” (noun phrase)
non-terminal covers the input from position 0 to position 4.

The coverage of the parser grammar is about 92 percent of Czech corpus
sentences [4, p. 77]. Its precision was never rigorously evaluated because of
insufficient syntactically annotated corpus data. (The only testing against a big
corpus data is reported in [2] but the results indicate that the testing data
were highly distorted by format conversions.) With the newly created phrasal
treebank and test suite, we could make such evaluation. Its results are presented
in the Section 4.6.

3 The Brno Phrasal Treebank

The Brno Phrasal Treebank was created in years 2006–2008 as a product of
linguist specialists collaborating with the NLP Centre. The corpus contains in
overall 86,058 tokens and 6,162 syntactically tagged sentences. The main source
of sentences is the Prague Dependency Treebank.

Besides the correct tree in the phrasal formalism, the treebank source files
contain information about the source of the text, lemmatized and morpholog-
ically tagged format of the text and limits that must be fulfilled by all correct
trees. These limits contained in the treebank source files are used in one of the
test suite statistics, as explained in following sections.

An example of a treebank sentence is shown in Figure 1.

4 The Test Suite

The test suite is a set of scripts that performs an automatic comparison of
the synt parser output with the introduced phrasal treebank. Basically, it
runs the parser over the morphologically tagged data from the treebank and
incrementally computes the statistics according to the parser output.

Test Suite for the Czech Parser Synt 65

Fig. 1. An example of a treebank sentence

4.1 Included Statistics

The basic statistics we wanted to include in the testing are the following:

– overall number of parsing trees – useful for grammar ambiguity estimations.
– number of limits trees – or number of trees fulfilling limits. This number

tells us how many “correct” trees have been found in the output. Ideally
we want only one; if there are no such trees, the output of the parser is
incorrect. In case of several trees, the limits recorded in the treebank should
be probably more restrictive.

– similarity of the parsing results with the correct tree recorded in the
treebank.

4.2 Measuring Similarity of Trees

The last of the presented statistics creates two questions:

– What similarity metric to use?
– How to handle ambiguous output of the parser with a tree-to-tree similarity

metric?

Our answer to the first question is the usage of the metric called leaf-ancestor
assessment (LAA) [5] proposed by Geoffrey Sampson in 2000. This metric is
considered to be more reliable than the older PARSEVAL metric that is currently
used more frequently. We outline the main characteristics of the metric in the
following section.

The solution of the second problem is to use three different numbers for
evaluation of the ambiguous output of the parser:

– best tree similarity – the best score of the LAA similarity metric reached by
any tree from the output set.

66 Vojtěch Kovář, Miloš Jakubíček

– average similarity – average score of the LAA metric for all trees in the output
set.

– first tree similarity – score of the best-ranked tree in the output set.

The first number can tell us how good the parser could be if we had an ideal
tree-ranking function. The second one predicates of the overall precision of the
grammar. The last item is probably the most useful since in most linguistic or
NLP applications, we usually want one best tree from the parser, not a set; so
this is the number that a potential user or advanced NLP application can expect
when handling only one tree.

For efficiency reasons, we always take maximum 100 output trees as the
whole output set.

Another complication related to the similarity measuring is the fact that the
synt grammar, especially its set of non-terminals, slightly changes in time. For
this reason, we applied renaming of the non-terminals in the resulting candidate
trees as well as in the treebank trees. Moreover, the renaming of the non-
terminals will make testing of other parsers by the same test suite possible and
it can fix several small errors in the treebank data as well. The target set of
nonterminals is shown in Table 1.

Table 1. Target non-terminals for renaming

nonterminal description
ABBR abbreviation
ADJP adjective phrase
ADVP adverbial phrase
CLAUSE clause
CP conjunctions or punctuation (in the middle of sentence)
ENDS ending sentence punctuation
NP noun phrase
PP prepositional phrase
PREP preposition
PRON pronoun
SENTENCE the whole sentence (without ending punctuation)
VP verb phrase
TOP root nonterminal
OTHER any other constituent (particle, interjection)

4.3 The LAA Parse Evaluation Metric

Every possible parse evaluation metric has to compare two trees – the correct
one (also called gold standard) and the one output by the parser (also called
candidate). The LAA metric is based on comparing so called lineages of the two
trees.

Test Suite for the Czech Parser Synt 67

A lineage is basically a sequence of non-terminals found on the path from
a root of the derivation tree to a particular leaf. For each leaf in the tree, the
lineage is extracted from the candidate parse as well as from the gold standard
parse. Then, the edit distance of each pair of lineages is measured and a score
between 0 and 1 is obtained. The mean similarity of all lineages in the sentence
forms the score for the whole analysis. More information about the metric can
be found in [5].

In [6], it is argued that the LAA metric is much closer to human intuition
about the parse correctness than other metrics, especially PARSEVAL. It is
shown that the LAA metric lacks several significant limitations described also
in [7], especially it does not penalize wrong bracketing so much and it is not so
tightly related to the degree of the structural detail of the parsing results.

In the test suite, we used the implementation of the LAA metric by Derrick
Higgins that is available at http://www.grsampson.net/Resources.html.

4.4 The output format

The results of each testing are saved in the form of a text file with 6 columns:

– sentence ID
– number of limits trees
– overall number of output derivation trees
– best tree similarity
– average similarity
– first tree similarity

After the test suite completes the whole file, a short summary is printed, as
shown in the Figure 2.

Fig. 2. The summary output of the test suite

4.5 Comparing Two Tests

During the parser development, we usually want to be able to compare
several runs of the test suite in order to immediately gain a view of the

68 Vojtěch Kovář, Miloš Jakubíček

impact of changes we have done. This enables us to prevent regressions in the
development as well as it makes easier to track the changes history.

Thus, it is possible to perform a test-to-test comparison which outputs
a table with test summaries. Furthermore, a detailed lookup of sentence
changes is printed so that developers can directly correct any issues (see
Figure 3). Currently, we collect following sentence differences (however the
system is designed to be easily extended if further details were needed):

– sentences which do not pass the limits anymore
– sentences which newly cause a parser failure/timeout
– sentences with regressions in the number of trees/LAA values.

In order to speed up the comparison even more, an HTML document is
produced as well, allowing the user (on-click) to obtain trees to compare after
the tree images are created on-the-fly. A view of a tree-to-tree confrontation is
provided in Figure 4.

4.6 Evaluation Results and Discussion

In the Figure 2, the results of a real test are shown. We can see that for 1,162
sentences (which is about 20 percent of the treebank) there is no correct tree in
the parser output. However, the results of similarity measuring were relatively
good – 87.8 percent for the first 100 trees. It can be also seen that the score for
these first trees is better than average. This is a strong evidence that the parser
ranking algorithm is basically correct. However, it could be still better; with an
ideal ranking function we could reach the precision of 91.5 percent.

There is one remaining problem in interpretation of the results. For effi-
ciency reasons, some parsing processes were killed during the testing since they
exceeded a fixed time limit. It is an open question how to handle these “killed”
sentences. In the evaluation presented above, these sentences were skipped and
were not included into the statistic. If we counted them in with a score e.g. 0,
the LAA metrics would fall down to 65–70 percent.

5 Conclusions and Future Directions

In the paper, we have presented a newly created test suite for the Czech
parser synt that uses a new phrasal treebank for the Czech language. We have
presented used metrics and procedures needed to get the results as well as
outputs useful for developers of the parser. We also presented the precision
of the parser measured by the introduced test suite.

In the future development, we mainly want to improve the parser grammar
according to the data retrieved from the testing suite. At the same time, we
plan to enhance the test suite according to the feedback we will get from the
developers of the parser.

Test Suite for the Czech Parser Synt 69

Fig. 3. A test-to-test comparison output (random tests)

Acknowledgements. This work has been partly supported by the Academy of
Sciences of Czech Republic under the projects 1ET100300414 and 1ET100300419
and by the Ministry of Education of CR in the National Research Programme II
project 2C06009.

References

1. Hajič, J.: Building a syntactically annotated corpus: The Prague Dependency
Treebank. In: Issues of Valency and Meaning, Prague, Karolinum (1998) 106–132.

2. Horák, A., Holan, T., Kadlec, V., Kovář, V.: Dependency and Phrasal Parsers of the
Czech Language: A Comparison. In: Proceedings of the 10th International Conference
on Text, Speech and Dialogue, Pilsen, Czech Republic, Springer Verlag (2007) 76–84.

3. Horák, A., Kadlec, V., Smrž, P.: Enhancing best analysis selection and parser
comparison. In: Lecture Notes in Artificial Intelligence, Proceedings of TSD 2002,
Brno, Czech Republic, Springer Verlag (2002) 461–467.

70 Vojtěch Kovář, Miloš Jakubíček

Fig. 4. A tree-to-tree confrontation selected in the HTML test-to-test compari-
son.

4. Kadlec, V.: Syntactic analysis of natural languages based on context-free grammar
backbone. Ph.D. thesis, Faculty of Informatics, Masaryk University, Brno (2007).

5. Sampson, G.: A Proposal for Improving the Measurement of Parse Accuracy.
International Journal of Corpus Linguistics 5(01) (2000) 53–68.

6. Sampson, G., Babarczy, A.: A test of the leaf-ancestor metric for parse accuracy.
Natural Language Engineering 9(04) (2003) 365–380.

7. Bangalore, S., Sarkar, A., Doran, C., Hockey, B.A.: Grammar & parser evaluation in
the XTAG project (1998)
http://www.cs.sfu.ca/~anoop/papers/pdf/eval-final.pdf.

Computing Idioms Frequency in Text Corpora

Jan Bušta

Faculty of Informatics, Masaryk University, Brno, Czech Republic
xbusta@fi.muni.cz

Abstract. The idioms are phrases which meaning is not composed from
the meanings of each word in the phrase. This is one of the natural
examples of violating the principle of compositionality that means that
idioms are in area of natural language processing problem of meaning
mining. To count the frequency of phrases such idioms in corpora has one
big aim: To get to know which phrases we use often and which less. We
do it to be able to start with getting the meaning of the whole phrases not
just each word. This improves the understanding natural language.

1 Idioms

First step how be able to count the idiom frequency is to recognize the idiom.
Although we have a dictionary (Slovník české frazeologie a idiomatiky), the
idioms are in corpus in non-standard form. The question, what is and what is
no more an idiom, is quite difficult to define. The word order in idioms is not
fixed, there is for example an idiom hrát druhé housle1 you find it in this form
in the dictionary, but in the real text, the idiom could be . . . já druhé housle hrát
nehodlám. It is shown that the word order is switched, the noun phrase is in the
front of the verb phrase.

The structure of idioms in the dictionary are well primary divided in two
categories:

– the verb-based idioms and phrases – the main word is a verb and the
other words, which are optional, create only the context or/and further
qualification,

Example 1. hnout / pohnout někomu žlučí, dostat zaslouženou odměnu, být
odkázán / bejt vodkázanej sám na sebe

– the non-verb-based idioms and phrases – the main meaning depends on
the non-verbal word, very often on nouns (substantives), or is composed
form the many words which are on the same meaning level.

Example 2. bída s nouzí, brána pekla / do pekla / do pekel, bez velkých / dlouhých /
zbytečných ceremonií

Note 1. Whether the phrase is verbal- or non-verbal-based depends on the
language, the same meaning could be said in different forms in each language.

1 All idioms in text are from SČFI [1]

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 71–74, 2008. c©Masaryk University, Brno 2008

72 Jan Bušta

This division is very useful because the approach to this two groups is
totally different. While for the verb-based idioms should the query take into
account possible noun- and verb-phrase switching, by the non-verb-based
idioms is the situation easier, because the word switching in this case is not
common (there are some exception, but the idioms created this way sounds
archaic, e. g. země dary).

Changing the case, gender or tense in idioms is not a real computing
problem. Some idioms can occur in a specific positional form only, the phrase
has an idiomatic meaning only if the words are next to each other, usually is
that an adjective and a substantive which specify the base word, but in some
idioms is also not fixed the number of words. You can start with the first part
(whatever the first part is), insert some words which can specify the meaning,
and finish the original phrase (see next example). This makes some problems
with selecting the idiom in text.

Example 3. . . . , že by měla v budoucnu hrát ve svém regionu druhé housle. . .

1.1 Frege’s principle

Idioms are the phrases which violating Frege’s principle of compositionality.
This fact makes this work meaningful, because we are not able to translate (or
get the sense) from the sentence if it contains an idiom; first we have to define
the meaning of the parts in sentence thereafter is the clear road to processing.
Idioms can not be processed as it is but have to be preprocessed. The easiest
way it to give them the fixed meaning/translation. It can be hard to work with
all idioms therefore we will select the most frequented idioms.

2 Corpora

The primary corpus data come form the SYN2000c corpus made by Institute
of the Czech National Corpus at Charles University in Prague. This corpus
includes more than 100 millions words from complete texts sources. The
SYN2000c is a synchronous corpus, which means that most the documents
added into it have been published in the same time (1990–1999). The SYN200c
corpus contains also some older documents from authors which were born after
1880. [2]

Using this corpus provides very good overview on the Czech language, the
solution corresponds with today’s language. Another advantage is that this
corpus is tagged therefore is no problem with forms of words in any case,
gender or tense.

3 Querying

The main work is in the querying. How to query the corpus if it contains the
given idiom or not and if yes how many times. There is no problem, to get

Computing Idioms Frequency in Text Corpora 73

"some result", but it happens, that we have to think about the idiom structure
and adapt the query to the idiom we are looking.

For querying the corpus is the Corpus Query Language[3] which gives the
power to create complex queries. It allows to specify the context or distance of
each words in idioms. The result reflects very sensitively the used query.

Next example show how search the verb-based idiom hrát druhé housle in
corpus.

Example 4. [lemma="hrát"][word!="\."]{0,5}"druhé""housle"|
"druhé""housle"[word!="\."]{0,5}[lemma="hrát"]

The result of this query will be a list of phrases which begins with any from
of the first part (in this this case the verb hrát, next word can be everything else
except the dot sign, there should be 0–5 words this type (inserted words) and
at the and is the other part of idiom which are consist from the two contiguous
words druhé and housle. The other part implements the switching of the parts of
the idiom. The count of found idioms using this query is 47, but if we searching
only the occurrence of the word phrase druhé housle, the count will be 52. The
difference between this two results is in the fact, that the phrase druhé housle
can be used separately in the non-idiomatic meaning (music stuff). Knowing
the right borders of idiom will decide, if the phrase is an idiom or not.

The situation in the field of non-verb-based idioms seems to be easier, but
there are other things which could be solved. Many of non-verb-based idioms
have more than one. The structure of them can consist from the static part and
the part which could be changed. This second part is created from word (or
words) which have the same/near meaning. The idioms dar řeči, dar jazyka and
dar výmluvnosti are according to the dictionary the same. This idioms should be
detect and searched as:

Example 5.
[lemma="dar"][word="řeči|jazyka|výmluvnosti"]

In this idiom example is also impossible to divide the idiom in two parts,
this is the property of majority of non-verb-based idioms.

A special group of idioms are one-word idioms, e. g. žízeň. In this case is the
frequency of idiom identical to the plain frequency of the word which is not
exact. Many of occurrences are the words in his base meaning, to divide the
base and the idiomatic meaning of the word is context dependent. There is no
solution how to recognize this idioms without any other supporting method.

In the idioms written in SČFI are sometimes a word (words) of idiom in non-
literary form. It would not be if the lemma will match the lemma of the literary
equivalent, but there are not, it makes difficulties by searching in corpus.

3.1 Dividing the idioms

To find an automatic procedure of making the queries is the good classifying the
idioms and do more specific groups of idioms than verb- and non-verb-based

74 Jan Bušta

in which would be such of them which satisfy the prepared slots for making
the final query.

It seems to by useful (in case of verb-based idioms) to divide them by their
possibility to change the position of parts of the idioms, by possibility to accept
the inserted words in the middle, by the alternatives parts (synonymic phrases
inside the idiom). One of the important variable, which should be set, is the
maximal distance of the parts of idioms. If this value will be to slow, some
idioms will be not found; if it will be to high, some other phrases will be found
which will be not idioms.

Non-verb-based idioms are easier to recognize also the dividing in groups
linked with their structure. For the non-verb-based idiom groups is the main
characteristic if there is a alternative part or words have to be side-by-side.

4 Conclusion

The processing the idioms, cleaning the data and preparing the form of the
idioms is the fist step to be able to create the queries which will match the
highest count of the idioms without matching any other phrases which are in
the corpus but are not idioms.

The second step is prepare the skeleton of query, the slots have to be as much
as possible specific (to accept only the right group of idioms).

After doing the previous steps we can start with the querying the corpus.
The results are only very hard to evaluate in particular because there are no
results done. We can sure compare results of some idiomatic searches but not
all results.

Maybe will be some methods used also by computing the frequency
of idioms in other language although the structure of idioms is language
dependent.

Acknowledgments. This work has been partly supported by the Academy of
Sciences of Czech Republic under the projects 1ET100300419 and 1ET200610406,
by the Ministry of Education of CR within the Center of basic research LC536
and in the National Research Programme II project 2C06009 and by the Czech
Science Foundation under the project 407/07/0679.

References

1. Čermák, F., collective: Slovník české frazeologie a idiomatiky. Academia (1994).
2. Institute of the Czech National Corpus: Structure of technical and other spe-

cialised literature according to the technical orientation (2008) [Online; accessed 12-
November-2008].

3. Christ, O.: A modular and flexible architecture for an integrated corpus query system.
Technical report, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart
(1994).

Plagiarism Detection through Vector Space Models
Applied to a Digital Library

Radim Řehůřek

Faculty of Informatics, Masaryk University
xrehurek@fi.muni.cz

Abstract. Plagiarism is an increasing problem in the digital world. The
sheer amount of digital data calls for automation of plagirism discovery.
In this paper we evaluate an Information Retrieval approach of dealing
with plagiarism through Vector Spaces. This will allow us to detect
similarities that are not result of naive copy&paste. We also consider the
extension of Vector Spaces where input documents are analyzed for term
co-occurence, allowing us to introduce some semantics into our approach
beyond mere word matching. The approach is evaluated on a real-world
collection of mathematical documents as part of the DML-CZ project.

1 Introduction

1.1 What is plagiarism?

With the advances in technology (storage and processor performance, database
and scanning systems, user interfaces), creating large digital collections of
documents becomes largely an engineering task. Digital library is a centrally
managed digital collection of documents, such as texts, multimedia images,
music or videos. At the same time, the electronic medium makes it easier than
ever to plagiarize accessible documents, or portions of them. This discourages
information providers from publishing their content, in turn crippling the
digital libraries. The idea of stealing someone’s work is of course not new,
but digital technology and the Internet make reproduction and distribution of
documents much faster, easier and safer than the tedious paper or CD-based
methods of the past.

According to the Merriam-Webster Online Dictionary [1], to “plagiarize”
means

1. to steal and pass off (the ideas or words of another) as one’s own
2. use (another’s production) without crediting the source
3. to commit literary theft
4. to present as new and original an idea or product derived from an existing

source.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 75–83, 2008. c©Masaryk University, Brno 2008

76 Radim Řehůřek

1.2 Why plagiarism detection?

One salient area where plagiarism becomes a major problem is the education
system. The problem of students turning to the Internet for a quick-fix home-
work solution which shortcuts around the time-consuming work of writing
programming assignments and research papers is becoming very serious. This
area has even been noted by the commercial sector already. A number of pa-
per mill services exist, offering plagiarized papers to students, sometimes even
with the added option of having the paper “customized". According to a 2002
study by McCabe [2], 10% of American college students have partially copied
their assignment from the Internet without proper citation, with 5% turning in
verbatim copies from web pages and term-paper mills. The situation is even
worse for high school students, with the figures at 52% and 16% respectively.
The numbers are rising every year, not the least because plagiarizing is becom-
ing a common (if not acceptable) part of our educational culture. The reward for
doing the hard work yourself is mostly moral, and detection and punishment
of plagiators very rare.

Also notable is connection between detecting plagiarism in programming
and natural languages. The latter are inherently more difficult, because a
plagiarized program must, in order to retain the same semantics, also retain
very similar syntax. A similar syntactical parse tree of a program is thus in
itself highly indicative of plagiarism, something not true for natural languages,
where the connection between syntax and semantics is much more variable and
vague.

Plagiarism detection as considered in this paper is a computational means of
detecting the above mentioned plagiarism violations. As such it includes copy
detection, which is the most straightforward case of plagiarism that duplicates
parts of documents verbatim. Copy detection is not necessarily useful strictly
for unlawful violations; a possible scenario is one where user is activelly sifting
through documents from a particular domain. Here the ‘original’, or registered
documents are simply documents that have been seen already, and the user
is likely not interested in minor modifications (retransmitted or forwarded
messages, different versions or editions of the same work, documents coming
from mirror sites and so on). He aims to gather topically related documents,
without any explicit regard to plagiarism. This is a task studied in the field of
Information Retrieval (IR), and indeed in general terms plagiarism detection in
digital libraries can be seen as an instance of IR.

2 Document Representation

Vector Space Model (VSM)

Information Retrieval is the part of computer science concerned with retrieving,
indexing and structuring digital objects (e.g, text documents, images, videos)
from collections (e.g., the Web, corpora). Although several different models
have been proposed (see e.g. [3]), the one relevant for this section is the

Plagiarism Detection through Vector Space Models. . . 77

Vector Space (VS) Model. Here objects are not represented directly, but rather
approximated by features. What constitutes a feature is application dependent –
in our case of text retrieval, most common choice are terms as delimited by
white space, or term bigrams. These features are then assigned specific values
for each object, leading to a representation of the object by a vector. Even though
assignment of discrete values (e.g., 0, 1 or 0, 1, . . . , n) is possible, most extensions
to the basic model modify the values by weights, making the vector real-valued.
Documents proximity can then be estimated by vector similarity measures,
such as vector dot product, cosine similarity and others.

The VS model implies several choices: firstly, which features to extract
from the documents, secondly, what weights to assign them and finally how
to compute document similarity. The standard practise is to take the set of
all tokens that occur in the document and note their frequencies. This tacitly
assumes position independence within the document, and also independence
of terms with respect to each other. This assumption is intuitivelly wrong (the
term ‘surf’ has different meaning within the context of surfing on the Web
and surfing on the beach), but empirical NLP studies nevertheless report good
results using it. This approximation of a document by a set of its terms (and
their frequencies) is called the Bag of Words (BOW) approximation.

Latent Semantic Indexing

To overcome the limitations of simple term overlap, semantic modifications of
VS were introduced. One of them is Latent Semantic Indexing (LSI), a technique
based on Vector Space model which aims to create associations between
conceptually connected documents and terms. Research into LSI originated
with [4]. LSI uses linear algebra techniques (i.e., Singular Value Decomposition,
SVD), as explained in [5]. The following paragraphs give brief introduction into
theoretical background and intuition into how LSI operates on textual domain.
A very enticing feature of LSI is that it is a so-called unsupervised method,
meaning that no explicit input of knowledge is required for training. It has been
shown that LSI has good retrieval performance [10].

Let m be the rank of a term-document matrix M, which may be the TF·IDF
matrix described in the previous IR section. We may decompose M into M =
U · S ·VT , where U (size t×m) and VT (size m× d) have orthonormal columns
and S is diagonal. The columns of U (resp. V) are called the left (resp. right)
singular vectors (or eigenvectors) and are the (normalized) eigenvectors of M ·MT

(resp. MT · M). The values in S are the (positive) square roots of the eigenvalues
of M · MT (or equivalently, of MT · M). They are positive real numbers, because
M · MT is symmetric and positive definite. The decomposition process is called
Singular Value Decomposition (SVD)1. Without loss of generality, we can assume
the positive real diagonal elements in S, called singular values, are sorted by
their magnitude, and the corresponding left and right eigenvectors in U, VT are
1 The Singular Value Decomposition is used to solve many problems (e.g. pseudo-inverse of matrices, data

compression, noise filtering) and is a least squares method. LSI uses it to find a low rank approximation of the

term-document matrix M.

78 Radim Řehůřek

transposed accordingly. By keeping only the k largest singular values we can
reduce S to Sk of size k . Similarly if we keep only the first k columns of U
and first k rows of VT , we get Mk = Uk · Sk · VT

k (with dimensionalities of
(t · d) = (t · k)× (k · k)× (k · d)). This process is depicted in Figure 1. We call
Mk the rank-k approximation of M and k the number of factors. In fact, as shown
in [6], the Eckart-Young theorem states that Mk is the best rank-k approximation
of M with respect to the Frobenius norm (2-norm for matrices). How to select
the optimal number of latent dimensions k is still an open problem. However
empirical studies show that values between 100 and 300 result in best text
retrieval performance. In [7,8] the authors propose a statistical test for choosing
the optimal number of dimensions for a given collection.

Fig. 1. LSI concept formation: Rank-k matrix approximation of M is obtained
by truncating the U, S and VT matrices from Singular Value Decomposition.
Figure taken from [5].

3 DML-CZ

Czech Digital Mathematics Library (DML-CZ) [9] is a project aiming to collect
historical mathematical papers and documents within the domain of Bohemia.
This includes scanning and using OCR on old papers from pre-digital era.
All documents are carefully processed, enriched with metadata and made
accessible via web tool called Metadata editor editor.dml.cz. The collection,
with an additional input of 15,767 articles from NUMDAM, contains 21,431
relevant articles. Out of these, there are 8,145 articles in English suitable for our
experiments.

Having such collection offers interesting challenges – in what way do we
let our users browse the library? All mathematical articles are reviewed, plus
the group of interested people is rather narrow, so plagiarism is unlikely. But
still the questions can be asked – are there any suspiciously similar documents
within our library? Can document similarity facilitate and enhance browsing
experience of the user?

Plagiarism Detection through Vector Space Models. . . 79

To apply our VSM method as described above, we converted the 8,145 ar-
ticles to vectors, using both TF·IDF and LSI. For LSI, we reduced dimensional-
ity to the top 200 concepts, in accordance with common IR practice. Then we
evaluated pairwise document similarity, using angle distance (cosine measure,
similarity range is 〈0.0, 1.0〉) and also plotted the results as 2D matrices. An
example of a (part of) similarity matrix for LSI is in Figure 2.

Fig. 2. An example of pair-wise document similarity on a subset of documents.
Each pixel represents similarity of one pair of documents, the whiter the
more similar. Note that the diagonal is necessarily white, because a document
is always maximally similar to itself. The method used is Latent Semantic
Indexing. See text for information on the highlighted regions.

4 Results

First question to answer is how much do TF·IDF and LSI differ on our dataset.
Statistics show that the mean difference over all articles is 0.0299, with standard
deviation of 0.037. Inspection reveals that in most cases the scores are indeed
very similar, but there are also many pairs of documents for which the two
methods vary widely, as the comparison of mean and standard deviation would
suggest. See Appendix for an example of a pair of documents where TF·IDF
suggested no similarity (score of 0.08) while LSI scored 0.98.

Perhaps more interesting than the numbers themselves is how well does this
vector similarity translate to similarity as perceived by users. Unfortunatelly
we do not have a referential tagged corpus of pair-wise document similarities

80 Radim Řehůřek

to compare our results against. However, thanks to the nature of our dataset,
we have access to article metadata. One piece of metadata present for each
of our articles is its position within MSC classification [11] hierarchy. This is
a fixed taxonomy of mathematical areas to which documents are manually
assigned by the author or the reviewer. In Figure 2, we selected one node in
the MSC hierarchy and considered only those documents in our collection that
fall into this category. The category is named 20: Group theory and generalizations
and is further subdivided into smaller categories (20Dxx Abstract finite groups
etc.). We group documents along the axes according to these subcategories
and observe how well does the suggested similarity – represented by shade of
gray – correspond to subcategory clusters suggested by MSC. Although there
are similarities between individual articles all over the graph, we may observe
there are four main “light" clusters. These are highlighted in red, yellow,
green, blue and correspond to articles from categories 20Dxx+20Exx+20Fxx,
20.30+20Kxx, 20.92+20.93+20Mxx and 20Lxx+20Nxx, respectively. Descriptions
of these ten subcategories of Group theory and generalizations are:

– 20.30 (1959-1972) Abelian groups
– 20.92 (1959-1972) Semigroups, general theory
– 20.93 (1959-1972) Semigroups, structure and classification
– 20Dxx Abstract finite groups
– 20Exx Structure and classification of infinite or finite groups
– 20Fxx Special aspects of infinite or finite groups
– 20Kxx Abelian groups
– 20L05 Groupoids (i.e. small categories in which all morphisms are isomor-

phisms). For sets with a single binary operation, see 20N02; for topological
groupoids, see 22A22, 58H05.

– 20Mxx Semigroups
– 20Nxx Other generalizations of groups

Note that all of the suggested clusters are meaningful and also that the
algorithm correctly linked obsolete categories 20.92 and 20.93 (used between
the years of 1959 and 1972) with their new version of 20Mxx. Although these
visual results cannot substitute full analytical evaluation, they are nevertheless
quite encouraging.

Next step is to analyze highly similar documents for plagiarism. As men-
tioned above, finding actual plagiates is highly unlikely due to the nature of
the domain. Indeed, analysis shows that all suspicious documents are in fact
conference announcements, in memoriams and the like. If there was plagiarism
present in the dataset, its complexity was beyond both LSI’s and the author’s
ability to detect it.

5 Conclusion

We have presented a robust statistical method for text similarity, applied to
a collection of real documents. These documents come from a digital library

Plagiarism Detection through Vector Space Models. . . 81

of mathematical texts and also have metadata attached, which allowed us to
visually compare quality of document similarity. Although our application of
plagiarism detection did not yield any positive hits, it nonetheless serves as
proof of concept and can be extended and used on other collections.

Acknowledgements. This study has been partially supported by the grants
1ET200190513 and 1ET100300419 of the Academy of Sciences of the Czech
Republic and 2C06009 and LC536 of MŠMT ČR.

References

1. Merriam-Webster Online Dictionary, November 2008,
http://www.m-w.com/dictionary/plagiarize.

2. McCabe, D., 2002. Cheating: Why Students Do It and How We Can Help Them Stop.
American Educator (2001–2002) winter, pages 38–43.

3. Regis Newo Kenmogne: Understanding LSI via the Truncated Term-term Matrix.
Diploma Thesis at the University of Saarland, Dept. of Computer Science, May 2005.

4. Furnas, Deerwester, Dumais, Landauer, Harshman, Streeter and Lochbaum, 1988.
Information retrieval using a singular value decomposition model of latent semantic
structure. In: Proceedings of the 11th annual international ACM SIGIR conference on
Research and development in Information Retrieval, pages 465–480.

5. Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear algebra for
intelligent information retrieval. SIAM Review, pages 573–595, December 1994.

6. G. H. Golub, C. F. Van Loan, 1989. Matrix Computations. John Hopkins Press.
7. Zha, H., Simon, H., 1998. A subspace-based model for latent semantic indexing in

information retrieval. In Proceedings of the Thirteenth Symposium on the Interface. pp.
315–320.

8. Ding, C. H. Q., 1999. A similarity-based probability model for latent semantic index-
ing. In Proceedings of the Twentysecond Annual International ACM/SIGIR Conference on
Research and Development in Information Retrieval, pp. 59–65.

9. Bartošek, M. and Lhoták, M. and Rákosník, J., Sojka, P. and Šárfy, M., 2008. DML-CZ:
The Objectives and the First Steps. In CMDE 2006: Communicating Mathematics in the
Digital Era, AK Peters Ltd., pages 69–79.

10. Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., Harshman, R.
A., 1990. Indexing by latent semantic analysis. Journal of the American Society of
Information Science 41(6), pages 391–407.

11. The Mathematics Subject Classification (MSC) taxonomy, November 2008, URL
http://www.ams.org/msc/

Appendix: TF·IDF vs. LSI Differences

Below there are two articles mentioned in the text where TF·IDF and LSI scores
differ dramatically.

On an unrelated note, observe the multiple OCR errors present in the text.
These types of low level (character level) errors render application of more
refined, semantic-based methods of text analysis very problematic. One of the

82 Radim Řehůřek

advantages of more crude, statistical methods such those based on VSM used
in this paper is that these errors are not complete show-stoppers for plagiarism
detection.

1. Czechoslovak Mathematical Journal, vol. 24 (99) 1974, Praha
NEWS and NOTICES IN MEMORIAM PROF. RNDr. KAREL
CERNY On 15 January 1974, RNDr. Karel Cerny, Associated Pro-
fessor of Mathematics at the Czech Technical University, died in
Prague. Prof. Cerny was born on 6 July 1909 at Zbyslavice near
Caslav. After completing his mathe- matical studies at Charles Uni-
versity in 1933 he became lecturer at the Faculty of Mechanical En-
gineering. He remained member of staff of the Faculty till 1953 ex-
cept for the years 1942-45 when he suffered from Nazi persecution.
In 1953 he was appointed Associated Professor (Dozent) first at the
Faculty of Architecture and later at the Faculty of Civil Engineering
of the Czech Technical University. Prof. Cerny spared no effort in
his educational activity which may be characterized by his full de-
votion and responsible approach. The scientific interest of K. Cerny,
who had been a pupil of Prof. V. Jarnik, was concentrated on the
theory of numbers, particularly on the metric theory of diophan-
tine approximations. A more detailed biography of Prof. Cerny is
published in Cas. pest. mat. 99 (1974), 321 - 323. Editorial Board

2. ARCHIVUM MATHEMATICUM (BRNO) Vol. 26, No. 2-3 (1990), 65-66
THIS ISSUE OF ARCHIVUM MATHEMATICUM IS DEDICATED
TO THE NONAGENERIAN OF * ACADEMICIAN OTAKAR
BORtFVKA Academician Otakar Boruvka, Nestor and legend of the
Brno mathematicians, long ago one of the leaders of the Czechoslo-
vak mathematical life, a prominent representative of our science
abroad, excellent teacher and oiganizer of the scientific life was
ninety on May 10, 1989. In full mental freshness, creating activity,
in enviable spirit, in constant interest in mathematical events. In
1920-as a student-he passed from the Czech Technical University
to the newly founded Faculty of Science of the Brno University and
here he passed a state examination in mathematics and physics in
1922. From the year 1921he was a lecturer in the year 1928 he be-
came an associate professor, from the year 1934 he was a professor
assistant and’from the year 1946 (with the effectivness from the year
1940) he was a regular professoi of our faculty. From the year 1970
he is a member of the Mathematical Institute of the Czechoslovak
Academy of Sciences’ in Brno. For the time being he is an author of
84 original scientific papers from the area of differential geometry,
general algebra and differential equations and 50 further popular
and bibliografical papers. For his results he was awarded a State
Prize of Klement Gottwald in the year 1959 and Order of Labour in
the year 1965, 〈hr id="0072"/〉 from the year 1953 he was a corre-
sponding member and from the year 1965 a regular member of the

Plagiarism Detection through Vector Space Models. . . 83

Czechoslovak Academy of Sciences, he is an honourable doctor of
the Komensky University in Bratislava, and honourable member of
the Association of the Czechoslovak Mathematicians and Physicists
and he received a number of medals and diplomas of the universi-
ties and scientific associations in our country and abroad. Last but
not least, he gave rise to this journal (25 yeai ago, in 1965) and was
its first editor-in-chief. The rare life anniversary of the Academician
Otakar Boruvka is of course associated with a numbei of summary
publications in professional and popular press (e.g. Czech. Math.
Journal, vol. 39 (113) 198?, 382-384). To us, belonging to the gener-
ations of his students, members of scientific seminars, founded or
oriented by him, to those, inspired by his work, to his younger col-
laborators and colleagues and to those esteeming his character, is,
however, this reality not only a reason for valorizing his admirable
work but also for an oportunity to express our homage to our hon-
oured person by the results of our works. We wish to Academician
Boruvka health and good humour in ordei to be able to give away,
in further years, from the treasury of his wisdom and experience.
Photo: J. France

Automatic Web Page Classification

Jiří Materna

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00, Brno, Czech Republic

xmaterna@fi.muni.cz
http://nlp.fi.muni.cz

Abstract. Aim of this paper is to describe a method of automatic web
page classification to semantic domains and its evaluation. The classifica-
tion method exploits machine learning algorithms and several morpho-
logical as well as semantical text processing tools. In contrast to general
text document classification, in the web document classification there are
often problems with short web pages. In this paper we proposed two ap-
proaches to eliminate the lack of information. In the first one we consider
a wider context of a web page. That means we analyze web pages refer-
enced from the investigated page. The second approach is based on so-
phisticated term clustering by their similar grammatical context. This is
done using statistic corpora tool the Sketch Engine.

Key words: automatic classification, machine learning, web document, the-
saurus

1 Introduction

1.1 Motivation

At the present time the World Wide Web is the largest repository of hypertext
documents and is still rapidly growing up. The Web comprises billions of
documents, authored by millions of diverse people and edited by no one
in particular. When we are looking for some information on the Web, going
through all documents is impossible so we have to use tools which provide us
relevant information only. The widely used method is to search for information
by fulltext search engines like Google1 or Seznam2. These systems process list
of keywords entered by users and look for the most relevant indexed web
pages using several ranking methods. Another way of accessing web pages is
through catalogs like Dmoz3 or Seznam4. These catalogs consist of thousands
web pages arranged by their semantic content. This classification is usually
done manually or partly supported by computers. It is evident that building
large catalogs requires a lot of human effort and fully automated classification

1 http://www.google.com 2 http://search.seznam.cz 3 http://www.dmoz.org
4 http://www.seznam.cz

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 84–93, 2008. c©Masaryk University, Brno 2008

Automatic Web Page Classification 85

systems are needed. However several systems for English written documents
were developed (e.g. [1,2,3,4,5]) the approaches do not place emphasis on short
documents nor on the Czech language.

1.2 Objective

Classical methods of text document classification are not appropriate for web
document classification. Many of documents on the Web are to short or suffer
from a lack of linguistic data. This work treats with this problem in two novel
approaches:

– Experiments have proved that hypertext links in web documents usually
direct to documents with similar semantic content. This observation leads
to use these referenced web pages as an extension of the investigated one for
the purposes of processing their linguistic data as well. However there are
some restrictions. The referenced documents must be placed on the same
server (to avoid joining advertisement or other non-related material) and a
level of recursion must be limited. We experimentally set the limit to 2.

– The former method increases amount of linguistic data for the most part of
documents enough but there is another problem. To use machine learning
algorithms we need to build a high dimensional vector space where
each dimension represents one word from or phrase. In spite of the fact
that several machine learning algorithms are adjusted to high number
of dimensions, in this case the high number of dimensions decreases
algorithm accuracy and we have to proceed to dimensional clustering. The
joining of two or more dimensions (in this case words) is based on using a
special thesaurus built on training data. The method will be described more
precisely in the Section Term clustering.

2 Preprocessing

In order to use machine learning algorithms we need to build a training
data set. There were selected 11 domains (Cestování, Erotika, Hry, Informační a
inzertní servery, Kultura a umění, Lidé a společnost, Počítače a internet, Sport, Věda
a technika, Volný čas a zábava, Zpravodajství) according to the top-level domains
in http://odkazy.seznam.cz catalog and for each domain collected 1 GB of
sample data.

2.1 Data Cleaning

Despite of selecting restricted document content-types (HTML, XHTML) it is
necessary to remove noise from the documents. An example of unwanted data
is presence of JavaScript (or other scripting languages) as well as Cascading
Style Sheets (CSS) and the most of meta tags. Elimination of such data was
mostly done by removing head part of the document (except of content of

86 Jiří Materna

the title tag which can hold an important information about domain). As
other unwanted data were marked all n-grams (n>10) where portion of non
alphanumeric characters was grater than 50 %.

Very important issue of document preprocessing is charset encoding detec-
tion. However the charset is usually defined in the header of the document, it
is not a rule. We have used a method of automatic charset detection based on
byte distribution in the text [6]. This method works with a precision of about
99 %.

A lot of web sites allows user to chose language. Even some web pages
on the Czech internet are primarily written in foreign language (typically in
Slovak). With respect to used linguistic techniques, we are made to remove
such documents from the corpus. The detection of foreign languages is similar
to charset encoding detection based on typical 3-gram character distribution.
There has been built a training set of Czech written documents and computed
the typical distribution. Similarity of training data with the investigated docu-
ments is evaluated using cosine measure.

2.2 Corpus construction

Cleaned raw data serve as a groundwork for the training corpus construction.
To represent corpus data we use vertical text with following attributes:

– word – original word form,
– lemma – the canonical form of a word. To get lemma we have used Ajka

tagger [7] and disambiguator Desamb [8],
– tag – morphological tag of a word (obtained from Ajka).

To process data has been used corpus manager Manatee [9] which offer many
statistical functions as well as the Sketch Engine tool [10]. This system can ex-
tract so called word sketches which provide information about usual grammat-
ical context of terms in corpus and are used for the thesaurus construction.

3 Document Model

In order to use these data in machine learning algorithms we need to convert
them into appropriate document models. The most common approach is vector
document model where each dimension of vector represents one word (or
token in corpus). There are several methods of representing the words.

Let m is number of documents in the training data set, fd(t) frequency of
term t in document d for d ∈ {1, 2, . . . , m} and Terms set of terms {t1, t2, . . . , tn}.

3.1 Binary representation

Document d is represented as a vector (v1, v2, . . . , vn) ∈ {0, 1}n, where

vi =
{

1 if fd(ti) > 0
0 else

Automatic Web Page Classification 87

3.2 Term frequency representation

Document d is represented as a vector (v1, v2, . . . , vn) ∈ Rn, where

vi =
fd(ti)

m

3.3 Term Frequency – Inverse Document Frequency (TF-IDF)

Disadvantage of previous two methods may be a fact of treating with all terms
in the same way – they are not weighted. This problem can be solved by using
IDF coefficient which is defined for all ti ∈ Terms as:

IDF(ti) = log2

(
m

|{j : f j(ti) > 0}|

)

By combining TF and IDF we get:

vi =
fd(ti)

m
· log2

(
m

|{j : f j(ti) > 0}|

)

For TF and TF-IDF methods is convenient to discretize their real values. The
MDL algorithm [11] based on information entropy minimization has been used.

4 Term Clustering

The term clustering is based on a special dictionary. The dictionary is defined
as a total function

s : Terms → Rep

which assigns just one representative from Rep ⊆ Terms to each member of
Terms set. The s function defines equivalence classes on Terms by equivalence
relation σ:

(a, b) ∈ σ ⇐⇒ s(a) = s(b)

Reversely, let C ∈ Terms/σ, there always exists some function s. If r is an
arbitrary member of C, then

s(x) = r for all x ∈ C

The construction of dictionary consits of following steps:

1. Finding characteristic set for each term t ∈ Terms.
2. Defining equivalence classes on Terms set based on similarity of their

characteristic set.
3. Dictionary function s definition.

88 Jiří Materna

4.1 Characteristic set

Characteristic set construction is mostly based on using the Sketch Engine
and its word sketches. Word sketches are one-page automatic, corpus-based
summaries of a word’s grammatical and collocational behavior generated
by Sketch Engine which takes as input a corpus of any language and a
corresponding grammar patterns and which generates word sketches for the
words of that language [10].

It suggest itself to look for similar word sketches and build a thesaurus.
For each lemma l with sufficient frequency we get a list of similar words
SPl = [w1, w2, . . . , wn] ordered by their indexes of similarity i1, . . . , in with
lemma l [12]. Lets define the characteristic list CHL(l) for each lemma l from
the corpus:

– if frequency of lemma l in the corpus is less than 100:
CHL(l) = [l]

– else:
CHS(l) = [w1, w2, . . . , wk] : ∀ij ∈ {i1, i2, . . . ik} : ij ≥ 0.1

An example of characteristic list of lemma auto (car) is shown in Table 1.

Table 1. Characteristic list of lemma auto

auto 1
automobil 0.184
autobus 0.171
vůz 0.166
vozidlo 0.153
vlak 0.141
aut 0.133
tramvaj 0.126
lod’ 0.124
letadlo 0.112
trolejbus 0.11

The table shows that the incorporated words are really semantically similar.
However, there are some problems with homonyms and tagging errors (in this
case term aut). The characteristic set is defined in the way of eliminating words
occurred in the corpus more frequently in other senses than we currently treat
with.

Let CHL(l) = [w1, w2, . . . , wk] is the characteristic list of the lemma l,
S(l) = {w1, w2 . . . , wk} and Sp(l) = {wi|i ≤ k/p} where p ∈ R+ is a constant
coefficient. The characteristic set is defined as

CH(l) = {wi : q · |S(wi) ∩ Sp(l)| ≥ |Sp(l)|}

where q ∈ R+ is an appropriate constant. The experiments have shown that the
best values seem to be p = 2, q = 2.

Automatic Web Page Classification 89

4.2 Dictionary construction

When we have a characteristic set for each lemma from corpus it remains
to define clustering and dictionary function s. Intuitively, the clusters are
composed of terms with similar characteristic sets. In this work, the similarity
is measured by Jaccard index, where similarity of terms a and b is defined as

j(a, b) =
|CH(a) ∩ CH(b)|
|CH(a) ∪ CH(b)|

The clustering works on the principle of hierarchical clustering [13] using top-
down method. Minimal similarity for joining sets was experimentally set to
0.45. These clusters define equivalence relation σ.

Let f req(x) is a frequency of term x. We define dictionary function s: ∀S ∈
Terms/σ, ∀a ∈ S : s(a) = b where b ∈ S, f req(b) = max{ f req(x)|x ∈ S}. In the
case of ambiguity the first possible lemma in lexicographical order is used.

Finally, when we have dictionary function s, we are able to replace all terms
t in corpus by their representatives s(t).

5 Attribute Selection

Even after application of the dictionary function there are a lot of different terms
for using machine learning algorithms in the corpus and it is necessary to select
the most convenient ones. Statistics provides some standard tools for testing if
the class label and a single term are significantly correlated with each other. For
simplicity, let us consider a binary representation of the model. Fix a term t and
let

– ki,0 = number of documents in class i not containing term t
– ki,1 = number of documents in class icontaining term t

This gives us a contingency matrix

It\C 1 2 . . . 11
0 k1,0 k2,0 . . . k11,0
1 k1,1 k2,1 . . . k11,1

where C and It denote boolean random variable and kl,m denotes the number
of observation where C = l and It = m.

5.1 χ2 test

This measure is a classical statistic approach. We would like to test if the
random variables C and It are independent or not. The difference between
observed and expected values is defined as:

χ2 = ∑
l∈Class

∑
m∈{0,1}

(kl,m − n · P(C = l)P(It = m))2

n · P(C = l)P(It = m)

90 Jiří Materna

5.2 Mutual Information Score

This measure from information theory is especially useful when the multinom-
inal document model is used and documents are of diverse length (as is usual).
The mutual information score is defined as:

MI(It, C) = ∑
l∈Class

∑
m∈{0,1}

kl,m

n
log

kl,m/n
(kl,0 + kl,1) · (∑i∈Class ki,m)/n2

6 Classification and Evaluation

We have tested the classification using four algorithms (C4.5, k-nearest neigh-
bors, Naîve Bayes classifier and Support machines) on 3,500 randomly chosen
training samples and 1,500 testing examples. For testing has been used 10-fold
cross validationi [14]. As an implementation, we have chosen open source data
mining software Weka [15] for algorithm C4.5, k-nearest neighbors and Naîve
Bayes classifier and LIBSVM [16] for Support Vector machines.

First, we compare preprocessing methods and selected machine learning
algorithms on data without clustering and document extending. Next, the
best-resulting method is chosen to test approaches presented in this paper. In
Figure 1 you can see overall accuracy graphs of all presented algorithms and
methods of document model representation. The best results with 79.04 % of
overall accuracy have been acquired using Support vector machines algorithm,
term frequency document model and MI-score selection of attributes.

Fig. 1. Preprocessing and classification algorithms

Figure 2 shows dependency of overall accuracy on attribute number with-
out clustering, with clustering based on same lemmas and with clustering

Automatic Web Page Classification 91

Fig. 2. Clustering methods

Fig. 3. Extending by referenced documents

based on selected lemmas. In the third case, only nouns, adjectives, verbs and
adverbs have been selected. You can see that overall accuracy in all cases grows

92 Jiří Materna

till about 12,000 attributes. After this threshold the overall accuracy does not
vary significantly. The best result (83.4 %) was acquired using clustering based
on same lemmas.

Finally, Figure 3 shows result of experiments with extended documents,
clustering based on same lemmas and on both lemmas and dictionary. The
overall accuracy growth from previous experiment is about 5.9 % for lemma
based clustering and 8.2 % for dictionary based clustering.

7 Conclusion

We have presented a method of automatic web page classification into given
11 semantic classes. Special attention has been laid on treating with short
documents which often occur on the internet. There have been introduced
two approaches which enable classification with overall accuracy about 91 %.
Several machine learning algorithms and preprocessing methods have been
tested. The best result has been acquired using Support vector machines with
linear kernel function (followed by method of k-nearest neighbors) and term
frequency document model with attribute selection by mutual information
score.

Acknowledgments. This work has been partly supported by the Academy of
Sciences of Czech Republic under the projects 1ET100300419 and 1ET200610406,
by the Ministry of Education of CR within the Center of basic research LC536
and in the National Research Programme II project 2C06009 and by the Czech
Science Foundation under the project 407/07/0679.

References

1. Asirvatham, A.P., Ravi, K.K.: Web page categorization based on document structure
(2008) http://citeseer.ist.psu.edu/710946.html.

2. Santini, M.: Some issues in automatic genre classification of web pages. In: JADT
2006 – 8èmes Journèes internationales d’analyse statistiques des donnés textuelles,
University of Brighton (2006).

3. Mladenic, D.: Turning Yahoo to automatic web-page classifier. In: European
Conference on Artificial Intelligence. (1998) 473–474.

4. Pierre, J.M.: On automated classification of web sites. 6 (2001)
http://www.ep.liu.se/ea/cis/2001/000/.

5. Tsukada, M., Washio, T., Motoda, H.: Automatic web-page classification by using
machine learning methods. In: Web intelligence: research and development,
Maebashi City, JAPON (23/10/2001) (2001).

6. Li, S., Momoi, K.: A composite approach to language/encoding detection. 9th

International Unicode Conference (San Jose, California, 2001).
7. Sedláček, R.: Morphemic Analyser for Czech. Ph.D. thesis, Faculty of Informatics,

Masaryk University, Brno (2005).
8. Šmerk, P.: Towards Morphological Disambiguation of Czech. Ph.D. thesis proposal,

Faculty of Informatics, Masaryk University, Brno (2007).

Automatic Web Page Classification 93

9. Rychlý, P.: Korpusové manažery a jejich efektivní implementace (in Czech). Ph.D.
thesis, Faculty of Informatics, Masaryk University, Brno (2000).

10. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The Sketch engine in practical
lexicography: A reader. (2008) 297–306.

11. Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in
decision tree generation. Machine Learning 8 (1992) 87–102.

12. Kilgarriff, A.: Thesauruses for natural language processing. Proc NLP-KE (2003).
13. Berka, P.: Dobývání znalostí z databází. Academia (2003).
14. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and

model selection. In: IJCAI. (1995) 1137–1145.
15. Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and tech-

niques. Technical report, Morgan Kaufmann, San Francisco (2005).
16. Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machinesi. Technical

report, Department of Computer Science National Taiwan University, Taipei 106,
Taiwan (2007).

Building Big Czech Corpus
Collecting and Converting Czech Corpora

Pavel Hančar

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

xhancar@fi.muni.cz

Abstract. This paper describes creating of a big Czech corpus from many
Czech corpora kept on the NLP Centre server. It describes new tools
developed for this purpose, difficulties which may come up and a way
how solve them.

1 Introduction

A corpus is a large collection of texts in a certain language. NLP Centre has
many Czech corpora, but doesn’t have any big one. A very valuable aspect of
corpora is a morphological tagging, but this is missing in current data. So the
task is to collect all Czech corpora (let’s call them input corpora), to do the
tagging, and to compile the result for corpus manager.

Corpora contains two kinds of data: the text itself in a vertical form and
information about the text (metadata). The vertical form means, that every
word or punctuation mark has it’s own line (there are some special cases e.g.
"..." is one position, not three). Documents, paragraphs, etc. are determined
by XML marks [1,2].

Generally, the data are kept as text files, but there is more possibilities how
to do this. Most of the input corpora consist of many vertical files, where each
of them has it’s metadata file. However the format we need is whole corpus in
one vertical file with metadata in heading of each document. It is format used
by the compiler ENCODEVERT. This program compiles corpora to binary files
usable for the corpus manager MANATEE.

2 Corpus conversion

Conversion means concatenation of vertical files (one can contain more docu-
ments), looking for metadata of each document and creating document heading
tag. This task has these specifics:

Language: Some corpora contain a few documents in different language, than
the most common is. In that case the information about the document
language is mentioned in metadata, and along this data field the documents
are filtered.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 94–97, 2008. c©Masaryk University, Brno 2008

Building Big Czech Corpus 95

Multivalues in metadata: Some fields in metadata files can have more values.
The specification [3] allows only the one-line notation:

M_Date: 2000-05-07; 2000-06-22

But in real data is possible to see this:

M_Date: 2000-05-07
M_Date: 2000-06-22

Also in XML it’s not possible to use more attributes with the same name.
So the right way for ENCODEVERT is m_date="2000-05-07;2000-06-22".
Naturally we must be careful in the case of language attribute if we need
only one language.

Syntactic errors: There are syntactical errors in verticals and in metadata. For
example this can appear in vertical as one position:

...stalo

Another problem are XML tags divided character after character to more
lines, or bad order of XML tags eventually their bad occurrence. In meta-
data e.g. one data field on more lines can appear.

2.1 Implementation

The implementation on the NLP Centre’s server is a set of Python and Shell
scripts available in /corpora/priprava_dat/ib047_99-07/scripts.

vertjoin.py Usage: vertjoin.py [-l lang] DIRECTORY [OUTPUT_FILE]
Main script walking through directory tree with the root DIRECTORY, look-
ing for *.vert and corresponding *.meta files and concatenating them on
the standard output or to the OUTPUT_FILE.
Script expects verticals with document tags named as doc with obligatory
attribute id corresponding to field Doc in metadata.
vertjoin.py also implements two methods to repair easy syntactic errors:
normal_meta A method for metadata which removes a possible backslash

on the and of line and joins a data field written on two lines.
normal_vert A method for verticals which removes empty lines, strips

possible white-spaces around the position, divides more words on one
line, ensures the “. . . ” not to be in the same position with some word
and puts together short broken tags (means the tags without attributes
e.g. </p>).

predesamb.sh Usage: predesamb.sh INPUT_FILE
Script repairing main syntactic errors of verticals. It’s pipeline of smaller
scripts. These scripts repair errors concerning concrete tags. It looks like
this:

cat $1 |p_doc.py |p_p.py|p_tag.py|note_p.py|\
more_closing_tags.py|gg.py|g_tag_g.py|sed ’s/</*q>/"/g’

Last sed command replaces <q> and </q> by symbol ". The q tag is specified
in [2], but it’s not accepted by ENCODEVERT.

96 Pavel Hančar

3 Corpora tagging

A very important aspect of corpora is the morphological tagging. It makes
corpora being especial tools even in Google ages. NLP Centre has it’s own
tagger for Czech language named DESAMB. It’s developed by Pavel Šmerk and
based on partial syntactic analyser DIS/VADIS developed by Eva Mráková-
Žáčková.

DIS/VADIS is written in Prolog, which is a disadvantage, because it’s quite
slow. Rest of the DESAMB is written in Perl, but DIS/VADIS slows down whole
process of tagging. So a future Pavel Šmerk’s plan is to rewrite DIS/VADIS also
to Perl.

Next disadvantage of Prolog is probably a faulty allocation of memory.
It seems, that DESAMB is not able to process big corpora, because then the
Prolog fails due to lack of memory. This problem appeared on verticals
about 20 million positions long, but in this case, the second aspect was quite
complicated structure of vertical (many tags, tables, long sentences, etc.).

So it’s needed to divide verticals into more smaller parts before processing.
A script divide.py implements this function, but it probably won’t be included
to DESAMB, because future Perl implementation of DESAMB doesn’t need that.

divide.py Usage: divide.py [-l lines] [-t doc_tag] FILE1 [FILE2 ...]
Where lines is count of lines which is possible to shorten by one of letters
KkMm (eg. 30K means thirty thousands, 2m means two million). The default
value is 1 million. Default value of doc_tag is "doc".
This script divides verticals – after counting count_of_lines – on the
nearest document border. Output files are written in current directory
having original name extended by three-figure number of part (FILE1.001,
FILE1.002, . . .).
The script can have more input files and also it can read from standard
input.

Nevertheless, the tagging of corpora after dividing them is also slow. It
becomes evident on the 20 million positions long verticals . It was tested on
five such corpora and usually one of the corpora took about one day on one
computer. But there was the especial one, processed about five days. Probable
cause of this is count of long sentences (including also enumerations or tables
without punctuation marks). All the corpora have a few sentences over 500
words long, but the 5-days one has about 460 of these sentences.

Last but not least current DESAMB has problems with parsing of corpora
e.g. considering XML tags to be a word. The question is, if it is only because
of complicated source code of parser, or if it can’t be better because of too
expressive syntax of corpora with vague definition.

A meaningful goal seems to be an improving tagger so, that its output
would be usable for ENCODEVERT. But nowadays DESAMB would cause many
warnings in ENCODEVERT, which can be prevented by a script postdesam.sh.

Building Big Czech Corpus 97

postdesam.sh A script repairing syntactic errors on the output of DESAMB. It
also removes <s> and </s>, that are tags added in DESAMB to determinate
sentence borders. Main part of the script is a pipeline consisting of sed
substitute commands:

cat "$in"| sed ’/^<\/*s> *$/d’| sed ’s/<\/*s>//g’ |\
sed ’s/^$/<l>/g’ | sed ’s/\(^<doc.*>\)\s*<doc.*$/\1/g’|\
sed ’s/<\(\/*[^<>][^<>]*\)>[\t]*<\/*[^<>][^<>]*>[\t]k?/<\1>/g’\
> "$out"

Maybe it prevents more bugs than needed, because some substitutes were
added during of changes in DESAMB.

4 Conclusion

This paper describes, some problems with building big corpora and shows
a way how to solve them. Described way has its first result. It is a 80
million positions Czech corpus consisting of data collected by students in
Pavel Rychly’s course IB047 Introduction to Corpus Linguistics and Computer
Lexicography.

Future plans are clear – to collect next data to the corpus. Hopefully it will
be easier than the first 80 million, because now the tools are ready and other
corpora probably contain more consistent data than corpora created by many
students.

Acknowledgments. This work has been partly supported by the Academy of
Sciences of Czech Republic under the project 1ET200610406.

References

1. Jak vytvořit korpus (2000) http://nlp.fi.muni.cz/cs/Jak_vytvorit_korpus.
2. Popis vertikálu (2000) http://nlp.fi.muni.cz/cs/Popis_vertikalu.
3. Popis metainformací (2000) http://nlp.fi.muni.cz/cs/Popis_metainformaci.

Towards Natural Natural Language Processing
A Late Night Brainstorming

Petr Sojka

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

sojka@fi.muni.cz

Abstract. An essay about mimicking some aspects of language process-
ing in our heads, using information fusion and competing patterns.

1 Introduction

Usual approach to Natural Language Processing separates language processing
into word form, morphological, syntactic, semantic and pragmatic levels. Most
often processing of these levels are independent, and result of one level is
communicated to the other unnaturally disambiguated to cut off less probable
(but often linguistically valid) intermediate results (e.g. sentence syntactical
parse trees) just to simplify things. Even though ungrammatical sentences
are often used for communication between people (English as the second
language), they are banned by NLP software. Considerable effort is given to the
balancing general purpose corpora to choosen only such text examples, aiming
at handling only [syntactically] correct language parts. Given that, for purposes
of handling non-polished texts, blogs or even speech, these data resources fail
badly, as the tools are trained and fine-tuned to the different type of input than
used when processing real [speech] data.

As simple as possible, but not simpler. – Albert Einstein

2 Levels of Processing, Level Interaction and Importance of
Complexity

Most of today’s available texts is processed on word form level only (Google),
with PageRank optimizing access to the most credible ones. Texts sharing the
same forms are collected together and only the most credible picked up and
shown. This suits most, but not all purposes.

Good morphological tools allows handling of all possible morphological
categories, allowing their pruning in further stages of processing (syntactic
analysis, etc.). The disambiguation should not be driven by pure statistics in
applications like guesser.

Syntactic analysis aiming at only one (best) parsing tree, independently
of sentence context, document type and other information is simply wrong.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 98–100, 2008. c©Masaryk University, Brno 2008

Towards Natural Natural Language Processing 99

Analysis of potentially billions of possible trees of long sentences is waste of
computer resources. Most probable partial parse trees are collected together
and shown as the parsed result for further processing. Much better approach
is to collect possible sentence segmentations of main building blocks (phrases)
and not limiting the analysis outcome to the correct full sentence parses only.

Another bottleneck of today NLP processing is semantics handling. Bubble
of semantic net starts to blow out, as there is not single semantic representation
suitable for all purposes and applications. Linguistic resources are scarce, and
wordnets lack many important aspects as deduction and thematic folding
(specific domain adaptation and usage, with exception of framenet). Promising
formalisms like TIL need necessary language resources.

Little attention is given to pragmatics in NLP, as a starter of disambigua-
tion process. Disambiguation, at all levels, should be driven by the final ap-
plication, deriving from the purpose, classification type of communicated text,
intertwisting and backtracking between all levels of linguistic processing. The
tools should not be trivialized and should handle multiple lemmata, parses,
meanings. Language handling may be as complex as the life it describes, not
simpler.

Be as elegant as the situation will allow.

3 Information Fusion and Patterns

The suggested remedy to the current status quo is the design of a modular NLP
system for parallel language processing at different levels, allowing mutual
interactions and processing between data structures and intermediate results
at all levels. The data structures may be not only grammar chunks, framenets
and wordnets, but also empirical evidence of language usage (text corpora pro-
cessed), allowing pattern matching of linguistic data and knowledge represen-
tation at various, but interlinked levels.

For several purposes in this scenario, competing patterns [1,2] may be
used: sentence or phrase segmentation (alphabet is word forms or lemmas),
morphological disambiguation patterns (alphabet is gramatical categories and
lemmata) [3], and even pragmatics patterns (alphabet being events in time and
meaning terms). Same terms in pattern alphabets used will allow for connecting
information on different level of language processing – the patterns may be
derived from available text and dialogue corporas [4,5]. Pattern storage in the
packed digital trie is very compact and allow blindingly fast language data
retrieval at the constant time (limited by the pattern length only, e.g. by width
of [local] context covered).

4 Conclusion

In this paper, we have presented several thoughts about current state of the
art of natural language processing approaches, and have outlined several

100 Petr Sojka

directions of improvement towards ‘natural’ way of text processing, grabbing
some metaphors from what is known about language processing in our brains.

Acknowledgments. This work has been partially supported by the Academy
of Sciences of Czech Republic under the projects 1ET208050401, 1ET200190513
and by the Ministry of Education of CR within the Centre of basic research
LC536 and National Research Programme 2C06009.

References

1. Sojka, P.: Competing Patterns for Language Engineering. In: Sojka, P., Kopeček, I.,
Pala, K., (Eds.): Proceedings of the Third International Workshop on Text, Speech
and Dialogue—TSD 2000. Lecture Notes in Artificial Intelligence LNCS/LNAI 1902,
Brno, Czech Republic, Springer-Verlag (2000), pp. 157–162.

2. Sojka, P.: Competing Patterns in Language Engineering and Computer Typesetting.
Ph.D. thesis, Masaryk University, Brno (2005).

3. Macháček, D.: Přebíjející vzory ve zpracování přirozeného jazyka (Competing
Patterns in Natural Language Processing). Master’s thesis, Masaryk University, Brno,
Faculty of Informatics, Brno, Czech Republic (2003).

4. Antoš, D., Sojka, P.: Pattern Generation Revisited. In: Pepping, S., (Ed.): Proceedings
of the 16th European TEX Conference, Kerkrade, 2001, Kerkrade, The Netherlands,
NTG (2001) pp. 7–17.

5. Sojka, P., Antoš, D.: Context Sensitive Pattern Based Segmentation: A Thai Challenge.
In: Hall, P., Rao, D.D., (Eds.): Proceedings of EACL 2003 Workshop on Computational
Linguistics for South Asian Languages – Expanding Synergies with Europe, Budapest
(2003) pp. 65–72.

Author Index

Bušta, Jan 71

Číhalová, Martina 17
Ciprich, Nikola 17

Duží, Marie 17

Frydrych, Tomáš 31

Grác, Marek 5

Hančar, Pavel 94
Hlaváčková, Dana 49
Horák, Aleš 41, 49

Jakubíček, Miloš 56, 63

Kohut, Ondřej 31

Košinár, Michal 31
Kovář, Vojtěch 63

Materna, Jiří 84
Menšík, Marek 17

Němčík, Vašek 11, 49

Pala, Karel 41, 49
Pomikálek, Jan 10

Řehůřek, Radim 75
Rychlý, Pavel 6

Šmerk, Pavel 1
Sojka, Petr 98

Úradník, Michal 49

Book orders should be addressed to:

Pavel Mareček c/o FI MU
Botanická 68a
CZ-602 00 Brno
Phone: ++420 549 498 735
Email: marecek@kup.to

RASLAN 2008
Recent Advances in Slavonic Natural Language Processing
Second Workshop on Recent Advances in Slavonic Natural

Language Processing, RASLAN 2008
Karlova Studánka, Czech Republic, December 5–7, 2008

Proceedings

P. Sojka, A. Horák (Eds.)

Published by Masaryk University, Brno in 2008

Cover design: Petr Sojka

Typesetting: Petr Sojka

Data conversion: Adam Rambousek

Printing: http://librix.eu

First edition, 2008

Serial number INF-4/08-02/58

ISBN 978-80-210-4741-9

