
On practical inductive logic programming
Lubo² Popelínský

A thesis submitted to the Czech Technical University forthe Doctorate in Arti�cial Intelligence and Biocybernetics

Czech Technical University in Prague,Faculty of Electrical Engineering, Department of CyberneticsJuly 2000

AbstractThis work focuses on exact learning of logic programs from examples. Weintroduce a new paradigm of inductive logic programming called assumption-based learning and the corresponding ILP system WiM .WiM , the system for synthesis of closed Horn clauses, further elaborates theapproach of MIS and Markus. It works in top-down manner and uses shiftof language bias. If negative examples are missing in the learning set, thesystem itself is capable to �nd them due to utilisation of the assumption-based learning paradigm. WiM displays higher e�ciency of learning as wellas smaller dependency on the quality of the learning set than the other exactlearners.A method for automatic building of domain knowledge from object-orienteddatabase schema was developed. This method has been used for solving twodatabase application tasks with WiM , inductive redesign of object-orienteddatabase schema and data mining in spatial data.

AcknowledgementsMy �rst and foremost thanks go to my supervisor Olga �t¥pánková for herstrong encouragement and support of my research as well as for her pa-tience. Many thanks to Mojmír K°etínský, my boss at Faculty of Informatics,Masaryk University in Brno for his long-term assistance. Special thanks tomy wife Eva and my sons Jan a Tomá² for their care, patience and tolerance.Three events signi�cantly in�uenced my work. My warm thanks to PavelBrazdil, LIACC Universidade do Porto, who accepted several times my ap-plications for a leave-of-absence at his group and who � together with LuisTorgo, João Gama and Alípio Jorge and with other members of his group �helped me a lot. The wonderful months spent in L.R.I. Université Paris-Sudin Yves Kodrato�'s group strongly in�uenced not only several parts of thisthesis. Thanks to Yves Kodrato�, Céline Rouveilor, Claire Nédellec, MartaFra¬ová, Gil Bisson, Marjorie Moulet and Hervé Mignot. I must not forgetthe �rst LOPSTR workshop in Manchester 1991. It was Kung-Kiu Lau andTim Clement who enabled me to be there, and Norbert Fuchs and PierreFlener who helped me to start my research.Thanks to my students and colleagues at the Department of Computing Sci-ence, Faculty of Informatics, Masaryk University in Brno as well as to allnice people that I met in the last years for fruitful discussions and support.This work has been partially supported by Esprit LTR 20237 Inductive LogicProgramming II ILP2. My stays in Porto were facilitated by the TEMPUSProject and the ESPRIT METAL Project. French government scholarshipallowed me to stay in Paris.

Contents
List of �gures 11List of tables 12ACM Classi�cation 131 Introduction 151.1 Inductive synthesis in �rst order logic 151.2 Motivation . 161.3 Objectives . 171.4 Outline of the thesis . 182 Logic programming 192.1 Syntax . 192.2 Semantics . 202.3 Answer . 212.4 Error diagnosis . 212.5 Types and modes . 223 Inductive logic programming 243.1 Basic task of ILP . 243.2 Generic ILP algorithm . 253.3 General-to-speci�c ILP . 273.3.1 Specialisation . 273.3.2 Specialisation operators in �rst-order logic 273.3.3 General-to-speci�c algorithm 283.4 Re�nement operator . 283.4.1 De�nition . 287

3.4.2 Properties . 293.5 Bias . 313.6 Cardinality of the search space for given settings 323.6.1 Upper estimate . 323.6.2 How to narrow the search space 334 ILP systems 354.1 MIS . 354.1.1 Overview . 354.1.2 Algorithm . 364.1.3 Re�nement operator 374.1.4 Discussion . 394.2 Markus . 394.2.1 Overview . 394.2.2 Algorithm . 394.2.3 Re�nement operator 404.2.4 Parameters . 404.2.5 Discussion . 404.3 Other systems . 414.3.1 CRUSTACEAN . 414.3.2 FILP . 424.3.3 SKILit . 434.3.4 Progol . 435 Assumption-based ILP and WiM system 455.1 Introduction . 455.2 Assumption-based learning . 475.2.1 Inspiration . 475.2.2 Inductive inference with assumptions 475.2.3 Generic algorithm . 495.3 Basic WiM algorithm . 505.4 Inductive synthesiser Markus+ 505.4.1 Shifting of bias . 525.4.2 Multiple predicate learning 525.4.3 Constraint of a program schema 545.5 Generator of assumptions . 545.5.1 Ordering on positive examples 555.5.2 Generator of near-misses 55

5.6 Acceptability module . 575.7 Sample session with WiM . 575.8 Related works . 606 Experimental results 636.1 Learned predicates . 636.2 Carefully chosen example sets 646.3 Randomly chosen example set 656.3.1 Overview . 656.3.2 Example set generation 666.3.3 Method of testing . 676.4 Parameter settings . 676.5 Overview of experiments . 686.6 Learning without assumptions 686.6.1 Carefully chosen examples 686.6.2 Evaluation on randomly chosen examples 696.6.3 Dependence on bias settings 706.6.4 Number of test perfect solutions 706.6.5 CPU time . 716.7 Learning with assumptions . 726.7.1 Carefully chosen examples 726.7.2 Randomly chosen examples 736.8 Comparison with other systems 746.8.1 Comparison with Markus 746.8.2 CRUSTACEAN and FILP 756.8.3 SKILit . 766.8.4 Progol . 776.9 Summary of results . 787 WiM for applications 797.1 Application challenges . 797.2 Reusable domain knowledge 807.3 Building domain knowledge: Example 817.4 Uni�ed approach to building domainknowledge . 847.4.1 General schema . 847.4.2 Algorithm GENERATE 847.4.3 Translation between �rst-order logic and F-logic 85

8 Inductive redesign of a database schema 878.1 Rules in deductive object-orienteddatabases . 878.2 DWiM . 888.3 Results . 898.4 Extension to full F-logic . 908.5 Related works . 929 KDD in geographic data 939.1 Mining in spatial data . 939.2 GWiM . 949.3 Inductive query language . 969.4 Results . 989.5 Discussion . 1009.5.1 On the inductive query language 1009.5.2 On mining in real databases 1019.6 Related works . 10210 Conclusion 10310.1 Main contributions . 10310.1.1 Novel ILP architecture 10310.1.2 E�cient program synthesis from small learning sets . . 10310.1.3 Automatic generation of negative examples 10410.1.4 Building of reusable domain knowledge 10410.1.5 Inductive redesign of object-oriented database 10410.1.6 Mining in spatial data 10510.2 Future work . 105Index 106Bibliography 109A Number of admissible sequences of variables 116B Parameters of WiM 118C Example sets 120D Geographic data 123

List of Figures3.1 General setting . 243.2 Example setting . 253.3 Generic algorithm for ILP . 263.4 Re�nement graph for reverse=2 304.1 Schema of MIS algorithm . 364.2 MIS : A new clause synthesis 385.1 Basic schema of assumption-based learning 495.2 A generic algorithm of assumption-based learning 505.3 WiM algorithm . 515.4 Input of WiM . 537.1 Object-oriented database schema 817.2 Description in F-logic . 827.3 Example of an object description 827.4 DWiM schema . 848.1 Class and attribute de�nitions 899.1 Spatial database schema . 949.2 Schema description in �rst-order logic 959.3 General form of rules . 969.4 Geographic data . 9910.1 List of oracles implemented in WiM 106
11

List of Tables3.1 NC(n) for small values of variable positions 336.1 WiM parameters settings . 676.2 Results of WiM on carefully chosen examples 696.3 Results for randomly chosen examples 706.4 Dependence on a maximal argument depth 706.5 Number of test perfect solutions in 10 learning sessions 716.6 Average CPU time for a di�erent number of examples 716.7 Carefully chosen examples: Learning with assumptions 736.8 Randomly chosen examples: Learning with assumption 736.9 Comparison with Markus . 746.10 Comparison with FILP and CRUSTACEAN 756.11 Comparison with CRUSTACEAN on randomly chosen ex-amples . 766.12 Comparison with SKILit . 776.13 Comparison with Progol . 776.14 Results on Progol distribution data 788.1 DWiM : Summary of results 909.1 GWiM : Summary of results 100

12

ACM Classi�cationD.1.2 Software PROGRAMMING TECHNIQUES Automatic ProgrammingD.1.6 Software PROGRAMMING TECHNIQUES Logic ProgrammingI.2.2 Computing Methodologies ARTIFICIAL INTELLIGENCEAutomatic Programming Program synthesisI.2.6 Computing Methodologies ARTIFICIAL INTELLIGENCELearning Concept learning InductionH.2.1 Information Systems DATABASE MANAGEMENT Logical DesignSchema and subschemaH.2.8 Information Systems DATABASE MANAGEMENT DatabaseApplications Data MiningH.2.8 Information Systems DATABASE MANAGEMENT DatabaseApplications Spatial databases and GIS

Chapter 1IntroductionWe brie�y explain exact learning in �rst order logic. Then wediscuss motivation and objectives of this thesis and outline itsstructure.
1.1 Inductive synthesis in �rst order logicThis work deals with inductive synthesis of logic programs from examples.The work is, in the �rst place, application-oriented. It aims at building toolsfor logic program synthesis from examples and it focusses on the tasks thatare solvable by such tools.Inductive logic programming (ILP) [53, 57], as that particular �eld of ma-chine learning is called, explores inductive learning in �rst order logic. Aninductive system learns if for a given set of instances of a particular conceptit �nds a general description of that concept. The main goal of ILP is thendevelopment of theory, algorithms and systems for inductive reasoning in�rst-order logic.We focus here on exact learning. It means that no noise in input information(examples, domain knowledge) is allowed. We employ the generate-and-teststrategy. First a hypothesis is generated that is afterwards tested on exam-ples. 15

16 CHAPTER 1. INTRODUCTION1.2 MotivationThe development of a new ILP system presented in this thesis was motivatedby some tasks that everybody must treat when using ILP. It is a selectionof learning set (its cardinality and quality), building domain knowledge andoptimal settings of bias. Below we summarise some general di�culties thatconcern those three tasks.Selection of a training set. Training set should be big enough to ensuresuccessful solving the particular task and it must not contain a lot of unusable(irrelevant, redundant) examples. The main troubles of the ILP systems are:1. Cardinality of a training set needed by ILP systems seems to be toobig [7, 54, 66] and/or the needed quality od examples is extremely high[2, 26, 67]2. The used negative examples are more dependent on the used ILP sys-tem than on the solved task [26, 54, 67].3. In the case of interactive systems, the obtained result very often de-pends on the order of examples [67].Building domain knowledge. Domain knowledge should be rich enoughand, at the same time, it should not contain unusable predicates. Two wayshow to build the set of domain knowledge predicates has been proposed. Themost frequent one is a selection of the most appropriate predicates by the userhimself. This selection is based on some informal knowledge of the solved taskwhich the user knows. The second, much less used way is (semi)automaticsynthesis of domain knowledge by means of machine learning. Predicateinvention [21, 69] and multiple predicate learning [17] are instances of thatapproach. Main drawbacks of the existing solutions are the following:1. The existing solutions hold for a particular task [68], or a particularkind of domain knowledge [30]; or2. they are relevant only to a particular ILP system [4, 42, 68].

1.3. OBJECTIVES 17Settings of bias. Optimal settings of bias [56] can hardly be automatic.However, it should be as easy as possible. Finding the optimal parameters ofbias is closer to art than to a science [27]. This �eld is unfortunately muchless explored than the choice of bias (parameter settings) for decision treelearners.1.3 ObjectivesIn this thesis, we solve only some of tasks that result in more e�cient andmore user�friendly ILP systems. These tasks are summarised bellow.E�cient learning from a small learning set. We will show that thenumber of hypotheses in generate�and�test paradigm can be lowered withbias settings. By this way, this 'brute force' top-down learning will becomequite e�cient. When looking for the optimal bias settings we will aim at theminimal need of interaction with a user.Automatic generation of negative examples. As mentioned before,the useful negative examples are very often dependent on the used ILP sys-tem. We will describe a semi-automatic method that for �nding negativeexamples. We will show that the found examples are helpful.Building of reusable domain knowledge. The set of domain knowledgepredicates is of course dependent on the particular task that is to be solvedby ILP. However, for some kind of applications the domain knowledge (orits part) can be constructed automatically. We will show how to extract themain part of domain knowledge predicates from object-oriented descriptionof learning data.Applications. We will describe classes of problems that can be solved withexact learners. We focus on the traditional class of problems � logic programsynthesis, and database applications. We will show that WiM system canbe applied in the �eld of database schema redesign as well as in the processof knowledge discovery in geographic data.

18 CHAPTER 1. INTRODUCTION1.4 Outline of the thesisThe following text can be split into four parts. The �rst part is the in-troductory one. Chapter 2 is an introduction to the basic notions of logicprogramming. Chapter 3 overviews basics of inductive logic programming.The search space, which has to be analysed in ILP setting has clearly expo-nential character [61]. We show how to decrease this complexity. Chapter 4displays ILP systems MIS , Markus and Progol as well as other systemsmentioned in this thesis.The second part � Chapters 5, 6 � are as the nucleus of this thesis. Chapter5 introduces a new paradigm of ILP, assumption-based learning (ABL).Implementation of this paradigm,WiM system, is described. WiM can ef-�ciently learn logic programs from a small example set. Chapter 6 displaysthe results obtained with WiM for both carefully chosen training sets andrandomly chosen training examples. Comparison of the results with the re-sults obtained with other ILP systems is displayed.Next part concerns the process of building reusable domain knowledge andapplications. In Chapter 7 the typical applications areas that are solvablewith WiM are displayed and automatic building of domain knowledge forthis kind of applications is described. Next two chapters concern two appli-cation areas � inductive redesign of a database schema (Chapter 8) and datamining in spatial data (Chapter 9). Both solutions exploit WiM system andthe method for automatic building of domain knowledge that is described inChapter 7.Last part � Chapter 10 � summaries this work.Some preliminary results of this thesis were published in di�erent workshopsand conferences or as technical reports. Chapters 3 and 4 are extendedversions of [64]. Previous versions of WiM was described in [24, 59, 61].Preliminary results of Chapter 8 can be found in [60]. This chapter andsome parts of Chapter 7 are substantial extensions of [60, 63]. Chapter 9 isan improved version of [62].

Chapter 2Logic programmingThis chapter brie�y introduces the basic logic programming ter-minology that is used in this thesis. Complete de�nitions can befound in [34, 43, 48].2.1 SyntaxA program clause (or clause) is a formula A W for which A is an atom,the symbol means an implication, and W is a conjunction of literals, i.e.positive or negative atoms. A is called head of the clause and W is calledbody. All variables in the head are universally quanti�ed. A clause (or term)is ground if it contains no variable. The closed clause is a clause with nofree occurrences of any variables, i.e. all variables are bound via quanti�ers.We will use also the term rule for program clauses with unempty body. IfW is absent we call the formula a fact. A logic program1 is a �nite setof program clauses. A goal is a clause of the form W where W is aconjunction of literals. We will use very often :- instead of . Queries willbe written W , or ?-W following syntax of Prolog. Thusp(X; f(X)) : � r(X): (1)p(X; g(Y)) : � p(X;Z): (2)?- p(a; b); p(a; c): (3)is a logic program in which (1),(2) are program clauses and (3) is a goal. Theclause (1) is closed.1If it is unambiguous, we will omit the adjective 'logic'.19

20 CHAPTER 2. LOGIC PROGRAMMINGThe �rst order language given by an alphabet consists of the set of allwell-formed formulas constructed from the symbols of the alphabet.The de�nition of a predicate p appearing in a program P is the set of allprogram clauses in P which have p in their head. We will need the notion ofcompletion of a program Comp(P). Informally the completion of a programis obtained by replacing implication with equivalence in the rules, and addingthe axioms of equality theory.2.2 SemanticsAn pre-interpretation J of a �rst order language L consists of the following:1. A non-empty set D, called domain;2. for each constant in L , the assignment of an element in D;3. for each n-ary function symbol in L, the assignment of a mapping fromDn to D.An interpretation I of a �rst order language L consists of1. a pre-interpretation J with domain D, and2. for each n-ary predicate symbol in L, the assignment of a mapping fromDn into (true; false) (or, equivalently, a relation on Dn).We assume that logical connectives as well as quanti�ers have the ordinarysemantics ([48] p. 13). Then a formula in L is given a truth value applyingthe de�nitions above. An interpretation I is amodel for a closed formulaF if F is true wrt I. Let S be a set of closed formulas and F be a closedformula of a language L. We say F is a logical consequence of S if, forevery interpretation I of L, I is a model for S implies that I is a model forF . We will write S j= F . F j= G i� every model of F is a model of G. Iis a model for the program P i� I is a model for each clause in P . Thereduced clause r of a clause c is a minimal subset of literals of c suchthat r and c has the same model.Let L be a �rst order language. The Herbrand universe UL for L is the setof all ground terms, which can be formed out of the constants and functionsymbols appearing in L. If L has no constants, we introduce one, to form

2.3. ANSWER 21ground terms. Let L be a �rst order language. The Herbrand base BLfor L is the set of all ground atoms which can be formed by using predicatesymbols from L with ground terms from the Herbrand universe as arguments.An Herbrand interpretation for L is any interpretation on the domain ofHerbrand universe UL. Let L be a �rst order language and S a set of closedformulas of L. An Herbrand model for S is an Herbrand interpretationfor L which is a model for S. For normal programs, i.e. programs withnegative literals in the clause body, we refer to the model of the completionComp(P) of a program P .2.3 AnswerA substitution � is a �nite set of the form fv1=t1; :::; vn=tng , where v1; :::; vnare distinct variables and each term ti is distinct from vi. Each element vi=tiis called binding for vi. � is called a ground substitution if the ti areall ground terms. � is called variable-pure substitution if the ti are allvariables. Let P be a normal program and G a goal W . An answer forP [fGg is a substitution for variables inW . The answer does not necessarilycontain a binding for every variable in G. A correct answer is an answer �such that 8(W�) (all variables in W� are universally quanti�ed) is a logicalconsequence of Comp(P).2.4 Error diagnosisA program LP covers a fact e if LP j= e, i.e. if in every possible interpre-tation I LP j=I e. It is useful to split the set of predicate de�nitions LPinto 2 parts. Let P be the de�nition of predicate of the same name and thesame arity as the fact e, and B = LP � P . Than we can rewrite the abovede�nition in the form P [B j= e. That notion of coverage is sometimes calledintensional coverage. In machine learning there is often used the notionof extensional coverage of fact e [43]. In the latter all predicates in B arede�ned extensionally, i.e. by ground facts only.An intended interpretation for a program P is a normal Herbrand inter-pretation [48] for the completion Comp(P) of P. The aim of logic programsynthesis is to �nd a program which has the intended interpretation as amodel.

22 CHAPTER 2. LOGIC PROGRAMMINGLet P be a program, G a goal W , and I an intended interpretation for P .1. Program P is correct wrt I if I is a model for Comp(P).2. If � is an answer for P [fGg and W� is not valid in I, then P isinconsistent wrt I.3. If P [fGg has a �nitely failed SLDNF-tree[48] and W is satis�able inI, then P is incomplete wrt I.In the following text we will omit the clause "wrt I" if no ambiguity mayarise. We say that an instance A W of a program statement in P is anincorrect statement instance for P wrt I if A is unsatis�able in I and Wis valid in I. Then we can summarise that P is incorrect wrt I i� there is anuncovered atom for P wrt I or there is an incorrect statement instance forP wrt I.2.5 Types and modesWe assume that every argument of a predicate have its type and an in-put/output mode. The type is a nonempty set of ground terms that theargument can take. The mode says whether the argument is input (its valuemust be known before an evaluation of the predicate) or output (the value iscomputed inside the predicate). Let us have reverse=2 predicate for revert-ing lists, e.g. ?-reverse([k; a; b; a; t]; X) returns X = [t; a; b; a; k]. For thispredicate the type and mode de�nition can be written as [+list;�list], i.e.the both arguments are lists, the mode of the �rst argument is input (+) andthe mode of the second one is output (-).

2.5. TYPES AND MODES 23

Chapter 3Inductive logic programmingThis chapter introduces basic notions of inductive logic program-ming. More attention is paid to general-to-speci�c framework.We show how to decrease complexity of the search space in ILPsetting.3.1 Basic task of ILPThe goal of inductive logic programming(ILP) is to develop theory, algo-rithms and systems for inductive inference in �rst order predicate calculus1.Informally, for a given example set and background knowledge we aim atFor given background(prior) knowledge B and evidence E = E+ ^ E�such thatPrior Satis�ability: B ^ E� 6j= falsePrior Necessity: B 6j= E+we aim to �nd a hypothesis H such that the following conditions hold:Posterior Satis�ability: B ^H ^ E� 6j= false (consistency)Posterior Su�ciency: B ^H j= E+ (completeness)Figure 3.1: General setting�nding a hypothesis in �rst order logic that explain those examples using1This text is based on [53, 57, 67] 24

3.2. GENERIC ILP ALGORITHM 25the background knowledge. In the general setting, examples, backgroundknowledge and hypotheses may be any formula. More formally, the problemof inductive logic programming [53] is displayed in Fig. 3.1. It is rea-sonable to assume two posteriori conditions [22] B ^E 6j= :H, B 6j= H. Themain used setting in ILP is example setting, or 'speci�cation by examples'[22], where the evidence is restricted to true and false ground facts calledexamples. Background knowledge is a normal program. The de�nition inFor given sets of positive and negative examples E+ a E�and background knowledge B such thatPrior Satis�ability: 8e 2 E� : B 6` ePrior Necessity: 9e 2 E+ : B 6` e�nd a program P such thatCompleteness 8e 2 E+ : B [P ` eConsistency 8e 2 E� : B [P 6` eFigure 3.2: Example settingFig. 3.2 hold even if P is a conjunction of all the positive examples from theexample set. We require in addition that P is a generalisation of examples,i.e. it holds even for examples that do not appear in the example set. In thefollowing text we assume the example setting as default2.3.2 Generic ILP algorithmThe de�nitions above are not constructive. In this section we do the �rststep to �nd an e�cient algorithm that computes as a result a hypothesis Hunder the completeness and consistency conditions introduced above. ILPtask, as any machine learning task in general [51], can be regarded as a searchproblem. There is a space of formulas � hypotheses, and the conditions ofcompleteness and consistency form an acceptance criterion on a hypothesisH. So called enumeration algorithm can solve ILP simply by a naivegenerate and test algorithm. However, it is out of practical interest becauseof a computational complexity which is O(cardL) where L is the set of all2For non-monotonic semantics see [53, p. 636].

26 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMINGpossible hypotheses.The generic algorithm for ILP [53] is in Fig. 3.3. Actual ILP system onlydi�ers in implementation of the functions of this generic algorithm. TheGiven: B;E = E+ ^ E�QH := initialise(B;E+; E�)while not(stop_Criterion (QH)) dodelete H from QHchoose the inference rules r1; :::; rk 2 R to be applied to HApply the rules r1; :::; rk to yield H1; :::; HnAdd H1; :::; Hn to QHprune QHOutput: choose_hypothesis P from QHFigure 3.3: Generic algorithm for ILPalgorithm starts with an initial queue of candidate hypotheses QH. In thewhile loop, a hypothesis H is chosen from the set QH. Then inference rulesr1; :::; rn are applied to H. It yields H1; :::; Hn hypotheses that are added intoQH and the set QH is pruned. The algorithm stops when the stop_Criterionholds on the set QH.The algorithm has the following parameters:� The initialise function builds the initial portion of hypotheses ;� R is the set of inference rules applied;� Di�erent instantions of delete allow to implement a search strategy: adepth-�rst (delete=LIFO), breadth-�rst (delete=FIFO), best-�rst (e.g.delete H such that P (HjB ^ E) is maximal 8H 0 2 QH) ;� choose determines what inference rule to apply on H ;� prune determines what hypotheses to delete from the queue of QH;� The stop_Criterion holds if an adequate solution has been found, orthe QH queue is empty;

3.3. GENERAL-TO-SPECIFIC ILP 27� choose_hypothesis chooses from QH one of possible solutions3.Any of advanced search strategies (hill-climbing, beam-search etc.) can berealized by delete and prune together with choose and stop_Criterion.In the next section we focus on general-to-speci�c framework which is furtherelaborated in this thesis. We �rst introduce the notion of specialisationin logic and describe the generic algorithm for general-to-speci�c ILP. Weexplain the notion of a re�nement operator and a re�nement graph. Weconclude with brief summary of bias.3.3 General-to-speci�c ILP3.3.1 SpecialisationWe say that F is more speci�c than G [53] i� G j= F . We will writeF � G. It means that any model of G is a model of F . F is called a spe-cialisation of G. A specialisation operator maps a conjunction of clausesG into set S of maximal specialisations. Amaximal specialisation S of G(also called the most general speci�cation) is a specialisation of G such thatG is not specialisation of S, and there is no specialisation S 0 of G such thatS is a specialisation of S 0.Example: If the set of function symbols F contains only the element a, andG = p(X; Y), then the set S of all maximal speci�cations of the clause G iscontaining p(a; Y); p(X; a), but not p(a; a).The notions of generalisation, maximal generalisation and generalisation op-erator are de�ned as inverse to those ones [53, p.642] concerning specialisa-tion.3.3.2 Specialisation operators in �rst-order logicMost of ILP systems which work in general-to-speci�c manner employ twooperators of specialisation� binding of 2 distinct variablese.g. for a predicate p=2 we have spec(p(X; Y)) = p(X;X) ;3This function is not explicitely introduced in [53], however we �nd it important.

28 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING� adding a most general literal to a clause body (arguments areso far unused variables). Let the domain knowledge contains onlyone predicate q=3. Applying this rule we obtain two specialisationsof p(X; Y)spec(p(X; Y)) = p(X; Y) p(U; V)spec(p(X; Y)) = p(X; Y) q(U; V;W) ;If working with programs that contain constants and complex terms we needtwo more operators� replacing a variable with a constante.g. spec(p(X; Y)) = p([]; Y) ;� replacing a variable with a most general term (arguments are sofar unused variables)e.g. spec(p(X; Y)) = p([U jV]; Y) ;Although the de�nition of a minimal specialization is simple when learningone clause, it is not so clear when re�ning a whole theory. The problem ofwhat clause to choose for further specialization newly appears [70].3.3.3 General-to-speci�c algorithmNow we can introduce the generic algorithm for general-to-speci�c ILP. Letus start with the generic ILP algorithm (Fig 3.3). Let the training setcontains examples of predicate p(X1; X2; :::; Xn). In the case of general-to-speci�c algorithm, the initialise function returns the most general clausep(X1; X2; :::; Xn) :- true: and the set of inference rules consists of four spe-cialisation rules from Section 3.3.2.A systematic investigation of specialisation operators in logic programmingwas started by Ehud Shapiro [67]. The most important notions and charac-teristics are summarised in the next section.3.4 Re�nement operator3.4.1 De�nitionIn the de�nition below we assume a speci�c language L is used. Withoutloss of generality, we assume L has a most general element >.

3.4. REFINEMENT OPERATOR 29Def.: A re�nement graph is a directed, acyclic graph in which nodes areclauses 4 and arcs correspond to re�nement operations, de�ned bellow.Def.: Let C be a set of clauses and � a mapping from C to �nite subsets ofC. We de�ne <� to be the binary relation over C for whichp <� q i� there is a �nite sequence of clauses p1; p2; :::; pn suchthat p1 = p; pn = q, and pi+1 2 �(pi) for O � i < n.We say that p �� q i� p <� q or p = q (we don't distinguish between clausesthat di�ers only in the variable names).The mapping � is said to be a re�nement operator over C i� the followingtwo conditions hold:1. The relation <� is a well-founded ordering over C.2. For every interpretation I and goal G, if q covers G in I and p <� qthen p covers G in I.operator. It can be proved [67] that the operators of specialisation fromSection 3.3.2 together make a re�nement operator.An example of the re�nement graph for reverse(X; Y) is in Fig 3.4. A root ofthe graph is the most general clause reverse(X; Y). Two clauses C1; C2 areconnected with an edge if the clause C2 arises from C1 after application of oneof the specialisation operators. Clauses of the correct de�nition of reverse=2predicate are printed in bold. To be brief, some unimportant parts of thegraph are missing. E.g. on the �rst level the replacement X=[] as well asadding the literal reverse(A;B) are left out.
3.4.2 PropertiesA re�nement operator � (with transitive closure ��) is1. globally complete for a language L i� ��(>) = L.4Shapiro [67] de�ned the re�nement graph for de�nite clauses. We use here moregeneral de�nition for program clauses.

30 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING��������������� LLLLLaaaaaaaaaaaaeee
������.���� ����� . ZZZZZ

reverse(X,Y)

reverse(X,Y)reverse([UjV],Y)
reverse([UjV],Y) reverse(A,B)reverse([UjV],Y) reverse(V,B)

reverse(X,X) reverse(X,[])Y/X Y/[] X/[UjV] add literal
X/[] X/[]reverse([],[]) reverse([U],Y) reverse([UjV],Y) concat(A,B,C)add literal

A/Vadd literalC/B, D/U, E/Y

add literalV/[] X/[UjV]
reverse([UjV],Y) reverse(V,B) ^ concat(C,D,E)reverse([UjV],Y) reverse(V,B) ^ concat(B,U,Y)

 concat(A,B,C)

Figure 3.4: Re�nement graph for reverse=22. locally complete for a language L i� 8c 2 L : �(c) = fc0 2 L j c0 is amaximal specialisation of cg.3. optimal for a language L i� 8c; c1; c2 2 L : c 2 ��(c1) and c 2 ��(c2)!c1 2 ��(c2) or c2 2 ��(c1)Let us have a language L where P;F are �nite sets of predicate and functionsymbols. There is a �0 re�nement operator that is globally complete for thelanguage. It was proved in [67] that two syntactic operations are enough for�0: 1. Instantiate a clause.2. Add a goal to the condition of a clause

3.5. BIAS 313.5 BiasThe computational complexity of ILP algorithm is an important problem. Ingeneral there are three ways how to limit the size of the set generated by are�nement oprator: to de�ne bias (syntactic as well as semantic restrictionson the search space) [27, 42, 56], to accept assumptions on the quality ofexamples[46], or to use an oracle[12, 13, 67]. Even in the case of a �niterelation we assume that the number of examples is (signi�cantly) less thanthe number of all instances of the relation.Bias which is discussed in this section is usually split into two groups, lan-guage bias that narrows the space of possible solutions and search biasthat de�nes how to search that space and when to stop.Language bias. These constraints de�nes a form of possible solutions.More frequent constraints limit the maximal number of clauses in the solutionor maximal number of literals in a clause body [26, 54, 67]. Languages weredeveloped [6, 11] that enable to de�ne almost any syntactic feature of thedesirable solution.Search bias. It says how to search the graph of potential solutions. Italso de�nes the condition under which the search are to stop. The latter issometimes called validation bias.Shift of bias. Most of characteristics of bias � like the complexity of theintended solution, or the maximal number of nodes-hypotheses in the searchspace � may be expressed via parameters. Usually it is uneasy to set theparameters optimally. The techniques of the shift of bias can help. We startwith such a setting that de�nes the minimal search space that is reasonable.If the solution is not found in that space the bias can be weakened, i.e. thesearch space is increasing.It is clear that the complexity fo learning strongly depends on the bias set-tings. In the next section we show how to decrease the cardinality of thesearch space in top-down learning algorithms. We try to estimate cardinalityof the search space as a function of the size of the background knowledge andof the maximal length of clause bodies.

32 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING3.6 Cardinality of the search space for givensettings3.6.1 Upper estimateLet jBKj mean the number of background knowledge predicates + 1 (for thetarget predicate), A the highest arity among the predicates in backgroundknowledge and the target predicate, L the maximal length of a clause body,i.e. the maximal number of predicates in a clause body.The number of positions of variables in a clause for a given length l is equalto a sum of the positions in the head and in the body, its upper bound is(1+ l) �A. E.g. for member=2 predicate, maximal length of the clause bodyfor l = L = 2 and background knowledge which contains only list(List,HeadOfList, BodyOfList)5 we havemember(X1,X2) :- P1(X3,X4,X5),P2(X6,X7,X8)i.e. 8 positions.Now we �nd the number NC(n) of clauses for a given number n of vari-able positions. Having a set of variables {X1,X2,X3,X4,X5,X6,X7,X8} as inthe example above, we can �nd all di�erent clauses for �xed P1, P2. Thenumber of those clauses is less than 88 because some of them are equiva-lent, e.g. member(X,Y) :- member(X,Z) is the same as member(U,V) :-member(U,W). See Appendix A for detailed treatment of this subject. InTable 3.1 the values of NC(n) for small values of n are displayed. As eachcombination of background predicates as well as the target predicate can ap-pear in the body, we have to multiply NC(n) by the number of all allowedcombinations of predicate symbols. E.g. for member=2 predicatemember(X1,X2) :- P1(X3,X4,X5),P2(X6,X7,X8)we have 2 positions for predicates. If the maximal length of the clause bodyis L = 2 and the maximal arity A = 3, the number of all clauses in the searchspace is the sum of number of clauses of the length 0 (body == true), of thelength 1 and 2NC(A)+2�NC(2A)+3�NC(3A) = 2+2�52+3�21147 = 635475list(List, HeadOfList, BodyOfList) splits List into its head HeadOfList and itsbody BodyOfList.

3.6. CARDINALITY OF THE SEARCH SPACE FORGIVEN SETTINGS33Variable Variablepositions Clauses positions Clauses1 1 6 2032 2 7 8783 5 8 41404 15 9 211475 52 10 115975Table 3.1: NC(n) for small values of variable positionsThe coe�cients 2 and 3 are equal to the number of combinations with rep-etition of possible predicates in the clause body for a clause with its bodylength 1 and 2 respectively.The general formula for the number of all clauses for given BK;L;A isNCA = PLl=0 jBKj+ l � 1l ! �NC((1 + l) � A),This formula inherits its exponential character from the function NC (seeAppendix A). That is why we need more information to decrease cardinalityof the search space. The declaration of types and the maximal number offree variables allowed during learning can help. It was shown elsewhere [16],that we can focus on linked clauses only. It limits the number of distinctvariables signi�cantly. In the next paragraph we show how to exploit suchinformation to narrow the search space.3.6.2 How to narrow the search spaceWe will demonstrate a way of narrowing search space on a simple example.Let us learn the base clause of the predicate member=2. The list(List,HeadOfList,BodyOfList) predicate is the only background knowledge pred-icate. Suppose we know that the maximal length of the body of the clauseis 1. Then two skeletons have to be considered as candidates(1) member(_,_)(2) member(_,_) :- list(_,_,_)For (1) and (2), there are NC(2) = 2 and NC(5) = 52 instances respectively,in total 54 clauses in the search space.

34 CHAPTER 3. INDUCTIVE LOGIC PROGRAMMINGLet us assume that only 1 free variable may appear in the body of the clause.For the case (2) it implies introduction of 1 new variable by predicate list/3so that no more than 3 distinct variables are allowed. The number of clausesis than h(1; 5) + h(2; 5) + h(3; 5) = 41.If we know types of arguments, member(nom,list), list(list, nom,list)in our example, the search space is further narrowing because member(X,X)cannot appear. The remaining member(X,Y) is not taken in account as it isthe most general clause and it could not be consistent - any negative examplewould be covered by this clause. When taking in account the type de�nition,the case (2) may be split into two cases (2a) and (2b)(2a) member(X,Y) :- list(L1,X,L2)(2b) member(X,Y) :- list(L1,U,L2)where U 6= X. In (2a), as at most 1 free variable can be introduced, one ofL1,L2 must be equal to Y or L1=L2. It means that only following 4 clausesremainmember(X,Y) :- list(Y,X,L1)member(X,Y) :- list(L1,X,L1)member(X,Y) :- list(L1,X,Y)member(X,Y) :- list(Y,X,Y)For (2b), as U 6= X is a free variable, both L1 and L2 have to be identicalto Y, and just the single clause member(X,Y) :- list(Y,U,Y) remains. Itmeans that the search space consists of 5 clauses only - this compares wellto the number of 54 clauses estimated in the beginning6.To summarize, the search space shrinks considerably when we do exploitknowledge about the maximal length of a body of the clause, the maximalnumber of free variables allowed and type declarations of arguments.Based on the idea of narrowing search space displayed in this section weimplemented top-down ILP system WiM which is described in Chapter 5.We will show in Chapter 6 that this way of narrowing search space is su�cientenough for a class of list processing predicates.6Knowing more about semantics of the list/3 predicate we can also delete clausesmember(X,Y) :- list(L1,X,L1) and member(X,Y):-list(Y,X,Y).

Chapter 4ILP systemsWe introduce general-to-speci�c ILP systems that are as predeces-sors of WiM system. The basic information on MIS is followedby description ofMarkus system. We displays also other systemsfor exact learning � FILP , CRUSTACEAN , SKILit, and alsoProgol system, that were used for comparison with WiM system.4.1 MIS4.1.1 OverviewMIS - Model Inference System [67] is the �rst system for logic programsynthesis from examples. It is an interactive multiple predicate learner thatemploys the general-to-speci�c strategy. The process is incremental, i.e. theclause that has been rejected as inconsistent will not be given again intothe solution. It needs information about learned predicates, namely modesand types of arguments and names of domain knowledge predicates that mayappear in the learned predicate de�nition. Each predicate may be declaredas total (for each input there exists at least one output) and/or determinate(for each input there is at most one output). Then MIS process examplesone-by-one resulting in a logic program that is complete and consistent withrespect the known examples. During the program synthesis MIS may askqueries about intended interpretation of subgoals. The alorithm of MIS isbased on error diagnosis in logic programs. For a ground goal (new example)e and a program P (that has been synthesised) some of the following errorscan be detected: 35

36 CHAPTER 4. ILP SYSTEMS1. inconsistence.The program P covers a negative example : e 2 E� ^ P ` e . Theclause that was detected as incorrect is deleted andMIS looks for nextcandidate clause.2. incompleteness.The program P does not cover a positive example : e 2 E+ ^ P 6` e .MIS looks for a new clause that covers the example e, does not coverany negative example and is the most general from all possible clausesthat have not been tested (Section 4.1.3). That clause is appended tothe solution.3. divergence.The program P is looping. The metainterpreter built-in in MIS isgiven a maximal depth of computation of a goal. If that maximal depthis exceeded the algorithm continues as in the case of inconsistence.4.1.2 AlgorithmInput: B;E+; E�, biasQH := {} ; The set of marked clauses is empty;repeatread an example;repeatif program QH fails for a positive example�nd a new clause C so that QH [fCg covers the example;QH := QH [fCg;if program QH suceeds for a negative example�nd the incorrect clause C of program QH ; QH := QH � fCg;mark clause C ;until QH is complete and consistentwrite QHuntil all examples from E+ [E� have been readOutput: the sequence of programs QH1; QH2; ::: that are complete and consistentwith respect known examplesFigure 4.1: Schema of MIS algorithmIn the algorithm in Fig. 4.1 marked clauses are the clauses that have alreadybeen found inconsistent.

4.1. MIS 374.1.3 Re�nement operatorThe construction of a new clause starts with the most general clause � ahead of the clause contains distinct variables, and the body is true � whichis further specialised. We will demonstrate the whole process on the exampleof synthesis of predicate reverse=2 (Fig. 4.2). Both arguments are declaredas lists, the �rst one is an input, the second one is an output. The domainknowledge contains only predicate concat(E;L1; L2) that appends the ele-ment E to the list L1 resulting in the list L2. Let us suppose that the baseclause reverse([],[]) has been already found. The training set containsfollowing examplesreverse([1,2],[2,1]), truereverse([1,2],[1]), falseThe root of the re�nement graph is the most general clause reverse(X,Y).It can be specialised by uni�cation of an output variable with an in-put variable in the head of the clause. However reverse(X,X) doesnot cover a new positive example. The next re�nement operation is sub-stitution of input variable from the head to a constant. The onlyconstant for the type of list is [] but reverse([],X) is rejected for the samereason as above. Neither reverse(X,[]) can be accepted which arises fromsubstitution output variable from the head to a constant. Next rulethat replaces a variable with the most complex general term1 resultsin reverse([H|T],Y). This clause is acceptable because it covers the uncov-ered positive example. However, it need to be further specialised because ofinconsistency.The next re�nement rule adds a subgoal to the clause body . This ruleis applied twice resulting in reverse([H|T],Y) :- reverse(T,S),concat(H,S,I). Input arguments of that subgoal are selected from the inputvariables(arguments) that already exist. New variables, i.e. output variablesof that subgoal, are added to the list of input variables and also into thelist of free variables. They may be used as input variables in next subgoals.If a free variable is used as an input one, it is deleted from the list of freevariables.The rest of free variables can be deleted from the list only with the re�nementoperation of closing a clause. If an output variable is uni�ed with a free1Let us notice that the above rules can be applied only to clauses without subgoals.

38 CHAPTER 4. ILP SYSTEMSreverse(X,Y).input variables = <X, list>output variables = <Y, list>|| X /[H|T]Vreverse([H|T],Y).input variables = <H, integer>, <T, list>output variables = <Y, list>|| add_subgoal reverse(T,S)Vreverse([H|T],Y) :- reverse(T,S).input variables = <H, integer>, <T, list>,<S, list>output variables = <Y, list>volne variables = <S, list>|| add_subgoal concat(H,S,I)Vreverse([H|T],Y) :- reverse(T,S), concat(H,S,I).input variables = <H, integer>, <T, list>,<S, list>, <I,list>output variables = <Y, list>free variables = <I, list>|| Y/I (close clause)Vreverse([H|T],I) :- reverse(T,S), concat(H,S,I).Figure 4.2: MIS : A new clause synthesis
variable, the free variable is deleted from the list. The operation of closinga clause may be applied only in the case that it results in exhausting of thelist of free variables.The whole synthesis of the recursive clause for reverse=2 in in Fig. 4.2. Asthe base clause reverse([],[]) has been already synthesised, the clausereverse([H|T],Y) :- reverse(T,S), concat(H,S,I) is accepted even ifexample reverse([2],[2]) is not in the example set. The �nal clause iscomplete and consistent with respect to the example set.

4.2. MARKUS 394.1.4 DiscussionThe main problem of MIS is the right choice of examples and even theirorder. User actually has to know the intended program and even to under-stand well MIS algorithm. The implemented re�nement operator does notprevent from duplicate nodes in the re�nement graph. Mat Huntbach [31]partially solved that problem by ordering the re�nement operations. How-ever, duplicate clauses may still appear within one re�nement operation. Theproblem was fully solved in Markus [26] (Section 4.2). Extension of MISfor synthesis of inpure Prolog programs is suggested in [58].4.2 Markus4.2.1 OverviewMarkus [25, 26, 27] extends Shapiro's Model Inference System in some di-rections. In noiseless domains it is still competitive with younger systems.Following [26], the main features of Markus can be summarised as follows:� optimal generation of a re�nement graph (no duplicate nodes) (contin-uing the work [31]),� use of the iterative deepening search of the re�nement graph,� controllability of the search space with several parameters,� the covering paradigm, and� learning in the batch (non-interactive) mode.4.2.2 AlgorithmIt is non-interactive and employs covering paradigm. It means that it looksfor partition of positive example set on mutually disjunctive parts. Each ofthose part will be then described by one clause. The learning algorithm �ndsa �rst clause that covers at least 1 positive example and uncover no negativeone. The covered positive examples are then deleted from the training setand the learning algorithm continues in covering that smaller example set.The algorithm stops when all positive examples and no negative examplesare covered, or no solution was found in the search space.

40 CHAPTER 4. ILP SYSTEMSA synthesis of a new clause processes in 3 steps. A newly constructed clause is�rst tested whether it is promising , i.e. it covers at least 1 positive examplefrom the current example set. After closing the clause (see closing re�nementoperator in MIS), the clause is tested whether it is still promising and inthe same time whether it does not cover any negative example. Such clause,said as good one, is appended to the end of current result. The result isthen tested to be complete and consistent.4.2.3 Re�nement operatorThe re�nement operator used in Markus is based on MIS' one. In addition itcan introduce negative goal in the clause body in the case that all variablesare input ones. By further ordering of modi�cations within one re�nementoperation it solves eventually the problem of duplicate nodes. In this sensethe Markus re�nement operator is optimal.4.2.4 ParametersParameters ofMarkus may be split into three groups. The �rst group corre-sponds to language bias mention earlier. The second one parametrises searchof hypotheses space and third one concerns inputs and outputs of Markus .Language bias may be de�ned with following parameters:� maximal number of goals in clause body,� maximal depth of arguments in the head of a clause.� maximal number of free variables (newly introduced, but still unusedvariables in the body of a clause),� maximal number of clauses in the result.Besides those, user may choose a kind of re�nement operator � the operatorfor the language of de�nite clause grammars or the re�nement for normalprograms.4.2.5 DiscussionWhen settings of parameters of bias are good, Markus can learn simplelist processing predicates as well as Peano's arithmetic operations from no

4.3. OTHER SYSTEMS 41more than 4 examples, mainly due to strong focus on modes of arguments.However, the optimal choice of bias is very di�cult to �nd without knowingthe right solution in advance.4.3 Other systemsIn the following sections we introduce theree systems that are used for com-parison withWiM (Chapter 6). After a brief description the most importantfaults of those systems are displayed.4.3.1 CRUSTACEANCRUSTACEAN [2] learns recursive programs from a small number of ex-amples. The goal of that project was to develop e�cient ILP system witha strong language bias and without any need background knowledge. Thelearning algorithm is based on analysis of argument structure in positiveexamples and generalisation of found similarities. It starts in �nding allpossible subterms of the arguments. We will explain it on the examplelast(a,[c,a]). The �rst argument has no subterms except itself but [c,a]can be decomposed into [c,a], c, [a], a,[]. Each subterm can be ob-tained by applying a generating term to the particular argument. A gen-erating term is a sequence of decomposition operators. For the domain oflists we need only one decomposition operator [_|_] that splits a list intoits head and its body. E.g. for the term [c,a] the generating term for thesubterm [a] is [_|X] as [a] can obtained from [c,a] after evaluation of thegoal ?-[c,a]=[_|X]. The depth of the generating term is 1. The generatingterm of a is [_|[X|_]]. because we need to compute ?- [c,a]=[_|[X|_]].(depth 2). The programs learnable with CRUSTACEAN have the formP (A1; :::; An): (B)P (B1; :::; Bn) : �P (C1; :::; Cn): (R)where Ai; Bi; Ci are terms and (1) there exists at least one i such that forBi 6= Ci Ci is not ground and Ci is a subterm of Bi, or (2) Bi = Ci.CRUSTACEAN needs two positive examples P1; P2. Each of them can beproven by resolving a specialisation B1 of the base clause B and the recursiveclause R repeatedly. First, all subterms and corresponding generating termsfor all positive examples are computed, The base clause is induced as the

42 CHAPTER 4. ILP SYSTEMSleast general generalisation(lgg) [53] of atoms that arise from aplication ofthe generating terms to positive examples. Then we apply the generatingterms to the examples 0, 1, ..., n-1 times where n is a depth of generatingterms. The head of the recursive clause is obtained as lgg of atoms obtainedby this way. The recursive literal in the body is received by applying gener-ating terms to the head.CRUSTACEAN , as mentioned in the begining, is not capable to exploit anydomain knowledge predicates. It implies that examples sometimes must con-tain unusual terms, like reverse([1,2],append(append([],[2]),[1])) orfactorial(s(s(s(0))),s(s(s(0)))*s(s(0))*s(0)). The language of hy-potheses is very restrictive. Obviously, CRUSTACEAN returns more thanone solution.4.3.2 FILPFILP [7] is an interactive system for learning functional logic programs frompositive examples. A logic program is functional if for each sequence of inputarguments there exists just one sequence of output arguments. The queriesof FILP are existential queries [3, 67] with unbound output variables. Asthe learned predicate is always functional, there is at most one answer toevery query. FILP needs only positive examples. Negative ones are thosethat have the same input values as positive examples but di�erent outputs.The class of learned programs is a subset of logic programs. Any recursiveclause must namely match the schemaP (X1; :::; Xi; :::; Xn) : �:::; Q(Xi; Y); P (X1; :::; Y; :::; Xn),where Q(Xi; Y) de�nes a well ordering between Y and X, i.e. Y < X. Userhas to choose one initial example that is complex enough. FILP then asksfor intended interpretation of all needed subgoals with "smaller" arguments(with respect that ordering). E.g. for union([a,b],[a,c],[b,a,c]) thesystem asks for union([b],[a,c],X) and for union([],[a,c],X).The main advantages of FILP are two: it allways �nds a program consistentwith examples if such a program exists; and that program computes onlycorrect outputs on inputs of given examples. The drawback of FILP is itsneed of extensional de�nition of domain predicates and its incapability towork with un�atten clauses.

4.3. OTHER SYSTEMS 434.3.3 SKILitSKILit (SKetch-based Inductive Learner with ITerative extension) [32, 33,34] builds each clauses by searching for relation link between input and outputpositive examples. It employs aglorithm sketches and clause structuregrammar. E.g. for reverse=2 an algorithm sketch may bereverse(+[3; 2; 1];�[1; 2; 3]) $P1(+[3; 2; 1];�3;�[2; 1]);reverse(+[2; 1];�[1; 2]);$P2(+3;+[1; 2];�[1; 2; 3]):where $P1; $P2 are predicate variables. The clause structure grammar en-ables to de�ne a schema � divide-and-conquer, generate-and-test � that aresult of SKILit has to match. SKILit is capable to process integrity con-straints, e.g.reverse(A;B); length(A;N)! length(B;N)using Monte Carlo strategy. Randomly chosen facts that are consequences ofthe learned program are tested whether they violate an integrity constraint.To be able to learn recursive de�nitions, SKILit implements an iterativeinduction. In the �rst iteration a nonrecursive program P1 is synthesisedby generalisation of examples. The found clauses are in the second stepused as properties (nonground partial speci�cations of a program, e.g.reverse([X; Y]; [Y;X])) [22] for generation of new examples. Then a newclause is learned and added to program P1 resulting in P2 etc.SKILit is not yet a usefull tool for practical logic program synthesis. [34].Here we mention only some of its drawbacks. It is une�cient for larger setsof domain knowledge predicates if user is not capable to write enough strongsketches and/or to limit language bias using rules of the structure clausegrammar. SKILit seems to be dependent on presentation order of positiveexamples. Negative examples have to be carefuly chosen to prune the searchspace.4.3.4 ProgolProgol [54] is a bottom-up learner that can learn from noisy data. It choosesone or more positive examples from a training set and constructs their least

44 CHAPTER 4. ILP SYSTEMSgeneral generalisations with respect domain knowledge. Then each of gen-eralisations is further generalised and that one is choosen that maximalycompress other positive examples. Progol employs a covering paradigm. Itmeans that all the process repeats until all (but a small fraction of) positiveexamples are covered and none (but a small fraction of negative) examplesare not covered. The degree of incorrectnes and inconsistence is driven byProgol parameters. As Progol employs a heuristic search for a space ofclauses driven by a compression measure, it is not too convenient for logicprogram synthesis tasks. However, Progol is one of the best empirical ILPsystems. Thanks to rich set of parameters it can be easily adapted to solvingvarious tasks. Progol's ability of constant introduction in clauses needs to bementioned here. It allows to limit a number of domain knowledge predicatesisand it increases Progol e�ciency.

Chapter 5Assumption-based ILP andWiM systemWe introduce a new paradigm of assumption-based learning. Thenwe describe the general-to-speci�c learner WiM as an instanceof this paradigm which can e�ciently learn logic programs from asmall example set.5.1 IntroductionConsidering top-down exact learners in the context of automatic logic pro-gramming [23], four main drawbacks are being observed:1. Too many positive examples are needed2. The usefulness of the negative examples depends on the particularlearning strategy3. Generate (a hypothesis) and test (on the example set) strategy is tooune�cient4. Too many queries to the user are askedWe will show that even with a very small example set (less or equal to 4positive examples) MIS-like [67] top-down learners are capable to learn mostof the predicates which have been mentioned in ILP literature.We here focus to top-down exact learners that employ the generate-and-test45

46 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMstrategy. They generate a clause (for given bias) that need to be tested af-terwards on the example set. It means that a number of tests during onelearning session is proportional to a number of generated clauses multipliedby a cardinality of the example set. However, the number of clauses can belimited by a declaration of argument modes and types and by exploitationof programmer's knowledge, as shown in Section 3.6.2. This knowledge canspecify e.g. the maximal complexity of the learned logic program, like amaximal number of clauses in the program or a maximal number of literalsin a clause body. We strongly believe that such knowledge is available veryoften. By this way we lower cardinality of the set of negative example, andsuch a modi�cation of 'brute force' top-down learning algorithm is becomingquite e�cient.Necessary negative examples are always dependent on the particular learningstrategy and that is why it is di�cult for the user to �nd the most appropri-ate ones. Our approach tries to �nd negative examples by itself. A near-missto one of the positive examples is considered as a candidate for that purpose.Such a negative example is found useful if after adding that example to thecurrent learning set, the learner is able to suggest a new de�nition of thetarget predicate. Only in such a case the user is asked for a con�rmation ofthat particular candidate for the negative example.Ideas on an assumption-based framework inspiring our methodology may befound in [10, 15, 35, 36]. We developed a new method called assumption-based learning (ABL) based on those ideas. A generic scenario of assumpt-ion-based learning consists of three parts, an inductive synthesiser, a genera-tor of assumptions which generates extensions of the input information andan acceptability module which evaluates acceptability of assumptions. Thatmodule is allowed to pose queries to the teacher. It may happen that theinductive synthesiser have failed for any reason to �nd a correct solution (e.g.because of missing examples, insu�cient domain knowledge or because of toostrong bias). Then ABL system is looking for such a minimal extension ofthe input - called assumption - which allows to �nd a solution. The solutionhas to be correct and consistent with the input extended by the new assump-tion. If an assumption is needed, it must be con�rmed by the acceptabilitymodule. It is true that the query to the user is necessary to con�rm theassumption generated by the system. However, the number of queries, ingeneral, is smaller comparing to the other interactive systems [7, 67].

5.2. ASSUMPTION-BASED LEARNING 475.2 Assumption-based learning5.2.1 InspirationAssumption-based reasoning [10, 15, 35, 36] is a technique for solvingproblems that deal with partial (uncertain, incomplete, incorrect) informa-tion. An assumption is a logic formula that expresses knowledge which isuncertain but potentially true. E.g. we have a hypothesis P% P :p(X; [XjY]):p(X; [Y jZ]) : �p(X;Z):that should de�ne last(X;L) predicate with intended meaning "X is the lastmember of the list L". The hypothesis P is incorrect because it covers e.g.p(a,[a,b]). Let a new assumption A appear de�ned asA : 8X : p(X; [XjY])$ Y = [].In some cases we could add the assumption to the hypothesis P . However, itis not reasonable to add a new information directly because it may result ininconsistency or ine�ciency of the new hypothesis. In our example a newhypothesis P 0 should be found% P 0 :p(X; [XjY]) : �Y = []:p(X; [Y jZ]) : �p(X;Z):that does not contradict the assumption A.5.2.2 Inductive inference with assumptionsWe are now looking for such an extension of ILP systems which would enableto �nd an assumption (and consequently a modi�cation of overgeneral pro-gram) by inductive inference. Let now a top-down ILP system look for last=2predicate de�nition and let the example set contain only positive examplesp(a,[a]). p(b,[c,b]).

48 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMLet a set of possible solutions contain only recursive logic programs. Wesuppose that the re�nement operator is locally complete, i.e. it generatesmaximal specialisations. In top-down exact learning systems that learn frompositive examples it is always the problem of overgenerality of the foundclause that arises. Such a system traverses a re�nement graph starting fromthe most general clause in a root of the graph and stops in the �rst node(clause) that covers a positive example. Thus it will �nd �rst the overgen-eral program P from the previous page. The goal now is to �nd such anassumption that enables to induce the correct clauses.In MIS it is user who has to choose the right negative example that makesthe system to �nd another (more speci�c) clause. In general we could mod-ify any of the input information � domain knowledge, the example set orconstraints of bias. Extension of domain knowledge seems be solvable by asimilar way as in [10, 35]. Extension (strengthness) of bias would be usefule.g. if there are more possible solutions for the given input. Here we focuson an extension of an example set. Similarly like in MIS we need somekind of negative example that prevents overgenerality. In general we look foran integrity constraint. Integrity constraint IC is an arbitrary formulafor which BK [P 6` IC holds. In terms of ILP it is actually a generalisednegative example. It is often uneasy to �nd the right negative example. Asa rule, the right choice strongly depends on the particular inductive engine.It would be welcome if the system itself helped to �nd it. It of course meansthat the system must be given an additional knowledge that is needed forsuch an assistance. We are now looking for minimal knowledge that enablesthe system to solve that task.If we know the correct solution P 0 it is easy for us to �nd e.g. negative exam-ples p(c,[c,b]), p(e,[f,e,g,h]) for P 0 that are covered by P . Betweenthese examples, p(c,[c,b]) is the simplest one that can be used. Moreoverthis example is actually near-miss to p(b,[c,b]) because it is a negativeexample and it di�ers from p(c,[c,b]) as little as possible (in syntacticsense). Therefore it would be su�cient to have a function f that computessuch potential near-misses from the known positive examples. Let the func-tion be just a renaming of a constant. Then we obtain also p(c,[c,c]) thatis a positive instance of last=2. In general, a system cannot know � withoutknowing a model of last=2 � whether the generated example is actually neg-ative one. Therefore, we need an acceptability module that veri�es that anexample computed with f is a negative example.

5.2. ASSUMPTION-BASED LEARNING 495.2.3 Generic algorithmThe ideas discussed above are expressed more precisely in the schema ofassumption-based learning and mainly in a generic algorithm. In the follow-ing sections, WiM system is introduced. Particular parts and functions of

................
.....................

................ ���..........................

..........................
..........................

BK, E, bias, A=trueinductive engine
acceptability module

generator of asumptions

fails program Passumption A
fails return(P)

assumption A
A ? true

Figure 5.1: Basic schema of assumption-based learningABL are also explained there. Basic schema of assumption-based learning isin Fig. 5.1. A generic algorithm of assumption-based learning is in Fig.5.2.

50 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMGiven:BK;E; bias, assumptionA = trueinductive engine I, overgeneral program PC; F (set of constants and functions that appears in E)function f , that computes an assumption Aacceptability module AM1. Call I on BK [P;E [A; bias.� if I succeeds resulting in program P 0then call AM to validate the assumption A.if A is accepted then return(P 0) else go to (2).� else go to (2).2. Call f to generate a new assumption A. If it fails, return(fail) and stopelse go to (1).Figure 5.2: A generic algorithm of assumption-based learning5.3 Basic WiM algorithmWiM [24, 59, 44] is a program for synthesis of normal logic programs froma small example set. It further elaborates the approach of MIS [67] andMarkus [26, 27]. It works in top-down manner and uses shifting of biasand second-order constraints. WiM is an instance of assumption-based ILP.Assumptions are ground negative examples generated one-by-one. In everymoment, maximally one assumption is added into an example set. WiMconsists of three modules, inductive engine Markus+ (Section 5.4), a gener-ator of assumptions (Section 5.5), and an acceptability module (Section 5.6).The basic WiM algorithm is in Fig. 5.3 In the next sections we describethose three modules in detail.5.4 Inductive synthesiser Markus+We implemented Markus+ [24] that is based on Markus system [26, 27].Markus+ is MIS-like [67] top-down synthesiser applying breath-�rst search in

5.4. INDUCTIVE SYNTHESISER MARKUS+ 51Given:� Speci�cation of the target predicate P : types and modes of its argu-ments, names and arity of background knowledge predicates.� Example set E� De�nitions of background knowledge predicates� 2nd order schema of the target predicate P . P must be an instance ofthe schema.� bias: maximal length of clauses, maximal number of free variables inthe target predicate, maximal depth of arguments in a clause head,maximal number of clausesAlgorithm:Call (1). If fails, call (2).(1)Init bias.loopCall Markus+ to learn predicate P .if succeeded thenCall acceptability module to accept P .if accepted then return(P), exit.else shift bias.if limit of bias is reached then return(false), exit .pool(2)if (1) exited with false {no hypothesis was found within the limitsof speci�ed bias}loopGenerate assumption A.if no more assumptions then return(false), exit.Add the assumption A to the learning set.Call (1) with the extended example set E [A.if (1) succeeded then return(P), exit.else delete the assumption A from the learning set.pool Figure 5.3: WiM algorithm

52 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMa re�nement graph and controlling a search space with di�erent parameters.Markus+ employs only a subset of Markus' parameters. Those parametersconcerns only language bias. We wanted to make the work withWiM as easyas possible. More advanced users, of course, can tune also other parametersof Markus . However, for most of task is not necessary. New featuresof Markus+ are described in the next paragraphs. We will there refer toWiM parameters (see Appendix B for full description) that have a formwim_set(Parameter, ListOfValues).5.4.1 Shifting of biasMarkus+ employs shifting of bias. Four parameters are used for shifting� the maximal number of free variables in a clause, the maximal num-ber of goals in the body of a clause, the maximal head argument depth(X; [XjY]; [X; Y jZ], etc. are of depths 0, 1, 2, respectively), and the maxi-mal number of clauses in a solution. The user de�nes the minimal and themaximal value of the parameters. Markus+ starts with the minimal valuesof these parameters. If no acceptable result has been found, a value of oneof the parameters is increased by 1 and Markus+ is called again. In sucha way all variations are being tried gradually. That choice of parametersimplies that Markus+ �nds a simpler clause �rst. E.g. for member=2 pred-icate, positive example member(a,[a,b]) and the maximal argument depthvarying from 1 to 2, wim_set(mx_arg_depth,[1,2]), the �rst found clauseis member(X,[X|Y]) (depth 1) and not member(X,[X,Z]) (= member(X,[X|[Z|[]]]), depth 2).In the current version of WiM the algorithm that shifts a bias is not tooe�cient. The inductive engine may generate clauses that were already builtfor the previous bias settings. But the main goal here was to enable the userto set bias more easily than in Markus and in other ILP systems withoutnarrowing a class of learnable programs. This goal seems be ful�led.5.4.2 Multiple predicate learningIn some situations the domain knowledge predicates may be de�ned exten-sionally. However, it is not realistic to assume that those de�nitions are com-plete enough. It would be appreciated if such extensional de�nition would bereplaced by intensional one. We implemented an algorithm which is su�cient

5.4. INDUCTIVE SYNTHESISER MARKUS+ 53in most situations for solving this task. All predicates that are to be learnedmust be declared in a factwim_set(learn,ListOfPredicates).E.g. for reverse=2 it may be wim_set(learn, [reverse/2, concat/3]).WiM processes this information together with declaration of these predi-cates. WiM actually build a dependency tree from predicate de�nitionswhere nodes are the names of predicates de�ned in wim_set(learn,ListOfPreds). Two nodes P1; P2 are connected by an edge if P2 appears inthe declaration of predicate P1 as a needed domain knowledge predicate. Af-ter building the dependency tree, the predicates in leaves are learned becausethey do not need any domain knowledge predicate that is de�ned extension-ally. When the intensional de�nition of predicate P is learned, it is addedinto the set of domain knowledge predicates, all leaves are pruned and thewhole process continues.E.g we want to learn reverse=2 predicate and predicate concat=3 is de�nedby examples. WiM starts with following information concat=3 can be im-wim_set(learn, [reverse/2, concat/3]).pred_def(reverse/2,[+xl, -xl],[concat/3, reverse/2],[]).ex(reverse([], []), true).ex(reverse([a, b, c], [c, b, a]), true).pred_def(concat/3, [+xl, +x, -xl], [concat/3], []).ex(conc([],a,[a]), true).ex(conc([b],c,[b,c]), true).ex(conc([b,c],d,[b,c,d]), true).Figure 5.4: Input of WiMmediately learned because in its list of domain knowledge predicates there isnone that appears in list L in wim_set(learn, L). After learning the de�ni-tion and after adding it into background knowledge WiM is called again tolearn reverse=2.This method works well in most of practical situation. Some drawback arises

54 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMif some of example sets is not good enough and WiM fails to �nd the in-tensional de�nition. In such a situation the extensional de�nition of thepredicate is added into the background knowledge. The method fails onlyin the rare case if two mutually dependent predicates are to be learned (e.g.even=2 that call odd=2 and vice versa).5.4.3 Constraint of a program schemaA second-order schema can be de�ned which the learned program has tomatch. This schema de�nition can signi�cantly increase an e�ciency of thelearning process because only the synthesised programs which match theschema are veri�ed on the learning set. In the current version of WiM aschema of recursive programs(P : � Q�)+ ;(P : � R�; P+; S�:)+where P;Q;R; S are predicate variables, is built-in. It can be switch on bywim_set(schema, [recursive]) setting. As default,WiM searches for anylogic program that do not has to be necessarily recursive.5.5 Generator of assumptionsAn assumption is generated in the moment when the current example set isnot complete enough to ensure that the inductive synthesizer is capable to�nd a de�nition of the target predicate. As an assumption, a near-miss toa chosen positive example is generated [24]. The whole process of generationof assumptions consists of two steps:Algorithm of assumption generation:repeat1. Find the preferable positive example in the example set E.2. Generate its near-miss.until a correct and complete program was foundor no more assumptions exist.

5.5. GENERATOR OF ASSUMPTIONS 555.5.1 Ordering on positive examplesA preference relation on the set of examples is de�ned based on measure ofcomplexity for atomic formulas. It enables to generate near-misses of lesscomplex examples �rst.We de�ne a complexity of example as a sum of complexities of its argu-ments. A complexity of an arbitrary term is computed as follows.1. Complexity of an atom is equal to 1.2. For an unary function term f=1, a complexity of term f(X) is computedas a complexity of X + 1.3. Complexity of a n-ary term is equal to a sum of complexities of itsarguments +1.E.g. if learned last/2 predicate from {last(a,[a]), last(b,[c,b])} , acomplexity of the �rst example is 3complexity of last(a,[a]) =1 (complexity of a)+ 2 (complexity of [aj[]])= 3A complexity of the second one is 1+3=4A preference relation is induced by this function of complexity. An examplee1 is prefered to an example e2 if the complexity of e1 is smaller than thecomplexity of e2.The relation of preference is an ordering on a set of examples. Thus it hasa minimal elements. Now the preferable example can be computed. Firsta complexity is computed for every positive example in the learning set.Then arbitrary example with a minimal complexity is chosen as preferablefor computing near-misses. In our example, last(a,[a]) is chosen becauseit has the minimal complexity.5.5.2 Generator of near-missesA syntactic approach is used for computing near-misses. WiM programallows to learn predicates in two domains - lists and integers. For each of those

56 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMdomains the particular generator of assumptions is implemented exploitingthe same preference relation. Whenever a new near-miss has been built, it isadded into the example set as the negative example and learning algorithm iscalled. If no solution is found then the near-miss is replaced by another near-miss of the same positive example. If no near-miss of the example enablesto learn a correct de�nition, next positive example (following the orderinggiven by the preference relation) is chosen for generation of near-misses.Domain of listsA set C of individual constants that appear in the preferable example isbuilt. Then the set is extended by a new constant(of correct type) that doesnot appear in the particular example. This extended constant set is furtherused for building near-mises. For a given positive example e and a set ofindividual constants C, a near-miss is computed by one or more operationsbelow.1. For a list in e, add an arbitrary constant c 2 C at the begining of thelist.2. For a list in e, add an arbitrary constant c 2 C at the end of the list.3. Delete an arbitrary element from a list in e.4. Replace an individual constant c0 appearing in e by another constantc 2 C.The set of constants that appears in the preferable example usually containsnot more than 1 element. However, it does not allow to generate a richset of near-misses. E.g. for last(a,[a]) we would obtain last(a,[]),last(a,[a,a]), last(a,[a,a,a]), ... In our example, the constant newhas been added so that the set of constants contains two constants, {new,a} and the near-missesnot last(a,[new,a])not last(a,[a,new])not last(a,[])not last(new,[a])not last(a,[new])...

5.6. ACCEPTABILITY MODULE 57are generated one-by-one. The addition of one new constants is enough forlearning a rich set of predicates.Domain of integersFor a given positive example e and an integer argument X, near-misses arecomputed employing operations below.1. If X > 0, replace X with its predecessor.2. Replace X with successor s(X).5.6 Acceptability moduleFor each assumption which has lead to a new predicate de�nition, accept-ability module asks an oracle for a con�rmation/rejection of the assump-tion. As WiM works with ground assumptions, a membership oracle isemployed in WiM . The oracle answers true if the ground assumption is inthe intended interpretation. Otherwise it answers false. Other possibility isto use equivalence oracle [3, 67] where a query is a formula P . The equiva-lence oracle answers either true, if P is complete and consistent with respectto the intended interpretation. Otherwise it answers a counterexample forP .5.7 Sample session with WiMA learning session for a predicate p starts from a learning set L, a second-order schema SP of the predicate P , a de�nition of modes and types ofarguments D, and a set of background knowledge predicates BK given bythe teacher. We will demonstrate it by learning last(Elem; List) predicate(Elem is the last element of the list List) using WiM with input knowledgeas follows:L = fp(a; [a]); p(b; [c; b])gSP = P : �Q� : (P : �R�; P �; R�)�:D = f�x;+list(x)gBK = fg

58 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMQ;R; S may be a call of any background knowledge predicates but P , i.e.recursive programs containing at least two clauses are acceptable. The setBK of background knowledge predicates is empty so that only p/2 predicatesmay appear in the learned program.?- wim(p/2).Examples of p(X,Y)p(a,[a]), truep(c,[b,c]), trueFound clause after searching 1 clauses:p(X,[X|Y]):-true.Found clause after searching 3 clauses:p(X,[Y|Z]):-p(X,Z).Found predicate after searching 4 clauses (Total = 4) :p(X,[Y|Z]):-p(X,Z).p(U,[U|V]):-true.with no need of assumption.OK (yes. / no. / continue. / new example) ? no.The user rejected the found solution. Therefore WiM looks for an assump-tion that would result in �nding another solution.The preferable example is p(a,[a]) .An extended constant set is [a,new] .New assumptions are generated ...After a replacement of an individual constant: p(new,[a])Examples of p(X,Y)p(a,[a]), truep(c,[b,c]), truep(new,[a]), falseFound clause after searching 1 clauses:p(X,[X|Y]):-true.Found clause after searching 3 clauses:p(X,[Y|Z]):-p(X,Z).

5.7. SAMPLE SESSION WITH WIM 59After deleting a list element: p(a,[])Examples of p(X,Y)p(a,[a]), truep(c,[b,c]), truep(a,[]), falseFound clause after searching 1 clauses:p(X,[X|Y]):-true.Found clause after searching 3 clauses:p(X,[Y|Z]):-p(X,Z).After adding a list element: p(a,[a,a])Examples of p(X,Y)p(a,[a]), truep(c,[b,c]), truep(a,[a,a]), falseFound clause after searching 2 clauses:p(X,[X]):-true.After adding a list element: p(a,[a,a])Examples of p(X,Y)p(a,[a]), truep(c,[b,c]), truep(a,[a,a]), falseFound clause after searching 2 clauses:p(X,[X]):-true.After adding a list element: p(a,[new,a])Examples of p(X,Y)p(a,[a]), truep(c,[b,c]), truep(a,[new,a]), falseFound clause after searching 1 clauses:p(X,[X|Y]):-true.After adding a list element: p(a,[a,new])Examples of p(X,Y)p(a,[a]), truep(c,[b,c]), true

60 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEMp(a,[a,new]), falseFound clause after searching 2 clauses:p(X,[X]):-true.Found clause after searching 4 clauses:p(X,[Y|Z]):-p(X,Z).p(a,[a,new]) assumed to be false.The assumption p(a,[a,new]) has resulted in a new solution. WiM nowposes a query to the user. After the user's con�rmation the new solution isdisplayed.O.K. ? (yes. /no. / unknown) yes.Found predicate after searching 4 clauses (Total = 23) :p(X,[Y|Z]):-p(X,Z).p(U,[U]):-true.under assumption thatp(a,[a,new]) = false5.8 Related worksMany research papers and presentations that appeared in the last years lessor more in�uenced our work. First of all, it was the seminal work of EhudShapiro [67] (see Section 4.1), followed by works of Pierre Flener [22] andLuc de Raedt [16]. In [22, 23] a strategy for stepwise synthesis of logicprograms from speci�cations by examples and properties is presented. It isbased on a methodology described in [18]. The process of synthesis is guidedby Divide-and- Conquer schema, features non-incremental presentation ofexamples. It is proposed to be interactive. For example, as a set of examplesis usualy incomplete, some generalization has to be performed. To acceptits result user is asked for con�rmation. In general, user is asked wheneverprecisions are needed or a choice is to be made. The system is both inductiveand deductive. It starts with inductive reasoning from examples and thendeduction is used, whenever appropriate. Luc de Raedt's CLINT system[16] was designed to be a user-friendly interactive concept-learner , i.e. torequire only information from the user that is easy to formulate/provide andto use as much knowledge as possible. A concept is a de�nite clause (i.e.Horn clause without negation), and examples both positive and negative are

5.8. RELATED WORKS 61ground facts. Besides ground examples, the oracle can �nd an answer to a�rst-order logic formula. As mentioned before, the ideas about assumption-based learning were inspired by works of Kakas, Mancarela, Kowalski andToni [35, 36], Concerning bias in ILP, the most of ideas can be found in[6, 11, 56]. We have to mention other work on machine learning and ILP,like [2, 7, 32, 34, 4, 30, 45, 55] that directly or indirectly in�uenced this work.

62 CHAPTER 5. ASSUMPTION-BASED ILP AND WIM SYSTEM

Chapter 6Experimental resultsWe present experimental results obtained with WiM . We usedboth carefully chosen learning sets and learning sets generatedrandomly. The learned de�nitions of predicates were tested onrandomly chosen example sets. WiM outperforms Markus andhas higher e�ciency of learning as well as smaller dependency onthe quality of the example set than other exact learners. Assump-tion-based framework enables to minimise the number of negativeexamples.6.1 Learned predicatesWiM was examined on the following predicates:List processing predicates� member(E;L) i� the element E appears in the list L;� concat(L1; E; L2) i� the list L2 is equal to the list L1 appended by theelement E;� append(L1; L2; L3) i� the list L3 is equal to the list L1 appended bythe list L3;� delete(E;L1; L2) i� the list L2 is the non-empty list L1 without its�rst (existing) occurrence of E;63

64 CHAPTER 6. EXPERIMENTAL RESULTS� reverse(L1; L2) i� the list L2 has the same elements as the list L1 butin the reverse order. It uses concat(L1; E; L2) predicate which appendsthe element E to the list L1;� reverseDL(L1; L2) is the same as reverse(L1; L2) but using di�erencelists;� last(E;L) i� the element E is the last element of the list L;� split(L1; L2; L3) i� the lists L2 and L3 contain only odd and evenelements, respectively, of the list L1.� sublist(L1; L2) i� the list L1 is a compact subsequence of the list L2;� insert(X;L1; L2) i� X is inserted into sorted list L1 resulting in sortedlist L2;� isort(L1; L2) is insertion sort.Peano arithmetics� plus(I1; I2; I3) i� for integers I1; I2; I3 I3 = I1 + I2 holds;� leq(I1; I2) i� for integers I1; I2 I1 is less or equal I2;Other predicates� length(N;L) i� N is the length of the list L;� extractNth(N;L;E) i� E is the Nth element of the list L.All integers are assumed to be expressed using a successor function s(X)1as sn(0). Training sets as well as predicate declarations can be found inAppendix C.6.2 Carefully chosen example setsCarefully chosen examples are usually de�ned by a user. We suggest a wayof generation of this kind of examples that is � for most of predicates fromthe list above � user-independent. Moreover, it enables to �nd the smallestexample set for which WiM can learn a correct logic program.

6.3. RANDOMLY CHOSEN EXAMPLE SET 65For a given predicate, a given depth of a recursive data structure2 and auniverse of constants (a..z for lists, 0 for integers) all positive exampleswere generated. Then a couple of positive examples was chosen randomlyand WiM was run on it. If WiM failed on this couple, another couple wastried. If WiM failed on all couples, then triples (quadruples) of positiveexamples were generated. First tuple in which WiM found the intendedde�nition of a predicate is a set of carefully chosen examples for the givenpredicate.For most of predicates no constant might appear in more than one example.It prevents to choose a tuple of positive examples that are on the sameresolution path as member(a,[a]), member(a,[b,a])3There are predicates like last=2 that are not learnable from positive examples.WiM always �nds an over-general de�nition (member=2 in this case) whenlearning from positive examples. For those predicates one negative examplewas added into a training set. The example was constructed as near-miss tosome of positive example appearing in the training set.The method should be further developed. For most of predicates mentionedabove it allows to �nd the learning set. But e.g. union=3 is not learnable fromsuch a training set . The method also does not prevent generation a learningset containing member(a,[a]), member(b,[b]) that would be hardly builtby a user.6.3 Randomly chosen example set6.3.1 OverviewIn [2] a method for testing of learners using randomly chosen examples hasbeen introduced. Here we brie�y overview the method. More precise descrip-tion of generation of examples can be found Section 6.3.2. First the domainD of input arguments of a limited depth was generated. Then values of argu-ments were chosen randomly from a uniform distribution on this domain. Asthere is a dependency between arguments, output arguments were derived1s(0) = 1; s(s(X)) = 1 + s(X)2lists not longer than 4 elements3WiM of course can learn from such training data. The reason to omit it is thatlearning from examples lying in the same resolution path is in general easier.

66 CHAPTER 6. EXPERIMENTAL RESULTS(e.g. the �rst argument of member=2, the �rst argument of sublist=2 etc.).Then 2,3 and 5 positive examples were chosen as a learning set, sometimesextended by some negative examples. The learned de�nitions were testedon 50 positive and 50 negative examples generated randomly. A strategy oftesting is described in Section 6.3.3.6.3.2 Example set generationPositive examples are generated as follows1. Generate input arguments randomly as terms of depth 0..4 over adomain of constants ({a,b,c, ... ,z} for lists, 0 for integers).2. Compute the value of the output argument using the same domain.3. If the depth of output argument is not greater than 4, and the exampledoes not appear in the example set, add it there.E.g. for append/3 predicate with mode declarations append(+,+,-), eachexample has to match one of the following literals:append([],[],_), append([],[_],_), append([],[_,_],_),... , append([],[_,_,_,_]],_),append([_],[],_), append([_],[_],_), append([_],[_,_],_),... , append([_],[_,_,_,_]],_),...append([_,_,_,_],[],_), append([_,_,_,_],[_],_),... , append([_,_,_,_],[_,_,_,_]],_),The input arguments are installed and then the output argument is com-puted, e.g. for append([_],[_,_],_) we may receive ([r],[g,b],[r,g,b]). Asthe length of [r,g,b] is not greater than 4, the example append([r],[g,b],[r,g,b])is added into the example set.Negative examples are chosen in two steps.1. Generate all arguments randomly as terms of depth 0..4 over a domainof constants ({a,b,c, ... ,z} for lists, 0 for integers).2. If it is a negative example, add it to the example set.

6.4. PARAMETER SETTINGS 676.3.3 Method of testingWe use two criteria for evaluation, a success rate and a fraction of test perfectprograms over N learning sessions. For a given logic program and a test setwe de�ne success rate as a sum of covered positive examples and uncoverednegative examples divided by a total number of examples. The quality of ILPsystems maybe better characterised by a frequence of test perfect solutionslearned by the system. Test perfect solution is a logic program which fora test set reaches the success rate 1, i.e. the program covers all positive andno negative examples in a test set,We generated a learning set as 2,3 and 5 positive examples and 10 negativeexamples. Then WiM was called to learn a program P . 50 positive and50 negative examples were generated as a test set and a success rate wascomputed for P on this testing set. The whole process was repeated 10-times.6.4 Parameter settingsThe system was set to learn only recursive de�nitions. Shift of bias wasenabled. Meanings and thresholds of parameters are in Tab 6.1. For mostParameter Meaning Defaultschema schema of a target predicate recursivebias enables a shift of bias shiftmx_clause_length maximal number of subgoals 1mx_free_vars maximal number of free variables 1mx_arg_depth maximal depth of terms 4mx_clauses maximal number of clauses in the target 2maxNumOfRefGood maximal number of generated clauses 50Table 6.1: WiM parameters settingsof predicates these default settings were used. For reverse=2, union=3 thenumber of subgoals was set to 2. For union=3 a maximal number of clauseswas increased to 3.

68 CHAPTER 6. EXPERIMENTAL RESULTS6.5 Overview of experimentsTo show that WiM performs well, several questions need to be answered,namely1. What is a minimal learning set for ILP benchmark predicates ?2. Does assumption-based learning allow to �nd missing negative exam-ples?3. How does WiM performance depend on a given bias?4. What happens if the number of examples increases?5. How good is WiM in comparison with its predecessor Markus ?6. How good is WiM in comparison with other ILP systems ?We �rst evaluate capabilities of WiM itself both on carefully chosen exam-ples (Section 6.6.1) and on randomly chosen examples (Section 6.6.2). Weuse two di�erent criteria for evaluation of WiM performance on a test set:a success rate of the learned program (Section 6.6.3) and a number of testperfect programs (Section 6.6.4). We also show how WiM performance de-pends on bias settings (Section 6.6.3) and on changing number of positiveexamples (Section 6.6.5).In Section 6.7 attention is paid to a new paradigm of learning with assump-tions. Results for carefully chosen positive example are displayed in Section6.7.1. Then we compare learning without assumptions and with an assump-tion in Section 6.7.1.Comparison of WiM with Markus , a predecessor of WiM is displayed anddiscussed in Section 6.8.1. We also compare WiM with other ILP systemsCRUSTACEAN and FILP (Section 6.8.2), SKILit (Section 6.8.3) andProgol (Section 6.8.4). We conclude with a discussion of results.6.6 Learning without assumptions6.6.1 Carefully chosen examplesNumber of carefully chosen examples needed for learning predicates from Sec-tion 6.1 are in Tab 6.2. In M/N M(N) means a number of positive (negative)

6.6. LEARNING WITHOUT ASSUMPTIONS 69examples. For most of predicates WiM needs 2 positive examples. WiMnever needs more than 4 examples for the class of predicates and more thanone negative example. WiM is quite fast. For all predicates CPU time wassmaller than 5 seconds on SUN Sparc. The table displays a minimal number+/- CPU timemember 2/0 0.283append 2/0 1.950reverse 2/1 1.213reverseDL 2/0 2.457plus 2/0 2.090isort 2/1 0.907
+/- CPU timelast 2/1 0.460delete 2/1 0.813split 2/1 2.313subset 4/0 1.537leq 2/1 7.230extractNth 3/0 0.807Table 6.2: Results of WiM on carefully chosen examplesof examples needed by WiM for learning a correct predicate de�nition. Av-erage CPU time from 5 runs is displayed, too.WiM can learn most of predicates from positive examples. However, thereare some predicates from the list in Section 6.1 that WiM cannot learn,for di�erent reasons, in absence of negative examples. E.g. last=2 cannotbe found from only positive examples because it is actually specialisation ofmember=2. As WiM generates clauses starting from the most general one,it always �nds as a �rst solution the over-general de�nition of member. Thesimilar situation appears for other predicates as delete=3, leq=2 etc. It mustbe stressed that in these cases only one negative example is needed.6.6.2 Evaluation on randomly chosen examplesFollowing the method described in Section 6.3 we tested WiM performancefor the case when examples are not chosen by human. Each learning set con-tained 2, 3 or 5 positive examples and 10 negative ones. Test sets contained50 positive and 50 negative randomly generated examples. In Tab. 6.3 wedisplay an average success rate in 10 runs. WiM can learn from 5 exampleswith an accuracy at least 94 %.

70 CHAPTER 6. EXPERIMENTAL RESULTSnumber of positive examples 2 3 5member 0.80 0.97 0.97last 0.76 0.89 0.94append 0.77 0.95 0.95delete 0.85 0.88 0.97reverse 0.85 0.95 0.99extractNth 0.74 0.80 0.98plus 0.82 0.92 0.96Table 6.3: Results for randomly chosen examples6.6.3 Dependence on bias settingsWe show in Tab 6.4 how an average success rate changes depending on themaximum argument depth. Learning sets and testing sets was constructedby the same way as in the previous section. Each experiment was usuallyrepeated 10-times. Both the maximum number of free variables and themaximum number of goals was set to 1. For a majority of predicates settingsnum.of examples 2 3 5max. arg. depth 1 2 3 4 1 2 3 4 1 2member 0.59 0.80 0.80 0.80 0.90 0.97 0.97 0.97 0.90 0.97last 0.32 0.59 0.70 0.76 0.40 0.82 0.82 0.89 0.59 0.94append 0.64 0.77 0.77 0.77 0.89 0.95 0.95 0.95 0.95 0.95delete 0.61 0.85 0.85 0.85 0.80 0.88 0.88 0.88 0.97 0.97reverse 0.50 0.85 0.85 0.85 0.95 0.95 0.95 0.95 0.99 0.99extractNth 0.52 0.68 0.74 0.74 0.80 0.80 0.80 0.80 0.98 0.98plus 0.75 0.82 0.82 0.82 0.92 0.92 0.92 0.92 0.96 0.96Table 6.4: Dependence on a maximal argument depthof maximal argument depth parameter to 2 is enough to reach a success rategreater than 80%. Further increasing of this parameter does not increaseWiM accuracy.6.6.4 Number of test perfect solutionsA number of test perfect solution found in 10 learning sessions is anotherindicator of quality of ILP systems. Test perfect solution covers all positive

6.6. LEARNING WITHOUT ASSUMPTIONS 71examples and uncovers no negative example in an example set. We againperformed 10 runs for 2,3, and 5 positive examples and 10 negative onesrandomly chosen. Test sets again contained 50 positive and 50 negativerandomly chosen examples. Results are displayed in Tab. 6.5. It is important2 3 5append 2 5 9delete 1 3 4reverse 1 4 5extractNth 2 2 2plus 3 7 7Table 6.5: Number of test perfect solutions in 10 learning sessionsthat all test perfect solutions were also equal to a correct predicate de�nition.6.6.5 CPU time 2 3 5 10member 0.283 0.307 0.357 0.817append 1.950 2.077 2.500 10.130delete - 0.813 1.073 2.903reverse - 1.213 3.420 9.723last - 0.460 0.600 0.840plus 2.090 4.953 13.203 36.496split - 2.313 3.657 45.469Table 6.6: Average CPU time for a di�erent number of examplesIn all experiments carefully chosen example sets were taken and extendedwith randomly chosen examples. If we want to testWiM on learningmember=2from 5 examples we must to add 3 examples because the set of carefully cho-sen examples for member=2 contains two positive examples. Those exampleswas again generated using the same method as in previous experiments. Av-erage times from 5 runs are in Tab 6.6. The results for carefully chosenexamples are in the 2nd (for member=2, append=3 and plus=3) and the 3rdcolumns (for the rest of predicates) and they are printed in bold. The same

72 CHAPTER 6. EXPERIMENTAL RESULTSbias as before was used for all predicates but split. In the case of split=3WiM was not able to learn it from 10 examples. That is why a maximalnumber of clauses was enlarged to 3. The enormous need of CPU time forlearning from 10 examples for plus=3 and split=3 was observed. It happenedwhenWiM found 2 clauses that do not cover all positive examples. AsWiMreached a limit for a maximal number of clauses, it backtracks and is lookingfor another solution. E.g. for 10 positive randomly chosen examples plus=3WiM found the following clausesplus(0,X,X):-true. (1)plus(X,Y,s(X)):-true. (2)plus(X,Y,s(Y)):-true. (3)plus(X,Y,s(s(X))):-true. (4a)As none of those clauses can be removed as redundant and as the thresholdmx_clause_length=3 was exceeded, the last clause was not added into thesolution and another clauseplus(s(X),Y,Z):-plus(Y,X,Z). (4b)was found. For the same reason the clause was rejected, and eventually theclauseplus(s(X),Y,s(Z)):-plus(X,Y,Z). (4c)was found. As in the de�nition containing clauses {1,2,3,4c} clauses 2,3are redundant, they are removed and the target de�nition isplus(0,X,X):-true.plus(s(Y),Z,s(U)):-plus(Y,Z,U).6.7 Learning with assumptions6.7.1 Carefully chosen examplesTab. 6.7 contains the results of WiM if one assumption was generated. Theexample sets consist of 2 or 3 positive examples carefully chosen by the userand one negative example generated by the system as the assumption (near-miss to a positive example) and afterwards veri�ed by the user. The lastcolumn contains average CPU time from 5 runs. Assumption-based learning

6.7. LEARNING WITH ASSUMPTIONS 73Number ofpositive examples CPU timedelete 2 2.717last 2 3.774leq 2 32.136length 3 3.645Table 6.7: Carefully chosen examples: Learning with assumptionsis more time-consuming for predicates of Peano arithmetics. The reasonis the way how near-misses are generated. For a given argument only itspredecessor and its succesor is generated.6.7.2 Randomly chosen examples# pos. 2 3 5without with TP without with TP without with TPlast 0.885 0.896 6 0.906 0.934 7 0.932 0.971 8delete 0.882 0.962 8 0.857 0.937 7 0.874 0.943 7leq 0.380 0.703 0 0.527 0.795 4 0.572 0.932 9length 0.540 0.659 0 0.692 0.816 1 0.728 0.956 4Table 6.8: Randomly chosen examples: Learning with assumptionWe generated randomly N positive examples. Then we compared resultsreached with WiM in interactive and non-interactive regime. Results arein Tab. 6.8. without(with) means the regime without(with) generation ofassumptions. TP means a number of test perfect solutions.

74 CHAPTER 6. EXPERIMENTAL RESULTS6.8 Comparison with other systems6.8.1 Comparison with MarkusMarkus WiMmember 2/1 2/0append 2/1 2/0reverse 2/2 2/1reverseDL 2/2 2/0plus 2/1 2/0insert 3/2 3/2isort 2/2 2/1Table 6.9: Comparison with MarkusLet us compare WiM with its predecessor Markus . A summary of resultson carefully chosen examples is in Tab 6.2. WiM as well as Markus needsat leastN positive examples for learning a predicate de�nition which containsN clauses. It means that for all of predicates with 2 clauses Markus as wellas WiM needs not less than 2 positive examples. Concerning a number ofnegative examples, WiM outperforms its predecessor Markus signi�cantly.For four of seven predicates in Tab 6.2 WiM needs no negative example tolearn them. For isort=2 one example is needed; Markus needs 2 negativeexamples. For insert=3 the number of positive and negative examples are thesame for both systems. This small number of negative examples is causedby shifting of bias and a program schema that the target de�nition mustmatch. WiM looks for all solutions inside the strongest bias. If there is norecursive program that is complete and consistent, only then bias is shifted.On the other hand Markus �nds �rst a nonrecursive de�nition. To preventit Markus needs negative examples.It must be said that there are predicates that Markus can learn [25] andWiM cannot. The reason is that WiM does not allow to set some of pa-rameters, e.g. a number of literals to be added onto a clause body in onere�nement step. Moreover, Markus employs iterative deepening search butWiM breath-�rst search. This allows to Markus to learn, e.g. multiply=3,partition=4 and qsort=2. The reason for a poorer parameter set ofWiM was

6.8. COMPARISON WITH OTHER SYSTEMS 75following. We aimed at a system that would be easy to drive, even for userwho is not an expert in ILP. However, an extension of the parameter set is achallenge for future research.6.8.2 CRUSTACEAN and FILPCarefully chosen examplesWiM FILP CRUSTACEANmember 2/0 4 2/2last 2/1 ? 2/1append 2/1 4 2/2delete 2/1 ? 2/1reverse 2/0 4 ?reverseA 3/0 ? 2/1split 2/1 ? 2/4extractNth 3/0 ? 2/1plus 2/0 ? 2/3exponential no 4 ?factorial 3/0 4 2/1noneIsZero 2/0 ? 2/1union 4/0 3 nointersection no 3 nosubset 4/0 3 ?partition no 7 noqsort no 6 noTable 6.10: Comparison with FILP and CRUSTACEANNumber of examples needed by WiM , FILP and CRUSTACEAN are inTab. 6.10. no means that a system is not able to learn the predicate, ? singsthat it is not known.For all predicates WiM needs at worst as many positive examples as CRUS-TACEAN and less then FILP [7] with at most 1 negative example. Thisexample is found by WiM itself. WiM can learn all the predicates learnablewith CRUSTACEAN [2]. Moreover, CRUSTACEAN generates, as a rule,more than one solution. It also needs more negative examples. WiM asksthe user whenever a new assumption allows to �nd a new solution. In our ex-periments WiM stops in that moment. It means that only one membership

76 CHAPTER 6. EXPERIMENTAL RESULTSquery is asked. Even with this limitation to one membership query WiMoutperforms FILP . We can claim that the number of queries to the user issmaller than in FILP .Comparison with CRUSTACEAN on randomly chosen examplesA comparison of CRUSTACEAN and WiM on randomly chosen examplesis in Tab. 6.11. The table gives experiments with or 2, 3, and 5 positiveexamples, and 10 negative examples, randomly chosen by the way describedabove, an average of success rates from 10 runs. WiM reaches a highersuccess rate for all predicates but noneIsZero.CRUSTACEAN WiM2 3 2 3 5member 0.65 0.76 0.80 0.97 0.97last 0.74 0.89 0.76 0.89 0.94append 0.63 0.74 0.77 0.95 0.95delete 0.62 0.71 0.85 0.88 0.97reverse 0.80 0.86 0.85 0.95 0.99split 0.78 0.86 0.80 0.88 0.79extractNth 0.60 0.78 0.74 0.80 0.98plus 0.64 0.86 0.82 0.92 0.96noneIsZero 0.73 0.79 0.72 0.46 0.58Table 6.11: Comparison with CRUSTACEAN on randomly chosen exam-ples6.8.3 SKILitWe refer here to experiments described in [34] p.153. SKILit training setcontained 2, 3 or 5 positive examples and 10 negative ones. Positive exampleswere again chosen randomly like in other experiments but negative exampleswere now generated as near-misses to these positive examples. Success ratesobtained with SKILit and with WiM are summarised in Tab 6.12. WiMtraining set was built by a similar way but negative examples were chosenrandomly from the universe of all negative examples (Section 6.3). It impliesthat training sets for WiM were potentially worse than those for SKILit.In spite of that fact, WiM reached higher success rates on testing data than

6.8. COMPARISON WITH OTHER SYSTEMS 77SKILit WiM2 3 5 2 3 5member 0.70 0.89 0.95 0.80 0.97 0.97last 0.71 0.72 0.94 0.76 0.89 0.94append 0.76 0.80 0.89 0.77 0.95 0.95delete 0.75 0.88 1.00 0.85 0.88 0.97reverse 0.66 0.85 0.87 0.85 0.95 0.99Table 6.12: Comparison with SKILitSKILit namely for 2 and 3 positive examples. For the case of 5 exam-ples SKILit outperforms WiM once (delete), WiM wins twice (append,reverse), and other results are comparable.6.8.4 ProgolRandomly chosen examplesFor a comparison ofWiM with Progol we used again randomly chosen exam-ples. We focus only on append=3 predicate because the distribution packageof Progol contains a training set for this predicate The set contains 17 pos-itive and 8 negative examples. We also display results on this example setobtained with both systems (last columns - distr). Tab 6.13 contains theaverage success rate for 10 runs. Progol never found the correct solution forProgol WiM2 3 5 7 distr 2 3 5 7 distr0.68 0.81 0.89 0.97 0.89 0.77 0.95 0.95 1.00 1.00Table 6.13: Comparison with Progol2, 3, 5 and 7 examples neither any recursive solution. On the (distr) dataand 5 runs, Progol did not stop once and 4-times it found an over-generalde�nitionappend([A|B],C,[A|D]).append(A,B,B).with the success rates varying between 0.96 and 0.99.

78 CHAPTER 6. EXPERIMENTAL RESULTSProgol distribution example setFrom the distribution set for append=3 (17 positive and 8 negative exam-ples) 2, 3, and 5 positive examples were chosen randomly and all 8 negativeexamples was added to it. Results for 10 runs in the form (average successProgol WiM2 3 5 2 3 50.546/0 0.571/0 0.672/0 0.778/0 0.85/3 1.00/5Table 6.14: Results on Progol distribution datarate / number of test perfect solutions) are given in Tab 6.14.6.9 Summary of resultsWiM can learn most of ILP benchmark predicates mentioned in Section 6.1from 2 positive examples, sometimes extended with one negative example. Itnever needs more than 4 examples for that class of predicates and more thanone negative example. If the negative example is needed it can be generatedwith very good accuracy by WiM itself. We showed that the accuracy of thetarget de�nition increases with a number of positive example in the trainingset as well as with weakening of bias. WiM outperforms Markus and hashigher e�ciency of learning as well as smaller dependency on the quality ofthe example set than other exact learners. WiM is quite fast. CPU timeneeded for learning without assumptions was smaller than 8 seconds on SUNSparc. Assumption-based learning is of course more time-consuming. Themaximal CPU time was smaller than 4 seconds for list-processing predicatesand smaller than 33 seconds for Peano arithmetics (leq=2). ComparingWiMwith MIS , MIS is not able to learn from only positive examples. FOIL[66] needs much more positive examples to succeed. Also the close worldassumption employed by FOIL is not appropriate for learning from a smallexample set.

Chapter 7WiM for applicationsIn this chapter we address possibilities of WiM in solving sometasks in database technology. We introduce a concept of basic do-main knowledge and then we describe a uni�ed way of extractingreusable domain knowledge from object-oriented data description.7.1 Application challengesIn the previous chapter we presented experimental results obtained withWiM on both carefully chosen learning sets and learning sets generatedrandomly. Here we show how to use this kind of ILP techniques to simplifysome tasks which have to be usually solved by human. As we focus in thisthesis on exact ILP, we looked for such application areas where exact ILPcan help exploiting advantages of WiM system.The most natural area is automatic program synthesis. We showed inthe previous chapter that WiM can be applied for such tasks. Earlier [23]we argued that the automatic program synthesis is not the only �eld whereexact ILP can be employed and that some tasks in e.g. database technologyseem solvable by means of inductive techniques. We will show in the nextchapters that the other promising areas are inductive redesign of databaseschema and some tasks in data mining.Inductive redesign of database schema. If there are instances of data-base classes, we can, in most cases, easily design the schema of those classes,namely attributes and their types as well as super/subclasses of the class. In79

80 CHAPTER 7. WIM FOR APPLICATIONSdeductive databases this knowledge can be expressed by means of deductiverules. We will show how to learn those rules employing ILP .These rules canbe afterwards used to redesign the database schema.Data mining. The last rank of applications that we focus here is datamining (DM) [19]. The work on inductive redesign of database schema men-tioned above can be considered as DM, too. However, most of DM tasks areinappropriate for exact ILP namely because of noise in data. Fortunately,not all data are necessarily noisy. Geographic data that serve as the back-ground for map drawing is an example of that case. We show how to applyexact ILP in mining of such kind of spatial data.In the rest of this chapter we �rst explain a concept of basic domain knowl-edge and we demonstrate a way of automatic synthesis of basic domain knowl-edge from object-oriented database schema. Then we describe the wholeprocess more formally.7.2 Reusable domain knowledgeThe use of domain knowledge that is di�cult to express in propositionalframework is one of main advantages of ILP. That knowledge very often con-cerns of a structure of the data and can be, as a rule, extracted from databaseschema or from description of the data without being an expert in the do-main. We will call it basic domain knowledge. This knowledge is usuallyextended by knowledge that concerns the task that we solve in the moment.We will call the second kind of knowledge as expert domain knowledge.We here focus on the basic knowledge and its (semi)automatic synthesis.This knowledge is independent on a particular task because it depends onlyon the data itself. When working with a database, a principal part of suchknowledge is contained in the database schema.Domain knowledge for those two tasks which we try to solve here � inductiveredesign of database schema and data mining � can be described by somesort of �rst-order logic � typed, object, or their variants. Here we have cho-sen object-oriented paradigm as a way of data description that is generalenough. Object-oriented databases(OODB) [1, 5] enrich, in essence, the re-lational database model with attributes as complex objects, inheritance andobject identity. To prevent dependency on a particular database schemawe have chosen object-oriented F-logic [37] as a tool for both class and ob-

7.3. BUILDING DOMAIN KNOWLEDGE: EXAMPLE 81ject description. Such kind of object-oriented data description is easy totransform to �rst-order logic. This transformation from object-oriented de-scription into �rst-order predicate calculus is always possible. It enables toemploy ILP. We show in the next section how to exploit knowledge containedin object-oriented database schema for automatic building of domain knowl-edge predicates. This domain knowledge is then reusable in any otherlearning task for the given database.7.3 Building domain knowledge: ExampleData description in F-logicLet us have a simple object-oriented database schema (Fig. 7.1). As an in-stance of the CAR class, we have the object car1 with the identi�cation num-ber id = 'BZA-0882' and with the producer of the class FACTORY with thename = 'Honda'. The town where the factory is placed is tname = 'Osaka'country = 'Japan'. The name of the factory director is pname = 'UkoJeschita'. The database schema above is expressed in F-logic as follows.
CARidproducer(((((((((@@@@@�����JAPANESECAR CZECHCAR

FACTORYnamedirectorplace ������hhhhh TOWNtnamecountry
PERSONpnamesexspouseboss

$
%
$%

Figure 7.1: Object-oriented database schema

82 CHAPTER 7. WIM FOR APPLICATIONScar[id=>string;producer=>factory]. factory[name=>string;place=>town;director=>person].person[pname=>string ;sex=>'Sex']. town[tname=>string;country=>string].Figure 7.2: Description in F-logicwhere A => T means declaration of attribute A of type T. The car1 objectde�nition can be described as F-logic term where A -> V means that for acar->car1[id->'BZA-0882',producer->factory1[name-> 'Honda',place-> place1[tname->'Osaka',country->'Japan']director->person1[pname -> 'Uko Jeschita',sex -> male]]]Figure 7.3: Example of an object descriptionparticular object the attribute A has value V.Here we use only a subset of F-logic. In the chosen subset no set-valuedattributes are allowed, with the exception of those de�ned by deductive rules.Extensions to richer subset of F-logic are mentioned in the next chapter.Building domain knowledgeDomain knowledge consists of predicate de�nitions and declarations. Foreach class, the unary predicate of the same name is introduced. We havecar(car1). car(car2).factory(factory1). factory(factory2).town(place1). town(place2).

7.3. BUILDING DOMAIN KNOWLEDGE: EXAMPLE 83For each attribute there is an equivalent domain knowledge predicate. Inaddition, for each value of each attribute a new predicate is built1 of theform isAttributeValue(X) :- Attribute(X,Value)E.g. F-term country->'Japan' gives rise to two predicates de�nitions coun-try/2, isCountryJapan/1country(place1,'Japan').isCountryJapan(X) :-country(X,'Japan').A predicate declaration consists of the name and the arity of the predicate,modes of arguments (+x for input, -x for output) and a list of domain knowl-edge predicates allowed to appear in the learned predicate. For each domainknowledge predicate, the predicate declaration is built. E.g. for id/2 we willhaveid/2, [+x,-x], []and for isCountryJapan/1 we will haveisCountryJapan/1, [+x], [country/2]Than the declaration of japaneseCar/1 predicate looks as follows.japaneseCar/1,[+x],[car/1, factory/1, town/1,id/2, producer/2, place/2, tname/2, country/2,'isIdBZA-0882'/1, ... , isCountryJapan/1,... , isCountryCzechia/1]1This is necessary for WiM . Otherwise, there is no possibility to introduce constantsinto clauses. For systems that can introduce constants in the clause body (like Progol) itis not necessary

84 CHAPTER 7. WIM FOR APPLICATIONS7.4 Uni�ed approach to building domainknowledge7.4.1 General schemaAlgorithm for building reusable domain knowledge and for extraction oflearning set from object-oriented database follows. The general schema ex-ploiting WiM system is in Fig. 7.4.database schema and object descriptions in F-logic?GENERATE��	 @@RLearning set Domain knowledgepredicates@@R ��	WiM?the new class/attribute de�nition in FOL?TRANSLATE?the new class/attribute de�nition in F-logicFigure 7.4: DWiM schema7.4.2 Algorithm GENERATE1. Select objects from the database. Build set OL (object-orientedlearning set) of objects of a class and assign them truth value true(positive examples) or false (negative examples).2. Build type de�nitions. For each F-term A => V, add fact A_V(List),where List contains all values of attribute A that appear in OL.3. Build domain knowledge.

7.4. UNIFIED APPROACH TO BUILDING DOMAIN KNOWLEDGE 85(a) Build predicate de�nitions.i. For each object O 2 OL with object identi�er OID, buildfact O(OID).ii. For each attribute A and each value of this attribute thatappear in OL, add two clauses A(OID,V). isAV(X):-A(X,V).(b) Build predicate declarations.i. Modes: For each unary predicate, set input mode. For eachbinary predicate, set mode of the �rst argument to input andthe mode of the second one to output.ii. Types: Using database schema, set the appropriate type.4. Build learning set.For each object O 2 OL with oid OID, add fact O(OID,TruthValue)where TruthValue is either true of false.It is easy to show that all information included in set OL and relevant in-formation from the particular database schema is contained also in facts andclauses generated by algorithm GENERATE. NowWiM can be run on thegenerated learning set and with the generated domain knowledge.7.4.3 Translation between �rst-order logic and F-logicSo far we have not addressed the question about translation between �rst-order logic(FOL) and F-logic, module TRANSLATE in Fig. 7.4. It is easyto prove that each formula in the de�ned subset of F-logic can be translatedinto FOL. The opposite direction, i.e. translation from FOL into F-logic,doesn't have to succeed in general. In our example we have actually learnedthe rulejapaneseCar(X):-producer(X,Y),place(Y,Z),japaneseTown(Z).which cannot be translated into the correct F-logic formula because the in-formation about the parent class CAR, i.e. car(X) literal, is missing in therule body. This drawback is solved by adding all information about classesand/or complex attributes so that each variable in the body of rule becomeslinked with a logical oid introduced in a class de�nition. We have got theneeded information from the database schema. Let us assume that all classand attribute names are unique. We have to �nd a class which contains

86 CHAPTER 7. WIM FOR APPLICATIONSattribute producer/2, and add the appropriate literal to the clause body.After that we havejapaneseCar(X):-car(X), producer(X,Y), place(Y,Z),japaneseTown(Z)This formula can be afterwards translated into F-logic rulejapaneseCar:X <-car:X [producer->F[place->P[country->'Japan']]].In this chapter we described a way of building domain knowledge and alearning set from data described with object-oriented F-logic. In the nextchapter we will show how to exploit this approach for building reusable do-main knowledge for database schema redesign in deductive object-orienteddatabases. In Chapter 9 we employ the same method in the process of datamining in geographic data.

Chapter 8Inductive redesignof a database schemaSystem DWiM program for deductive object-oriented databaseschema redesign is introduced based on the method described inthe previous chapter. Experimental results obtained with DWiMare discussed.8.1 Rules in deductive object-orienteddatabasesIn databases there can be two kinds of rules [50]. Active rules de�ne adatabase system reaction to some actions like update or deletion of a record.Deductive rules de�ne a new dataset. Here we focus on the deductive rulesin object-oriented databases. Basically, deductive rules are useful for de�-nition of derived classes and/or for values of derived attributes. We brie�ysummarize this topic, following [50].Class de�nitions by rulesIn general, a new class can be created by specializing of an existing classor by generalizing several classes, or by generating new objects. �rst one isthe class JAPANESE CAR. The F-logic formula which de�nes the new class (asubclass of the class car) has a formjapaneseCar:X <-car:X[producer->F[place->P[country->'Japan']]]87

88 CHAPTER 8. INDUCTIVE REDESIGN OF A DATABASE SCHEMAwhere X,F and P are variables. (Here, as in the following text, we will skiptype declarations of attributes).Generalization of classes CAR FACTORY and AIRCRAFT FACTORY gives rise ofthe class FACTORYfactory : X <- carFactory : Xfactory : X <- aircraftFactory : XA new class can be created by specialization followed by generalization asdemonstrated in the following example. Let us have classes CAR and PUBLICTRANSPORT VEHICLE, both with the attribute power. Let the attribute hasvalues from the list (petrol, gasoline, electricity, horse). We wantto de�ne a new class E-VEHICLE of cars and vehicles with electrical power.Then the de�nition of that class will beeVehicle:X <- car:X[power->electricity]eVehicle:X <- publicTransportVehicle:X[power->electricity]In all the above examples, the existing objects have been only reclassi�ed(they have not changed their class) and no new objects were generated. How-ever, the derived class can rise from several existing classes resulting in a newclass of objects. E.g. you can create the class family from pairs of objectsof the PERSON class.family : F[husband->H, wife ->W] <- person:H [spouse->W] ,person:W [spouse->H]Attribute de�nitions by rulesRules can be used also for de�nition of new attributes. E.g. we want to addthe new attribute managed into the class PERSON. The new attribute containsall people who manage the given person:person:X[managed->Y] <- person:X[boss->Y]person:X[managed->Y] <- person:X[boss->Z],person:Z[managed->Y]8.2 DWiMDWiM system has been implemented following the strategy described in theprevious chapter. In the �rst step, the domain knowledge is being extracted

8.3. RESULTS 89from an object-oriented database schema. Then positive examples are chosenby user from the database. Negative examples can be generated automati-cally as assumptions (see Chapter 5), using the closed world assumption, orcan be assigned also by user.Limits of bias are generated automatically, too. The maximum complexityof head is set on 1 as well as number of free variables. Maximum clauselength is equal to the number of attribute names and values which have ap-peared in input objects. Now WiM is run with the collected example setand background knowledge.8.3 ResultsjapaneseCar:X <-car:X[producer->F[place->P[country->'Japan']isMother:M <-person:M [son->S],not person:S[father->X]factory:X <-carFactory:Xfactory:X <-aircraftFactory:Xperson:X <-child:Xperson:X <-adult:XeVehicle:X <-car:X[power->electricity]eVehicle:X <-pubTranVehicle:X[power->electricity]family:F[hu->H,wi->W] <-person:H[spouse->W],person:W[spouse->H]person:X[managed->Y] <-person:X[boss->Y]person:X[managed->Y] <-person:X[boss->Z],person:Z[managed->Y]person:X[mother->M] <-not(person:X[father->M]),person:M[son->X]person:X[mother->M] <-not(person:X[father->M]),person:M[daughter->X]Figure 8.1: Class and attribute de�nitions

90 CHAPTER 8. INDUCTIVE REDESIGN OF A DATABASE SCHEMADWiM was examined on the class and attribute de�nitions in Fig 8.1. InTab. 8.1 there are numbers of both positive and negative examples neededfor each new class/attribute described above. Negative examples were gener-ated using closed world assumption ('cwa' in the 2nd column) or were foundas an assumption with WiM itself ('a'). DWiM needed from 1 to 5 pos-itive instances(objects) of classes. The number of the needed examples issmall enough for user to be able to choose them. DWiM program is quitefast so that it can be used in interactive design of deductive object-orienteddatabases. No. of No. ofpositive examples negative examplesjapaneseCar 1 2(cwa)isMother 3 9(cwa)factory 2 1(a)person 2 1(a)eVehicle 2 2(cwa)family 2 4(cwa)managed 4 6(cwa)mother 5 7(cwa)Table 8.1: DWiM : Summary of results
8.4 Extension to full F-logicOur method can be extended to manage full F-logic description of a databaseschema. In this section we explain how to manage structured types like setor list, and how to manage complex value attributes, i.e. those referencinganother object. We also show how to learn methods.Structural typesBesides the elementary types like string, integer , and the reference toanother class, there is a structured type set. E.g. the de�nition of the class

8.4. EXTENSION TO FULL F-LOGIC 91car with the attribute passengers and an instance of that class may looksas car[id=>string;producer=>factory;.passangers=>>person].car1[id->'BMZ-1234';producer->p1;.passangers->>{eva, tom, jan}].To work with sets, we have to de�ne the new type forWiM and to add to thebackground knowledge appropriate predicates, namely member/2 and thosefor the basic set operations like union/3.The moduleGENERATE need to be extended, too. E.g. the above instancecar1 is translated intocar(car1). producer(car1,p1).passangers(car1,[eva, tom, jan]).InheritanceA hierarchy of classes allows to build hierarchical background knowledgestarting with the most general class(es). If a system failed to learn withthe current background knowledge, then (some of) subclasses are added tothe background knowledge. From other point of view, we can see it as themodi�cation of the re�nement operator. We add a new re�nement operationwhich adds to the rule body a subclass. We alows to add only subclasses ofsome class which already appears in the body.References to complex objectsAnother information in the database schema are attributes which referenceobjects from another class, e.g. the attribute director in the class FACTORYis of type PERSON. It seems be natural to modify the re�nement operator byfollowing way. Informally, let us start with the background knowledge con-taining only predicates transformed from "�at" attributes, e.g. id, colorin case of car. Whenever the learning fails with that background knowledge,let us add (some of) predicates transformed from referenced objects.

92 CHAPTER 8. INDUCTIVE REDESIGN OF A DATABASE SCHEMAHow to learn methodsAs methods in F-logic can be expressed by deductive rules, we may use thesame mechanism as described earlier to learn methods. In this task, however,human assistance is also needed. In contrast to learning virtual classes orattributes where the examples has been got from the database itself, we needto know the behavior of the learned method. It is user who has to preparethe example set of input-output behavior of the method.Example. Let us extend the de�nition of the car class by adding a methodcountry_of_origincountry_of_origin@ factory => stringwhich may look asX[country_of_origin@ Y -> Z] <-X:car, X[producer->Y[place->P[country->Z].8.5 Related worksILP methods were applied for �rst-order logic rule synthesis in relationaland/or deductive databases close to our approach. ILP system LINUS[43] can learn relations expressed in the language of deductive hierarchi-cal database clauses [48] with the restriction that no new variables may beintroduced in the body of a clause. The main disadvantage of LINUS, incomparison with DWiM is that LINUS cannot learn recursive rules. FOIL[66] is able to �nd also recursive de�nitions of relations. However, as it needsa large learning set, FOIL seems to be more useful for knowledge discoveryin databases than for software engineering, like the database schema designis. Both LINUS and FOIL can induce logical de�nitions of relations fromnoisy data. It is what DWiM cannot.The �rst system for semi-automatic modi�cation of relational database sche-ma exploiting ILP was INDEX [21]. INDEX �nds dependent attributesand allows interactive decomposition of relations. Our improvement of thatsystem can be found in [41]. CLAUDINE [14] �nds dependency and in-tegrity constraints for a given relational database. Interactive system thatprovides support for inductive database design is presented in [9].

Chapter 9KDD in geographic dataWe show that the technique described in Chapter 7 and used fordatabase schema design in deductive object-oriented databases isfully usable for spatial mining. An inductive query language isproposed and three kinds of inductive queries are described. De-scription of GWiM mining system as well as results reached withthe system are given.9.1 Mining in spatial dataMining in geographic data is challenging and very important. However, theclassical KDD, either statistical or based on machine learning in proposi-tional calculus are not convenient for the task. The spatial data have tobe managed with means that respect(and exploit) their structural nature.Moreover, non-spatial data need to be used, too, e.g. to �nd a region withsome non-spatial characteristics. Main tasks when mining geographic data[38, 65] are, among others, understanding data, discovering relationship aswell as (re)organising geographic databases. We show that inductive logicprogramming (ILP) is a powerful tool for solving these tasks.In Chap 7 we introduced the method for building domain knowledge. Ex-ploiting that method we further develop the direction started (or symbol-ised) with GeoMiner [29]. We show that a technique similar to that usedfor database schema redesign (Chapter 8) is fully usable for spatial mining.This chapter is organised as follows. In the next section, we demonstrate the93

94 CHAPTER 9. KDD IN GEOGRAPHIC DATAuse of GWiM system for solving a simple task. In Section 9.3 GWiM induc-tive query language for mining in spatial data is described. Results obtainedwith GWiM are displayed in Section 9.4. We conclude with discussion ofresults and mainly the weaknesses of the method.9.2 GWiMThe general schema of GWiM system is a modi�cation of DWiM describedin Chap. 8. The TRANSLATE module is replaced by a module that com-piles a rule in the spatial mining language into input of WiM . Then WiMis called.We will �rst demonstrate performance of GWiM on a simple mining task us-ing the database in Fig.9.2. The BRIDGE class consists of all road bridgesover rivers. Each bridge has two attributes � Object1 (a road) and Object2(a river). Each river (as well as roads and railways) inherits an attributeGeometry (a sequence of (x,y) coordinates) from the class LINEAR . Ob-jects of a class RIV ER has no more attributes but Name of the river. In aclass ROAD, the attribute state says whether the road is under construc-tion (state=0) or not. The importance de�nes a kind of the road: 1 standsfor highways, 2 for other tra�c roads, and 3 for the rest(e.g. private ones).
Object1

Object 2

HIGHWAY_BRIDGE

LINEARBRIDGE

Geometry

Importance

ROADRIVER RAILWAY

PLANAR

Geometry

FORESTRY BUILDING

FOREST WOOD FOREST_HOUSE

Forest

Named

State

Named

Figure 9.1: Spatial database schema

9.2. GWIM 95Our goal is to �nd a description of the class HIGHWAY BRIDGE in termsof other classes in the given database. Let us have 2 rivers with object iden-ti�ers river1,river2, named Svratka and Svitava and two roads (withobject identi�ers road1, road2) a highway 'D1' and a state road 'E7' thatcross those rivers. It can be expressed in �rst order logic(FOL) as Argumentsroad(road1) :-name(road1,'D1'), geometry(road1,[...]),state(road1,1),importance(road1,1).road(road2) :-name(road2,'E7'), geometry(road2, [...]),state(road2,1),importance(road2,2),river(river1) :-geometry(river1,[...]),name(river1,'Svratka').river(river2) :-geometry(river2, [...]),name(river2,'Svitava').bridge(bridge1) :-object1(bridge1,road1),object2(bridge1,river1).bridge(bridg2) :-object1(bridge2,road1),object2(bridge2,river2)bridge(bridge3) :-object1(bridge3,road2),object2(bridge3,river1).Figure 9.2: Schema description in �rst-order logicof unary predicates stands for object identi�ers(oid's) of corresponding ob-jects. For binary predicates, the �rst arguments is again oid, the second oneis a value of a particular attribute. Let the �rst two examples be assignedas instances of the class HIGHWAY BRIDGE. A learning set contains allinstances of the class HIGHWAY BRIDGE as positive examples. The restof members of the class BRIDGE (i.e. bridge3) serves as negative examples.

96 CHAPTER 9. KDD IN GEOGRAPHIC DATAGWiM starts with a minimal language which consists of object1,object2attributes of the class HIGHWAY BRIDGE itself. The best clause beingfoundhighway_bridge(X) :- bridge(X), object1((X,Y), object2(X,Z).is over-general as it covers even the negative example. In that case whenno solution is found, the language is extended by adding attributes fromneighboring classes(either super/subclasses or referenced classes). If there isa referenced class, the most general superclass is added �rst. In our case, anattribute geometry of the class LINEAR (both for RIV ER and ROAD)has been added. As it does not help, the language has been further enrichedby attributes of classes RIV ER;ROAD, i.e. state, importance and name.For this language, GWiM has eventually found a logic formulahighway_bridge(X) :- bridge(X),object1(X,Y),importance(Y,1).that successfully discriminates between positive and negative examples.9.3 Inductive query languageIn this section we present three kinds of inductive queries. Two of them, thatask for characteristic and discriminate rules, are adaptation ofGeoMiner [28]rules. The dependency rules add a new quality to the inductive query lan-guage. The general syntactic form, adapted from GeoMiner of the languageis as follows. Semantics of those rule di�ers from that of GeoMiner. Namelyextract < KindOfRule > rulefor < NameOfTarget >[from < ListOfClasses >][< Constraints >][from point of view < ExplicitDomainKnowledge >] .Figure 9.3: General form of rules< ExplicitDomainKnowledge > is a list of predicates and/or hierarchy ofpredicates. At least one of them have to appear in the answer to the query.The answer to those inductive queries is a �rst-order logic formula whichcharacterizes the subset of the database which is speci�ed by the rule.

9.3. INDUCTIVE QUERY LANGUAGE 97Characteristic ruleCharacteristic rules serve for a description of a class which exists in thedatabase or for a description of a subset of a database.The result of characteristic rule is a predicate < NameOfClass > of arityequal to the number of attributes of that class. The predicate is built usingother classes and/or attributes in the given database as well as using <ExplicitDomainKnowledge >. Instances of the class introduced in the clausefor that satisfy where condition serve as positive examples.extract characteristic rulefor < NameOfClass >where < ConstraintOnListOfClasses >from point of view < DomainKnowledge > .E.g. the concept of bridge in Section 9.2 can be expressed by this kind ofrule.Discriminate ruleDiscriminate rules �nd a di�erence between two classes which exist in thedatabase, or between two subsets of the database.extract discriminate rulefor < NameOfClass >[where < ConstraintOnClass >]in contrast to < ClassOfCounterExamples >[where < ConstraintOnCounterExamples >][from point of view < DomainKnowledge >] .Positive examples of the concept < NameOfTarget > are described byfor < NameOfClass >where < ConstraintOnListOfClasses >negative examples are described byfrom < ListOfClasses >in contrast to < ClassOfCounterExamples >where < ConstraintOnCounterExamples >The discriminate rules allows to �nd a quantitative description of a class incontrast to another one. E.g. forests have an area greater than 100 hectares.Woods serve as counterexamples there.

98 CHAPTER 9. KDD IN GEOGRAPHIC DATADependency ruleDependency rules aim at �nding dependency between di�erent classes. Inopposite to discriminate rules, dependency rules look for a qualitative char-acterization of a di�erence between two classes. The clause from point ofview speci�es explicit background knowledge which can be used to build thetarget predicate < NameOfTarget >. In fact it is a criterion of interesting-ness. extract dependency rulefor < NameOfClass >from < ListOfClasses >[where < ConstraintOnClasses >][from point of view < DomainKnowledge >] .The objects are de�ned by the from ... where ... from point of view... formula. The target predicate < NameOfTarget > is of arity equal to anumber of classes in < ListOfClasses >. E.g. for forests and woods, an areaof a forest is always greater than an area of a wood.9.4 ResultsThe geographic data used can be seen in Fig. 9.4. The thick lines are rivers.The data set contains 31 roads, 4 rails, 7 forest/woods, and 59 buildings.Particular mining task are described in the following paragraphs.Characteristics of bridgeFind a description of bridge in terms of attributes of classes road; river,using the implicit domain knowledge for domains nom; ordinal; geometry, i.e.generic predicates =/2 (for all 3 domains), </2 (for the domain of ordinals,and member/2 for geometry.extract characteristic rulefor bridgefrom road, river. bridge(X,Y):-road(X),roadGeometry(X,Z),river(Y),riverGeometry(Y,U),member(V,Z),member(W,U),W=V.

9.4. RESULTS 99

Figure 9.4: Geographic dataBridge with additional domain knowledgeFind a description of bridge in terms of attributes of classes road; river, usingadditional domain knowledge of the predicate commonPoint(Path1; Path2).extract characteristic rulefor bridgefrom road, riverfrom point of view commonPoint. bridge(X,Y):-object1(X,Z),geometry(Z,G1),object2(Y,U),geometry(U,G2),commonPoint(G1,G2).Discrimination of forests and woodsFind a di�erence between forests and woods from the point of view of area.area is the name of set of predicates like area(Geometry; Area).extract discriminate rulefor forestin contrast to woodfrom point of view area. forest(F) :-geometry(F,GForest),area(GForest,Area),100 < Area.

100 CHAPTER 9. KDD IN GEOGRAPHIC DATARelation between forest and woodFind a relation between forests and woods from the point of view of area.area is the name of set of predicates like area(Geometry; Area).extract dependency rulefor forestOrWoodfrom forest, woodfrom point of view area. forestOrWood(F,W) :-geometry(F,GF),area(GF,FA),geometry(W,GW), area(GW,WA),WA<GA.The number of examples, both positive and negative, needed for a particularconcept to be learned are in Tab. 9.4. The cardinality of the learning sets is# positive # negativebridge 2 1forest 3 4forestOrWood 7 7Table 9.1: GWiM : Summary of resultssmall enough for the user who has to choose the learning examples. GWiMoutperforms in some aspects GeoMiner. Namely GWiM can mine a richerclass of knowledge, Horn clauses. Background knowledge used in GeoMinermay be expressed only in the form of hierarchies. GWiM accepts any back-ground knowledge that is expressible in a subset of object-oriented F-logic[37].9.5 Discussion9.5.1 On the inductive query languageThe query language is quite powerfull. However, some of queries looks littletricky. Let us look for the relation between forest houses (i.e. those thatare near a forest) and other buildings. In the current vesrion of GWiM , theinductive query looks as follows.

9.5. DISCUSSION 101extract dependency rulefor di�erentHousesfrom forestHouse, forest, buildingwhere building(B, GB),not forestHouse(B, F)from point of view distance, less differentHouses(FH,F,H) :-distance(FH,F,D1),distance(H,F,D2),D1<D2.It seems to be quite di�cult (or at least incomfortable) for a user to writesuch a where clause. In this case, it can be improved by allowingwhere building not in forestHouse9.5.2 On mining in real databasesIn the current implementation all the data are �rst imported from a database(PostgreSQL or Oracle) in the form of Prolog facts. One weakness ofWiM isits incapability to process large learning sets. Even in the case of the exampleabove (differentHouses) some kind of sampling was necessary to reach aresult. However, there is a way how to manage such data and we will explainit below.As mentioned earlier, the general-to-speci�c learning splits into two steps.In the �rst step a promising hypothesis is generated that is, in the secondstep, tested on the example set. The generation step does not depend onthe number of examples. If the cardinality of the learning set is increasing, arelative price of the generation step is even decreasing. It seems be straight-forward to employ the database management system itself in the testing step.Actually we only need to know the number of examples (both positive andnegative) that are covered by the current hypothesis. It means that we needto implement a communication channel connecting an ILP system, with thedatabase system. The answer itself will be received after evaluation of thequery using the database management system.The current version of WiM can work in interactive mode. Oracles havebeen implemented that allow to ask any external device and even evaluate agiven hypothesis on external data. The hypothesis is �rst translated into a(sequence of) SQL queries. The answers are then evaluated and the hypoth-esis is either specialized or accepted as the result of the particular inductivequery.

102 CHAPTER 9. KDD IN GEOGRAPHIC DATAWe will demonstrate it on the same example as in Section 9.2. We have2 positive examples and 1 negative example. The minimal success rate fora hypothesis to be accepted is set to 1 � all positive examples need to becovered and none of negative ones does. An initial portion of examples israndomly chosen from the database employing random oracle. Let we askfor just 1 positive example. The learned hypothesishighway_bridge(X) :- bridge(X), object1(X,Y), object2(X,Z).has to be veri�ed using the full database. A success rate oracle is calledthat returns the success rate for the hypothesis. Thus the hypothesis is over-general and needs to be further specialized. The process continues until thelimit for a minimal success rate is reached.9.6 Related worksAn improved version of the query language described in this thesis can befound in [39, 40]. Most of spatial mining algorithms must employ some kindof neighbourhood relationships. In [20] an extension of spatial database man-agement system is proposed for processing of spatial neighbourhood relationsthat is based on the notion of neighbourhood graphs. The query languagedescribed in [39, 40] follows this direction.GeoMiner [29, 38], the spatial data mining system has been developed in Si-mon Fraser University, British Columbia, Canada. It follows the line startedwith the relational data mining system DBMiner. The user interface ofGeoMiner is implemented on the top of MapInfo Professional 4.1 GeographicInformation System. Current version of GeoMiner can �nd three kinds ofrules, characteristic rules, comparison rules, and association rules. In [8] afuzzy spatial object query language FuSOQL is introduced for selecting data.The FuSOQL interpreter is built upon the O2 OODBMS [5] and GeO2 . Afuzzy decision tree is afterwards built that describes that data.

Chapter 10Conclusion
10.1 Main contributions10.1.1 Novel ILP architectureIn Chapter 5 we introduced the new ILP paradigm called assumption-basedlearning motivated by [35, 36]. This novel ILP architecture consists of aninductive synthesiser, a generator of assumptions which generates extensionsof the learning set, and an acceptability module which evaluates acceptabilityof both the found solution and the assumptions. The acceptability module isallowed to ask queries to a teacher. The number of queries is much smallerthan in other interactive ILP systems. We experimentally proved that theimplementation of the assumption-based paradigm, the system WiM , is lessdependent on the quality of the learning set than other ILP systems.10.1.2 E�cient program synthesis from small learningsetsIn Section 3.6.2 we showed how to decrease complexity of the search space inILP setting. WiM , described in Chapter 5, extends Markus [26] by shiftingbias, generating negative examples and employing second-order schema. Weshowed in Chapter 6 that even with a very small example set (less or equalto 4 positive examples, see Appendix C for particular learning sets) WiMis capable to learn most of the predicates which have been mentioned inILP literature. We showed that WiM is feasible for solving real-world tasks103

104 CHAPTER 10. CONCLUSION(Chapters 8 and 9). Our ssumption-based approach can be combined withany existing ILP system.10.1.3 Automatic generation of negative examplesWhen solving tasks with an ILP system, as a rule the needed negative ex-amples are more dependent on the particular system then on the solvedproblem. In our approach, the system WiM �nds negative examples itself(Section 5.5). A near-miss to one of the positive examples is considered as acandidate for that purpose. Such a negative example is found useful if afteradding that example to the current learning set, the learner is able to suggesta new de�nition of the target predicate. Only in such a case the user is askedfor a con�rmation of that particular candidate for the negative example.10.1.4 Building of reusable domain knowledgeIn Chapter 7 we described a new method for automatic building of domainknowledge. We suppose that logic description of domain in some kind of �rst-order logic exists or at least can be easily obtained (e.g. by transformationof object-oriented database schema into object-oriented logic). We showedhow to exploit such a description for automatic building of a basic domainknowledge. We only wanted to make the domain knowledge constructioneasier and to exploit knowledge which is usually known (in some form) touser. Another advantage of the basic domain knowledge is that it is reusablefor other tasks because it depends only on that logic description. Our methodcan be applied as the �rst step in domain knowledge building. The next step� completing the basic set of domain predicates with other predicates � is upto user and his experience.10.1.5 Inductive redesign of object-oriented databaseIn Chapter 8 we addressed the possibilities of ILP methods in object-orienteddatabase schema modelling, i.e. in database schema design and restructuring.We showed that inductive logic programming could help in synthesis of thoserules to support the database schema design and modi�cation. New approachto the object-oriented database modelling by means of ILP was introduced.Experimental results obtained by DWiM system, a variant of WiM , werediscussed.

10.2. FUTURE WORK 10510.1.6 Mining in spatial dataWe showed in Chapter 9 that inductive logic programming is a powerfultool for spatial data mining [38]. We proceed in the direction started(orsymbolised) by GeoMiner [29]. We showed that the technique developed fordatabase schema design in deductive object-oriented databases is fully usablefor spatial mining. Mining system GWiM was implemented based on WiM .GWiM overcomes, in expressive power, some other mining methods. Resultsreached with the system have been reviewed. An inductive query language,with richer semantics, was proposed and three kinds of inductive queries weredescribed. Two of them are improved versions of GeoMiner [28] rules. Weintroduced a new kind of rules, dependency rules, that allow to compare twoor more subsets. We are convinced that ILP allows signi�cantly extent anexpressive power of inductive query languages in the domain of geographicdata.10.2 Future workThere are at least two research directions that should be followed in future.The �rst one concerns search strategies of the hypotheses space, the secondone aims at (inter)active learning. We will discuss them brie�y below.Markus, the predecessor of WiM , employed iterative deepening search ofthe hypothesis space. WiM , to be easy to drive, does not support it1 and setsthis parameter to 0. As a consequence, WiM cannot learn e.g. quicksort/2predicate. However, it is easy to extend the shift of bias mechanism in WiMby adding the parameter for iterative deepening.Interactive learning is really a challenge. In many application tasks, like innatural language processing or data mining, there is a huge amount of data.However, those data sets cannot be used directly for learning because of theextreme computational complexity of ILP systems, including WiM . An al-ternative to sampling techniques may be active learning. ILP system itselflooks for examples that are useful to accept/reject a hypothesis.In the current version of WiM , several oracles have been implemented (seeFig. 10.2). Moreover, a user can easily implement its own oracle. Followingoracles have been implemented (Fig. 10.2): existential [67], membership1It is, of course, possible to use the internal settings of Markus even for WiM .

106 CHAPTER 10. CONCLUSION[3, 67], weak_subset and weak_ existential. The weak subset oracle re-oracle1(weak_subset,Cl,Answer) ... Answer == true iffat least 1 new positive example is coveredand any negative one is notoracle1(exists, Cl,Answer) ... Answer== set of all instantiations of the clause Cloracle1(membership, Cl,Answer) ... Answer == true|falseoracle1(weak_exists,Cl,Answer) ... Answer == true|falseFigure 10.1: List of oracles implemented in WiMturns true i� at least 1 new positive example is covered and any negativeone is not. The weak existential oracle returns true if at least one positiveexample is covered by the tested hypothesis, otherwise it returns false. Usingthose oracles, a bridge between WiM and Oracle 7 DBMS has been imple-mented by Petr Chocholá£. This interface enables WiM to extract learningexamples directly from user relations saved in Oracle.

IndexDWiMdescription, 88improvements, 90results, 89GWiMcharacteristic rule, 97, 98dependency rule, 98, 100description, 94discriminate rule, 97, 99example, 94inductive query language, 96Herbrand interpretation, 21Herbrand model, 21CRUSTACEAN , 41FILP , 42Markus , 39algorithm, 39clause synthesis, 40parameters, 40re�nement operator, 40MIS , 35algorithm, 36new clause construction, 37re�nement operator, 37Progol , 43SKILit , 43WiMacceptability module, 57algorithm, 51

comparison withCRUSTACEAN , 75, 76FILP , 75Markus , 74Progol , 77, 78SKILit , 77constraint of a program schema,54experimentsdependence on bias settings,70learning with assumptions, 73learning without assumptions,69, 70parameter settings, 67generator of assumptions, 54inductive synthesiser, 50multiple predicate learning, 52oracle, 57, 101, 105shifting of bias, 52answer, 21assumption, 47assumption-based learning, 46, 47basic schema, 49generic algorithm, 49assumption-based reasoning, 47biaslanguage bias, 31search bias, 31107

108 INDEXshift of bias, 31validation bias, 31cardinality of the search space, 32a way of narrowing, 33carefully chosen examples, 65clause, 19body, 19closed, 19good, 40head, 19promising, 40complexity of example, 55coverage, 21extensional, 21intensional, 21covering paradigm, 39deductive rules, 87domain knowledgebasic, 80building, 81, 82, 84reusable, 81�rst order language, 20functional logic program, 42ground clause, 19incomplete program, 22inconsistent program, 22inductive design of database schema,88inductive logic programming, 15, 24basic task, 24example setting, 25general-to-speci�c, 28generic algorithm, 26inductive query language, 96

integrity constraint, 48intended interpretation, 21interpretation, 20logic program, 19clause, 19completion, 20error diagnosis, 21goal, 19model, 20logical consequence, 20mining in geographic data, 93mode of argument, 22model, 20near-miss, 48, 54, 55normal program, 21oracle, 31, 57, 61, 101preference relation, 55randomly chosen examplesdescription, 65generation, 66method of testing, 67reduced clause, 20re�nement graph, 29re�nement operator, 29properties, 29specialisation, 27specialisation operator, 27substitution, 21success rate, 67test perfect solution, 67, 70type of argument, 22

Bibliography[1] Abiteboul S. Hull R. Vianu V.: Foundations of databases. Addison-Wesley Publ. 1995.[2] Aha D.W., Lapointe S., Ling C.X., and Matwin S.: Inverting implicationwith small training sets. In Bergadano F., De Raedt L. (Eds.) Proc. ofECML'94, Catania, LNCS 784, pp. 31�48, Springer Verlag 1994.[3] Angluin D.: Queries and Concept Learning. Machine Learning 2, 4,April 1988, 319-342[4] Arima J.: Automatic Logic Programming under Highly RedundantBackground Knowledge. De Raedt, L.(ed.): Proceedings of the 5th Inter-national Workshop on Inductive Logic Programming pp. 355-372, 1995.[5] Bancilhon F., Delobel C., Kanellakis P.: Building an Object-OrientedDatabases Systems: The story of O2. Morgan Kaufmann 1992.[6] Bergadano F.: Towards an Inductive Logic Programming Language(manuscript)[7] Bergadano F. and Gunetti D.: An interactive system to learn functionallogic programs. Proc. of IJCAI'93, Chambéry, pp. 1044�1049.[8] Bigolin N.M., Marsala C.: Fuzzy Spatial OQL for Fuzzy KnowledgeDiscovery in Databases. In �ytkow J.M., Quafafaou M.(eds.): Proc.PKDD'98, Nantes, France. LNCS 1510, Springer Verlag 1998.[9] H. Blockeel H., De Raedt L.: Inductive Database Design. Proceedingsof ISMIS-96. 109

110 BIBLIOGRAPHY[10] Bondarenko A., Toni F., and Kowalski R.A.: An assumption-basedframework for non-monotonic reasoning. In Perreira L.M., Nerode A.(Eds.) Proc. of the 2nd International Workshop on Logic Programmingand Non-Monotonic Reasoning, Lisbon, 1993, pp. 171�189, MIT Press,1993.[11] Cohen W.: Rapid prototyping of ILP systems using explicit bias. Pro-ceedings of 1993 IJCAI Workhop on ILP.[12] Cohen W.: Pac-learning recursive logic programs: E�cient algorithms.Journal of Arti�cial Intelligence Research, Volume 2, pages 501-539,1995.[13] Cohen W.: Pac-learning recursive logic programs: Negative results.Journal of Arti�cial Intelligence Research, Volume 2, pages 541-573,1995.[14] Dehaspe L., Van Laer W., De Raedt L.: Applications of a logical dis-covery engine. In: Wrobel S.(ed.): Proc. of 4th Workshop on InductiveLogic Programming ILP'94, Bonn Germany, 1994.[15] DeKleer J.: An Assumption-Based TMS. Arti�cial Intelligence 18, 1986.[16] De Raedt, L.: Interactive Theory Revision: An Inductive LogicProgramming Approach. Academic Press, 1992. (see also De Raedt,L.:Interactive Concept-Learning. PhD Thesis, Catholic University Leu-ven, Belgium 1991.)[17] De Raedt L., Lavra£ N., Dºeroski S.: Multiple predicate learning. InProc. IJCAI'93. Morgan Kaufmann, San Mateo, CA.[18] Deville Y.: Logic Programming: Systematic Program Development. Ad-dison Wesley, 1990.[19] Dºeroski S., Lavra£ N.(eds.): Inductive Logic Programming in KDD. ASpecial Issue of Data Mining & Knowledge Discovery, Vol 3., No. 1, Feb.1998.[20] Ester M., Kriegel H.-P., Sander J.: Spatial Data Mining: A DatabaseApproach. In: Proc. of the 5th Int. Symposium on Large SpatialDatabases(SSD'97), Berlin. LNCS Vol.1262, pp.47-66, Springer Verlag1997.

BIBLIOGRAPHY 111[21] Flach P.: Predicate invention in inductive data engineering. Proceedingsof ECML'93, LNAI 667, Springer-Verlag 1993.[22] Flener P.: Logic Program Synthesis from Incomplete Information.Kluwer Academic Publishers, 1995. (see also Flener P.: Logic Algo-rithm Synthesis from Examples and Properties. PhD. Thesis, UniversitèCatholique de Louvain 1993.)[23] Flener P., Popelínský L.: On the use of inductive reasoning in programsynthesis: Prejudice and prospects. Proc. of the 4th Int'l Workshop onLogic Program Synthesis and Transformation (LOPSTR'94), Pisa, Italy,1994.[24] Flener P., Popelínský L. �t¥pánková O.: ILP nad Automatic Program-ming: Towards three approaches. Proc. of 4th Workshop on InductiveLogic Programming (ILP'94), Bad Hone�, Germany, 1994.[25] Grobelnik M.: MARKUS: An optimized Model Inference System In Pro-ceedings of the ECAI-92 Workshop on Logical Approaches to MachineLearning, Vienna 1992.[26] Grobelnik M.: Induction of Prolog programs with Markus. In DevilleY.(ed.) Proceedings of LOPSTR'93. Workshops in Computing Series,pages 57-63,Springer-Verlag, 1994.[27] Grobelnik M.: Declarative Bias in Markus ILP system. Working notesof the ECML'94 Workshop on Declarative Bias, Catania, 1994.[28] Han J. et al.: DMQL: A Data Mining Query Language for RelationalDatabases. In: ACM-SIGMOD'96 Workshop on Data Mining[29] Han J., Koperski K., and Stefanovic N.: GeoMiner: A System Prototypefor Spatial Data Mining. In: Proc. 1997 ACM-SIGMOD Int'l Conf. onManagement of Data(SIGMOD'97), Tucson, Arizona, May 1997.[30] Horváth T., Turán G.: Learning logic programs with structured back-ground knowledge. De Raedt, L.(ed.): Proceedings of the 5th Inter-national Workshop on Inductive Logic Programming ILP'95, pp.53-76,1995.

112 BIBLIOGRAPHY[31] Huntbach, M.: An improved version of Shapiro's Model Inference Sys-tem. In Shapiro E.(Ed.), Proceedings of Third International Confer-ence On Logic Programming ICLP'86, London, pp.180-187, LNCS 225,Springer-Verlag 1986.[32] Jorge A., Brazdil P.: Architecture for Iterative Learning of RecursiveDe�nitions. In De Raedt L.(ed.): Advances in Inductive Logic Program-ming. IOS Press 1996.[33] Jorge A., Brazdil P.: Integrity Constraints in ILP using a Monte Carloapproach. In Proceedings of 6th Int. Workshop on ILP ILP'96. LNAI1314 Springer Verlag 1996.[34] Jorge A.: Iterative Induction of Logic Programs. PhD Thesis, Departa-mento do Ciências de Computadores Faculdade de Ciências da Univer-sidade do Porto 1998.[35] Kakas A.C., Kowalski R.A., and Toni F.: Abductive logic programming.Journal of Logic and Computation 2, 6, pp. 719-770, 1992.[36] Kakas A.C., Mancarela P.: Knowledge assimilation and abduction. Pro-ceedings of ECAI'90 Int. Workshop on Truth Maintenance, Stockholm1990. Martins(ed.) LNCS Springer-Verlag 1991.[37] Kifer M., Lausen G., Wu J.: Logical Foundations of Object-Orientedand Frame-Based Languages. TR 93/06, Dept. of Comp. Sci. SUNY atStony Brook, NY, March 1994 (accepted to Journal of ACM).[38] Koperski K., Han J., Adhikary J.: Mining Knowledge in GeographicalData. Comm.of ACM 1998[39] Kuba P.: Knowledge discovery in spatial data. Master thesis, Faculty ofInformatics MU Brno, 2000 (in Czech).[40] Kuba P.: Query language for knowledge discovery in spatial data. Va-lenta J.(ed.): Proceedings of DATASEM'2000 conference, Brno, 2000(in Czech).[41] Kuklová J., Popelínský L.:On Biases in Inductive Data Engineering.ECML'94 Workshop on Declarative Bias, Catania, Sicily, 1994

BIBLIOGRAPHY 113[42] Lavra£ N., Dºeroski S.: Background knowledge and declarative bias ininductive concept learning. In: Jantke K.(ed.): Proceedings 3rd Interna-tional Workshop on Analogical and Inductive Inference, pp.51-71, LNCS642 Springer Verlag 1992.[43] Lavra£ N., Dºeroski S.: Inductive Logic Programming. Techniques andApplications. Ellis Horwood Ltd. 1994[44] Lavra£ N., Dºeroski, Kazakov D., �t¥pánková O.: ILPNET repositorieson WWW: Inductive Logic Programming systems, datasets and bibli-ography. AI Communications Vol.9, No.4, 1996, pp. 157-206 .[45] Le Blanc G.: BMWk Revisited. In Bergadano F., De Raedt L. (eds):Proc. of ECML'94, Catania, pages 183-197. LNCS 784, Springer Verlag,1994.[46] Ling C.X.:. Logic Program Synthesis from Good Examples. Proc of 1stWorkshop on ILP, ILP'91 pp. 41�57, Viana do Castelo 1991.[47] Ling C.X.:. Inductive learning from good examples. In Proc. of IJCAI'91,pp. 751�756, Sydney, Australia. Morgan Kaufmann.[48] Lloyd J.W.: Foundations of Logic Programming (2nd edition). Springer-Verlag Berlin 1987.[49] Manandhar S., Dºeroski S., Erjavec T.: Learning multilingual morphol-ogy with CLOG. In Proc. of ILP'98, 1998.[50] Manthey R.: Rules and Objects - issues in the dessign and develop-ment of DOOD systems. Summer school Object Orientation in DatabaseWorld, Leysin, Switzerland 1994.[51] Mitchell, T.M.: Machine Learning. McGraw Hill, Newy York, 1997.[52] Muggleton S. (ed): Inductive Logic Programming. Volume APIC-38,Academic Press, 1992.[53] Muggleton S., De Raedt L.: Inductive Logic Programming: Theory AndMethods. J. Logic Programming 1994:19,20:629-679.[54] Muggleton S.: Inverse Entailment and Progol. New Generation Com-puting Journal, 13:245-286, 1995.

114 BIBLIOGRAPHY[55] Nédellec C.: Knowledge Re�nement Using Knowledge Acquisition andMachine Learning Methods. Gaines B.(ed.): Proceedings of AAAISpring Symposium, AAAI Press 1992.[56] Nédellec C., Rouveirol C.: Speci�cation of the HAIKU system. Rapportde Recherche n 928, L.R.I. Université de Paris Sud, 1994.[57] Nienhuys-Cheng S.-H., de Wolf R.: Foundations of Inductive Logic Pro-gramming. Lect. Notes in AI 1228, Springer Verlag Berlin Heidelberg1997.[58] Popelínský L.: Towards Synthesis of Nearly Pure Logic Programs. In:Proceedings of LOPSTR'91, Workshops Series Springer Verlag 1992.[59] Popelínský L.: Towards Program Synthesis From A Small Example Set.Proceedings of 21st Czech-Slovak conference on Computer Science SOF-SEM'94, pp.91-96 Czech Society for Comp. Sci. Brno 1993. (See alsoProceedings of 10th WLP'94, Zuerich 1994, Switzerland.)[60] Popelínský L.: Object-oriented data modelling and rules: ILP meetsdatabases. Proceedings of Knowledge Level Modelling Workshop,ECML'95 Heraklion, Crete[61] Popelínský L., �t¥pánková O.: WiM : A Study on the Top-Down ILPProgram . Technical report FIMU-RS-95-03, August 1995.[62] Popelínský L.: Knowledge Discovery in Spatial Data by Means of ILP.In: Zytkow J.M., Quafafou M.(Eds.): Proc. of 2nd European Sympo-sium PKDD'98, Nantes France 1998. LNCS 1510, Springer-Verlag 1998.[63] Popelínský L.: Inductive inference to support object-oriented analysisand design. In: Proc. of 3rd Conf on Knowledge-Based Software Engi-neering, Smolenice 1998, IOS Press.[64] Popelínský L.: Induktivní logické programování. Technical Report Ger-stner Laboratory GLC-30/99, CTU Prague 1999 (in Czech)[65] Popelínský L.: Approaches to Spatial Data Mining. In Proceedings ofGIS... Ostrava'99 Conference, ISSN 1211-4855, 1999.[66] Quinlan J.R.: FOIL: A midterm report. Proceedings of ECML'93, LNAI667, Springer-Verlag 1993.

BIBLIOGRAPHY 115[67] Shapiro Y.: Algorithmic Program Debugging. MIT Press, 1983.[68] Srinivasan A., Muggleton S., King, R.D.: Comparing the use of back-ground knowledge by two Inductive Logic Programming systems. DeRaedt, L.(ed.): Proceedings of the 5th International Workshop on In-ductive Logic Programming, pp. 199-230, 1995.[69] Stahl I.: Predicate Invention in Inductive Logic Programming. In: L.De Raedt(Ed.), Advances of Inductive Logic Programming, IOS Press,1996.[70] Wrobel S.: On the proper de�nition of minimality in specialization andtheory revision. In Brazdil P.B.(Ed.): Proceedings of ECML-93 Confer-ence. LNAI 667, Springer-Verlag 1993, pp. 65-82.

Appendix ANumber of admissiblesequences of variablesA sequence of variables fX1; :::; Xig is admissible if no variable Xj+1 canappear before all variables fX1; :::; Xjg have been used.In order to count the number of admissible sequences of variables of a givenlength, it is useful to introduce a function h(P;N). This function speci�esthe exact number of those admissible sequences of variables of the length Nin which just P variables appear. Obviously, this function is de�ned only forP � N (all P variables have to be present in the considered sequence). Thisfunction is easy to evaluate for distinguished values of its arguments, namelyh(1; N) = 1h(P; P) = 1Number of admissible seguences of the length N with just 2 variables is givenas a sum of cardinalities of those sets of admissible sequences which di�er bythe positions of the �rst occurence of X2. Variable X2 can appear �rst onthe position 2, and then on all higher positions, i.e.h(2; N) = 2N�2 + 2N�3 + ::: + 1 = 2N�1 � 1For other values of its arguments the function h can be de�ned recursivelyas followsh(P;N) = P � h(P;N � 1) + h(P � 1; N � 1).The number NC(N) of all admissible sequences of variables of the length Nis then given as a sum 116

117NC(N) = h(1; N)+h(2; N)+h(3; N)+::::+h(N�1; N)+h(N;N).and the number of all sequences of K variables of the length N is given as asum NC(K;N) = h(1; N) + h(2; N) + :::+ h(K;N).Obviously, for N > 1 there holdsNC(N) > h(2; N) + 1 = 2N�1The function NC(N) has clearly an exponential character.

Appendix BParameters of WiMGeneral settingswim_set(learn,NameOfPredicate/Arity)name and arity of a predicate to be learnedwim_set(verbose,[yes])full information about learning session is displayedwim_set(maxNumOfRefGood, [Max])maximal number of generated clauses that covers at least 1 un-covered positive exampleLanguage biaswim_set(mx_free_vars,[Min,Max])maximal number of free varibales that may appear in a learnedclausewim_set(mx_goals,[Min,Max])maximal number of goals in a clause bodywim_set(mx_arg_depth,[Min,Max])maximal depth of function terms in a clause head118

119Search biaswim_set(bias,[shift])shift of bias allowedwim_set(interactive,[interactive=no,answer=continue])WiM looks for all solutions in the hypotheses spaceInteractive modewim_set(assumptions,[no])switchs o� an assumption generation

Appendix CExample setsDe�nitions of predicates in the form ofpred_def(Predicate/Arity, <arguments types and modes>,<background knowledge predicate to use> , []).and examples of the given predicate follows.pred_def(member/2, [-x, +xl], [member/2], []).ex(member(a,[a]),true).ex(member(c,[b,c]),true).pred_def(concat/3, [+xl, +x, -xl], [concat/3], []).ex(conc([],a,[a]), true).ex(conc([b],c,[b,c]), true).ex(conc([b,c],d,[b,c,d]), true).pred_def(append/3, [+xl, +xl, -xl], [append/3], []).ex(append([], [a], [a]), true).ex(append([b , c], [d , e], [b, c, d, e]), true).ex(append([f], [g , h], [f ,g, h]), true).pred_def(delete/3, [+x, +xl, -xl], [delete/3], []).ex(delete(a,[b,a],[b]),true).ex(delete(c,[d,e,c,f],[d,e,f]),true).Assumption: delete(b,[b,a],[b]),false 120

121pred_def(reverseConcat/2, [+xl, -xl],[cconc/3, reverseConcat/2], []).ex(reverseConcat([], []), true).ex(reverseConcat([a, b, c], [c, b, a]), true).pred_def(reverseAppend/2, [+xl, -xl],[ssingleton/2, append/3, reverseAppend/2], []).ex(reverseAppend([a,3,4],[4,3,a]), true).ex(reverseAppend([2,0],[0,2]),true).ex(reverseAppend([], []), true).pred_def(last/2, [-x, +xl], [last/2], []).ex(last(a,[a]),true).ex(last(b,[a,b]),true).Assumption: last(a,[a,b]),falsepred_def(split/3, [+xl, -xl, -xl], [split/3], []).ex(split([a,b], [a], [b]), true).ex(split([c,d,e,f], [c,e], [d,f]), true).pred_def(sublist/2, [-xl, +xl], [sublist/2], []).ex(sublist([],[]),true).ex(sublist([c, d], [b, c, d, a]), true).ex(sublist([c, d], [c, d, b, a]), true).ex(sublist([a], [b, a]), true).pred_def(union/3, [+xl, +xl, -xl], [member/2, union/3], []).ex(union([],[1,2,3],[1,2,3]), true).ex(union([1,3],[2,3,4],[1,2,3,4]), true).ex(union([1,2,3,4],[2,3,5],[1,4,2,3,5]), true).ex(union([1,2,3],[3,4,5],[1,2,3,4,5]), true).pred_def(plus/3, [+int, +int, -int], [plus/3], []).ex(plus(0,s(0),s(0)), true).ex(plus(s(s(0)),s(s(0)),s(s(s(s(0))))), true).ex(plus(s(0),s(s(0)),s(s(s(0)))), true).Assumption: plus(0,0,s(0)), false

122 APPENDIX C. EXAMPLE SETSpred_def(leq/2, [+int, +int], [leq/2], []).ex(leq(0,s(0)), true).ex(leq(s(s(s(0))),s(s(s(s(0))))), true).ex(leq(s(s(0)),s(s(s(0)))), true).Assumption: leq(s(s(s(s(0)))),s(0)) , falsepred_def(length/2, [+xl, -int], [length/2, is0/1, ppl/3], []).ex(length([], 0), true).ex(length([b, c], s(s(0))), true).ex(length([f], s(0)), true).Assumption: length([0],0) , falsepred_def(extractNth/3, [-int, +xl, -xl], [extractNth/3], []).ex(extractNth(s(0), [s(s(s(0)))], []), true).ex(extractNth(s(0), [s(s(0)), s(0), (s(s(0)))],[s(0), (s(s(0)))]), true).ex(extractNth(s(s(0)), [s(s(0)), s(0), (s(s(0)))],[s(s(0)), (s(s(0)))]), true).Assumption: extractNth(s(s(s(0))),[s(s(s(0)))],[]) , false

Appendix DGeographic dataSpeci�cation: Topographic description of rivers, roads, railways as well aswoods/forests and buildingsData complexity estimation or order of magnitude: Based on real-world data (modi�ed to keep con�dentiality)Data format: PrologDescription: The data contain description of rivers, roads, railways as wellas woods/forests and buildings (1 fact per 1 object). Each object is decribedby its geometry in 2-dimensional space and by some characteristics (for roadsand railways). The example set is based on real-world topographic data. Tokeep con�dentiality, however, they had to be modi�ed. The modi�cationshould keep the main characteristics that can be learned from the data (e.g.based on intersection, being parallel, the area etc.)The provided dataset is intended for induction of the rules for identi�cationof concepts like bridge, forest in contrast to wood, railway station in contrastto a house nearby the railway etc.
123

