On practical inductive logic programming

Lubos Popelinsky

A thesis submitted to the Czech Technical University for
the Doctorate in Artificial Intelligence and Biocybernetics

Czech Technical University in Prague,
Faculty of Electrical Engineering, Department of Cybernetics

July 2000

Abstract

This work focuses on exact learning of logic programs from examples. We
introduce a new paradigm of inductive logic programming called assumption-
based learning and the corresponding ILP system WiM.

WiM, the system for synthesis of closed Horn clauses, further elaborates the
approach of M IS and Markus. It works in top-down manner and uses shift
of language bias. If negative examples are missing in the learning set, the
system itself is capable to find them due to utilisation of the assumption-
based learning paradigm. WiM displays higher efficiency of learning as well
as smaller dependency on the quality of the learning set than the other exact
learners.

A method for automatic building of domain knowledge from object-oriented
database schema was developed. This method has been used for solving two
database application tasks with WiM, inductive redesign of object-oriented
database schema and data mining in spatial data.

Acknowledgements

My first and foremost thanks go to my supervisor Olga Stépankova for her
strong encouragement and support of my research as well as for her pa-
tience. Many thanks to Mojmir Kietinsky, my boss at Faculty of Informatics,
Masaryk University in Brno for his long-term assistance. Special thanks to
my wife Eva and my sons Jan a Tomas for their care, patience and tolerance.

Three events significantly influenced my work. My warm thanks to Pavel
Brazdil, LTACC Universidade do Porto, who accepted several times my ap-
plications for a leave-of-absence at his group and who — together with Luis
Torgo, Joao Gama and Alipio Jorge and with other members of his group —
helped me a lot. The wonderful months spent in L.R.I. Université Paris-Sud
in Yves Kodratoff’s group strongly influenced not only several parts of this
thesis. Thanks to Yves Kodratoff, Céline Rouveilor, Claire Nédellec, Marta
Franova, Gil Bisson, Marjorie Moulet and Hervé Mignot. I must not forget
the first LOPSTR workshop in Manchester 1991. It was Kung-Kiu Lau and
Tim Clement who enabled me to be there, and Norbert Fuchs and Pierre
Flener who helped me to start my research.

Thanks to my students and colleagues at the Department of Computing Sci-
ence, Faculty of Informatics, Masaryk University in Brno as well as to all
nice people that I met in the last years for fruitful discussions and support.

This work has been partially supported by Esprit LTR 20237 Inductive Logic
Programming IT ILP?. My stays in Porto were facilitated by the TEMPUS
Project and the ESPRIT METAL Project. French government scholarship
allowed me to stay in Paris.

Contents

List of figures
List of tables
ACM Classification

1 Introduction

1.1 Inductive synthesis in first order logic
1.2 Motivation
1.3 Objectives
1.4 Outline of the thesis

2 Logic programming

2.1 Syntax
2.2 Semantics
2.3 ADSWer
2.4 FError diagnosis
25 Typesand modes L.

3 Inductive logic programming

3.1 Basictaskof ILP,
3.2 Generic ILP algorithm
3.3 General-to-specific ILP
3.3.1 Specialisation
3.3.2 Specialisation operators in first-order logic
3.3.3 General-to-specific algorithm
3.4 Refinement operator L.
3.4.1 Definition o

3.4.2 Propertieso 29

3.5 Bias ... 31
3.6 Cardinality of the search space for given settings 32
3.6.1 Upper estimate 32
3.6.2 How to narrow the search space 33
ILP systems 35
4.1 MIS .. e 35
4.1.1 Overview e 35
4.1.2 Algorithm 36
4.1.3 Refinement operator 37
4.1.4 Discussiono 39
4.2 Markus e 39
4.2.1 Overview e e 39
4.2.2 Algorithmo 39
4.2.3 Refinement operator 40
4.2.4 Parameters 40
4.2.5 Discussion oo 40
4.3 Othersystems 41
4.3.1 CRUSTACEAN 41
4.3.2 FILP 42
4.3.3 SKILit 43
4.3.4 Progol 43
Assumption-based ILP and WiM system 45
5.1 Introduction 45
5.2 Assumption-based learningo 47
5.2.1 Imspiration Lo 47
5.2.2 Inductive inference with assumptions 47
5.2.3 Generic algorithmo 49
5.3 Basic WiM algorithm L. 20
5.4 Inductive synthesiser Markus™ 50
5.4.1 Shiftingof bias 52
5.4.2 Multiple predicate learning 02
5.4.3 Constraint of a program schema 54
5.5 Generator of assumptions 54
5.5.1 Ordering on positive examples 25

5.5.2 Generator of near-misses 55

5.6
2.7
2.8

Acceptability module
Sample session with WM
Related works

Experimental results

6.1
6.2
6.3

6.4
6.5
6.6

6.7

6.8

6.9

Learned predicates
Carefully chosen example sets
Randomly chosen exampleset
6.3.1 Overview
6.3.2 Example set generation
6.3.3 Method of testing
Parameter settings,
Overview of experiments
Learning without assumptions
6.6.1 Carefully chosen examples
6.6.2 FEvaluation on randomly chosen examples
6.6.3 Dependence on bias settings
6.6.4 Number of test perfect solutions
6.6.0 CPUtime
Learning with assumptions
6.7.1 Carefully chosen examples
6.7.2 Randomly chosen examples
Comparison with other systems
6.8.1 Comparison with Markus
6.8.2 CRUSTACFEAN and FILP
6.8.3 SKILit
6.8.4 Progol
Summary of resultso

WiM for applications

7.1
7.2
7.3
7.4

Application challenges
Reusable domain knowledge
Building domain knowledge: Example
Unified approach to building domain

knowledge
74.1 General schema
7.4.2 Algorithm GENERATE
7.4.3 Translation between first-order logic and F-logic

63
63
64
65
65
66
67
67
68
68
68
69
70
70
71
72
72
73
74
74
75
76
7
78

79
79
80
81

84
84
84
85

8 Inductive redesign of a database schema

8.1

8.2
8.3
8.4
8.5

Rules in deductive object-oriented

databases
DWiM
Results
Extension to full F-logic
Related works

9 KDD in geographic data

9.1
9.2
9.3
9.4
9.5

9.6

Mining in spatial data
GWiM
Inductive query language
Results
Discussion
9.5.1 On the inductive query language

9.5.2 On mining in real databases . . .
Related works

10 Conclusion
10.1 Main contributions

10.1.1 Novel ILP architecture

10.1.2 Efficient program synthesis from small learning sets .

10.1.3 Automatic generation of negative examples
10.1.4 Building of reusable domain knowledge
10.1.5 Inductive redesign of object-oriented database

10.1.6 Mining in spatial data

10.2 Future work

Index

Bibliography

A Number of admissible sequences of variables

B Parameters of WilM

C Example sets

D Geographic data

87

87
88
89
90
92

93
93
94
96
98
100
100
101
102

103
103
103

. 103

104
104
104
105
105

106

109

116

118

120

123

List of Figures

3.1 General setting 24
3.2 Examplesetting oL 25
3.3 Generic algorithm for ILP 26
3.4 Refinement graph for reverse/2 30
4.1 Schema of MIS algorithm 36
4.2 MIS : A new clause synthesis 38
5.1 Basic schema of assumption-based learning 49
5.2 A generic algorithm of assumption-based learning 20
5.3 WiM algorithm 51
54 TInput of WiM 53
7.1 Object-oriented database schema 81
7.2 Description in F-logic 82
7.3 Example of an object description 82
74 DWiM schema 84
8.1 Class and attribute definitions 89
9.1 Spatial database schema 94
9.2 Schema description in first-order logic 95
9.3 General formofrules 96
9.4 Geographicdata.o 99
10.1 List of oracles implemented in WM 106

11

List of Tables

3.1 NC(n) for small values of variable positions

6.1 WiM parameters settings
6.2 Results of WiM on carefully chosen examples
6.3 Results for randomly chosen examples
6.4 Dependence on a maximal argument depth
6.5 Number of test perfect solutions in 10 learning sessions
6.6 Average CPU time for a different number of examples
6.7 Carefully chosen examples: Learning with assumptions
6.8 Randomly chosen examples: Learning with assumption
6.9 Comparison with Markus
6.10 Comparison with FILP and CRUSTACEAN
6.11 Comparison with CRUSTACFEAN on randomly chosen ex-
amples L
6.12 Comparison with SKILit
6.13 Comparison with Progol
6.14 Results on Progol distribution data

8.1 DWiM: Summary of results

9.1 GWiM: Summary of results

12

ACM Classification

w}

.1.2 Software PROGRAMMING TECHNIQUES Automatic Programming
.1.6 Software PROGRAMMING TECHNIQUES Logic Programming

(w/

I.2.2 Computing Methodologies ARTIFICIAL INTELLIGENCE
Automatic Programming Program synthesis

I1.2.6 Computing Methodologies ARTIFICIAL INTELLIGENCE
Learning Concept learning Induction

H.2.1 Information Systems DATABASE MANAGEMENT Logical Design
Schema and subschema

H.2.8 Information Systems DATABASE MANAGEMENT Database
Applications Data Mining

H.2.8 Information Systems DATABASE MANAGEMENT Database
Applications Spatial databases and GIS

Chapter 1

Introduction

We briefly explain exact learning in first order logic. Then we
discuss motivation and objectives of this thesis and outline its
structure.

1.1 Inductive synthesis in first order logic

This work deals with inductive synthesis of logic programs from examples.
The work is, in the first place, application-oriented. It aims at building tools
for logic program synthesis from examples and it focusses on the tasks that
are solvable by such tools.

Inductive logic programming (ILP) [53, 57|, as that particular field of ma-
chine learning is called, explores inductive learning in first order logic. An
inductive system learns if for a given set of instances of a particular concept
it finds a general description of that concept. The main goal of ILP is then
development of theory, algorithms and systems for inductive reasoning in
first-order logic.

We focus here on exact learning. It means that no noise in input information
(examples, domain knowledge) is allowed. We employ the generate-and-test
strategy. First a hypothesis is generated that is afterwards tested on exam-
ples.

15

16 CHAPTER 1. INTRODUCTION

1.2 Motivation

The development of a new ILP system presented in this thesis was motivated
by some tasks that everybody must treat when using ILP. It is a selection
of learning set (its cardinality and quality), building domain knowledge and
optimal settings of bias. Below we summarise some general difficulties that
concern those three tasks.

Selection of a training set. Training set should be big enough to ensure
successful solving the particular task and it must not contain a lot of unusable
(irrelevant, redundant) examples. The main troubles of the ILP systems are:

1. Cardinality of a training set needed by ILP systems seems to be too
big [7, 54, 66] and /or the needed quality od examples is extremely high
[2, 26, 67]

2. The used negative examples are more dependent on the used ILP sys-
tem than on the solved task [26, 54, 67].

3. In the case of interactive systems, the obtained result very often de-
pends on the order of examples [67].

Building domain knowledge. Domain knowledge should be rich enough
and, at the same time, it should not contain unusable predicates. Two ways
how to build the set of domain knowledge predicates has been proposed. The
most frequent one is a selection of the most appropriate predicates by the user
himself. This selection is based on some informal knowledge of the solved task
which the user knows. The second, much less used way is (semi)automatic
synthesis of domain knowledge by means of machine learning. Predicate
invention [21, 69] and multiple predicate learning [17] are instances of that
approach. Main drawbacks of the existing solutions are the following:

1. The existing solutions hold for a particular task [68], or a particular
kind of domain knowledge [30]; or

2. they are relevant only to a particular ILP system [4, 42, 68].

1.3. OBJECTIVES 17

Settings of bias. Optimal settings of bias [56] can hardly be automatic.
However, it should be as easy as possible. Finding the optimal parameters of
bias is closer to art than to a science [27]. This field is unfortunately much
less explored than the choice of bias (parameter settings) for decision tree
learners.

1.3 Objectives

In this thesis, we solve only some of tasks that result in more efficient and
more user—friendly ILP systems. These tasks are summarised bellow.

Efficient learning from a small learning set. We will show that the
number of hypotheses in generate-and-test paradigm can be lowered with
bias settings. By this way, this ’brute force’ top-down learning will become
quite efficient. When looking for the optimal bias settings we will aim at the
minimal need of interaction with a user.

Automatic generation of negative examples. As mentioned before,
the useful negative examples are very often dependent on the used ILP sys-
tem. We will describe a semi-automatic method that for finding negative
examples. We will show that the found examples are helpful.

Building of reusable domain knowledge. The set of domain knowledge
predicates is of course dependent on the particular task that is to be solved
by ILP. However, for some kind of applications the domain knowledge (or
its part) can be constructed automatically. We will show how to extract the
main part of domain knowledge predicates from object-oriented description
of learning data.

Applications. We will describe classes of problems that can be solved with
exact learners. We focus on the traditional class of problems — logic program
synthesis, and database applications. We will show that WiM system can
be applied in the field of database schema redesign as well as in the process
of knowledge discovery in geographic data.

18 CHAPTER 1. INTRODUCTION

1.4 Outline of the thesis

The following text can be split into four parts. The first part is the in-
troductory one. Chapter 2 is an introduction to the basic notions of logic
programming. Chapter 3 overviews basics of inductive logic programming.
The search space, which has to be analysed in ILP setting has clearly expo-
nential character [61]. We show how to decrease this complexity. Chapter 4
displays ILP systems M1S , Markus and Progol as well as other systems
mentioned in this thesis.

The second part — Chapters 5, 6 — are as the nucleus of this thesis. Chapter
5 introduces a new paradigm of ILP, assumption-based learning (ABL).
Implementation of this paradigm, WiM system, is described. WiM can ef-
ficiently learn logic programs from a small example set. Chapter 6 displays
the results obtained with WiM for both carefully chosen training sets and
randomly chosen training examples. Comparison of the results with the re-
sults obtained with other ILP systems is displayed.

Next part concerns the process of building reusable domain knowledge and
applications. In Chapter 7 the typical applications areas that are solvable
with WiM are displayed and automatic building of domain knowledge for
this kind of applications is described. Next two chapters concern two appli-
cation areas — inductive redesign of a database schema (Chapter 8) and data
mining in spatial data (Chapter 9). Both solutions exploit WiM system and
the method for automatic building of domain knowledge that is described in
Chapter 7.

Last part — Chapter 10 — summaries this work.

Some preliminary results of this thesis were published in different workshops
and conferences or as technical reports. Chapters 3 and 4 are extended
versions of [64]. Previous versions of WiM was described in [24, 59, 61].
Preliminary results of Chapter 8 can be found in [60]. This chapter and
some parts of Chapter 7 are substantial extensions of [60, 63]. Chapter 9 is
an improved version of [62].

Chapter 2
Logic programming

This chapter briefly introduces the basic logic programming ter-
minology that is used in this thesis. Complete definitions can be

found in [3], 43, 48].

2.1 Syntax

A program clause (or clause) is a formula A <— W for which A is an atom,
the symbol < means an implication, and W is a conjunction of literals, i.e.
positive or negative atoms. A is called head of the clause and W is called
body. All variables in the head are universally quantified. A clause (or term)
is ground if it contains no variable. The closed clause is a clause with no
free occurrences of any variables, i.e. all variables are bound via quantifiers.
We will use also the term rule for program clauses with unempty body. If
W is absent we call the formula a fact. A logic program! is a finite set
of program clauses. A goal is a clause of the form <— W where W is a
conjunction of literals. We will use very often :- instead of <—. Queries will
be written <— W, or 7-W following syntax of Prolog. Thus

p(X, f(X)) : = r(X). (1)
p(X,g(Y)) T p(X, Z) (2)
’- p(a, b),p(a, C)' (3)

is a logic program in which (1),(2) are program clauses and (3) is a goal. The
clause (1) is closed.

'If it is unambiguous, we will omit the adjective “logic’.

19

20 CHAPTER 2. LOGIC PROGRAMMING

The first order language given by an alphabet consists of the set of all
well-formed formulas constructed from the symbols of the alphabet.

The definition of a predicate p appearing in a program P is the set of all
program clauses in P which have p in their head. We will need the notion of
completion of a program C'omp(P). Informally the completion of a program
is obtained by replacing implication with equivalence in the rules, and adding
the axioms of equality theory.

2.2 Semantics

An pre-interpretation .J of a first order language L consists of the following:
1. A non-empty set D, called domain,;
2. for each constant in L , the assignment of an element in D;

3. for each n-ary function symbol in L, the assignment of a mapping from
D" to D.

An interpretation I of a first order language L consists of
1. a pre-interpretation J with domain D, and

2. for each n-ary predicate symbol in L, the assignment of a mapping from
D™ into (true, false) (or, equivalently, a relation on D™).

We assume that logical connectives as well as quantifiers have the ordinary
semantics ([48] p. 13). Then a formula in L is given a truth value applying
the definitions above. An interpretation I is a model for a closed formula
F if F is true wrt I. Let S be a set of closed formulas and F' be a closed
formula of a language L. We say F' is a logical consequence of S if, for
every interpretation I of L, I is a model for S implies that I is a model for
F. We will write S = F. F |= G iff every model of F' is a model of G. I
is a model for the program P iff I is a model for each clause in P. The
reduced clause r of a clause ¢ is a minimal subset of literals of ¢ such
that r and ¢ has the same model.

Let L be a first order language. The Herbrand universe U}, for L is the set
of all ground terms, which can be formed out of the constants and function
symbols appearing in L. If L has no constants, we introduce one, to form

2.3. ANSWER 21

ground terms. Let L be a first order language. The Herbrand base By,
for L is the set of all ground atoms which can be formed by using predicate
symbols from L with ground terms from the Herbrand universe as arguments.
An Herbrand interpretation for L is any interpretation on the domain of
Herbrand universe Uy. Let L be a first order language and S a set of closed
formulas of L. An Herbrand model for S is an Herbrand interpretation
for L which is a model for S. For normal programs, i.e. programs with
negative literals in the clause body, we refer to the model of the completion
Comp(P) of a program P.

2.3 Answer

A substitution € is a finite set of the form {v /¢y, ..., v,/t,} , where vy, ..., v,
are distinct variables and each term ¢; is distinct from v;. Each element v;/¢;
is called binding for v;. 6 is called a ground substitution if the ¢; are
all ground terms. @ is called variable-pure substitution if the ¢; are all
variables. Let P be a normal program and G a goal < W. An answer for
PU{G} is a substitution for variables in . The answer does not necessarily
contain a binding for every variable in G. A correct answer is an answer 0
such that V(1W#) (all variables in W# are universally quantified) is a logical
consequence of Comp(P).

2.4 Error diagnosis

A program LP covers a fact e if LP [e, i.e. if in every possible interpre-
tation I LP [=; e. Tt is useful to split the set of predicate definitions LP
into 2 parts. Let P be the definition of predicate of the same name and the
same arity as the fact e, and B = LP — P. Than we can rewrite the above
definition in the form PUB = e. That notion of coverage is sometimes called
intensional coverage. In machine learning there is often used the notion
of extensional coverage of fact e [43]. In the latter all predicates in B are
defined extensionally, i.e. by ground facts only.

An intended interpretation for a program P is a normal Herbrand inter-
pretation [48] for the completion Comp(P) of P. The aim of logic program
synthesis is to find a program which has the intended interpretation as a
model.

22 CHAPTER 2. LOGIC PROGRAMMING

Let P be a program, GG a goal <~ W, and I an intended interpretation for P.
1. Program P is correct wrt I if I is a model for Comp(P).

2. If 0 is an answer for P U {G} and W6 is not valid in I, then P is
inconsistent wrt I.

3. If PU{G} has a finitely failed SLDNF-tree[48] and W is satisfiable in
I, then P is incomplete wrt I.

In the following text we will omit the clause "wrt I" if no ambiguity may

arise. We say that an instance A <~ W of a program statement in P is an
incorrect statement instance for P wrt I if A is unsatisfiable in I and W
is valid in I. Then we can summarise that P is incorrect wrt [iff there is an

uncovered atom for P wrt I or there is an incorrect statement instance for
P wrt I.

2.5 Types and modes

We assume that every argument of a predicate have its type and an in-
put/output mode. The type is a nonempty set of ground terms that the
argument can take. The mode says whether the argument is input (its value
must be known before an evaluation of the predicate) or output (the value is
computed inside the predicate). Let us have reverse/2 predicate for revert-
ing lists, e.g. 7-reverse(lk,a,b,a,t], X) returns X = [t,a,b,a,k]. For this
predicate the type and mode definition can be written as [+list, —list], i.e.
the both arguments are lists, the mode of the first argument is input (+) and
the mode of the second one is output (-).

2.5. TYPES AND MODES

23

Chapter 3

Inductive logic programming

This chapter introduces basic notions of inductive logic program-
ming. More attention is paid to general-to-specific framework.
We show how to decrease complexity of the search space in ILP
setting.

3.1 Basic task of ILP

The goal of inductive logic programming(ILP) is to develop theory, algo-
rithms and systems for inductive inference in first order predicate calculus®.
Informally, for a given example set and background knowledge we aim at

For given background(prior) knowledge B and evidence E = E* A E~
such that

Prior Satisfiability: B A E~ ¥~ false
Prior Necessity: B £ E*
we aim to find a hypothesis H such that the following conditions hold:

Posterior Satisfiability: B A H N E~ £ false (consistency)
Posterior Sufficiency: B A H | E* (completeness)

Figure 3.1: General setting

finding a hypothesis in first order logic that explain those examples using

!This text is based on [53, 57, 67]

24

3.2. GENERIC ILP ALGORITHM 25

the background knowledge. In the general setting, examples, background
knowledge and hypotheses may be any formula. More formally, the problem
of inductive logic programming [53] is displayed in Fig. 3.1. Tt is rea-
sonable to assume two posteriori conditions [22]| BA E = —H, B [~ H. The
main used setting in ILP is example setting, or ’specification by examples’
[22], where the evidence is restricted to true and false ground facts called
examples. Background knowledge is a normal program. The definition in

For given sets of positive and negative examples E+ a £~
and background knowledge B such that

Prior Satisfiability: Veec F~: Bltfe
Prior Necessity: deec ET: Ble

find a program P such that

Completeness Vee EY: BUPLe
Consistency YVee E-: BUPVWe

Figure 3.2: Example setting

Fig. 3.2 hold even if P is a conjunction of all the positive examples from the
example set. We require in addition that P is a generalisation of examples,
i.e. it holds even for examples that do not appear in the example set. In the
following text we assume the example setting as default?.

3.2 Generic ILP algorithm

The definitions above are not constructive. In this section we do the first
step to find an efficient algorithm that computes as a result a hypothesis H
under the completeness and consistency conditions introduced above. ILP
task, as any machine learning task in general [51], can be regarded as a search
problem. There is a space of formulas — hypotheses, and the conditions of
completeness and consistency form an acceptance criterion on a hypothesis
H. So called enumeration algorithm can solve ILP simply by a naive
generate and test algorithm. However, it is out of practical interest because
of a computational complexity which is O(cardL) where L is the set of all

2For non-monotonic semantics see [53, p. 636].

26 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

possible hypotheses.

The generic algorithm for ILP [53] is in Fig. 3.3. Actual ILP system only
differs in implementation of the functions of this generic algorithm. The

Given: B, E=FE"ANE"
QH := initialise(B, E+, E—)
while not(stop_ Criterion (QH)) do
delete H from QH
choose the inference rules ry, ..., € R to be applied to H
Apply the rules rq, ...,y to yield Hy, ..., H,
Add Hy,...,H, to QH
prune QH
Output: choose_hypothesis P from QH

Figure 3.3: Generic algorithm for ILP

algorithm starts with an initial queue of candidate hypotheses QH. In the
while loop, a hypothesis H is chosen from the set (JH. Then inference rules
ri, ..., are applied to H. It yields Hy, ..., H, hypotheses that are added into
QH and the set QH is pruned. The algorithm stops when the stop Criterion
holds on the set QQH.

The algorithm has the following parameters:

e The initialise function builds the initial portion of hypotheses ;

e R is the set of inference rules applied;

e Different instantions of delete allow to implement a search strategy: a
depth-first (delete=LIFO), breadth-first (delete=FIFO), best-first (e.g.
delete H such that P(H|B A E) is maximal VH € QH) ;

e choose determines what inference rule to apply on H ;

e prune determines what hypotheses to delete from the queue of QH;

e The stop Criterion holds if an adequate solution has been found, or
the QH queue is empty;

3.3. GENERAL-TO-SPECIFIC ILP 27

e choose_hypothesis chooses from QH one of possible solutions®.

Any of advanced search strategies (hill-climbing, beam-search etc.) can be
realized by delete and prune together with choose and stop Criterion.

In the next section we focus on general-to-specific framework which is further
elaborated in this thesis. We first introduce the notion of specialisation
in logic and describe the generic algorithm for general-to-specific ILP. We
explain the notion of a refinement operator and a refinement graph. We
conclude with brief summary of bias.

3.3 General-to-specific ILP

3.3.1 Specialisation

We say that F' is more specific than G [53] iff G = F. We will write
F < G. Tt means that any model of G is a model of F'. F' is called a spe-
cialisation of GG. A specialisation operator maps a conjunction of clauses
G into set S of maximal specialisations. A maximal specialisation S of GG
(also called the most general specification) is a specialisation of G such that
(G is not specialisation of S, and there is no specialisation S’ of GG such that
S is a specialisation of S’.

Example: If the set of function symbols F' contains only the element a, and
G = p(X,Y), then the set S of all maximal specifications of the clause G is
containing p(a, Y), p(X, a), but not p(a,a).

The notions of generalisation, maximal generalisation and generalisation op-
erator are defined as inverse to those ones [53, p.642| concerning specialisa-
tion.

3.3.2 Specialisation operators in first-order logic

Most of ILP systems which work in general-to-specific manner employ two
operators of specialisation

e binding of 2 distinct variables
e.g. for a predicate p/2 we have spec(p(X,Y)) = p(X, X) ;

3This function is not explicitely introduced in [53], however we find it important.

28 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

e adding a most general literal to a clause body (arguments are
so far unused variables). Let the domain knowledge contains only
one predicate ¢/3. Applying this rule we obtain two specialisations
of p(X,Y)
spec(p(X,Y)) = p(X,Y) < p(U,V)
spec(p(X,Y)) = p(X,Y) « q(U,V, W) ;

If working with programs that contain constants and complex terms we need
two more operators

e replacing a variable with a constant
e.g. spec(p(X,Y)) =p([].Y) ;

e replacing a variable with a most general term (arguments are so
far unused variables)

e.g. spec(p(X,Y)) =p([U[V],Y);

Although the definition of a minimal specialization is simple when learning
one clause, it is not so clear when refining a whole theory. The problem of
what clause to choose for further specialization newly appears [70].

3.3.3 General-to-specific algorithm

Now we can introduce the generic algorithm for general-to-specific ILP. Let
us start with the generic ILP algorithm (Fig 3.3). Let the training set
contains examples of predicate p(Xi, Xs, ..., X;,). In the case of general-to-
specific algorithm, the initialise function returns the most general clause
p(X1, X, ..., X,) :- true. and the set of inference rules consists of four spe-
cialisation rules from Section 3.3.2.

A systematic investigation of specialisation operators in logic programming
was started by Ehud Shapiro [67]. The most important notions and charac-
teristics are summarised in the next section.

3.4 Refinement operator

3.4.1 Definition

In the definition below we assume a specific language £ is used. Without
loss of generality, we assume £ has a most general element T.

3.4. REFINEMENT OPERATOR 29

Def.: A refinement graph is a directed, acyclic graph in which nodes are
clauses * and arcs correspond to refinement operations, defined bellow.

Def.: Let C be a set of clauses and p a mapping from C to finite subsets of
C. We define <, to be the binary relation over C for which

p <, q iff there is a finite sequence of clauses pi,ps, ..., p, such
that p; = p, p, = ¢, and pi1 € p(p;) for O <7 < n.

We say that p <, ¢ iff p <, ¢ or p = ¢ (we don’t distinguish between clauses
that differs only in the variable names).

The mapping p is said to be a refinement operator over C iff the following
two conditions hold:

1. The relation <, is a well-founded ordering over C.

2. For every interpretation I and goal G, if ¢ covers G in I and p <, ¢
then p covers G in I.

operator. It can be proved [67] that the operators of specialisation from
Section 3.3.2 together make a refinement operator.

An example of the refinement graph for reverse(X,Y) is in Fig 3.4. A root of
the graph is the most general clause reverse(X,Y’). Two clauses Cy, C; are
connected with an edge if the clause C) arises from C' after application of one
of the specialisation operators. Clauses of the correct definition of reverse/2
predicate are printed in bold. To be brief, some unimportant parts of the
graph are missing. E.g. on the first level the replacement X/[| as well as
adding the literal reverse(A, B) are left out.

3.4.2 Properties

A refinement operator p (with transitive closure p*) is

1. globally complete for a language L iff p*(T) = L.

*Shapiro [67] defined the refinement graph for definite clauses. We use here more
general definition for program clauses.

30 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

reverse(X,Y)

Y/X Y/ X/[U|V] add literal

reverse(X,X) reverse(X,| |) reverse([U|V],Y) reverse(X,Y)
+ concat(A,B,C)

X/[\ /y,/ V/Wd literal\dd\hteral /{ /[UIV]

reverse([|,[]) reverse([U],Y) reverse([U|V],Y)«+ concat(A,B,C)

reverse(|U|V],Y)« reverse(A,B)

A/V

reverse(|U|V],Y)« reverse(V,B)

add literal

reverse([U|V],Y)« reverse(V,B) A concat(C,D,E)

' C/B,D/U, E/Y
reverse([U|V],Y)<—l reverse(V,B) A concat(B,U,Y)

Figure 3.4: Refinement graph for reverse/2

2. locally complete for a language L iff Ve € L: p(c) ={c € L | is a
maximal specialisation of c}.

3. optimal for a language L iff Ve, ¢1,co € L£: ¢ € p*(cy) and ¢ € p*(e2) —
c1 € p*(eg) or ¢g € p*(cy)

Let us have a language £ where P, F are finite sets of predicate and function
symbols. There is a p, refinement operator that is globally complete for the
language. It was proved in [67] that two syntactic operations are enough for

Po:

1. Instantiate a clause.
2. Add a goal to the condition of a clause

3.5. BIAS 31

3.5 Bias

The computational complexity of ILP algorithm is an important problem. In
general there are three ways how to limit the size of the set generated by a
refinement oprator: to define bias (syntactic as well as semantic restrictions
on the search space) |27, 42, 56|, to accept assumptions on the quality of
examples|46], or to use an oracle[12, 13, 67]. Even in the case of a finite
relation we assume that the number of examples is (significantly) less than
the number of all instances of the relation.

Bias which is discussed in this section is usually split into two groups, lan-
guage bias that narrows the space of possible solutions and search bias
that defines how to search that space and when to stop.

Language bias. These constraints defines a form of possible solutions.
More frequent constraints limit the maximal number of clauses in the solution
or maximal number of literals in a clause body [26, 54, 67|. Languages were
developed [6, 11| that enable to define almost any syntactic feature of the
desirable solution.

Search bias. [t says how to search the graph of potential solutions. It
also defines the condition under which the search are to stop. The latter is
sometimes called validation bias.

Shift of bias. Most of characteristics of bias — like the complexity of the
intended solution, or the maximal number of nodes-hypotheses in the search
space — may be expressed via parameters. Usually it is uneasy to set the
parameters optimally. The techniques of the shift of bias can help. We start
with such a setting that defines the minimal search space that is reasonable.
If the solution is not found in that space the bias can be weakened, i.e. the
search space is increasing.

It is clear that the complexity fo learning strongly depends on the bias set-
tings. In the next section we show how to decrease the cardinality of the
search space in top-down learning algorithms. We try to estimate cardinality
of the search space as a function of the size of the background knowledge and
of the maximal length of clause bodies.

32 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

3.6 Cardinality of the search space for given
settings

3.6.1 Upper estimate

Let | BK| mean the number of background knowledge predicates + 1 (for the
target predicate), A the highest arity among the predicates in background
knowledge and the target predicate, L the maximal length of a clause body,
i.e. the maximal number of predicates in a clause body.

The number of positions of variables in a clause for a given length [is equal
to a sum of the positions in the head and in the body, its upper bound is
(1+1)* A. E.g. for member /2 predicate, maximal length of the clause body
for | = L = 2 and background knowledge which contains only 1list(List,
HeadOfList, BodyOfList)> we have

member (X1,X2) :- P1(X3,X4,X5),P2(X6,X7,X8)

i.e. 8 positions.

Now we find the number NC(n) of clauses for a given number n of vari-
able positions. Having a set of variables {X1,X2,X3,X4,X5,X6,X7,X8} as in
the example above, we can find all different clauses for fixed P1, P2. The
number of those clauses is less than 8% because some of them are equiva-
lent, e.g. member(X,Y) :- member(X,Z) is the same as member(U,V) :-
member (U,W). See Appendix A for detailed treatment of this subject. In
Table 3.1 the values of NC(n) for small values of n are displayed. As each
combination of background predicates as well as the target predicate can ap-
pear in the body, we have to multiply NC(n) by the number of all allowed
combinations of predicate symbols. E.g. for member /2 predicate

member (X1,X2) :- P1(X3,X4,X5),P2(X6,X7,X8)

we have 2 positions for predicates. If the maximal length of the clause body
is L = 2 and the maximal arity A = 3, the number of all clauses in the search
space is the sum of number of clauses of the length 0 (body == true), of the
length 1 and 2

NC(A)+2+NC(2A4)+3+«NC(3A) = 24252+ 3%21147 = 63547

5list(List, HeadOfList, BodyOfList) splits List into its head HeadOfList and its
body BodyOfList.

3.6. CARDINALITY OF THE SEARCH SPACE FOR GIVEN SETTINGS33

Variable Variable

positions | Clauses positions | Clauses
1 1 6 203
2 2 7 878
3 5 8 4140
4 15 9 21147
5 52 10 | 115975

Table 3.1: NC(n) for small values of variable positions

The coefficients 2 and 3 are equal to the number of combinations with rep-
etition of possible predicates in the clause body for a clause with its body
length 1 and 2 respectively.

The general formula for the number of all clauses for given BK, L, A is

NCA:ZlL_()(|BK|;LZ_1>*NC((1+1)*A),

This formula inherits its exponential character from the function NC (see
Appendix A). That is why we need more information to decrease cardinality
of the search space. The declaration of types and the maximal number of
free variables allowed during learning can help. It was shown elsewhere [16],
that we can focus on linked clauses only. It limits the number of distinct
variables significantly. In the next paragraph we show how to exploit such
information to narrow the search space.

3.6.2 How to narrow the search space

We will demonstrate a way of narrowing search space on a simple example.
Let us learn the base clause of the predicate member/2. The list(List,
HeadOfList,Body0fList) predicate is the only background knowledge pred-
icate. Suppose we know that the maximal length of the body of the clause
is 1. Then two skeletons have to be considered as candidates

(1) member(,)
(2) member(,):-list(_, ,)

For (1) and (2), there are NC(2) = 2 and NC(5) = 52 instances respectively,
in total 54 clauses in the search space.

34 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING

Let us assume that only 1 free variable may appear in the body of the clause.
For the case (2) it implies introduction of 1 new variable by predicate 1ist/3
so that no more than 3 distinct variables are allowed. The number of clauses
is than h(1,5) + h(2,5) + h(3,5) = 41.

If we know types of arguments, member (nom,list), 1list(list, nom,list)
in our example, the search space is further narrowing because member (X,X)
cannot appear. The remaining member (X,Y) is not taken in account as it is
the most general clause and it could not be consistent - any negative example
would be covered by this clause. When taking in account the type definition,
the case (2) may be split into two cases (2a) and (2b)

(2a) member(X,Y) :- list(L1,X,L2)
(2b) member(X,Y) :- list(L1,U,L2)

where U # X. In (2a), as at most 1 free variable can be introduced, one of
L1,1.2 must be equal to Y or L1—=L2. It means that only following 4 clauses
remain

member (X,Y) list(Y,X,L1)

member(X,Y) :- list(L1,X,L1)
member(X,Y) :- list(L1,X,Y)
member(X,Y) :- list(Y,X,Y)

For (2b), as U # X is a free variable, both L1 and L2 have to be identical
to Y, and just the single clause member (X,Y) :- 1ist(Y,U,Y) remains. It
means that the search space consists of 5 clauses only - this compares well
to the number of 54 clauses estimated in the beginning®.

To summarize, the search space shrinks considerably when we do exploit
knowledge about the maximal length of a body of the clause, the maximal
number of free variables allowed and type declarations of arguments.

Based on the idea of narrowing search space displayed in this section we
implemented top-down ILP system WiM which is described in Chapter 5.
We will show in Chapter 6 that this way of narrowing search space is sufficient
enough for a class of list processing predicates.

6Knowing more about semantics of the 1ist/3 predicate we can also delete clauses
member (X,Y) :- list(L1,X,L1) and member(X,Y):-1ist(Y,X,Y).

Chapter 4

ILP systems

We introduce general-to-specific ILP systems that are as predeces-
sors of Wil system. The basic information on MIS is followed
by description of Markus system. We displays also other systems

for exact learning — FILP, CRUSTACFEAN, SKILit, and also
Progol system, that were used for comparison with WiM system.

4.1 MIS

4.1.1 Overview

MIS - Model Inference System [67] is the first system for logic program
synthesis from examples. It is an interactive multiple predicate learner that
employs the general-to-specific strategy. The process is incremental, i.e. the
clause that has been rejected as inconsistent will not be given again into
the solution. It needs information about learned predicates, namely modes
and types of arguments and names of domain knowledge predicates that may
appear in the learned predicate definition. Each predicate may be declared
as total (for each input there exists at least one output) and/or determinate
(for each input there is at most one output). Then MIS process examples
one-by-one resulting in a logic program that is complete and consistent with
respect the known examples. During the program synthesis M 1S may ask
queries about intended interpretation of subgoals. The alorithm of MIS is
based on error diagnosis in logic programs. For a ground goal (new example)
e and a program P (that has been synthesised) some of the following errors
can be detected:

35

36 CHAPTER 4. ILP SYSTEMS

1. INCONSISTENCE.
The program P covers a negative example : e € E~ AP e . The
clause that was detected as incorrect is deleted and M 1S looks for next
candidate clause.

2. INCOMPLETENESS.
The program P does not cover a positive example : e € ET AP e .
M1IS looks for a new clause that covers the example e, does not cover
any negative example and is the most general from all possible clauses
that have not been tested (Section 4.1.3). That clause is appended to
the solution.

3. DIVERGENCE.
The program P is looping. The metainterpreter built-in in MIS is
given a maximal depth of computation of a goal. If that maximal depth
is exceeded the algorithm continues as in the case of inconsistence.

4.1.2 Algorithm

Input: B,ET,E~, bias
QH := {} ; The set of marked clauses is empty;
repeat
read an example;
repeat
if program QH fails for a positive example
find a new clause C' so that QH U {C'} covers the example;
QH == QHU{C};
if program QQH suceeds for a negative example
find the incorrect clause C of program QH; QH := QH — {C};
mark clause C ;
until QH is complete and consistent
write QH
until all examples from E* U E~ have been read
Output: the sequence of programs QH;,Q Hs,, ... that are complete and consistent
with respect known examples

Figure 4.1: Schema of MIS algorithm

In the algorithm in Fig. 4.1 marked clauses are the clauses that have already
been found inconsistent.

4.1. MIS 37

4.1.3 Refinement operator

The construction of a new clause starts with the most general clause — a
head of the clause contains distinct variables, and the body is true — which
is further specialised. We will demonstrate the whole process on the example
of synthesis of predicate reverse/2 (Fig. 4.2). Both arguments are declared
as lists, the first one is an input, the second one is an output. The domain
knowledge contains only predicate concat(FE, L1, L2) that appends the ele-
ment F to the list L1 resulting in the list L2. Let us suppose that the base
clause reverse([], []) has been already found. The training set contains
following examples

reverse([1,2],[2,1]), true
reverse([1,2],[1]), false

The root of the refinement graph is the most general clause reverse(X,Y).
It can be specialised by unification of an output variable with an in-
put variable in the head of the clause. However reverse(X,X) does
not cover a new positive example. The next refinement operation is sub-
stitution of input variable from the head to a constant. The only
constant for the type of list is []1 but reverse([],X) is rejected for the same
reason as above. Neither reverse(X, [1) can be accepted which arises from
substitution output variable from the head to a constant. Next rule
that replaces a variable with the most complex general term! results
in reverse([H|T],Y). This clause is acceptable because it covers the uncov-
ered positive example. However, it need to be further specialised because of
inconsistency.

The next refinement rule adds a subgoal to the clause body . This rule
is applied twice resulting in reverse([H|T],Y) :- reverse(T,S),

concat (H,S,I). Input arguments of that subgoal are selected from the input
variables(arguments) that already exist. New variables, i.e. output variables
of that subgoal, are added to the list of input variables and also into the
list of free variables. They may be used as input variables in next subgoals.
If a free variable is used as an input one, it is deleted from the list of free
variables.

The rest of free variables can be deleted from the list only with the refinement
operation of closing a clause. If an output variable is unified with a free

'Let us notice that the above rules can be applied only to clauses without subgoals.

38

reverse(X,Y).

CHAPTER 4. ILP SYSTEMS

input variables = <X, list>
output variables = <Y, list>
I
| X /[HIT]
\

reverse([H|T],Y).

input variables
output variables

reverse([H|T],Y)
input variables

output variables
volne variables

reverse([H|T],Y)
input variables

output variables
free variables

reverse([H|T],I)

= <H, integer>, <T, list>
<Y, list>

|

| add_subgoal reverse(T,S)

\'}

:- reverse(T,S).

= <H, integer>, <T, list>,
<S, list>

= <Y, list>

= <S, list>

|

| add_subgoal concat(H,S,I)

\'}

:- reverse(T,S), concat(H,S,I).

= <H, integer>, <T, list>,
<S, list>, <I,list>

= <Y, list>

<I, list>

Y/I (close clause)

< ——1

:- reverse(T,S), concat(H,S,I).

Figure 4.2: MIS : A new clause synthesis

variable, the free variable is deleted from the list. The operation of closing
a clause may be applied only in the case that it results in exhausting of the
list of free variables.

The whole synthesis of the recursive clause for reverse/2 in in Fig. 4.2. As
the base clause reverse([],[]) has been already synthesised, the clause
reverse([H|T],Y) :- reverse(T,S), concat(H,S,I) is accepted even if
example reverse([2],[2]) is not in the example set. The final clause is
complete and consistent with respect to the example set.

4.2. MARKUS 39

4.1.4 Discussion

The main problem of MIS' is the right choice of examples and even their
order. User actually has to know the intended program and even to under-
stand well M 1S algorithm. The implemented refinement operator does not
prevent from duplicate nodes in the refinement graph. Mat Huntbach [31]
partially solved that problem by ordering the refinement operations. How-
ever, duplicate clauses may still appear within one refinement operation. The
problem was fully solved in Markus [26] (Section 4.2). Extension of M IS
for synthesis of inpure Prolog programs is suggested in [58].

4.2 Markus

4.2.1 Overview

Markus [25, 26, 27| extends Shapiro’s Model Inference System in some di-
rections. In noiseless domains it is still competitive with younger systems.
Following [26], the main features of Markus can be summarised as follows:

e optimal generation of a refinement graph (no duplicate nodes) (contin-
uing the work [31]),

use of the iterative deepening search of the refinement graph,

controllability of the search space with several parameters,

the covering paradigm, and

learning in the batch (non-interactive) mode.

4.2.2 Algorithm

It is non-interactive and employs covering paradigm. It means that it looks
for partition of positive example set on mutually disjunctive parts. Each of
those part will be then described by one clause. The learning algorithm finds
a first clause that covers at least 1 positive example and uncover no negative
one. The covered positive examples are then deleted from the training set
and the learning algorithm continues in covering that smaller example set.
The algorithm stops when all positive examples and no negative examples
are covered, or no solution was found in the search space.

40 CHAPTER 4. ILP SYSTEMS

A synthesis of a new clause processes in 3 steps. A newly constructed clause is
first tested whether it is promising , i.e. it covers at least 1 positive example
from the current example set. After closing the clause (see closing refinement
operator in MIS), the clause is tested whether it is still promising and in
the same time whether it does not cover any negative example. Such clause,
said as good one, is appended to the end of current result. The result is
then tested to be complete and consistent.

4.2.3 Refinement operator

The refinement operator used in Markus is based on MIS’ one. In addition it
can introduce negative goal in the clause body in the case that all variables
are input ones. By further ordering of modifications within one refinement
operation it solves eventually the problem of duplicate nodes. In this sense
the Markus refinement operator is optimal.

4.2.4 Parameters

Parameters of Markus may be split into three groups. The first group corre-
sponds to language bias mention earlier. The second one parametrises search
of hypotheses space and third one concerns inputs and outputs of Markus .
Language bias may be defined with following parameters:

e maximal number of goals in clause body,
e maximal depth of arguments in the head of a clause.

e maximal number of free variables (newly introduced, but still unused
variables in the body of a clause),

e maximal number of clauses in the result.

Besides those, user may choose a kind of refinement operator — the operator
for the language of definite clause grammars or the refinement for normal
programs.

4.2.5 Discussion

When settings of parameters of bias are good, Markus can learn simple
list processing predicates as well as Peano’s arithmetic operations from no

4.3. OTHER SYSTEMS 41

more than 4 examples, mainly due to strong focus on modes of arguments.
However, the optimal choice of bias is very difficult to find without knowing
the right solution in advance.

4.3 Other systems

In the following sections we introduce theree systems that are used for com-
parison with WiM (Chapter 6). After a brief description the most important
faults of those systems are displayed.

4.3.1 CRUSTACEAN

CRUSTACEAN [2] learns recursive programs from a small number of ex-
amples. The goal of that project was to develop efficient ILP system with
a strong language bias and without any need background knowledge. The
learning algorithm is based on analysis of argument structure in positive
examples and generalisation of found similarities. It starts in finding all
possible subterms of the arguments. We will explain it on the example
last(a, [c,al). The first argument has no subterms except itself but [c,al
can be decomposed into [c,al, c, [al, a,[]. Each subterm can be ob-
tained by applying a generating term to the particular argument. A gen-
erating term is a sequence of decomposition operators. For the domain of
lists we need only one decomposition operator [_|_] that splits a list into
its head and its body. E.g. for the term [c,a] the generating term for the
subterm [a] is [_1X] as [a] can obtained from [c,a] after evaluation of the
goal 7-[c,al=[_|X]. The depth of the generating term is 1. The generating
term of ais [_| [X|_]]. because we need to compute ?- [c,al=[_|[X|_]1].
(depth 2). The programs learnable with CRUSTACEAN have the form

P(A, ..., A). (B)
P(Bi,...,B,) : —P(Ch,...,C..). (R)

where A;, B;, C; are terms and (1) there exists at least one 7 such that for
B; # C; C; is not ground and C; is a subterm of B;, or (2) B; = C;.

CRUSTACFEAN needs two positive examples P;, P,. Each of them can be
proven by resolving a specialisation Bj of the base clause B and the recursive
clause R repeatedly. First, all subterms and corresponding generating terms
for all positive examples are computed, The base clause is induced as the

42 CHAPTER 4. ILP SYSTEMS

least general generalisation(lgg) [53] of atoms that arise from aplication of
the generating terms to positive examples. Then we apply the generating
terms to the examples 0, 1, ..., n-1 times where n is a depth of generating
terms. The head of the recursive clause is obtained as Igg of atoms obtained
by this way. The recursive literal in the body is received by applying gener-
ating terms to the head.

CRUSTACFEAN , as mentioned in the begining, is not capable to exploit any
domain knowledge predicates. It implies that examples sometimes must con-
tain unusual terms, like reverse([1,2],append(append([1,[2]1),[1]1)) or
factorial(s(s(s(0))),s(s(s(0)))*s(s(0))*s(0)). The language of hy-
potheses is very restrictive. Obviously, CRUSTACFEAN returns more than
one solution.

4.3.2 FILP

FILP [7] is an interactive system for learning functional logic programs from
positive examples. A logic program is functional if for each sequence of input
arguments there exists just one sequence of output arguments. The queries
of FILP are existential queries [3, 67| with unbound output variables. As
the learned predicate is always functional, there is at most one answer to
every query. F'ILP needs only positive examples. Negative ones are those
that have the same input values as positive examples but different outputs.

The class of learned programs is a subset of logic programs. Any recursive
clause must namely match the schema

P(Xl,...,Xi,...,Xn) . —...,Q(XZ',Y),P(Xl,...,Y,...,Xn),

where Q(X;,Y") defines a well ordering between Y and X, i.e. Y < X. User
has to choose one initial example that is complex enough. F'ILP then asks
for intended interpretation of all needed subgoals with "smaller" arguments
(with respect that ordering). E.g. for union([a,b],[a,c],[b,a,c]) the
system asks for union([b], [a,c],X) and for union([], [a,c],X).

The main advantages of F'ILP are two: it allways finds a program consistent
with examples if such a program exists; and that program computes only
correct outputs on inputs of given examples. The drawback of FILP is its
need of extensional definition of domain predicates and its incapability to
work with unflatten clauses.

4.3. OTHER SYSTEMS 43

4.3.3 SKILit

SKILit (SKetch-based Inductive Learner with ITerative extension) [32, 33,
34] builds each clauses by searching for relation link between input and output
positive examples. It employs aglorithm sketches and clause structure
grammar. E.g. for reverse/2 an algorithm sketch may be

reverse(+[3,2,1], —[1,2,3]) « $P1(+[3,2,1], -3, —[2,1]),
reverse(+[2, 1], —[1, 2]),
$P2(+3,+1,2],—[1,2,3]).

where $P1,$P2 are predicate variables. The clause structure grammar en-
ables to define a schema — divide-and-conquer, generate-and-test — that a
result of SK 1Lt has to match. SK1Lit is capable to process integrity con-
straints, e.g.

reverse(A, B),length(A, N) — length(B, N)

using Monte Carlo strategy. Randomly chosen facts that are consequences of
the learned program are tested whether they violate an integrity constraint.

To be able to learn recursive definitions, SKILit implements an iterative
induction. In the first iteration a nonrecursive program P1 is synthesised
by generalisation of examples. The found clauses are in the second step
used as properties (nonground partial specifications of a program, e.g.
reverse([X,Y],[Y, X])) |22] for generation of new examples. Then a new
clause is learned and added to program P, resulting in P, etc.

SKILit is not yet a usefull tool for practical logic program synthesis. [34].
Here we mention only some of its drawbacks. It is unefficient for larger sets
of domain knowledge predicates if user is not capable to write enough strong
sketches and/or to limit language bias using rules of the structure clause
grammar. SKILit seems to be dependent on presentation order of positive
examples. Negative examples have to be carefuly chosen to prune the search
space.

4.3.4 Progol

Progol [54] is a bottom-up learner that can learn from noisy data. It chooses
one or more positive examples from a training set and constructs their least

44 CHAPTER 4. ILP SYSTEMS

general generalisations with respect domain knowledge. Then each of gen-
eralisations is further generalised and that one is choosen that maximaly
compress other positive examples. Progol employs a covering paradigm. It
means that all the process repeats until all (but a small fraction of) positive
examples are covered and none (but a small fraction of negative) examples
are not covered. The degree of incorrectnes and inconsistence is driven by
Progol parameters. As Progol employs a heuristic search for a space of
clauses driven by a compression measure, it is not too convenient for logic
program synthesis tasks. However, Progol is one of the best empirical ILP
systems. Thanks to rich set of parameters it can be easily adapted to solving
various tasks. Progol’s ability of constant introduction in clauses needs to be
mentioned here. It allows to limit a number of domain knowledge predicatesis
and it increases Progol efficiency.

Chapter 5

Assumption-based ILP and
WiM system

We introduce a new paradigm of assumption-based learning. Then
we describe the general-to-specific learner WiM as an instance
of this paradigm which can efficiently learn logic programs from a
small example set.

5.1 Introduction

Considering top-down exact learners in the context of automatic logic pro-
gramming [23|, four main drawbacks are being observed:

1. Too many positive examples are needed

2. The usefulness of the negative examples depends on the particular
learning strategy

3. Generate (a hypothesis) and test (on the example set) strategy is too
unefficient

4. Too many queries to the user are asked

We will show that even with a very small example set (less or equal to 4
positive examples) MIS-like [67] top-down learners are capable to learn most
of the predicates which have been mentioned in ILP literature.

We here focus to top-down exact learners that employ the generate-and-test

45

46 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

strategy. They generate a clause (for given bias) that need to be tested af-
terwards on the example set. It means that a number of tests during one
learning session is proportional to a number of generated clauses multiplied
by a cardinality of the example set. However, the number of clauses can be
limited by a declaration of argument modes and types and by exploitation
of programmer’s knowledge, as shown in Section 3.6.2. This knowledge can
specify e.g. the maximal complexity of the learned logic program, like a
maximal number of clauses in the program or a maximal number of literals
in a clause body. We strongly believe that such knowledge is available very
often. By this way we lower cardinality of the set of negative example, and
such a modification of 'brute force’ top-down learning algorithm is becoming
quite efficient.

Necessary negative examples are always dependent on the particular learning
strategy and that is why it is difficult for the user to find the most appropri-
ate ones. Our approach tries to find negative examples by itself. A near-miss
to one of the positive examples is considered as a candidate for that purpose.
Such a negative example is found useful if after adding that example to the
current learning set, the learner is able to suggest a new definition of the
target predicate. Only in such a case the user is asked for a confirmation of
that particular candidate for the negative example.

Ideas on an assumption-based framework inspiring our methodology may be
found in [10, 15, 35, 36]. We developed a new method called assumption-
based learning (ABL) based on those ideas. A generic scenario of assumpt-
ion-based learning consists of three parts, an inductive synthesiser, a genera-
tor of assumptions which generates extensions of the input information and
an acceptability module which evaluates acceptability of assumptions. That
module is allowed to pose queries to the teacher. It may happen that the
inductive synthesiser have failed for any reason to find a correct solution (e.g.
because of missing examples, insufficient domain knowledge or because of too
strong bias). Then ABL system is looking for such a minimal extension of
the input - called assumption - which allows to find a solution. The solution
has to be correct and consistent with the input extended by the new assump-
tion. If an assumption is needed, it must be confirmed by the acceptability
module. It is true that the query to the user is necessary to confirm the
assumption generated by the system. However, the number of queries, in
general, is smaller comparing to the other interactive systems |7, 67].

5.2. ASSUMPTION-BASED LEARNING 47

5.2 Assumption-based learning

5.2.1 Inspiration

Assumption-based reasoning [10, 15, 35, 36| is a technique for solving
problems that deal with partial (uncertain, incomplete, incorrect) informa-
tion. An assumption is a logic formula that expresses knowledge which is
uncertain but potentially true. E.g. we have a hypothesis P

% P :
p(X, [X]Y]).
p(X,[Y]Z]) : =p(X, Z).

that should define last(X, L) predicate with intended meaning "X is the last
member of the list L". The hypothesis P is incorrect because it covers e.g.
p(a,[a,bl). Let a new assumption A appear defined as

A VX p(X,[X|Y]) Y =]

In some cases we could add the assumption to the hypothesis P. However, it
is not reasonable to add a new information directly because it may result in
inconsistency or inefficiency of the new hypothesis. In our example a new
hypothesis P’ should be found

% P
p(X, [X[Y]): =V =1].
p(X,[Y]Z]) : —p(X, Z).

that does not contradict the assumption A.

5.2.2 Inductive inference with assumptions

We are now looking for such an extension of ILP systems which would enable
to find an assumption (and consequently a modification of overgeneral pro-
gram) by inductive inference. Let now a top-down ILP system look for last /2
predicate definition and let the example set contain only positive examples

p(a,[al). p(b,[c,bl).

48 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

Let a set of possible solutions contain only recursive logic programs. We
suppose that the refinement operator is locally complete, i.e. it generates
maximal specialisations. In top-down exact learning systems that learn from
positive examples it is always the problem of overgenerality of the found
clause that arises. Such a system traverses a refinement graph starting from
the most general clause in a root of the graph and stops in the first node
(clause) that covers a positive example. Thus it will find first the overgen-
eral program P from the previous page. The goal now is to find such an
assumption that enables to induce the correct clauses.

In M1S it is user who has to choose the right negative example that makes
the system to find another (more specific) clause. In general we could mod-
ify any of the input information — domain knowledge, the example set or
constraints of bias. Extension of domain knowledge seems be solvable by a
similar way as in [10, 35|. Extension (strengthness) of bias would be useful
e.g. if there are more possible solutions for the given input. Here we focus
on an extension of an example set. Similarly like in M IS we need some
kind of negative example that prevents overgenerality. In general we look for
an integrity constraint. Integrity constraint IC' is an arbitrary formula
for which BK U P t/ IC' holds. In terms of ILP it is actually a generalised
negative example. It is often uneasy to find the right negative example. As
a rule, the right choice strongly depends on the particular inductive engine.
It would be welcome if the system itself helped to find it. It of course means
that the system must be given an additional knowledge that is needed for
such an assistance. We are now looking for minimal knowledge that enables
the system to solve that task.

Tf we know the correct solution P’ it is easy for us to find e.g. negative exam-
ples p(c, [c,b]), p(e, [f,e,g,h]) for P’ that are covered by P. Between
these examples, p(c, [c,b]) is the simplest one that can be used. Moreover
this example is actually near-miss to p(b, [c,b]) because it is a negative
example and it differs from p(c, [c,b]) as little as possible (in syntactic
sense). Therefore it would be sufficient to have a function f that computes
such potential near-misses from the known positive examples. Let the func-
tion be just a renaming of a constant. Then we obtain also p(c, [c,c]) that
is a positive instance of last/2. In general, a system cannot know — without
knowing a model of last/2 — whether the generated example is actually neg-
ative one. Therefore, we need an acceptability module that verifies that an
example computed with f is a negative example.

5.2. ASSUMPTION-BASED LEARNING 49

5.2.3 Generic algorithm

The ideas discussed above are expressed more precisely in the schema of
assumption-based learning and mainly in a generic algorithm. In the follow-
ing sections, WiM system is introduced. Particular parts and functions of

BK, E, bias, A=true

/

inductive engine

fails program P

assumption A

true

acceptability module — return(P)
A7

fails

generator of asumptions

assumption A

Figure 5.1: Basic schema of assumption-based learning

ABL are also explained there. Basic schema of assumption-based learning is
in Fig. 5.1. A generic algorithm of assumption-based learning is in Fig.5.2.

50 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

Given:

BK, E, bias, assumptionA = true

inductive engine I, overgeneral program P

C, F (set of constants and functions that appears in F)
function f, that computes an assumption A
acceptability module AM

1. Call I on BK UP,EU A, bias.

e if I succeeds resulting in program P’
then call AM to validate the assumption A.
if A is accepted then return(P’) else go to (2).

e else go to (2).

2. Call f to generate a new assumption A. If it fails, return(fail) and stop
else go to (1).

Figure 5.2: A generic algorithm of assumption-based learning

5.3 Basic WiM algorithm

Wil [24, 59, 44] is a program for synthesis of normal logic programs from
a small example set. It further elaborates the approach of MIS [67] and
Markus [26, 27]. It works in top-down manner and uses shifting of bias
and second-order constraints. WiM is an instance of assumption-based ILP.
Assumptions are ground negative examples generated one-by-one. In every
moment, maximally one assumption is added into an example set. WiM
consists of three modules, inductive engine Markus™ (Section 5.4), a gener-
ator of assumptions (Section 5.5), and an acceptability module (Section 5.6).
The basic WiM algorithm is in Fig. 5.3 In the next sections we describe
those three modules in detail.

5.4 Inductive synthesiser Markus™

We implemented Markus® [24] that is based on Markus system [26, 27].
Markus™ is MIS-like [67] top-down synthesiser applying breath-first search in

5.4. INDUCTIVE SYNTHESISER MARKUS* 51

Given:

Specification of the target predicate P : types and modes of its argu-
ments, names and arity of background knowledge predicates.

Example set
Definitions of background knowledge predicates

2nd order schema of the target predicate P. P must be an instance of
the schema.

bias: maximal length of clauses, maximal number of free variables in
the target predicate, maximal depth of arguments in a clause head,
maximal number of clauses

Algorithm:

Call (1). If fails, call (2).
(1)

Init bias.

loop

Call Markus™ to learn predicate P.
if succeeded then

Call acceptability module to accept P.
if accepted then return(P), exit.
else shift bias.
if limit of bias is reached then return(false), exit .

pool

(2)

if (1) exited with false {no hypothesis was found within the limits
of specified bias}

loop

Generate assumption A.

if no more assumptions then return(false), exit.
Add the assumption A to the learning set.

Call (1) with the extended example set E U A.

if (1) succeeded then return(P), exit.

else delete the assumption A from the learning set.

pool

Figure 5.3: WiM algorithm

52 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

a refinement graph and controlling a search space with different parameters.
Markus™ employs only a subset of Markus’ parameters. Those parameters
concerns only language bias. We wanted to make the work with WiM as easy
as possible. More advanced users, of course, can tune also other parameters
of Markus . However, for most of task is not necessary. New features
of Markus™ are described in the next paragraphs. We will there refer to
WiM parameters (see Appendix B for full description) that have a form
wim_set (Parameter, ListOfValues).

5.4.1 Shifting of bias

Markus™ employs shifting of bias. Four parameters are used for shifting
— the maximal number of free variables in a clause, the maximal num-
ber of goals in the body of a clause, the maximal head argument depth
(X, [X|Y],[X,Y]|Z], etc. are of depths 0, 1, 2, respectively), and the maxi-
mal number of clauses in a solution. The user defines the minimal and the
maximal value of the parameters. Markus™ starts with the minimal values
of these parameters. If no acceptable result has been found, a value of one
of the parameters is increased by 1 and Markus™ is called again. In such
a way all variations are being tried gradually. That choice of parameters
implies that Markus™ finds a simpler clause first. E.g. for member /2 pred-
icate, positive example member(a, [a,b]) and the maximal argument depth
varying from 1 to 2, wim_set (mx_arg_depth, [1,2]), the first found clause
is member (X, [X|Y]) (depth 1) and not member(X,[X,Z]) (= member(X,
[XI[Z1[111), depth 2).

In the current version of WiM the algorithm that shifts a bias is not too
efficient. The inductive engine may generate clauses that were already built
for the previous bias settings. But the main goal here was to enable the user
to set bias more easily than in Markus and in other ILP systems without
narrowing a class of learnable programs. This goal seems be fulfiled.

5.4.2 Multiple predicate learning

In some situations the domain knowledge predicates may be defined exten-
sionally. However, it is not realistic to assume that those definitions are com-
plete enough. It would be appreciated if such extensional definition would be
replaced by intensional one. We implemented an algorithm which is sufficient

5.4. INDUCTIVE SYNTHESISER MARKUS* 23

in most situations for solving this task. All predicates that are to be learned
must be declared in a fact

wim_set(learn,List0OfPredicates).

E.g. for reverse/2 it may be wim_set(learn, [reverse/2, concat/31).
WiM processes this information together with declaration of these predi-
cates. WiM actually build a dependency tree from predicate definitions
where nodes are the names of predicates defined in wim_set(learn,
List0fPreds). Two nodes P, P, are connected by an edge if P, appears in
the declaration of predicate P, as a needed domain knowledge predicate. Af-
ter building the dependency tree, the predicates in leaves are learned because
they do not need any domain knowledge predicate that is defined extension-
ally. When the intensional definition of predicate P is learned, it is added
into the set of domain knowledge predicates, all leaves are pruned and the
whole process continues.

E.g we want to learn reverse/2 predicate and predicate concat/3 is defined
by examples. WiM starts with following information concat/3 can be im-

wim_set(learn, [reverse/2, concat/3]).

pred_def(reverse/2,[+xl, -x1],[concat/3, reverse/2],[]).
ex(reverse([], [1), true).
ex(reverse([a, b, c]1, [c, b, a]l), true).

pred_def(concat/3, [+x1, +x, -x11, [concat/3], [1).
ex(conc([],a,[a]l), true).

ex(conc([bl,c,[b,c]l), true).

ex(conc([b,c],d,[b,c,d]), true).

Figure 5.4: Input of WiM

mediately learned because in its list of domain knowledge predicates there is
none that appears in list L in wim_set(learn, L). After learning the defini-
tion and after adding it into background knowledge WiM is called again to
learn reverse/2.

This method works well in most of practical situation. Some drawback arises

54 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

if some of example sets is not good enough and WiM fails to find the in-
tensional definition. In such a situation the extensional definition of the
predicate is added into the background knowledge. The method fails only
in the rare case if two mutually dependent predicates are to be learned (e.g.
even/2 that call odd/2 and vice versa).

5.4.3 Constraint of a program schema

A second-order schema can be defined which the learned program has to
match. This schema definition can significantly increase an efficiency of the
learning process because only the synthesised programs which match the
schema are verified on the learning set. In the current version of Wil a
schema of recursive programs

(P :=Q)";
(P :— R, P*,5%)*

where P,(Q, R, S are predicate variables, is built-in. It can be switch on by
wim_set(schema, [recursive]) setting. As default, WiM searches for any
logic program that do not has to be necessarily recursive.

5.5 Generator of assumptions

An assumption is generated in the moment when the current example set is
not complete enough to ensure that the inductive synthesizer is capable to
find a definition of the target predicate. As an assumption, a near-miss to
a chosen positive example is generated [24]. The whole process of generation
of assumptions consists of two steps:

Algorithm of assumption generation:
repeat

1. Find the preferable positive example in the example set F.
2. Generate its near-miss.

until a correct and complete program was found
or no more assumptions exist.

5.5. GENERATOR OF ASSUMPTIONS 55

5.5.1 Ordering on positive examples

A preference relation on the set of examples is defined based on measure of
complexity for atomic formulas. It enables to generate near-misses of less
complex examples first.

We define a complexity of example as a sum of complexities of its argu-
ments. A complexity of an arbitrary term is computed as follows.

1. Complexity of an atom is equal to 1.

2. For an unary function term f/1, a complexity of term f(X') is computed
as a complexity of X + 1.

3. Complexity of a n-ary term is equal to a sum of complexities of its
arguments +1.

E.g. if learned last/2 predicate from {last(a, [a]l), last(b,[c,b]1)} ,a
complexity of the first example is 3

complexity of last(a, [a]) =

1 (complexity of a)
+ 2 (complexity of [a[]])
=3

A complexity of the second one is 14+3=4

A preference relation is induced by this function of complexity. An example
e1 is prefered to an example e, if the complexity of e; is smaller than the
complexity of es.

The relation of preference is an ordering on a set of examples. Thus it has
a minimal elements. Now the preferable example can be computed. First
a complexity is computed for every positive example in the learning set.
Then arbitrary example with a minimal complexity is chosen as preferable
for computing near-misses. In our example, last(a, [a]) is chosen because
it has the minimal complexity.

5.5.2 Generator of near-misses

A syntactic approach is used for computing near-misses. WiM program
allows to learn predicates in two domains - lists and integers. For each of those

56 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

domains the particular generator of assumptions is implemented exploiting
the same preference relation. Whenever a new near-miss has been built, it is
added into the example set as the negative example and learning algorithm is
called. If no solution is found then the near-miss is replaced by another near-
miss of the same positive example. If no near-miss of the example enables
to learn a correct definition, next positive example (following the ordering
given by the preference relation) is chosen for generation of near-misses.

Domain of lists

A set C' of individual constants that appear in the preferable example is
built. Then the set is extended by a new constant(of correct type) that does
not appear in the particular example. This extended constant set is further
used for building near-mises. For a given positive example e and a set of
individual constants C', a near-miss is computed by one or more operations
below.

1. For a list in e, add an arbitrary constant ¢ € C' at the begining of the
list.

2. For a list in e, add an arbitrary constant ¢ € C' at the end of the list.
3. Delete an arbitrary element from a list in e.

4. Replace an individual constant ¢ appearing in e by another constant
ceC.

The set of constants that appears in the preferable example usually contains
not more than 1 element. However, it does not allow to generate a rich
set of near-misses. E.g. for last(a,[al) we would obtain last(a,[]),
last(a, [a,a]), last(a,[a,a,al), ... In our example, the constant new
has been added so that the set of constants contains two constants, {new,
a} and the near-misses

not last(a, [new,al)
not last(a,[a,new])
not last(a,[])

not last(new, [a])
not last(a, [new])

5.6. ACCEPTABILITY MODULE 57

are generated one-by-one. The addition of one new constants is enough for
learning a rich set of predicates.

Domain of integers

For a given positive example e and an integer argument X, near-misses are
computed employing operations below.

1. If X > 0, replace X with its predecessor.

2. Replace X with successor s(X).

5.6 Acceptability module

For each assumption which has lead to a new predicate definition, accept-
ability module asks an oracle for a confirmation/rejection of the assump-
tion. As WiM works with ground assumptions, a membership oracle is
employed in WiM. The oracle answers true if the ground assumption is in
the intended interpretation. Otherwise it answers false. Other possibility is
to use equivalence oracle [3, 67| where a query is a formula P. The equiva-
lence oracle answers either true, if P is complete and consistent with respect
to the intended interpretation. Otherwise it answers a counterexample for
P.

5.7 Sample session with WM

A learning session for a predicate p starts from a learning set L, a second-
order schema SP of the predicate P, a definition of modes and types of
arguments D, and a set of background knowledge predicates BK given by
the teacher. We will demonstrate it by learning last(Flem, List) predicate
(Elem is the last element of the list List) using WiM with input knowledge
as follows:

L = {p(a, [a]), p(b,[c, b])}
SP=P:-Q* . (P:—R* P* R")".
D = {—x, +list(z)}

BK = {}

58 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

@, R, S may be a call of any background knowledge predicates but P, i.e.
recursive programs containing at least two clauses are acceptable. The set
BK of background knowledge predicates is empty so that only p/2 predicates
may appear in the learned program.

?7- win(p/2).

Examples of p(X,Y)
p(a,[al), true
p(c, [b,cl), true

Found clause after searching 1 clauses:
p(X, [XIY]):-true.

Found clause after searching 3 clauses:
p(X, [YIZ]) :-p(X,2) .

Found predicate after searching 4 clauses (Total = 4)
p(X, [YIZ]):-p(X,Z).
p(U, [UIV]) :-true.

with no need of assumption.

OK (yes. / no. / continue. / new example) ? no.

The user rejected the found solution. Therefore WiM looks for an assump-
tion that would result in finding another solution.

The preferable example is p(a,[al)
An extended constant set is [a,new]

New assumptions are generated ...

After a replacement of an individual constant: p(new,[a])
Examples of p(X,Y)
p(a,[al), true
p(c,[b,cl), true
p(new, [a]), false
Found clause after searching 1 clauses:
p(X, [XIY]) : -true.
Found clause after searching 3 clauses:
p(X, [Y1Z]):-p(X,Z).

5.7. SAMPLE SESSION WITH WIM 59

After deleting a list element: p(a,[])
Examples of p(X,Y)
p(a,[al), true
p(c,[b,cl), true
p(a,[1), false
Found clause after searching 1 clauses:
p(X, [XIY]):-true.
Found clause after searching 3 clauses:
p(X, [YIZ]) :-p(X,Z).

After adding a list element: p(a,[a,a])
Examples of p(X,Y)
p(a,[al), true
p(c,[b,cl), true
p(a,[a,al), false
Found clause after searching 2 clauses:
p(X, [X]):-true.

After adding a list element: p(a,[a,al)
Examples of p(X,Y)
p(a,[al), true
p(c,[b,cl), true
p(a,[a,al), false
Found clause after searching 2 clauses:
p(X, [X]):-true.

After adding a list element: p(a, [new,a])
Examples of p(X,Y)
p(a,[al), true
p(c,[b,cl), true
p(a, [new,al), false
Found clause after searching 1 clauses:
p(X, [XIY]):-true.

After adding a list element: p(a,[a,new])
Examples of p(X,Y)

p(a,[al), true

p(c,[b,cl), true

60 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

p(a, [a,new]), false
Found clause after searching 2 clauses:
p(X, [X]):-true.
Found clause after searching 4 clauses:
p(X, [YIZ]) :-p(X,2) .

p(a, [a,new]) assumed to be false.

The assumption p(a, [a,new]) has resulted in a new solution. WiM now
poses a query to the user. After the user’s confirmation the new solution is
displayed.

0.K. ? (yes. /no. / unknown) yes.

Found predicate after searching 4 clauses (Total = 23)
p(X, [YIZ]) :-p(X,2) .
p(U, [U]) :-true.

under assumption that
p(a, [a,new]) = false

5.8 Related works

Many research papers and presentations that appeared in the last years less
or more influenced our work. First of all, it was the seminal work of Ehud
Shapiro [67] (see Section 4.1), followed by works of Pierre Flener [22] and
Luc de Raedt [16]. In [22, 23] a strategy for stepwise synthesis of logic
programs from specifications by examples and properties is presented. It is
based on a methodology described in [18]. The process of synthesis is guided
by Divide-and- Conquer schema, features non-incremental presentation of
examples. It is proposed to be interactive. For example, as a set of examples
is usualy incomplete, some generalization has to be performed. To accept
its result user is asked for confirmation. In general, user is asked whenever
precisions are needed or a choice is to be made. The system is both inductive
and deductive. It starts with inductive reasoning from examples and then
deduction is used, whenever appropriate. Luc de Raedt’s CLINT system
[16] was designed to be a user-friendly interactive concept-learner , i.e. to
require only information from the user that is easy to formulate/provide and
to use as much knowledge as possible. A concept is a definite clause (i.e.
Horn clause without negation), and examples both positive and negative are

5.8. RELATED WORKS 61

ground facts. Besides ground examples, the oracle can find an answer to a
first-order logic formula. As mentioned before, the ideas about assumption-
based learning were inspired by works of Kakas, Mancarela, Kowalski and
Toni [35, 36], Concerning bias in ILP, the most of ideas can be found in
[6, 11, 56]. We have to mention other work on machine learning and ILP,
like |2, 7, 32, 34, 4, 30, 45, 55| that directly or indirectly influenced this work.

62 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

Chapter 6

Experimental results

We present experimental results obtained with WiM. We used
both carefully chosen learning sets and learning sets generated
randomly. The learned definitions of predicates were tested on
randomly chosen example sets. WiM outperforms Markus and
has higher efficiency of learning as well as smaller dependency on
the quality of the example set than other exact learners. Assump-
tion-based framework enables to minimise the number of negative
examples.

6.1 Learned predicates

WiM was examined on the following predicates:

List processing predicates
e member(F, L) iff the element E appears in the list L;

e concat(L1, E, L2) iff the list L2 is equal to the list L1 appended by the
element F;

e append(L1, L2, L3) iff the list L3 is equal to the list L1 appended by
the list L3;

o delete(F, L1, L2) iff the list L2 is the non-empty list L1 without its
first (existing) occurrence of F;

63

64 CHAPTER 6. EXPERIMENTAL RESULTS

e reverse(L1, L2) iff the list L2 has the same elements as the list L1 but
in the reverse order. It uses concat(L1, E, L2) predicate which appends
the element FE to the list L1;

e reverseDL(L1, L2) is the same as reverse(L1, L2) but using difference
lists;

e last(E, L) iff the element E is the last element of the list L;

e split(L1, L2, L3) iff the lists L2 and L3 contain only odd and even
elements, respectively, of the list L1.

e sublist(L1, L2) iff the list L1 is a compact subsequence of the list L2;

e insert(X, L1, L2) iff X is inserted into sorted list L1 resulting in sorted
list L2;

e isort(L1, L2) is insertion sort.
Peano arithmetics
e plus(I1,12,13) iff for integers I1,12,13 I3 = I1 + I2 holds;
e leq(I1,12) iff for integers I'1,12 I1 is less or equal I2;
Other predicates
e length(N, L) iff N is the length of the list L;
e crtractNth(N, L, E) iff E is the Nth element of the list L.

All integers are assumed to be expressed using a successor function s(X)?
as s"(0). Training sets as well as predicate declarations can be found in
Appendix C.

6.2 Carefully chosen example sets

Carefully chosen examples are usually defined by a user. We suggest a way
of generation of this kind of examples that is — for most of predicates from
the list above — user-independent. Moreover, it enables to find the smallest
example set for which WiM can learn a correct logic program.

6.3. RANDOMLY CHOSEN EXAMPLE SET 65

For a given predicate, a given depth of a recursive data structure? and a
universe of constants (a..z for lists, 0 for integers) all positive examples
were generated. Then a couple of positive examples was chosen randomly
and WiM was run on it. If WiM failed on this couple, another couple was
tried. If WiM failed on all couples, then triples (quadruples) of positive
examples were generated. First tuple in which WiM found the intended
definition of a predicate is a set of carefully chosen examples for the given
predicate.

For most of predicates no constant might appear in more than one example.
It prevents to choose a tuple of positive examples that are on the same
resolution path as member(a, [a]), member(a, [b,a])?

There are predicates like last /2 that are not learnable from positive examples.
WiM always finds an over-general definition (member/2 in this case) when
learning from positive examples. For those predicates one negative example
was added into a training set. The example was constructed as near-miss to
some of positive example appearing in the training set.

The method should be further developed. For most of predicates mentioned
above it allows to find the learning set. But e.g. union/3 is not learnable from
such a training set . The method also does not prevent generation a learning
set containing member (a, [a]), member (b, [b]) that would be hardly built
by a user.

6.3 Randomly chosen example set

6.3.1 Overview

In [2] a method for testing of learners using randomly chosen examples has
been introduced. Here we briefly overview the method. More precise descrip-
tion of generation of examples can be found Section 6.3.2. First the domain
D of input arguments of a limited depth was generated. Then values of argu-
ments were chosen randomly from a uniform distribution on this domain. As
there is a dependency between arguments, output arguments were derived

L(0) = 1, s(s(X)) = 1+ s(X)

2lists not longer than 4 elements

3WiM of course can learn from such training data. The reason to omit it is that
learning from examples lying in the same resolution path is in general easier.

66 CHAPTER 6. EXPERIMENTAL RESULTS

(e.g. the first argument of member /2, the first argument of sublist/2 etc.).
Then 2,3 and 5 positive examples were chosen as a learning set, sometimes
extended by some negative examples. The learned definitions were tested
on 50 positive and 50 negative examples generated randomly. A strategy of
testing is described in Section 6.3.3.

6.3.2 Example set generation

Positive examples are generated as follows

1. Generate input arguments randomly as terms of depth 0..4 over a
domain of constants ({a,b,c, ... ,z} for lists, 0 for integers).

2. Compute the value of the output argument using the same domain.

3. If the depth of output argument is not greater than 4, and the example
does not appear in the example set, add it there.

E.g. for append/3 predicate with mode declarations append(+,+,-), each
example has to match one of the following literals:

append([1,[1,_), append([1,[_1,_), append([],[_,_1,.),

., append([],[_,—,—,—]],—)’
append([_1,[1,_), append([_1,[_1,_), append([_1,[_,_1,.),
., append([_],[_,_,_,_11,.),
append([_,_,_,_1,01,.), append([_,_,_,_1,[_1,.),
., append([_,_,_, 1,[_,_,_,.11,),

The input arguments are installed and then the output argument is com-
puted, e.g. for append([_1,[_,_1,_) we may receive (|r|,[g,b],[r,g,b]). As
the length of [r,g,b| is not greater than 4, the example append([r],[g,b],[r,g,b])
is added into the example set.

Negative examples are chosen in two steps.

1. Generate all arguments randomly as terms of depth 0..4 over a domain
of constants ({a,b,c, ... ,z} for lists, 0 for integers).

2. If it is a negative example, add it to the example set.

6.4. PARAMETER SETTINGS 67

6.3.3 Method of testing

We use two criteria for evaluation, a success rate and a fraction of test perfect
programs over N learning sessions. For a given logic program and a test set
we define success rate as a sum of covered positive examples and uncovered
negative examples divided by a total number of examples. The quality of TLP
systems maybe better characterised by a frequence of test perfect solutions
learned by the system. Test perfect solution is a logic program which for
a test set reaches the success rate 1, i.e. the program covers all positive and
no negative examples in a test set,

We generated a learning set as 2,3 and 5 positive examples and 10 negative
examples. Then WiM was called to learn a program P. 50 positive and
50 negative examples were generated as a test set and a success rate was
computed for P on this testing set. The whole process was repeated 10-
times.

6.4 Parameter settings

The system was set to learn only recursive definitions. Shift of bias was
enabled. Meanings and thresholds of parameters are in Tab 6.1. For most

‘ Parameter ‘ Meaning ‘ Default ‘
schema schema of a target predicate recursive
bias enables a shift of bias shift
mx_clause_length | maximal number of subgoals 1
mx_free_vars maximal number of free variables 1
mx_arg_depth maximal depth of terms 4
mx_clauses maximal number of clauses in the target 2
maxNumOfRefGood | maximal number of generated clauses 50

Table 6.1: WiM parameters settings

of predicates these default settings were used. For reverse/2, union/3 the
number of subgoals was set to 2. For union/3 a maximal number of clauses
was increased to 3.

68 CHAPTER 6. EXPERIMENTAL RESULTS

6.5 Overview of experiments

To show that WiM performs well, several questions need to be answered,
namely

1. What is a minimal learning set for ILP benchmark predicates ?

2. Does assumption-based learning allow to find missing negative exam-
ples?

b

How does WiM performance depend on a given bias?

=

What happens if the number of examples increases?
5. How good is WM in comparison with its predecessor Markus 7

6. How good is WiM in comparison with other ILP systems ?

We first evaluate capabilities of Wil itself both on carefully chosen exam-
ples (Section 6.6.1) and on randomly chosen examples (Section 6.6.2). We
use two different criteria for evaluation of WiM performance on a test set:
a success rate of the learned program (Section 6.6.3) and a number of test
perfect programs (Section 6.6.4). We also show how WiM performance de-
pends on bias settings (Section 6.6.3) and on changing number of positive
examples (Section 6.6.5).

In Section 6.7 attention is paid to a new paradigm of learning with assump-
tions. Results for carefully chosen positive example are displayed in Section
6.7.1. Then we compare learning without assumptions and with an assump-
tion in Section 6.7.1.

Comparison of WiM with Markus , a predecessor of WiM is displayed and
discussed in Section 6.8.1. We also compare WiM with other ILP systems
CRUSTACEAN and FILP (Section 6.8.2), SKILit (Section 6.8.3) and
Progol (Section 6.8.4). We conclude with a discussion of results.

6.6 Learning without assumptions

6.6.1 Carefully chosen examples

Number of carefully chosen examples needed for learning predicates from Sec-
tion 6.1 are in Tab 6.2. In M/N M(N) means a number of positive (negative)

6.6. LEARNING WITHOUT ASSUMPTIONS 69

examples. For most of predicates WiM needs 2 positive examples. WiM
never needs more than 4 examples for the class of predicates and more than
one negative example. WiM is quite fast. For all predicates CPU time was
smaller than 5 seconds on SUN Sparc. The table displays a minimal number

| | +/- | CPU time || | +/- | CPU time |
member 2/0 0.283 last 2/1 0.460
append 2/0 1.950 delete 2/1 0.813
reverse 2/1 1.213 split 2/1 2.313
reverseDL | 2/0 2.457 subset 4/0 1.537
plus 2/0 2.090 leg 2/1 7.230
isort 2/1 0.907 extractNth | 3/0 0.807

Table 6.2: Results of WiM on carefully chosen examples

of examples needed by WiM for learning a correct predicate definition. Av-
erage CPU time from 5 runs is displayed, too.

WiM can learn most of predicates from positive examples. However, there
are some predicates from the list in Section 6.1 that WM cannot learn,
for different reasons, in absence of negative examples. E.g. last/2 cannot
be found from only positive examples because it is actually specialisation of
member /2. As WiM generates clauses starting from the most general one,
it always finds as a first solution the over-general definition of member. The
similar situation appears for other predicates as delete/3, leq/2 etc. It must
be stressed that in these cases only one negative example is needed.

6.6.2 Evaluation on randomly chosen examples

Following the method described in Section 6.3 we tested Wi¢M performance
for the case when examples are not chosen by human. Each learning set con-
tained 2, 3 or 5 positive examples and 10 negative ones. Test sets contained
50 positive and 50 negative randomly generated examples. In Tab. 6.3 we
display an average success rate in 10 runs. WiM can learn from 5 examples
with an accuracy at least 94 %.

70 CHAPTER 6. EXPERIMENTAL RESULTS

| number of positive examples || 2 | 3 | 5 |
member 0.80 | 0.97 | 0.97
last 0.76 | 0.89 | 0.94
append 0.77 1 0.95 | 0.95
delete 0.85 | 0.88 | 0.97
reverse 0.85 | 0.95 | 0.99
extractNth 0.74 | 0.80 | 0.98
plus 0.82 | 0.92 | 0.96

Table 6.3: Results for randomly chosen examples

6.6.3 Dependence on bias settings

We show in Tab 6.4 how an average success rate changes depending on the
maximum argument depth. Learning sets and testing sets was constructed
by the same way as in the previous section. Each experiment was usually
repeated 10-times. Both the maximum number of free variables and the
maximum number of goals was set to 1. For a majority of predicates settings

num.of examples 2 3 5
max. arg. depth 1 2 3 4 1 2 3 4 1 2
member 0.59 0.80 0.80 0.80 | 0.90 0.97 097 0.97 | 0.90 0.97
last 0.32 0.59 0.70 0.76 | 0.40 0.82 0.82 0.89 | 0.59 0.94
append 0.64 0.77 0.77 0.77 | 0.89 0.95 095 0.95| 0.95 0.95
delete 0.61 085 0.85 0.85|0.80 0.88 0.88 0.88 | 0.97 0.97
reverse 0.50 0.85 0.85 0.85|0.95 0.95 095 0.95| 0.99 0.99
extractNth 0.52 0.68 0.74 0.74 | 0.80 0.80 0.80 0.80 | 0.98 0.98
plus 0.75 0.82 0.82 0.82|0.92 0.92 092 0.92| 0.96 0.96

Table 6.4: Dependence on a maximal argument depth

of maximal argument depth parameter to 2 is enough to reach a success rate
greater than 80%. Further increasing of this parameter does not increase
WiM accuracy.

6.6.4 Number of test perfect solutions

A number of test perfect solution found in 10 learning sessions is another
indicator of quality of ILP systems. Test perfect solution covers all positive

6.6. LEARNING WITHOUT ASSUMPTIONS 71

examples and uncovers no negative example in an example set. We again
performed 10 runs for 2,3, and 5 positive examples and 10 negative ones
randomly chosen. Test sets again contained 50 positive and 50 negative
randomly chosen examples. Results are displayed in Tab. 6.5. It is important

2135
append 21519
delete 1(3]|4
reverse 11415
extractNth || 2 | 2 | 2
plus 3|77

Table 6.5: Number of test perfect solutions in 10 learning sessions

that all test perfect solutions were also equal to a correct predicate definition.

6.6.5 CPU time

| | 2 [3 | 5 [10 |
member | 0.283 | 0.307 | 0.357 | 0.817
append | 1.950 | 2.077 | 2.500 | 10.130
delete - 0.813 | 1.073 | 2.903
reverse - 1.213 | 3.420| 9.723
last - 0.460 | 0.600 | 0.840
plus 2.090 | 4.953 | 13.203 | 36.496
split - 2.313 | 3.657 | 45.469

Table 6.6: Average CPU time for a different number of examples

In all experiments carefully chosen example sets were taken and extended
with randomly chosen examples. If we want to test WiM on learning member /2
from 5 examples we must to add 3 examples because the set of carefully cho-
sen examples for member /2 contains two positive examples. Those examples
was again generated using the same method as in previous experiments. Av-
erage times from 5 runs are in Tab 6.6. The results for carefully chosen
examples are in the 2nd (for member /2, append/3 and plus/3) and the 3rd
columns (for the rest of predicates) and they are printed in bold. The same

72 CHAPTER 6. EXPERIMENTAL RESULTS

bias as before was used for all predicates but split. In the case of split/3
WiM was not able to learn it from 10 examples. That is why a maximal
number of clauses was enlarged to 3. The enormous need of CPU time for
learning from 10 examples for plus/3 and split/3 was observed. It happened
when Wil found 2 clauses that do not cover all positive examples. As WiM
reached a limit for a maximal number of clauses, it backtracks and is looking
for another solution. E.g. for 10 positive randomly chosen examples plus/3
WiM found the following clauses

plus(0,X,X):-true. (1)
plus(X,Y,s(X)):-true. (2)
plus(X,Y,s(Y)):-true. (3)
plus(X,Y,s(s(X))):-true. (4a)

As none of those clauses can be removed as redundant and as the threshold
mx_clause_length=3 was exceeded, the last clause was not added into the
solution and another clause

plus(s(X),Y,Z) :-plus(Y,X,Z). (4b)

was found. For the same reason the clause was rejected, and eventually the
clause

plus(s(X),Y,s(Z)):-plus(X,Y,Z). (4c)

was found. As in the definition containing clauses {1,2,3,4c} clauses 2,3
are redundant, they are removed and the target definition is

plus(0,X,X):-true.
plus(s(Y),Z,s(U)):-plus(Y,Z,U).

6.7 Learning with assumptions

6.7.1 Carefully chosen examples

Tab. 6.7 contains the results of WiM if one assumption was generated. The
example sets consist of 2 or 3 positive examples carefully chosen by the user
and one negative example generated by the system as the assumption (near-
miss to a positive example) and afterwards verified by the user. The last
column contains average CPU time from 5 runs. Assumption-based learning

6.7. LEARNING WITH ASSUMPTIONS

Table 6.7: Carefully chosen examples: Learning with assumptions

is more time-consuming for predicates of Peano arithmetics.

Number of
positive examples | CPU time
delete 2 2.717
last 2 3.774
leq 2 32.136
length 3 3.645

6.7.2 Randomly chosen examples

73

The reason
is the way how near-misses are generated. For a given argument only its
predecessor and its succesor is generated.

pos. 2 3 5

without | with | TP | without | with | TP | without | with | TP
last 0.885 | 0.896 | 6 0.906 | 0.934 | 7 0.932 | 0971 | 8
delete 0.882 | 0.962 | 8 0.857 | 0.937 | 7 0.874 | 0.943 | 7
leq 0.380 | 0.703| O 0.527 | 0.795 | 4 0.572 10932 9
length | 0.540 | 0.659 | 0 0.692 | 0.816 | 1 0.728 | 0.956 | 4

Table 6.8: Randomly chosen examples: Learning with assumption

We generated randomly N positive examples.

Then we compared results

reached with WiM in interactive and non-interactive regime. Results are
in Tab. 6.8. without(with) means the regime without(with) generation of
assumptions. TP means a number of test perfect solutions.

74 CHAPTER 6. EXPERIMENTAL RESULTS

6.8 Comparison with other systems

6.8.1 Comparison with Markus

‘ ‘ Markus ‘ WiM ‘
member 2/1 2/0
append 2/1 2/0
reverse 2/2 2/1
reverseDL 2/2 2/0
plus 2/1 2/0
insert 3/2 3/2
isort 2/2 2/1

Table 6.9: Comparison with Markus

Let us compare WiM with its predecessor Markus . A summary of results
on carefully chosen examples is in Tab 6.2. WiM as well as Markus needs
at least IV positive examples for learning a predicate definition which contains
N clauses. It means that for all of predicates with 2 clauses Markus as well
as WiM needs not less than 2 positive examples. Concerning a number of
negative examples, WiM outperforms its predecessor Markus significantly.
For four of seven predicates in Tab 6.2 WiM needs no negative example to
learn them. For isort/2 one example is needed; Markus needs 2 negative
examples. For insert/3 the number of positive and negative examples are the
same for both systems. This small number of negative examples is caused
by shifting of bias and a program schema that the target definition must
match. WiM looks for all solutions inside the strongest bias. If there is no
recursive program that is complete and consistent, only then bias is shifted.
On the other hand Markus finds first a nonrecursive definition. To prevent
it Markus needs negative examples.

It must be said that there are predicates that Markus can learn [25] and
WiM cannot. The reason is that WiM does not allow to set some of pa-
rameters, e.g. a number of literals to be added onto a clause body in one
refinement step. Moreover, Markus employs iterative deepening search but
WiM breath-first search. This allows to Markus to learn, e.g. multiply/3,
partition/4 and gsort/2. The reason for a poorer parameter set of WiM was

6.8. COMPARISON WITH OTHER SYSTEMS 75

following. We aimed at a system that would be easy to drive, even for user
who is not an expert in ILP. However, an extension of the parameter set is a
challenge for future research.

6.8.2 CRUSTACFEAN and FILP

Carefully chosen examples

WiM | FILP | CRUSTACEAN

member 2/0 4 2/2
last 2/1 ? 2/1
append 2/1 4 2/2
delete 2/1 ? 2/1
reverse 2/0 4 ?

reverseA 3/0 ? 2/1
split 2/1 ? 2/4
extractNth | 3/0 ? 2/1
plus 2/0 ? 2/3
exponential no 4 ?

factorial 3/0 4 2/1
nonelsZero 2/0 ? 2/1
union 4/0 3 no
intersection no 3 no
subset 4/0 3 ?

partition no 7 no
qsort no 6 no

Table 6.10: Comparison with FILP and CRUSTACFEAN

Number of examples needed by WiM , FILP and CRUSTACFEAN are in
Tab. 6.10. no means that a system is not able to learn the predicate, 7 sings
that it is not known.

For all predicates WiM needs at worst as many positive examples as CRUS-
TACEAN and less then FILP [7] with at most 1 negative example. This
example is found by WiM itself. WiM can learn all the predicates learnable
with CRUSTACEAN [2|. Moreover, CRUSTACEAN generates, as a rule,
more than one solution. It also needs more negative examples. WiM asks
the user whenever a new assumption allows to find a new solution. In our ex-
periments WiM stops in that moment. It means that only one membership

76 CHAPTER 6. EXPERIMENTAL RESULTS

query is asked. Even with this limitation to one membership query WiM
outperforms F'ILP. We can claim that the number of queries to the user is
smaller than in FILP.

Comparison with CRUSTACEAN on randomly chosen examples

A comparison of CRUSTACEAN and WiM on randomly chosen examples
is in Tab. 6.11. The table gives experiments with or 2, 3, and 5 positive
examples, and 10 negative examples, randomly chosen by the way described
above, an average of success rates from 10 runs. WiM reaches a higher
success rate for all predicates but nonelsZero.

CRUSTACEAN WiM

2 3 2 3 5
member 0.65 0.76 0.80 0.97 0.97
last 0.74 0.89 0.76 0.89 0.94
append 0.63 0.74 0.77 0.95 0.95
delete 0.62 0.71 0.85 0.88 0.97
reverse 0.80 0.86 0.85 0.95 0.99
split 0.78 0.86 0.80 0.88 0.79
extractNth || 0.60 0.78 0.74 0.80 0.98
plus 0.64 0.86 0.82 0.92 0.96
nonelsZero || 0.73 0.79 0.72 0.46 0.58

Table 6.11: Comparison with CRUSTACFEAN on randomly chosen exam-
ples

6.8.3 SKILit

We refer here to experiments described in [34] p.153. SKILit training set
contained 2, 3 or 5 positive examples and 10 negative ones. Positive examples
were again chosen randomly like in other experiments but negative examples
were now generated as near-misses to these positive examples. Success rates
obtained with SKILit and with WiM are summarised in Tab 6.12. WiM
training set was built by a similar way but negative examples were chosen
randomly from the universe of all negative examples (Section 6.3). It implies
that training sets for WiM were potentially worse than those for SKILit.
In spite of that fact, WiM reached higher success rates on testing data than

6.8. COMPARISON WITH OTHER SYSTEMS 77

SKILit WiM
2 3 > 2 3 3
member || 0.70 0.89 0.95| 0.80 0.97 0.97
last 0.71 0.72 094 |0.76 0.89 0.94
append || 0.76 0.80 0.89|0.77 0.95 0.95
delete 0.75 0.88 1.00|0.85 0.88 0.97
reverse | 0.66 0.85 0.87]0.85 0.95 0.99

Table 6.12: Comparison with SKILit

SKILit namely for 2 and 3 positive examples. For the case of 5 exam-
ples SKILit outperforms WiM once (delete), WiM wins twice (append,
reverse), and other results are comparable.

6.8.4 Progol
Randomly chosen examples

For a comparison of WiM with Progol we used again randomly chosen exam-
ples. We focus only on append/3 predicate because the distribution package
of Progol contains a training set for this predicate The set contains 17 pos-
itive and 8 negative examples. We also display results on this example set
obtained with both systems (last columns - distr). Tab 6.13 contains the
average success rate for 10 runs. Progol never found the correct solution for

‘ Progol ‘ WM ‘
2 3 5 7 distr 2 3 5 7 distr
0.68 0.81 0.89 097 0.89 | 0.77 095 0.95 1.00 1.00

Table 6.13: Comparison with Progol

2, 3, 5 and 7 examples neither any recursive solution. On the (distr) data
and 5 runs, Progol did not stop once and 4-times it found an over-general
definition

append([A|B],C, [AID]).
append(A,B,B).

with the success rates varying between 0.96 and 0.99.

78 CHAPTER 6. EXPERIMENTAL RESULTS

Progol distribution example set

From the distribution set for append/3 (17 positive and 8 negative exam-
ples) 2, 3, and 5 positive examples were chosen randomly and all 8 negative
examples was added to it. Results for 10 runs in the form (average success

‘ Progol ‘ WiM ‘
2 3 5 2 3 5
0.546/0 0.571/0 0.672/0 | 0.778/0 0.85/3 1.00/5

Table 6.14: Results on Progol distribution data

rate / number of test perfect solutions) are given in Tab 6.14.

6.9 Summary of results

WiM can learn most of ILP benchmark predicates mentioned in Section 6.1
from 2 positive examples, sometimes extended with one negative example. It
never needs more than 4 examples for that class of predicates and more than
one negative example. If the negative example is needed it can be generated
with very good accuracy by WiM itself. We showed that the accuracy of the
target definition increases with a number of positive example in the training
set as well as with weakening of bias. WiM outperforms Markus and has
higher efficiency of learning as well as smaller dependency on the quality of
the example set than other exact learners. WiM is quite fast. CPU time
needed for learning without assumptions was smaller than 8 seconds on SUN
Sparc. Assumption-based learning is of course more time-consuming. The
maximal CPU time was smaller than 4 seconds for list-processing predicates
and smaller than 33 seconds for Peano arithmetics (leg/2). Comparing WiM
with MIS , MIS is not able to learn from only positive examples. FOIL
[66] needs much more positive examples to succeed. Also the close world
assumption employed by FOIL is not appropriate for learning from a small
example set.

Chapter 7

WiM for applications

In this chapter we address possibilities of WiM in solving some
tasks in database technology. We introduce a concept of basic do-
main knowledge and then we describe a unified way of extracting
reusable domain knowledge from object-oriented data description.

7.1 Application challenges

In the previous chapter we presented experimental results obtained with
WiM on both carefully chosen learning sets and learning sets generated
randomly. Here we show how to use this kind of ILP techniques to simplify
some tasks which have to be usually solved by human. As we focus in this
thesis on exact ILP, we looked for such application areas where exact ILP
can help exploiting advantages of WiM system.

The most natural area is automatic program synthesis. We showed in
the previous chapter that WiM can be applied for such tasks. Earlier [23]
we argued that the automatic program synthesis is not the only field where
exact ILP can be employed and that some tasks in e.g. database technology
seem solvable by means of inductive techniques. We will show in the next
chapters that the other promising areas are inductive redesign of database
schema and some tasks in data mining.

Inductive redesign of database schema. If there are instances of data-
base classes, we can, in most cases, easily design the schema of those classes,
namely attributes and their types as well as super/subclasses of the class. In

79

80 CHAPTER 7. WIM FOR APPLICATIONS

deductive databases this knowledge can be expressed by means of deductive
rules. We will show how to learn those rules employing ILP .These rules can
be afterwards used to redesign the database schema.

Data mining. The last rank of applications that we focus here is data
mining (DM) [19]. The work on inductive redesign of database schema men-
tioned above can be considered as DM, too. However, most of DM tasks are
inappropriate for exact ILP namely because of noise in data. Fortunately,
not all data are necessarily noisy. Geographic data that serve as the back-
ground for map drawing is an example of that case. We show how to apply
exact ILP in mining of such kind of spatial data.

In the rest of this chapter we first explain a concept of basic domain knowl-
edge and we demonstrate a way of automatic synthesis of basic domain knowl-
edge from object-oriented database schema. Then we describe the whole
process more formally.

7.2 Reusable domain knowledge

The use of domain knowledge that is difficult to express in propositional
framework is one of main advantages of ILP. That knowledge very often con-
cerns of a structure of the data and can be, as a rule, extracted from database
schema or from description of the data without being an expert in the do-
main. We will call it basic domain knowledge. This knowledge is usually
extended by knowledge that concerns the task that we solve in the moment.
We will call the second kind of knowledge as expert domain knowledge.
We here focus on the basic knowledge and its (semi)automatic synthesis.
This knowledge is independent on a particular task because it depends only
on the data itself. When working with a database, a principal part of such
knowledge is contained in the database schema.

Domain knowledge for those two tasks which we try to solve here — inductive
redesign of database schema and data mining — can be described by some
sort of first-order logic — typed, object, or their variants. Here we have cho-
sen object-oriented paradigm as a way of data description that is general
enough. Object-oriented databases(OODB) [1, 5| enrich, in essence, the re-
lational database model with attributes as complex objects, inheritance and
object identity. To prevent dependency on a particular database schema
we have chosen object-oriented F-logic [37] as a tool for both class and ob-

7.3. BUILDING DOMAIN KNOWLEDGE: EXAMPLE 81

ject description. Such kind of object-oriented data description is easy to
transform to first-order logic. This transformation from object-oriented de-
scription into first-order predicate calculus is always possible. It enables to
employ ILP. We show in the next section how to exploit knowledge contained
in object-oriented database schema for automatic building of domain knowl-
edge predicates. This domain knowledge is then reusable in any other
learning task for the given database.

7.3 Building domain knowledge: Example

Data description in F-logic

Let us have a simple object-oriented database schema (Fig. 7.1). As an in-
stance of the CAR class, we have the object carl with the identification num-
ber id = ’BZA-0882’ and with the producer of the class FACTORY with the

name = ’Honda’. The town where the factory is placed is tname = ’0Osaka’
country = ’Japan’. The name of the factory director is pname = ’Uko
Jeschita’. The database schema above is expressed in F-logic as follows.
PERSO
pname
sex
id | —|name boss
producer— director TOWN
place —
T [tname
country

JAPANESE (CZECH
CAR CAR

Figure 7.1: Object-oriented database schema

82 CHAPTER 7. WIM FOR APPLICATIONS

car[id=>string; factory[name=>string;
producer=>factory] . place=>town;
director=>person] .
person[pname=>string ; town [tname=>string;
sex=>’Sex’]. country=>string] .

Figure 7.2: Description in F-logic

where A => T means declaration of attribute A of type T. The carl object
definition can be described as F-logic term where A -> V means that for a

car->carl
[id->’BZA-0882’,
producer->factoryl
[name-> ’Honda’,
place-> placel
[tname->’0saka’,
country->’Japan’]
director->personl
[pname -> ’Uko Jeschita’,
sex -> male] 1]

Figure 7.3: Example of an object description

particular object the attribute A has value V.

Here we use only a subset of F-logic. In the chosen subset no set-valued
attributes are allowed, with the exception of those defined by deductive rules.
Extensions to richer subset of F-logic are mentioned in the next chapter.

Building domain knowledge

Domain knowledge consists of predicate definitions and declarations. For
each class, the unary predicate of the same name is introduced. We have

car(carl). car(car2).
factory(factoryl). factory(factory2).
town(placel). town(place2).

7.3. BUILDING DOMAIN KNOWLEDGE: EXAMPLE 83

For each attribute there is an equivalent domain knowledge predicate. In
addition, for each value of each attribute a new predicate is built! of the
form

isAttributeValue(X) :- Attribute(X,Value)

E.g. F-term country->’Japan’ gives rise to two predicates definitions coun-
try/2, isCountryJapan/1

country(placel,’Japan’).
isCountryJapan(X) :-country(X,’Japan’).

A predicate declaration consists of the name and the arity of the predicate,
modes of arguments (-+x for input, -x for output) and a list of domain knowl-
edge predicates allowed to appear in the learned predicate. For each domain
knowledge predicate, the predicate declaration is built. E.g. for id/2 we will
have

id/2, [+x,-x]1, []
and for isCountryJapan/1 we will have
isCountryJapan/1, [+x], [country/2]
Than the declaration of japaneseCar/1 predicate looks as follows.

japaneseCar/1,
[+x],
[car/1, factory/1l, town/1,
id/2, producer/2, place/2, tname/2, country/2,
’isIdBZA-0882’/1, ... , isCountryJapan/1,
, isCountryCzechia/1]

I This is necessary for Wil . Otherwise, there is no possibility to introduce constants
into clauses. For systems that can introduce constants in the clause body (like Progol) it
is not necessary

84 CHAPTER 7. WIM FOR APPLICATIONS

7.4 Unified approach to building domain
knowledge

7.4.1 General schema

Algorithm for building reusable domain knowledge and for extraction of
learning set from object-oriented database follows. The general schema ex-
ploiting WiM system is in Fig. 7.4.

database schema and object descriptions in F-logic

| GENERATE |

Domain knowledge
predicates

the new class/attribute definition in FOL

l

[TRANSLATE |

!

the new class/attribute definition in F-logic

Learning set

Figure 7.4: DWiM schema

7.4.2 Algorithm GENFERATE

1. Select objects from the database. Build set OL (object-oriented
learning set) of objects of a class and assign them truth value true
(positive examples) or false (negative examples).

2. Build type definitions. For each F-term A => V, add fact A V(List),
where List contains all values of attribute A that appear in OL.

3. Build domain knowledge.

7.4. UNIFIED APPROACH TO BUILDING DOMAIN KNOWLEDGE 85

(a) Build predicate definitions.

i. For each object O € OL with object identifier OID, build
fact 0(0ID).

ii. For each attribute 4 and each value of this attribute that
appear in OL, add two clauses A(0ID,V). isAV(X):-A(X,V).

(b) Build predicate declarations.

i. Modes: For each unary predicate, set input mode. For each
binary predicate, set mode of the first argument to input and
the mode of the second one to output.

ii. Types: Using database schema, set the appropriate type.

4. Build learning set.
For each object O € OL with oid OID, add fact 0(0ID, TruthValue)
where TruthValue is either true of false.

It is easy to show that all information included in set OL and relevant in-
formation from the particular database schema is contained also in facts and
clauses generated by algorithm GENERATE. Now WiM can be run on the
generated learning set and with the generated domain knowledge.

7.4.3 Translation between first-order logic and F-logic

So far we have not addressed the question about translation between first-
order logic(FOL) and F-logic, module TRANSLATE in Fig. 7.4. It is easy
to prove that each formula in the defined subset of F-logic can be translated
into FOL. The opposite direction, i.e. translation from FOL into F-logic,
doesn’t have to succeed in general. In our example we have actually learned
the rule

japaneseCar (X) : -producer(X,Y) ,place(Y,Z), japaneseTown(Z) .

which cannot be translated into the correct F-logic formula because the in-
formation about the parent class CAR, i.e. car(X) literal, is missing in the
rule body. This drawback is solved by adding all information about classes
and /or complex attributes so that each variable in the body of rule becomes
linked with a logical oid introduced in a class definition. We have got the
needed information from the database schema. Let us assume that all class
and attribute names are unique. We have to find a class which contains

86 CHAPTER 7. WIM FOR APPLICATIONS

attribute producer/2, and add the appropriate literal to the clause body.
After that we have

japaneseCar(X):-
car(X), producer(X,Y), place(Y,Z),japaneseTown(Z)

This formula can be afterwards translated into F-logic rule

japaneseCar:X <-
car:X [producer->F[place->P[country->’Japan’]]].

In this chapter we described a way of building domain knowledge and a
learning set from data described with object-oriented F-logic. In the next
chapter we will show how to exploit this approach for building reusable do-
main knowledge for database schema redesign in deductive object-oriented
databases. In Chapter 9 we employ the same method in the process of data
mining in geographic data.

Chapter 8

Inductive redesign
of a database schema

System DWiM program for deductive object-oriented database
schema redesign is introduced based on the method described in
the previous chapter. Erperimental results obtained with DW M
are discussed.

8.1 Rules in deductive object-oriented
databases

In databases there can be two kinds of rules [50]. Active rules define a
database system reaction to some actions like update or deletion of a record.
Deductive rules define a new dataset. Here we focus on the deductive rules
in object-oriented databases. Basically, deductive rules are useful for defi-
nition of derived classes and/or for values of derived attributes. We briefly
summarize this topic, following [50].

Class definitions by rules

In general, a new class can be created by specializing of an existing class
or by generalizing several classes, or by generating new objects. first one is
the class JAPANESE CAR. The F-logic formula which defines the new class (a
subclass of the class car) has a form

japaneseCar:X <-car:X[producer->F[place->P[country->’Japan’]]]

87

88 CHAPTER 8. INDUCTIVE REDESIGN OF A DATABASE SCHEMA

where X,F and P are variables. (Here, as in the following text, we will skip
type declarations of attributes).

Generalization of classes CAR FACTORY and AIRCRAFT FACTORY gives rise of
the class FACTORY

factory : X <- carFactory : X
factory : X <- aircraftFactory : X

A new class can be created by specialization followed by generalization as
demonstrated in the following example. Let us have classes CAR and PUBLIC
TRANSPORT VEHICLE, both with the attribute power. Let the attribute has
values from the list (petrol, gasoline, electricity, horse). We want
to define a new class E-VEHICLE of cars and vehicles with electrical power.
Then the definition of that class will be

eVehicle:X <- car:X[power->electricity]
eVehicle:X <- publicTransportVehicle:X[power->electricity]

In all the above examples, the existing objects have been only reclassified
(they have not changed their class) and no new objects were generated. How-
ever, the derived class can rise from several existing classes resulting in a new
class of objects. E.g. you can create the class family from pairs of objects
of the PERSON class.

family : F[husband->H, wife ->W] <- person:H [spouse->W] ,
person:W [spouse->H]
Attribute definitions by rules

Rules can be used also for definition of new attributes. E.g. we want to add
the new attribute managed into the class PERSON. The new attribute contains
all people who manage the given person:

person:X[managed->Y] <- person:X[boss->Y]
person:X[managed->Y] <- person:X[boss->Z],person:Z[managed->Y]

8.2 DWiM

DW 1M system has been implemented following the strategy described in the
previous chapter. In the first step, the domain knowledge is being extracted

8.3. RESULTS 89

from an object-oriented database schema. Then positive examples are chosen
by user from the database. Negative examples can be generated automati-
cally as assumptions (see Chapter 5), using the closed world assumption, or
can be assigned also by user.

Limits of bias are generated automatically, too. The maximum complexity
of head is set on 1 as well as number of free variables. Maximum clause
length is equal to the number of attribute names and values which have ap-
peared in input objects. Now WiM is run with the collected example set
and background knowledge.

8.3 Results

japaneseCar:X <-car:X[producer->F[place->
P[country->’Japan’]

isMother:M <-person:M [son->S],
not person:S[father->X]

factory:X <-carFactory:X

factory:X <-aircraftFactory:X

person:X <-child:X

person:X <-adult:X

eVehicle:X <-car:X[power->electricity]

eVehicle:X <-pubTranVehicle:X[power->electricityl]

family:F[hu->H,wi->W] <-person:H[spouse->W],
person:W[spouse->H]

person:X[managed->Y] <-person:X[boss->Y]
person:X[managed->Y] <-person:X[boss->Z],
person:Z[managed->Y]

person:X[mother->M] <-not(person:X[father->M]),
person:M[son->X]
person:X[mother->M] <-not(person:X[father->M]),

person:M[daughter->X]

Figure 8.1: Class and attribute definitions

90 CHAPTER 8. INDUCTIVE REDESIGN OF A DATABASE SCHEMA

DWiM was examined on the class and attribute definitions in Fig 8.1. In
Tab. 8.1 there are numbers of both positive and negative examples needed
for each new class/attribute described above. Negative examples were gener-
ated using closed world assumption (’cwa’ in the 2nd column) or were found
as an assumption with WiM itself (’a’). DWiM needed from 1 to 5 pos-
itive instances(objects) of classes. The number of the needed examples is
small enough for user to be able to choose them. DWiM program is quite
fast so that it can be used in interactive design of deductive object-oriented
databases.

No. of No. of
positive examples | negative examples

japaneseCar 1 2(cwa)
isMother 3 9(cwa)
factory 2 1(a)
person 2 1(a)
eVehicle 2 2(cwa)
family 2 4(cwa)
managed 4 6(cwa)
mother 5 7(cwa)

Table 8.1: DWiM: Summary of results

8.4 Extension to full F-logic

Our method can be extended to manage full F-logic description of a database
schema. In this section we explain how to manage structured types like set
or [ist, and how to manage complex value attributes, i.e. those referencing
another object. We also show how to learn methods.

Structural types

Besides the elementary types like string, integer , and the reference to
another class, there is a structured type set. E.g. the definition of the class

8.4. EXTENSION TO FULL F-LOGIC 91

car with the attribute passengers and an instance of that class may looks
as

car[id=>string;
producer=>factory;.
passangers=>>person] .

car1[id->’BMZ-1234’;
producer->pl;.
passangers->>{eva, tom, jan}].

To work with sets, we have to define the new type for WiM and to add to the
background knowledge appropriate predicates, namely member/2 and those
for the basic set operations like union/3.

The module GEN ERATFE need to be extended, too. E.g. the above instance
carl is translated into

car(carl). producer(caril,pl).
passangers(carl, [eva, tom, jan]).

Inheritance

A hierarchy of classes allows to build hierarchical background knowledge
starting with the most general class(es). If a system failed to learn with
the current background knowledge, then (some of) subclasses are added to
the background knowledge. From other point of view, we can see it as the
modification of the refinement operator. We add a new refinement operation
which adds to the rule body a subclass. We alows to add only subclasses of
some class which already appears in the body.

References to complex objects

Another information in the database schema are attributes which reference
objects from another class, e.g. the attribute director in the class FACTORY
is of type PERSON. It seems be natural to modify the refinement operator by
following way. Informally, let us start with the background knowledge con-
taining only predicates transformed from "flat" attributes, e.g. id, color
in case of car. Whenever the learning fails with that background knowledge,
let us add (some of) predicates transformed from referenced objects.

92 CHAPTER 8. INDUCTIVE REDESIGN OF A DATABASE SCHEMA

How to learn methods

As methods in F-logic can be expressed by deductive rules, we may use the
same mechanism as described earlier to learn methods. In this task, however,
human assistance is also needed. In contrast to learning virtual classes or
attributes where the examples has been got from the database itself, we need
to know the behavior of the learned method. It is user who has to prepare
the example set of input-output behavior of the method.

Example. Let us extend the definition of the car class by adding a method
country_of_origin

country_of_origin@ factory => string
which may look as

X[country_of_origin@ Y -> Z] <-
X:car, X[producer->Y[place->P[country->Z].

8.5 Related works

ILP methods were applied for first-order logic rule synthesis in relational
and/or deductive databases close to our approach. ILP system LINUS
[43] can learn relations expressed in the language of deductive hierarchi-
cal database clauses [48] with the restriction that no new variables may be
introduced in the body of a clause. The main disadvantage of LINUS, in
comparison with DWiM is that LINUS cannot learn recursive rules. FOIL
[66] is able to find also recursive definitions of relations. However, as it needs
a large learning set, FFOIL seems to be more useful for knowledge discovery
in databases than for software engineering, like the database schema design
is. Both LINUS and FOIL can induce logical definitions of relations from
noisy data. It is what DW1iM cannot.

The first system for semi-automatic modification of relational database sche-
ma exploiting ILP was INDEX [21]. INDEX finds dependent attributes
and allows interactive decomposition of relations. Our improvement of that
system can be found in [41]. CLAUDINE [14] finds dependency and in-
tegrity constraints for a given relational database. Interactive system that
provides support for inductive database design is presented in [9].

Chapter 9

KDD in geographic data

We show that the technique described in Chapter 7 and used for
database schema design in deductive object-oriented databases is
fully usable for spatial mining. An inductive query language is
proposed and three kinds of inductive queries are described. De-
seription of GWiM mining system as well as results reached with
the system are given.

9.1 Mining in spatial data

Mining in geographic data is challenging and very important. However, the
classical KDD, either statistical or based on machine learning in proposi-
tional calculus are not convenient for the task. The spatial data have to
be managed with means that respect(and exploit) their structural nature.
Moreover, non-spatial data need to be used, too, e.g. to find a region with
some non-spatial characteristics. Main tasks when mining geographic data
[38, 65] are, among others, understanding data, discovering relationship as
well as (re)organising geographic databases. We show that inductive logic
programming (ILP) is a powerful tool for solving these tasks.

In Chap 7 we introduced the method for building domain knowledge. Ex-
ploiting that method we further develop the direction started (or symbol-
ised) with GeoMiner [29]. We show that a technique similar to that used
for database schema redesign (Chapter 8) is fully usable for spatial mining.

This chapter is organised as follows. In the next section, we demonstrate the

93

94 CHAPTER 9. KDD IN GEOGRAPHIC DATA

use of GWiM system for solving a simple task. In Section 9.3 GWiM induc-
tive query language for mining in spatial data is described. Results obtained
with GWiM are displayed in Section 9.4. We conclude with discussion of
results and mainly the weaknesses of the method.

9.2 GWiM

The general schema of GWiM system is a modification of DWiM described
in Chap. 8. The TRANSLATE module is replaced by a module that com-
piles a rule in the spatial mining language into input of WiM . Then WiM
is called.

We will first demonstrate performance of GW¢M on a simple mining task us-
ing the database in Fig.9.2. The BRIDGEF class consists of all road bridges
over rivers. Each bridge has two attributes — Object1 (a road) and Object?2
(a river). Each river (as well as roads and railways) inherits an attribute
Geometry (a sequence of (x,y) coordinates) from the class LINEAR . Ob-
jects of a class RIV ER has no more attributes but Name of the river. In a
class ROAD, the attribute state says whether the road is under construc-
tion (state=0) or not. The importance defines a kind of the road: 1 stands
for highways, 2 for other traffic roads, and 3 for the rest(e.g. private ones).

BRIDGE LINEAR PLANAR
Objectl
) Geometry Geometry
Object 2

HIGHWAJY_BRIDGE \\\
RIVER

" ROAD

FORESTRY \BN\DI NG
)
Named Named

\
N
)
N
N
.
N
Sae FORngOD " FORE*ST—HOUSE
.
\\

Importance

Figure 9.1: Spatial database schema

9.2. GWIM 95

Our goal is to find a description of the class HIGHW AY _BRIDGE in terms
of other classes in the given database. Let us have 2 rivers with object iden-
tifiers riverl,river2, named Svratka and Svitava and two roads (with
object identifiers road1l, road2) a highway D1’ and a state road *E7’ that
cross those rivers. It can be expressed in first order logic(FOL) as Arguments

road(roadl) :-
name(roadl,’D1’), geometry(roadl,[... 1),
state(roadl,1),importance(roadl,1).
road(road2) :-
name(road2,’E7’), geometry(road2, [... 1),

state(road2,1),importance(road2,2),

river(riverl) :-
geometry(riverl,[... 1),
name(riverl,’Svratka’).

river(river2) :-
geometry(river2, [... 1),

name(river2,’Svitava’).

bridge(bridgel) :-
objectl(bridgel,roadl),
object2(bridgel,riverl).

bridge(bridg2) :-
objectl(bridge2,roadl),
object2(bridge2,river2)

bridge(bridge3) :-
objectl(bridge3,road2),
object2(bridge3,riverl).

Figure 9.2: Schema description in first-order logic

of unary predicates stands for object identifiers(oid’s) of corresponding ob-
jects. For binary predicates, the first arguments is again oid, the second one
is a value of a particular attribute. Let the first two examples be assigned
as instances of the class HIGHW AY BRIDGE. A learning set contains all
instances of the class HIGHW AY BRIDGEFE as positive examples. The rest
of members of the class BRIDGE (i.e. bridge3) serves as negative examples.

96 CHAPTER 9. KDD IN GEOGRAPHIC DATA

GWiM starts with a minimal language which consists of object1,object2
attributes of the class HIGHW AY BRIDGE itself. The best clause being
found

highway_bridge(X) :- bridge(X), object1((X,Y), object2(X,Z).

is over-general as it covers even the negative example. In that case when
no solution is found, the language is extended by adding attributes from
neighboring classes(either super/subclasses or referenced classes). If there is
a referenced class, the most general superclass is added first. In our case, an
attribute geometry of the class LINEAR (both for RIVER and ROAD)
has been added. As it does not help, the language has been further enriched
by attributes of classes RIVER, ROAD, i.e. state, importance and name.
For this language, GWiM has eventually found a logic formula

highway_bridge(X) :- bridge(X),object1(X,Y),importance(Y,1).

that successfully discriminates between positive and negative examples.

9.3 Inductive query language

In this section we present three kinds of inductive queries. Two of them, that
ask for characteristic and discriminate rules, are adaptation of GeoMiner [28|
rules. The dependency rules add a new quality to the inductive query lan-
guage. The general syntactic form, adapted from GeoMiner of the language
is as follows. Semantics of those rule differs from that of GeoMiner. Namely

extract < KindOfRule > rule

for < NameOfTarget >

[from < ListOfClasses >|

[< Constraints >]

[from point of view < ExplicitDomainKnowledge >]| .

Figure 9.3: General form of rules

< ExplicitDomainKnowledge > is a list of predicates and/or hierarchy of
predicates. At least one of them have to appear in the answer to the query.
The answer to those inductive queries is a first-order logic formula which
characterizes the subset of the database which is specified by the rule.

9.3. INDUCTIVE QUERY LANGUAGE 97

Characteristic rule

Characteristic rules serve for a description of a class which exists in the
database or for a description of a subset of a database.

The result of characteristic rule is a predicate < NameOfClass > of arity
equal to the number of attributes of that class. The predicate is built using
other classes and/or attributes in the given database as well as using <
ExplicitDomainKnowledge >. Instances of the class introduced in the clause
for that satisfy where condition serve as positive examples.

extract characteristic rule

for < NameOfClass >

where < ConstraintOnListOfClasses >

from point of view < DomainKnowledge > .

E.g. the concept of bridge in Section 9.2 can be expressed by this kind of
rule.

Discriminate rule

Discriminate rules find a difference between two classes which exist in the
database, or between two subsets of the database.

extract discriminate rule

for < NameOfClass >

[where < ConstraintOnClass >|

in contrast to < ClassOfCounterExamples >

| where < ConstraintOnCounterExamples >|

[from point of view < DomainKnowledge >]| .

Positive examples of the concept < NameOfTarget > are described by

for < NameOfClass >
where < ConstraintOnListOfClasses >

negative examples are described by

from < ListOfClasses >
in contrast to < ClassOfCounterExamples >
where < ConstraintOnCounterExamples >

The discriminate rules allows to find a quantitative description of a class in
contrast to another one. E.g. forests have an area greater than 100 hectares.
Woods serve as counterexamples there.

98 CHAPTER 9. KDD IN GEOGRAPHIC DATA

Dependency rule

Dependency rules aim at finding dependency between different classes. In
opposite to discriminate rules, dependency rules look for a qualitative char-
acterization of a difference between two classes. The clause from point of
view specifies explicit background knowledge which can be used to build the
target predicate < NameOfTarget >. In fact it is a criterion of interesting-
ness.

extract dependency rule

for < NameOfClass >

from < ListOfClasses >

| where < ConstraintOnClasses >]

[from point of view < DomainKnowledge >]| .

The objects are defined by the from ... where ... from point of view
... formula. The target predicate < NameOfTarget > is of arity equal to a
number of classes in < ListOfClasses >. E.g. for forests and woods, an area
of a forest is always greater than an area of a wood.

9.4 Results

The geographic data used can be seen in Fig. 9.4. The thick lines are rivers.
The data set contains 31 roads, 4 rails, 7 forest/woods, and 59 buildings.
Particular mining task are described in the following paragraphs.

Characteristics of bridge

Find a description of bridge in terms of attributes of classes road, river,
using the implicit domain knowledge for domains nom, ordinal, geometry, i.e.
generic predicates =/2 (for all 3 domains), </2 (for the domain of ordinals,
and member /2 for geometry.

bridge(X,Y):-
road(X) ,roadGeometry(X,Z),
river(Y),riverGeometry(Y,U),
member (V,Z) ,member (W,U) ,W=V.

extract characteristic rule
for bridge
from road, river.

9.4. RESULTS 99

Figure 9.4: Geographic data

Bridge with additional domain knowledge

Find a description of bridge in terms of attributes of classes road, river, using
additional domain knowledge of the predicate commonPoint(Pathl, Path2).

extract characteristic rule bridge(X,Y):-

for bridge object1(X,Z) ,geometry(Z,G1),
from road, river object2(Y,U) ,geometry(U,G2),
from point of view commonPoint. commonPoint (G1,G2) .

Discrimination of forests and woods

Find a difference between forests and woods from the point of view of area.
area is the name of set of predicates like area(Geometry, Area).

extract discriminate rule forest(F) :-

for forest geometry(F,GForest),
in contrast to wood area(GForest,Area),
from point of view area. 100 < Area.

100 CHAPTER 9. KDD IN GEOGRAPHIC DATA

Relation between forest and wood

Find a relation between forests and woods from the point of view of area.
area is the name of set of predicates like area(Geometry, Area).

extract dependency rule forestOrWood(F,W) :-

for forestOrWood geometry(F,GF) ,area(GF,FA),
from forest, wood geometry(W,GW), area(GW,WA),
from point of view area. WA<GA.

The number of examples, both positive and negative, needed for a particular
concept to be learned are in Tab. 9.4. The cardinality of the learning sets is

positive | # negative
bridge 2 1
forest 3 4
forestOrWood 7 7

Table 9.1: GWiM: Summary of results

small enough for the user who has to choose the learning examples. GWiM
outperforms in some aspects GeoMiner. Namely GWiM can mine a richer
class of knowledge, Horn clauses. Background knowledge used in GeoMiner
may be expressed only in the form of hierarchies. GWiM accepts any back-
ground knowledge that is expressible in a subset of object-oriented F-logic
[37].

9.5 Discussion

9.5.1 On the inductive query language

The query language is quite powerfull. However, some of queries looks little
tricky. Let us look for the relation between forest houses (i.e. those that
are near a forest) and other buildings. In the current vesrion of GWiM, the
inductive query looks as follows.

9.5. DISCUSSION 101

extract dependency rule

for differentHouses differentHouses(FH,F,H) :-

from forestHouse, forest, building distance(FH,F,D1),

where building(B, GB), distance(H,F,D2),
not forestHouse(B, F) D1<D2.

from point of view distance, less

It seems to be quite difficult (or at least incomfortable) for a user to write
such a where clause. In this case, it can be improved by allowing

where building not in forestHouse

9.5.2 On mining in real databases

In the current implementation all the data are first imported from a database
(PostgreSQL or Oracle) in the form of Prolog facts. One weakness of WiM is
its incapability to process large learning sets. Even in the case of the example
above (differentHouses) some kind of sampling was necessary to reach a
result. However, there is a way how to manage such data and we will explain
it below.

As mentioned earlier, the general-to-specific learning splits into two steps.
In the first step a promising hypothesis is generated that is, in the second
step, tested on the example set. The generation step does not depend on
the number of examples. If the cardinality of the learning set is increasing, a
relative price of the generation step is even decreasing. It seems be straight-
forward to employ the database management system itself in the testing step.
Actually we only need to know the number of examples (both positive and
negative) that are covered by the current hypothesis. It means that we need
to implement a communication channel connecting an ILP system, with the
database system. The answer itself will be received after evaluation of the
query using the database management system.

The current version of WiM can work in interactive mode. Oracles have
been implemented that allow to ask any external device and even evaluate a
given hypothesis on external data. The hypothesis is first translated into a
(sequence of) SQL queries. The answers are then evaluated and the hypoth-
esis is either specialized or accepted as the result of the particular inductive

query.

102 CHAPTER 9. KDD IN GEOGRAPHIC DATA

We will demonstrate it on the same example as in Section 9.2. We have
2 positive examples and 1 negative example. The minimal success rate for
a hypothesis to be accepted is set to 1 — all positive examples need to be
covered and none of negative ones does. An initial portion of examples is
randomly chosen from the database employing random oracle. Let we ask
for just 1 positive example. The learned hypothesis

highway_bridge(X) :- bridge(X), object1(X,Y), object2(X,Z).

has to be verified using the full database. A success rate oracle is called
that returns the success rate for the hypothesis. Thus the hypothesis is over-
general and needs to be further specialized. The process continues until the
limit for a minimal success rate is reached.

9.6 Related works

An improved version of the query language described in this thesis can be
found in [39, 40]. Most of spatial mining algorithms must employ some kind
of neighbourhood relationships. In [20] an extension of spatial database man-
agement system is proposed for processing of spatial neighbourhood relations
that is based on the notion of neighbourhood graphs. The query language
described in [39, 40] follows this direction.

GeoMiner |29, 38|, the spatial data mining system has been developed in Si-
mon Fraser University, British Columbia, Canada. It follows the line started
with the relational data mining system DBMiner. The user interface of
GeoMiner is implemented on the top of MapInfo Professional 4.1 Geographic
Information System. Current version of GeoMiner can find three kinds of
rules, characteristic rules, comparison rules, and association rules. In [8] a
fuzzy spatial object query language FuSOQL is introduced for selecting data.
The FuSOQL interpreter is built upon the O OODBMS [5] and GeO, . A
fuzzy decision tree is afterwards built that describes that data.

Chapter 10

Conclusion

10.1 Main contributions

10.1.1 Novel ILP architecture

In Chapter 5 we introduced the new ILP paradigm called assumption-based
learning motivated by [35, 36]. This novel ILP architecture consists of an
inductive synthesiser, a generator of assumptions which generates extensions
of the learning set, and an acceptability module which evaluates acceptability
of both the found solution and the assumptions. The acceptability module is
allowed to ask queries to a teacher. The number of queries is much smaller
than in other interactive ILP systems. We experimentally proved that the
implementation of the assumption-based paradigm, the system Wil is less
dependent on the quality of the learning set than other ILP systems.

10.1.2 Efficient program synthesis from small learning
sets

In Section 3.6.2 we showed how to decrease complexity of the search space in
ILP setting. WiM , described in Chapter 5, extends Markus [26] by shifting
bias, generating negative examples and employing second-order schema. We
showed in Chapter 6 that even with a very small example set (less or equal
to 4 positive examples, see Appendix C for particular learning sets) Wil
is capable to learn most of the predicates which have been mentioned in
ILP literature. We showed that Wil is feasible for solving real-world tasks

103

104 CHAPTER 10. CONCLUSION

(Chapters 8 and 9). Our ssumption-based approach can be combined with
any existing ILP system.

10.1.3 Automatic generation of negative examples

When solving tasks with an ILP system, as a rule the needed negative ex-
amples are more dependent on the particular system then on the solved
problem. In our approach, the system WiM finds negative examples itself
(Section 5.5). A near-miss to one of the positive examples is considered as a
candidate for that purpose. Such a negative example is found useful if after
adding that example to the current learning set, the learner is able to suggest
a new definition of the target predicate. Only in such a case the user is asked
for a confirmation of that particular candidate for the negative example.

10.1.4 Building of reusable domain knowledge

In Chapter 7 we described a new method for automatic building of domain
knowledge. We suppose that logic description of domain in some kind of first-
order logic exists or at least can be easily obtained (e.g. by transformation
of object-oriented database schema into object-oriented logic). We showed
how to exploit such a description for automatic building of a basic domain
knowledge. We only wanted to make the domain knowledge construction
easier and to exploit knowledge which is usually known (in some form) to
user. Another advantage of the basic domain knowledge is that it is reusable
for other tasks because it depends only on that logic description. Our method
can be applied as the first step in domain knowledge building. The next step
— completing the basic set of domain predicates with other predicates — is up
to user and his experience.

10.1.5 Inductive redesign of object-oriented database

In Chapter 8 we addressed the possibilities of ILP methods in object-oriented
database schema modelling, i.e. in database schema design and restructuring.
We showed that inductive logic programming could help in synthesis of those
rules to support the database schema design and modification. New approach
to the object-oriented database modelling by means of ILP was introduced.
Experimental results obtained by DWiM system, a variant of WiM , were
discussed.

10.2. FUTURE WORK 105

10.1.6 Mining in spatial data

We showed in Chapter 9 that inductive logic programming is a powerful
tool for spatial data mining [38]. We proceed in the direction started(or
symbolised) by GeoMiner [29]. We showed that the technique developed for
database schema design in deductive object-oriented databases is fully usable
for spatial mining. Mining system GW:M was implemented based on Wil
GW M overcomes, in expressive power, some other mining methods. Results
reached with the system have been reviewed. An inductive query language,
with richer semantics, was proposed and three kinds of inductive queries were
described. Two of them are improved versions of GeoMiner [28] rules. We
introduced a new kind of rules, dependency rules, that allow to compare two
or more subsets. We are convinced that ILP allows significantly extent an
expressive power of inductive query languages in the domain of geographic
data.

10.2 Future work

There are at least two research directions that should be followed in future.
The first one concerns search strategies of the hypotheses space, the second
one aims at (inter)active learning. We will discuss them briefly below.

Markus, the predecessor of WiM, employed iterative deepening search of
the hypothesis space. Wil , to be easy to drive, does not support it! and sets
this parameter to 0. As a consequence, WiM cannot learn e.g. quicksort/2
predicate. However, it is easy to extend the shift of bias mechanism in WiM
by adding the parameter for iterative deepening.

Interactive learning is really a challenge. In many application tasks, like in
natural language processing or data mining, there is a huge amount of data.
However, those data sets cannot be used directly for learning because of the
extreme computational complexity of ILP systems, including WiM. An al-
ternative to sampling techniques may be active learning. ILP system itself
looks for examples that are useful to accept/reject a hypothesis.

In the current version of Wil , several oracles have been implemented (see
Fig. 10.2). Moreover, a user can easily implement its own oracle. Following
oracles have been implemented (Fig. 10.2): existential [67], membership

Tt is, of course, possible to use the internal settings of Markus even for Wil .

106 CHAPTER 10. CONCLUSION

[3, 67|, weak_subset and weak_ existential. The weak subset oracle re-

oraclel(weak_subset,Cl,Answer) ... Answer == true iff
at least 1 new positive example is covered
and any negative one is not

oraclel(exists, Cl,Answer) ... Answer

== get of all instantiations of the clause Cl
oraclel(membership, Cl,Answer) ... Answer == truel|false
oraclel(weak_exists,Cl,Answer) ... Answer == truel|false

Figure 10.1: List of oracles implemented in Wil

turns true iff at least 1 new positive example is covered and any negative
one is not. The weak existential oracle returns true if at least one positive
example is covered by the tested hypothesis, otherwise it returns false. Using
those oracles, a bridge between WiM and Oracle 7 DBMS has been imple-
mented by Petr Chochola¢. This interface enables WiM to extract learning
examples directly from user relations saved in Oracle.

Index

DWiM
description, 88
improvements, 90
results, 89

GWiM
characteristic rule, 97, 98
dependency rule, 98, 100
description, 94
discriminate rule, 97, 99
example, 94
inductive query language, 96

Herbrand interpretation, 21
Herbrand model, 21

CRUSTACFEAN , 41
FILP , 42
Markus , 39
algorithm, 39
clause synthesis, 40
parameters, 40
refinement operator, 40
MIS | 35
algorithm, 36
new clause construction, 37
refinement operator, 37

Progol , 43
SKILit , 43
WiM

acceptability module, 57
algorithm, 51

107

comparison with
CRUSTACFEAN , 75, 76
FILP |75
Markus , 74
Progol , 77, 78
SKILit , 77
constraint of a program schema,
54
experiments
dependence on bias settings,
70
learning with assumptions, 73
learning without assumptions,
69, 70
parameter settings, 67
generator of assumptions, 54
inductive synthesiser, 50
multiple predicate learning, 52
oracle, 57, 101, 105
shifting of bias, 52

answer, 21
assumption, 47
assumption-based learning, 46, 47

basic schema, 49
generic algorithm, 49

assumption-based reasoning, 47

language bias, 31
search bias, 31

108

shift of bias, 31
validation bias, 31

cardinality of the search space, 32
a way of narrowing, 33
carefully chosen examples, 65

clause, 19

body, 19

closed, 19

good, 40

head, 19

promising, 40
complexity of example, 55
coverage, 21

extensional, 21

intensional, 21
covering paradigm, 39

deductive rules, 87
domain knowledge
basic, 80
building, 81, 82, 84
reusable, 81

first order language, 20
functional logic program, 42

ground clause, 19

incomplete program, 22
inconsistent program, 22
inductive design of database schema,
88
inductive logic programming, 15, 24
basic task, 24
example setting, 25
general-to-specific, 28
generic algorithm, 26
inductive query language, 96

INDEX

integrity constraint, 48
intended interpretation, 21
interpretation, 20

logic program, 19
clause, 19
completion, 20
error diagnosis, 21
goal, 19
model, 20

logical consequence, 20

mining in geographic data, 93
mode of argument, 22
model, 20

near-miss, 48, 54, 55
normal program, 21

oracle, 31, 57, 61, 101
preference relation, 55

randomly chosen examples
description, 65
generation, 66
method of testing, 67
reduced clause, 20
refinement graph, 29
refinement operator, 29
properties, 29

specialisation, 27
specialisation operator, 27
substitution, 21

success rate, 67

test perfect solution, 67, 70
type of argument, 22

Bibliography

[1] Abiteboul S. Hull R. Vianu V.: Foundations of databases. Addison-
Wesley Publ. 1995.

[2] Aha D.W., Lapointe S., Ling C.X., and Matwin S.: Inverting implication
with small training sets. In Bergadano F., De Raedt L. (Eds.) Proc. of
ECML’94, Catania, LNCS 784, pp. 31-48, Springer Verlag 1994.

[3] Angluin D.: Queries and Concept Learning. Machine Learning 2, 4,
April 1988, 319-342

[4] Arima J.: Automatic Logic Programming under Highly Redundant
Background Knowledge. De Raedt, L.(ed.): Proceedings of the 5th Inter-
national Workshop on Inductive Logic Programming pp. 355-372, 1995.

[5] Bancilhon F., Delobel C., Kanellakis P.: Building an Object-Oriented
Databases Systems: The story of Oy. Morgan Kaufmann 1992.

[6] Bergadano F.: Towards an Inductive Logic Programming Language
(manuscript)

[7] Bergadano F. and Gunetti D.: An interactive system to learn functional
logic programs. Proc. of IJCAI’93, Chambéry, pp. 1044—-1049.

[8] Bigolin N.M., Marsala C.: Fuzzy Spatial OQL for Fuzzy Knowledge
Discovery in Databases. In Zytkow J.M., Quafafaou M.(eds.): Proc.
PKDD’98, Nantes, France. LNCS 1510, Springer Verlag 1998.

[9] H. Blockeel H., De Raedt L.: Inductive Database Design. Proceedings
of ISMIS-96.

109

110 BIBLIOGRAPHY

[10] Bondarenko A., Toni F., and Kowalski R.A.: An assumption-based
framework for non-monotonic reasoning. In Perreira L.M., Nerode A.
(Eds.) Proc. of the 2nd International Workshop on Logic Programming
and Non-Monotonic Reasoning, Lisbon, 1993, pp. 171-189, MIT Press,
1993.

[11] Cohen W.: Rapid prototyping of ILP systems using explicit bias. Pro-
ceedings of 1993 IJCAT Workhop on ILP.

[12] Cohen W.: Pac-learning recursive logic programs: Efficient algorithms.
Journal of Artificial Intelligence Research, Volume 2, pages 501-539,
1995.

[13] Cohen W.: Pac-learning recursive logic programs: Negative results.
Journal of Artificial Intelligence Research, Volume 2, pages 541-573,
1995.

[14] Dehaspe L., Van Laer W., De Raedt L.: Applications of a logical dis-
covery engine. In: Wrobel S.(ed.): Proc. of 4th Workshop on Inductive
Logic Programming [LP’94, Bonn Germany, 1994.

[15] DeKleer J.: An Assumption-Based TMS. Artificial Intelligence 18, 1986.

[16] De Raedt, L.: Interactive Theory Revision: An Inductive Logic
Programming Approach. Academic Press, 1992. (see also De Raedt,
L.:Interactive Concept-Learning. PhD Thesis, Catholic University Leu-
ven, Belgium 1991.)

[17] De Raedt L., Lavra¢ N., Dzeroski S.: Multiple predicate learning. In
Proc. IJCAT'93. Morgan Kaufmann, San Mateo, CA.

[18] Deville Y.: Logic Programming: Systematic Program Development. Ad-
dison Wesley, 1990.

[19] Dzeroski S., Lavra¢ N.(eds.): Inductive Logic Programming in KDD. A
Special Issue of Data Mining & Knowledge Discovery, Vol 3., No. 1, Feb.
1998.

[20] Ester M., Kriegel H.-P., Sander J.: Spatial Data Mining: A Database
Approach. In: Proc. of the 5th Int. Symposium on Large Spatial
Databases(SSD’97), Berlin. LNCS Vol.1262, pp.47-66, Springer Verlag
1997.

BIBLIOGRAPHY 111

[21] Flach P.: Predicate invention in inductive data engineering. Proceedings
of ECML’93, LNAI 667, Springer-Verlag 1993.

[22] Flener P.: Logic Program Synthesis from Incomplete Information.
Kluwer Academic Publishers, 1995. (see also Flener P.: Logic Algo-
rithm Synthesis from Examples and Properties. PhD. Thesis, Universite
Catholique de Louvain 1993.)

[23] Flener P., Popelinsky L.: On the use of inductive reasoning in program
synthesis: Prejudice and prospects. Proc. of the 4th Int’l Workshop on
Logic Program Synthesis and Transformation (LOPSTR’94), Pisa, Italy,
1994.

[24] Flener P., Popelinsky L. Stépankova O.: ILP nad Automatic Program-
ming: Towards three approaches. Proc. of 4th Workshop on Inductive
Logic Programming (ILP’94), Bad Honeff, Germany, 1994.

[25] Grobelnik M.: MARKUS: An optimized Model Inference System In Pro-
ceedings of the ECAI-92 Workshop on Logical Approaches to Machine
Learning, Vienna 1992.

[26] Grobelnik M.: Induction of Prolog programs with Markus. In Deville
Y.(ed.) Proceedings of LOPSTR’93. Workshops in Computing Series,
pages b7-63,Springer-Verlag, 1994.

[27] Grobelnik M.: Declarative Bias in Markus ILP system. Working notes
of the ECML’94 Workshop on Declarative Bias, Catania, 1994.

[28] Han J. et al.: DMQL: A Data Mining Query Language for Relational
Databases. In: ACM-SIGMOD’96 Workshop on Data Mining

[29] Han J., Koperski K., and Stefanovic N.: GeoMiner: A System Prototype
for Spatial Data Mining. In: Proc. 1997 ACM-SIGMOD Int’l Conf. on
Management of Data(SIGMOD’97), Tucson, Arizona, May 1997.

[30] Horvath T., Turdn G.: Learning logic programs with structured back-
ground knowledge. De Raedt, L.(ed.): Proceedings of the 5th Inter-
national Workshop on Inductive Logic Programming ILP’95, pp.53-76,
1995.

112 BIBLIOGRAPHY

[31] Huntbach, M.: An improved version of Shapiro’s Model Inference Sys-
tem. In Shapiro E.(Ed.), Proceedings of Third International Confer-
ence On Logic Programming ICLP’86, London, pp.180-187, LNCS 225,
Springer-Verlag 1986.

[32] Jorge A., Brazdil P.: Architecture for Iterative Learning of Recursive
Definitions. In De Raedt L.(ed.): Advances in Inductive Logic Program-
ming. [OS Press 1996.

[33] Jorge A., Brazdil P.: Integrity Constraints in ILP using a Monte Carlo
approach. In Proceedings of 6th Int. Workshop on ILP ILP’96. LNAI
1314 Springer Verlag 1996.

[34] Jorge A.: Tterative Induction of Logic Programs. PhD Thesis, Departa-
mento do Ciéncias de Computadores Faculdade de Ciéncias da Univer-
sidade do Porto 1998.

[35] Kakas A.C., Kowalski R.A., and Toni F.: Abductive logic programming.
Journal of Logic and Computation 2, 6, pp. 719-770, 1992.

[36] Kakas A.C., Mancarela P.: Knowledge assimilation and abduction. Pro-
ceedings of ECAT’90 Int. Workshop on Truth Maintenance, Stockholm
1990. Martins(ed.) LNCS Springer-Verlag 1991.

[37] Kifer M., Lausen G., Wu J.: Logical Foundations of Object-Oriented
and Frame-Based Languages. TR, 93/06, Dept. of Comp. Sci. SUNY at
Stony Brook, NY, March 1994 (accepted to Journal of ACM).

[38] Koperski K., Han J., Adhikary J.: Mining Knowledge in Geographical
Data. Comm.of ACM 1998

[39] Kuba P.: Knowledge discovery in spatial data. Master thesis, Faculty of
Informatics MU Brno, 2000 (in Czech).

[40] Kuba P.: Query language for knowledge discovery in spatial data. Va-
lenta J.(ed.): Proceedings of DATASEM’2000 conference, Brno, 2000
(in Czech).

[41] Kuklova J., Popelinsky L.:On Biases in Inductive Data Engineering.
ECMIL’94 Workshop on Declarative Bias, Catania, Sicily, 1994

BIBLIOGRAPHY 113

[42] Lavra¢ N., D7eroski S.: Background knowledge and declarative bias in
inductive concept learning. In: Jantke K.(ed.): Proceedings 3rd Interna-
tional Workshop on Analogical and Inductive Inference, pp.51-71, LNCS
642 Springer Verlag 1992.

[43] Lavra¢ N., Dzeroski S.: Inductive Logic Programming. Techniques and
Applications. Ellis Horwood Ltd. 1994

[44] Lavra¢ N., Dzeroski, Kazakov D., Stépankova O.: ILPNET repositories
on WWW: Inductive Logic Programming systems, datasets and bibli-
ography. AT Communications Vol.9, No.4, 1996, pp. 157-206 .

[45] Le Blanc G.: BMWk Revisited. In Bergadano F., De Raedt L. (eds):
Proc. of ECML’94, Catania, pages 183-197. LNCS 784, Springer Verlag,
1994.

[46] Ling C.X.:. Logic Program Synthesis from Good Examples. Proc of 1st
Workshop on ILP, ILP’91 pp. 41-57, Viana do Castelo 1991.

[47] Ling C.X.:. Inductive learning from good examples. In Proc. of IJCAT'91,
pp. 751-756, Sydney, Australia. Morgan Kaufmann.

[48] Lloyd J.W.: Foundations of Logic Programming (2nd edition). Springer-
Verlag Berlin 1987.

[49] Manandhar S., Dzeroski S., Erjavec T.: Learning multilingual morphol-
ogy with CLOG. In Proc. of ILP’98, 1998.

[50] Manthey R.: Rules and Objects - issues in the dessign and develop-
ment of DOOD systems. Summer school Object Orientation in Database
World, Leysin, Switzerland 1994.

[51] Mitchell, T.M.: Machine Learning. McGraw Hill, Newy York, 1997.

[52] Muggleton S. (ed): Inductive Logic Programming. Volume APIC-38,
Academic Press, 1992.

[53] Muggleton S., De Raedt L.: Inductive Logic Programming: Theory And
Methods. J. Logic Programming 1994:19,20:629-679.

[54] Muggleton S.: Inverse Entailment and Progol. New Generation Com-
puting Journal, 13:245-286, 1995.

114 BIBLIOGRAPHY

[55] Nédellec C.: Knowledge Refinement Using Knowledge Acquisition and
Machine Learning Methods. Gaines B.(ed.): Proceedings of AAAI
Spring Symposium, AAAI Press 1992.

[56] Nédellec C., Rouveirol C.: Specification of the HATKU system. Rapport
de Recherche n 928, L..R.I. Université de Paris Sud, 1994.

[57] Nienhuys-Cheng S.-H., de Wolf R.: Foundations of Inductive Logic Pro-
gramming. Lect. Notes in AI 1228, Springer Verlag Berlin Heidelberg
1997.

[58] Popelinsky L.: Towards Synthesis of Nearly Pure Logic Programs. In:
Proceedings of LOPSTR’91, Workshops Series Springer Verlag 1992.

[59] Popelinsky L.: Towards Program Synthesis From A Small Example Set.
Proceedings of 21st Czech-Slovak conference on Computer Science SOF-
SEM’94, pp.91-96 Czech Society for Comp. Sci. Brno 1993. (See also
Proceedings of 10th WLP’94, Zuerich 1994, Switzerland.)

[60] Popelinsky L.: Object-oriented data modelling and rules: ILP meets
databases. Proceedings of Knowledge Level Modelling Workshop,
ECML’95 Heraklion, Crete

[61] Popelinsky L., Stépankovd O.: WiM: A Study on the Top-Down ILP
Program . Technical report FIMU-RS-95-03, August 1995.

[62] Popelinsky L.: Knowledge Discovery in Spatial Data by Means of ILP.
In: Zytkow J.M., Quafafou M.(Eds.): Proc. of 2nd European Sympo-
sium PKDD’98, Nantes France 1998. LNCS 1510, Springer-Verlag 1998.

[63] Popelinsky L.: Inductive inference to support object-oriented analysis
and design. In: Proc. of 3rd Conf on Knowledge-Based Software Engi-
neering, Smolenice 1998, TOS Press.

[64] Popelinsky L.: Induktivni logické programovéani. Technical Report Ger-
stner Laboratory GLC-30/99, CTU Prague 1999 (in Czech)

[65] Popelinsky L.: Approaches to Spatial Data Mining. In Proceedings of
GIS... Ostrava’99 Conference, ISSN 1211-4855, 1999.

[66] Quinlan J.R.: FOIL: A midterm report. Proceedings of ECMI.’93, LNAI
667, Springer-Verlag 1993.

BIBLIOGRAPHY 115

[67] Shapiro Y.: Algorithmic Program Debugging. MIT Press, 1983.

[68] Srinivasan A., Muggleton S., King, R.D.: Comparing the use of back-
ground knowledge by two Inductive Logic Programming systems. De
Raedt, L.(ed.): Proceedings of the 5th International Workshop on In-
ductive Logic Programming, pp. 199-230, 1995.

[69] Stahl I.: Predicate Invention in Inductive Logic Programming. In: L.
De Raedt(Ed.), Advances of Inductive Logic Programming, IOS Press,
1996.

[70] Wrobel S.: On the proper definition of minimality in specialization and
theory revision. In Brazdil P.B.(Ed.): Proceedings of ECML-93 Confer-
ence. LNAI 667, Springer-Verlag 1993, pp. 65-82.

Appendix A

Number of admissible
sequences of variables

A sequence of variables {X}, ..., X;} is admissible if no variable X, can
appear before all variables { X7, ..., X;} have been used.

In order to count the number of admissible sequences of variables of a given
length, it is useful to introduce a function A(P, N). This function specifies
the exact number of those admissible sequences of variables of the length N
in which just P variables appear. Obviously, this function is defined only for
P < N (all P variables have to be present in the considered sequence). This
function is easy to evaluate for distinguished values of its arguments, namely

h(1,N) =1
h(P,P) =1

Number of admissible seguences of the length N with just 2 variables is given
as a sum of cardinalities of those sets of admissible sequences which differ by
the positions of the first occurence of X,. Variable X5 can appear first on
the position 2, and then on all higher positions, i.e.

h(2,N)=2N"242N=3 4 +1=2N"1_-1

For other values of its arguments the function A can be defined recursively
as follows

h(P,N)=Pxh(P,N—1)+h(P—1,N —1).
The number NC(N) of all admissible sequences of variables of the length N

is then given as a sum

116

117

NC(N) = h(1, N)+h(2, N)+h(3, N)+...4h(N—1, N)+h(N, N).

and the number of all sequences of K variables of the length NV is given as a
sum

NC(K,N)="h(1,N) + h(2,N) + ...+ h(K, N).
Obviously, for N > 1 there holds
NC(N) > h(2,N) +1 =2N"1

The function NC(N) has clearly an exponential character.

Appendix B

Parameters of WiM

General settings

wim_set (learn,NameOfPredicate/Arity)

name and arity of a predicate to be learned
wim_set (verbose, [yes])

full information about learning session is displayed
wim_set (maxNumOfRefGood, [Max])

maximal number of generated clauses that covers at least 1 un-
covered positive example

Language bias
wim_set (mx_free_vars, [Min,Max])

maximal number of free varibales that may appear in a learned
clause

wim_set (mx_goals, [Min,Max])
maximal number of goals in a clause body
wim_set (mx_arg_depth, [Min,Max])

maximal depth of function terms in a clause head

118

119

Search bias

wim_set(bias, [shift])
shift of bias allowed
wim_set (interactive, [interactive=no,answer=continue])

WiM looks for all solutions in the hypotheses space

Interactive mode

wim_set (assumptions, [no])

switchs off an assumption generation

Appendix C

Example sets

Definitions of predicates in the form of

pred_def(Predicate/Arity, <arguments types and modes>,
<background knowledge predicate to use> , []).

and examples of the given predicate follows.

pred_def(member/2, [-x, +x1], [member/2 1, []).
ex(member(a,[a]),true).
ex(member(c, [b,c]l),true).

pred_def(concat/3, [+x1, +x, -x11, [concat/3], [1).
ex(conc([],a,[a]l), true).

ex(conc([bl,c,[b,c]), true).

ex(conc([b,c],d,[b,c,d]), true).

pred_def(append/3, [+x1, +x1, -x1 1, [append/3 1, [1).
ex(append([1, [al, [al), true).

ex(append([b, cl, [d, e]l, [b, c, d, e]), true).
ex(append([£ 1, [g, h]1, [f ,g, h]), true).

pred_def(delete/3, [+x, +x1, -x1 1, [delete/3], [1).
ex(delete(a,[b,al,[b]),true).
ex(delete(c,[d,e,c,f],[d,e,f]),true).

Assumption: delete(b,[b,a],[b]),false

120

121

pred_def(reverseConcat/2, [+x1, -x1 1],
[cconc/3, reverseConcat/2 1, [1).
ex(reverseConcat([], [1), true).
ex(reverseConcat([a, b, ¢c]1, [c, b, al), true).

pred_def(reverseAppend/2, [+x1, -x1 1],

[ssingleton/2, append/3, reverseAppend/2 1, [1).
ex(reverselAppend([a,3,4],[4,3,a]), true).

ex(reverseAppend([2,0],[0,2]),true).

ex(reverseAppend([1, []), true).

pred_def(last/2, [-x, +x1], [last/2], [1).
ex(last(a,[a]l),true).
ex(last(b,[a,b]),true).

Assumption: last(a,[a,b]),false

pred_def(split/3, [+x1, -x1, -x1]1, [split/3]1, [1).
ex(split([a,b]l, [al, [bl), true).
ex(split([c,d,e,f], [c,el, [d,f]), true).

pred_def(sublist/2, [-x1, +x1 1, [sublist/2 1, []).
ex(sublist([],[]),true).

ex(sublist([¢, d]1, [b, c, d, a
ex(sublist([¢, d]1, [¢, d, b, a
ex(sublist([a1, [b, al), true).

1), true).

1), true).

pred_def(union/3, [+x1, +x1, -x1], [member/2, union/3], []).
ex(union([],[1,2,3],[1,2,3]), true).

ex(union([1,31,[2,3,4]1,[1,2,3,4]), true).

ex(union([1,2,3,4],[2,3,5]1,[1,4,2,3,5]), true).
ex(union([1,2,3]1,[3,4,51,[1,2,3,4,5]), true).

pred_def(plus/3, [+int, +int, -int], [plus/3]1, [1).
ex(plus(0,s(0),s(0)), true).

ex(plus(s(s(0)),s(s(0)),s(s(s(s(0))))), true).

ex(plus(s(0),s(s(0)),s(s(s(0)))), true).

Assumption: plus(0,0,s(0)), false

122 APPENDIX C. EXAMPLE SETS

pred_def(leq/2, [+int, +int], [leq/21, [1).
ex(1eq(0,s(0)), true).

ex(leq(s(s(s(0))),s(s(s(s(0))))), true).
ex(leq(s(s(0)),s(s(s(0)))), true).

Assumption: leq(s(s(s(s(0)))),s(0)) , false

pred_def(length/2, [+x1, -int], [length/2, is0/1, ppl/31, [1).
ex(length([1, 0), true).

ex(length([b, ¢ 1, s(s(0))), true).

ex(length([£ 1, s(0)), true).

Assumption: length([0],0) , false

pred_def (extractNth/3, [-int, +x1, -x1], [extractNth/3], []).
ex(extractNth(s(0), [s(s(s(0))) 1, [1), true).
ex(extractNth(s(0), [s(s(0)), s(0), (s(s(0))) 1,
[s(0), (s(s(0))) 1), true).
ex(extractNth(s(s(0)), [s(s(0)), s(0), (s(s(0))) 1,
[s(s(0)), (s(s(0))) 1), true).

Assumption: extractNth(s(s(s(0))),[s(s(s(0)))].[]) , false

Appendix D

Geographic data

Specification: Topographic description of rivers, roads, railways as well as
woods/forests and buildings

Data complexity estimation or order of magnitude: Based on real-
world data (modified to keep confidentiality)

Data format: Prolog

Description: The data contain description of rivers, roads, railways as well
as woods/forests and buildings (1 fact per 1 object). Each object is decribed
by its geometry in 2-dimensional space and by some characteristics (for roads
and railways). The example set is based on real-world topographic data. To
keep confidentiality, however, they had to be modified. The modification
should keep the main characteristics that can be learned from the data (e.g.
based on intersection, being parallel, the area etc.)

The provided dataset is intended for induction of the rules for identification
of concepts like bridge, forest in contrast to wood, railway station in contrast
to a house nearby the railway etc.

123

