A NOTE ON 'NON-SECRET ENCRYPTION'
 by C C Cocks, 20 November 1973

A possible implementation is suggested of J H Ellis's proposed method of encryption involving no sharing of secret information (key lists, machine set-ups, pluggings etc) between sender and receiver.

Note on "Non-Secret Encryption"

1. In [1] J H Ellis describes a theoretical method of encryption which does not necessitate the sharing of secret information between the sender and receiver. The following describes a possible implementation of this.
a. The receiver picks 2 primes P, Q satisfying the conditions
i. P does not divide Q-1.
ii. Q does not divide $\mathrm{P}-1$.

He then transmits $\mathrm{N}=\mathrm{PQ}$ to the sender.
b. The sender has a message, consisting of numbers $\mathrm{C} 1, \mathrm{C} 2, \ldots \mathrm{Cr}$ with $0<\mathrm{Ci}<\mathrm{N}$

He sends each, encoded as Di where $\mathrm{Di}=\mathrm{CiN}$ reduced modulo N .
c. To decode, the receiver finds, by Euclid's Algorithm, numbers P', Q' satisfying
i. $P P^{\prime}=1(\bmod Q-1)$
ii. Q Q' $=1(\bmod P-1)$

Then $\mathrm{Ci}=\mathrm{DiP}^{\prime}(\bmod \mathrm{Q})$ and $\mathrm{Ci}=\mathrm{DiQ}^{\prime}(\bmod \mathrm{P})$ and so Ci can be calculated.

Processes Involved
2. There is an algorithm, involving work of the order of $\log M$, to test if M is prime, which usually works but can fail to give an answer. Hence as the density of primes is $(\log M)^{-1}$, picking primes is a process of order $(\log M)^{k}$ where k is a small integer.
3. Also, computing $C_{i}{ }^{N}(\bmod N)$ is of order $(\log N)^{k^{\prime}}$ and the computation of $D_{i} P^{\prime}$ and $D_{i} Q^{\prime}$ even smaller; hence coding and decoding is a process requiring work of order $(\log \mathrm{N})^{\mathrm{k}}$ where k will be about 2 or 3 .
4. However, factorising N is a process requiring work of order $N^{1 / 4}(\log N)^{k}$, where k is a small integer (alternatively computing C from $\mathrm{C}^{\mathrm{N}}(\bmod \mathrm{N})$ requires work of order N if the factorization of N is not known); so decoding for an interceptor of the communication is a process of order about $\mathrm{N}^{1 / 4}$.

Reference [1] The possibility of Non-Secret digital encryption. J H Ellis, CESG Research Report, January 1970.

Note: There is no loss of security in transmitting $C_{1} \ldots C_{r}$ all using the same N. Even if the enemy can guess a crib for eg $C_{1} \ldots C_{r-1}$, this gives no information of use in decoding D_{r} etc. He could in any case provide himself with as many pairs (C_{i}, D_{i}) as he pleases, since the encryption process is known to him as well as to the transmitter!

