
Functional Programming

Based on Transparent Intensional Logic

Nikola Ciprich, Marie Duží, Michal Košinár

VŠB—Technical University Ostrava
Faculty of Electrical Engineering and Computer Science
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republicnikola.iprih�linuxbox.z

Abstract. In the paper we introduce an interpreter of the Transperent
Intensional Logic (TIL), namely the TIL-Script language, its design and
implementation. TIL is a brainchild of the Czech logician Pavel Tichý
and in many ways a revolutionary logical system. The work on the TIL-
Script project is being pursued by the team of undergraduate students.
The paper we provide is a brief review of the TIL-Script syntax.

Key words: TIL, TIL-Script, Transparent Intensional Logic, syntax, grammar

1 Introduction

1.1 Motivation

Pavel Tichý set his work on TIL in 1970s, and since then he demonstrated its
great expressive power, in particular in the area of analysis of natural language
processing (see [3,4]). Since hitherto there is no computer implementation of
TIL, we decided to create our own and make it available to public.

1.2 Objective

The notational syntax of TIL language of constructions as originally proposed
by Tichý is not optimal for computer processing. It contains lots of non-
ASCII characters which are difficult to type on a computer; for instance, Greek
alphabet is used to denote particular atomic and molecular types, lots of upper
indexing, etc. On the other hand, some special types that are useful from the
computational point of view are missing (like the type for integers, a special
type for time, lists and tuples, etc.). Therefore the changes in syntax and slight
modifications in semantics had to be done in order that the code be easy to type
and read. Since TIL as a higher-order logic is undecidable, it is also important
to create a limited but working inference engine.

2 Constructions

There are six kinds of constructions in TIL, two atomic and four molecular ones.
In the TIL-Script code each entry of a construction is terminated by a period.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 37–42, 2007. c© Masaryk University, Brno 2007

mailto:nikola.ciprich@linuxbox.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/

38 Nikola Ciprich, Marie Duží, Michal Košinár

2.1 Trivialisation

The first atomic construction is trivialisation. Given an object, it just returns the
object. It could be thought of as compared to a pointer, and its dereference. In
TIL, the Trivialisation is denoted by the 0 symbol (thus writing 0Object). TIL-
Script uses the apostrophe (’) symbol, as it’s a symbol similar to the original
one and easy to type. Thus we have the transcription of 0Object into 'Object.
Any object, even a construction can be trivialised.

2.2 Variables

Another atomic construction is a variable. From the syntactic point of view,
variables in TIL are usually named by lower-case letters; similarly in TIL-Script
we can use any name beginning with a lowercase letter and consisting only of
letters, numbers and ’_’ symbol.

2.3 Closures

The third construction is a Closure (also a lambda closure). It constructs an
anonymous function f , that can then be applied to its argument a by using the
Composition of the closure with a construction of a. In TIL, the syntax is similar
to the lambda-calculus lambda abstraction, using the symbol λ to mark lambda-
bound variables. For example, the Closure constructing the successor function
can be written as [λx[0+x01]]. TIL-Script retains this syntax, just replacing the
symbol λ by ’\’ (and of course using the ’ symbol for trivialisation). Moreover,
types have to be specified (more on types see below). So the TIL-Script notation
of the successor closure is as follows:[\x:Int ['+ x '1℄℄.
Creating functions using named closures In TIL-Script, we can also construct
a named function using Closure. To this end the def keyword is used; for
instance, the above construction of the successor function named as Succ is in
TIL-Script written as follows1:def Su := [\x:Int ['+ x '1℄℄.
2.4 Compositions

The Composition construction is an instruction to apply a function to its
arguments. There is no notational difference between TIL and TIL-Script
concerning a Composition. For instance, here is a Composition of the above
Closure with the Trivialisation of the number 5:[[\x:Int ['+ x '1℄℄ '5℄.
1 Parameter types can also be specified in another way, this will be discussed later

Functional Programming Based on Transparent Intensional Logic 39

Or, using the pre-defined name of the successor function, we have:['Su '5℄.
both constructing the number 6.

2.5 Double execution

Some constructions can be used twice over: the Double Execution of a construc-
tion X, in symbols 2X, v-constructs what is v-constructed by X. In TIL-Script
the upper index 2 is replaced by the ^2 notation: ^2X.

2.6 Partiality

It is important to note that TIL operates with partial functions. Thus a construc-
tion can fail to v-construct anything, i.e., it can be v-improper. This is in princi-
ple due to a Composition, when a partial function f is applied to an argument
a but there is no value of f at a. Thus the Composition of the division function
with an argument <x,0> encoded in TIL-Script by [’Div x ’0], is v-improper for
any x. And so is any Composition of another construction with the former, like,
e.g., [’Plus [’Div x ’0] ’1]. We say that ’partiality is being strictly propagated up’.

Closure never fails to v-construct, it always v-constructs a function, even if
it were a function that is undefined at all its arguments like [\x ['Div x '0℄℄.
3 Types

TIL defines four basic types: ι (iota) for the set of individuals (the universe of
discourse), o (omicron) for the set of truth values, τ (tau) for the set of times
and/or real numbers and ω (omega) for the set of possible worlds. TIL-Script
slightly extends and modifies this set of basic types, as the mix of real numbers
and times and the absence of integer numbers is not plausible. Therefore the
types in TIL-Script are:

– Bool or o for truth values (o)
– Indiv or i for individuals (ι)
– Time or t for time (τ)
– Real or r for real numbers
– Int for integer numbers

Special keyword Any stands for an unspecified type (α in TIL) that is used
to indicate polymorphic function. The frequently used abbreviation of the
Composition [[Cw]t] that is used for the extensionalisation of intensions
(functions from possible worlds into chronologies of entities of a given type)
is replaced by the C�wt notation.

40 Nikola Ciprich, Marie Duží, Michal Košinár

3.1 Lists

From the computational point of view, an important type is that of a list. A list
is a (potentially infinite) sequence of entities and can thus be constructed by a
composed TIL construction. However, since lists (or tuples) are frequently used
in a computer program, we decided to include list into TIL-Script as a special
type. To this end we use the list keyword: list(type1 type2 . . .). For example,
the list of individuals is declared by list(Indiv) or list(i), the list of triples
of numbers is declared by list(Int, Int, Int). Lists can also be defined
recursively; thus by using list(list(Int, Indiv)) we declare the list of lists
of number-individual pairs. Types are then specified using the slash or colon
(in Closures). There are two ways of defining types of function arguments.
Either by defining the type of an entity (slash notation), or by defining the
range of a variable (the colon notation). To adduce some examples, here are the
types of individuals, empirical functions, properties and the range of variable
x, respectively:Charles, Tomas/Indiv.Ostrava/Indiv.President/(((ii)t)w).President/(ii)�tw.Property1/((oi)t)w).Property2/(oi)�wt.def Su1:= [\x:Int ['+ x '1℄℄.Su2/(Int Int).def Su2:=[\x ['+ x '1℄℄.
4 Miscellaneous

4.1 Assignment operator

As an assignment operator, the let keyword is used, e.g.: let city:=’Ostrava. It
assigns a value to a variable, and it is used mainly in recursive definitions and
in the discourse processing (see [6]).

4.2 Quantifiers

For quantifiers we use the keywords ForAll (stands for ∀), Exists (stands for ∃),
and Single for singularisers.

4.3 Infix × prefix notation

The first version of TIL-Script will support only prefix notation for all operators,
further versions will also support the infix notation.

Functional Programming Based on Transparent Intensional Logic 41

5 Examples

As an example we now introduce the transcription of the analysis of three
agents communication (taken from [6]) into TIL-Script:ind, lo/i.pred, prof/(oi)�tw.rel1/(oi(oi)�tw)�tw.rel2/(oii)�tw.rel3/(oio�tw)�tw.prop/o�tw.onstr/*n.
Adam to Cecil: “Berta is comming. She is looking for a parking”. ’Inform’
message content:\w\t['Comming�wt 'Berta℄.
Discourse variables updates:let ind:='Berta.let pred:='Coming.let prop:=\w\t['Coming�wt 'Berta℄.\w\t ^2['Sub ind 'she '['Looking_for�wt she 'Parking℄℄.% (is transformed into:)\w\t['Looking_for�wt 'Berta 'Parking℄.
Discourse variables updates:let rel1:='Looking_for.let pred:='Parking.let prop:=\w\t['Looking_for�wt 'Berta 'Parking℄.let prof:=\w\t\x['Looking_for�wt x 'Parking℄.
Cecil to Adam: “So am I”. ’Inform’ message content:\w\t^2['Sub prof 'so '[so�wt 'Ceil℄℄. % transforms to:\w\t['Looking_for�wt 'Ceil 'Parking℄.
Discourse variables updates:let ind:='Ceil.
Adam to both: “There is a free parking at p1”. ’Inform’ message content:\w\t[['Free 'Parking℄�wt 'p1℄.
Discourse variables Updates:

42 Nikola Ciprich, Marie Duží, Michal Košinárlet lo:='p1.let pred:=['Free 'Parking℄.let prop:=\w\t[['Free 'Parking℄�wt 'p1℄.
Berta to Adam: “What do you mean by free parking?” ’Query’ message content:\w\t['Refine�wt '['Free 'Parking℄℄.
Adam to Berta: “Free parking is a parking and some parts of it are not occupied”.
’Reply’ message content:'['Free 'Parking℄ ='[\w\t\x ['And['Parking�wt x℄['Exists y [And['Part_of�wt y x℄Not ['Oupied�wt y℄℄℄℄℄.
6 Conclusion

In this paper we outlined the syntax of the TIL-Script language that is being
developed within the project “Logic and Artificial intelligence for Multi-Agent
Systems”. TIL-Script is a FIPA compliant language in which the content of FCA
messages is encoded. Agents communicate by messaging in TIL-Script.

In the paper we illustrated how smooth and natural the communication in
TIL-Script is. The translation from natural language into TIL-Script messages
(and vice versa) is near-to-isomorphic. Thus the humans can easily formulate
the messages that the computational agents understand and perform.

Acknowledgements This research has been supported by the program “Infor-
mation Society” of the Czech Academy of Sciences, project No. 1ET101940420
“Logic and Artificial Intelligence for Multi-Agent Systems”2.

References

1. Duží M., Jespersen B., Materna P.: Transparent Intensional Logic - Foundations and
Applications, mns. 2007.

2. Tichý P.: The Foundations of Frege’s Logic, 1988, Berlin, New York: De Gruyter.
3. Tichý P.: Cracking the Natural Language Code, 1994 reprinted in [5]: pp. 843–857.
4. Tichý P.: The Analysis of Natural Language, 1994 reprinted in [5]: pp. 801–841.
5. Pavel Tichý’s Collected Papers in Logic and Philosophy edited by V. Svoboda, B.

Jespersen, C. Cheyne (eds.) Prague: Filosofia, Czech Academy of Sciences, and
Dunedin: University of Otago Press.

6. Duží M.: TIL as the Logic of Communication in a Multi-Agent System Submitted to
CICLING 2008.

2 see http://labis.vsb.z

http://labis.vsb.cz

	Introduction
	Motivation
	Objective

	Constructions
	Trivialisation
	Variables
	Closures
	Compositions
	Double execution
	Partiality

	Types
	Lists

	Miscellaneous
	Assignment operator
	Quantifiers
	Infix prefix notation

	Examples
	Conclusion

