Decidability Issues for Processes
with Infinitely Many States

Antonin Kucera

Ph.D. Thesis
Faculty of Informatics

Masaryk University
1997

Acknowledgements

First of all I want to thank my supervisor Mojmir Kfetinsky for continuous
support, guidance and encouragement. It is difficult to express how much
I owe to him; | am very grateful for his help | could always rely on.

My warm thanks go to lvana Cerna and Petr Jangar. | have learned
much from our numerous discussions; it was a great pleasure to work
with them.

Thanks are also due to Mogens Nielsen for his kind supervision during
my stay at Aarhus University (BRICS). The results presented in Chapter 3
originated in Denmark.

Special thanks go to my mother for constant emotional and practical
support during my studies, and to Hana for her company, love and un-
derstanding.

Declaration

| declare that this thesis was composed by myself, and all presented re-
sults are my own, unless otherwise stated.

Some of the material has been previously published as [Kut96a], [Kuc96b],
[CKK96] and [Ku&97].

Antonin Kucera

Contents

1 Introduction

11
1.2
1.3

2.1
2.2
2.3

3.1

3.2
3.3

Computation and its Semantics
Verification of Concurrent Systems
LayoutoftheThesis

Basic Definitions

Transition Systems
Behavioural Equivalences
Process Algebras
2.3.1 BPA, BPP, BPA,, BPP,, PA — Subclasses of CCS and
ACP . .
232 NormalForms
2.3.3 Normed Processes
234 RegularProcesses.

Deciding Regularity in Process Algebras

Regularity of Normed PA Processes
3.1.1 ThelnheritanceTree
3.1.2 A Construction of the Process A’ in Normal Form . .
3.1.3 Possible Generalization
Regularity w.r.t. Other Equivalences
Negative Results

10
12

12
15
17
18

3.3.1 The Minsky Machine
3.3.2 Extending PA Processes with a Finite-state Control

4 Expressibility of nBPA,; and nBPP.. Processes
4.1 The Characterization of nBPA, NNBPP..
4.2 Deciding whether A € nBPA. NNBPP,
4.3 Related Work and Future Research

5 Parallelization of nBPA Processes

5.1 The Characterization of Decomposable nBPA Processes . . .
5.1.1 Decomposability of nBPP Processes
5.1.2 Decomposability of nBPA Processes
5.2 DecidabilityResults
5.2.1 Effective Decomposability of nBPA Processes
5.2.2 Decidability of Bisimilarity for sSPA Processes

5.3 Conclusions, Future Research

6 Conclusions

6.1 Summary of the Main Results

6.2 OpenProblems,

A Behavioural Equivalences

VI

1C
1C
1C
1C

10
1C
1C

11

List of Figures

2.1 van Glabbeek’s hierarchy of behavioural equivalences 11
2.2 SOSrules 14
3.1 The inheritance tree associated with the pathP. 27
3.2 The structure of a derivation schema for ([u],v). 40
3.3 Transition systems from the proof of Lemma3.28. 44

4.1 An algorithm which (constructively) decides the member-

ship to nBPA, N nBPP, for nBPP, processes. 74
4.2 An algorithm which (constructively) decides the member-

ship to nBPA.. N nBPP, for nBPA, processes. 80
5.1 Diagrams for the proof of Lemma5.9. 92

VIl VI

Chapter 1
Introduction

The problem of program verification is nearly as old as computer science
(see e.g., [Flo67]). Various models of computation and its semantics were
proposed, emphasizing different aspects of computation. Using this math-
ematical theory, many interesting questions about programs can be exactly
formulated and answered.

1.1 Computation and its Semantics

Denotational semantics, originated by Scott and Strachey in sixties (see
e.g., [Sch86]) identifies each program P with its input-output behaviour.
As input parameters of P are finite strings over a finite (or countably in-
finite) alphabet, each potential parameter can be uniquely and effectively
represented by a natural number. The same applies to output values—the
formal meaning of P can be thus defined by a partial function f, : N — N.
This approach is based on two implicit assumptions:

e There is no interaction with programs except passing input parame-
ters and fetching output values.

1

2 Chapter 1. Introductio

¢ Infinite runs of programs are completely uninteresting (they do ne
produce any output).

However, reality is considerably different today. Computers are used for
wide variety of applications—they control airports, power stations, stoc
exchanges and even nuclear weapons. Such systems are usually not d¢
signed to terminate (it would be a disaster in most cases) and their inpu
output behaviour is “distributed” over many single acts of communicatio
with the surrounding world. To understand and verify properties of thes
concurrent systems, three elementary questions must be answered:

e How to model concurrent systems?
e What is their semantics?

e \What systems are semantically equivalent?

There are two main approaches to mentioned problems, based on two di
ferent classical notions of computability. ldeas around Turing machine
and automata lead to the model of Petri net (see [Pet81] or [Rei85] for ger
eral introduction). Petri nets can be seen as automata with distribute
control units. Semantics is given in terms of partial orders which refle
causal dependencies between actions.

The model of process algebras (such as CCS [Mil89], CSP [Hoa85] ¢
ACP [BW90]) has grown out of concepts in A-calculus and structured pre
gramming. It has so-called interleaving semantics, based on transition sy:
tems.

The difference between partial order semantics and interleaving st
mantics can be well illustrated by the following example. Assume we hav
two processes X, Y where

def def

X =a|lb Y=ab+ba

1.1. Computation and its Semantics 3

In other words, the process X can run actions a, b independently in par-
allel, while the process Y can do either the sequence a.b or the sequence
b.a (*+’ stands for nondeterminism and ‘.’ for sequencing). Here we in fact
used the notation of process algebras, but those behaviours could be easily
described by labelled Petri nets too.

Interleaving semantics does not distinguish between X and Y; the “real”
concurrency of X can be equivalently expressed by sequencing and non-
determinism of Y. Associated transition systems are even isomorphic:

oy.\io
N A

Partial order semantics models concurrency explicitly—the process X is
associated with a set of two events (labelled with ‘a’ and ‘b’) which are
causally independent, hence the ordering is empty. The process Y deter-
mines a set of four events. The ordering is indicated by arrows in the pic-
ture below. Dotted lines represent the symmetric conflict relation which
models the phenomenon of nondeterminism.

¢ Ta oy T
¢ fay Th J ' ‘
. Fa

X Z allb YZab+bha

Obtained structures are rather different, hence X and Y are not considered
as equivalent in the sense of partial order semantics.

Mentioned approaches to process semantics are naturally independent
of a concrete model. They express general ideas which can be “mapped”
on a concrete syntax.

The interleaving semantics actually describes processes from the point
of view of an external observer who cannot detect causality between ac-

4 Chapter 1. Introductio

tions by means of experimentation (see [Mil89]). This approach is adopte
also in this thesis.

1.2 Verification of Concurrent Systems

Process semantics is formally defined by its associated transition systen
It remains to clarify what processes should be taken as semantically equiy
alent. Consider the following transition systems:

[]
o o o
“ 7 N
[e] [e] [e] [e]

Ty Ty

b

The systems T, T, have the same sets of completed traces!, i.e., {ab, ac’
T1, T2 can thus be taken as language equivalent in the sense of classic:
automata theory. However, language equivalence is obviously not the d
sired notion of “sameness” in this case—the system T, can emit an actio
‘a’ and enter a state where it can do either ‘b’ or ‘c’ (i.e., one of these actior
is “blocked” and this is clearly observable). On the other hand, the systel
T, can choose between ‘b’ and ‘¢’ after emitting ‘a’, hence its behaviour

different from the behaviour of T;.

This example indicates that branching structure of transition systern
must be taken into account. In Section 2.2 we present van Glabbeek’s hie
archy of behavioural equivalences which gives a nice survey and compa
ison of existing approaches.

1A completed trace is a sequence of labels associated with a path from the root to
leaf.

1.2. Verification of Concurrent Systems 5

Behavioural equivalences can be used for verification of concurrent
systems. For example, correctness a network transport protocol can be
proved as follows:

1. Describe the specification (the intended behaviour). This is rather triv-
ial in this case, because a reliable transport protocol behaves like a
gueue—it delivers everything what it receives, preserving original
order.

2. Describe the implementation. The protocol is essentially performed by
three individual cooperating components—Sender sends messages
to Medium which passes them to Receiver. Naturally, a suitable level
of abstraction must be chosen before a detailed analysis is carried
out.

3. Prove that specification and implementation are equivalent. Different be-
havioural equivalences preserve different features (e.g., deadlock or
liveness properties). The choice should be based on a careful consid-
eration.

Naturally, computers can assist at this work—and especially at the last
task. Although all reasonable behavioural equivalences are generally un-
decidable, there are interesting classes of transition systems where some of
them become decidable. For example, if we restrict our attention to finite-
state transition systems, each behavioural equivalence is decidable. In fact,
the theory of finite-state systems and their equivalences can be said to be
well-established today.

Some of those positive results can be even extended to certain classes
of infinite-state transition systems. For example, Baeten, Bergstra and
Klop showed in [BBK87, BBK93] that bisimilarity (see Definition 2.2) is
decidable for processes generated by reduced context-free grammars in
Greibach normal form.? It was the first result indicating that decidability

2Those processes are also known under the name “normed BPA”—see Section 2.3.1.

6 Chapter 1. Introductio

properties of behavioural equivalences can differ from decidability proj
erties of language equivalence.

Another important approach to verification of concurrent systems ut
lizes various program logics. Intended properties of a process can be ofte
expressed as formulae of certain modal or temporal logic. This leads t
the problem of model checking—given a formula F and a state s of a trar
sition system T, does s satisfy F? There are many positive answers fc
certain classes of formulae and transition systems; for example, Stirlin
and Walker gave in [SW89] a model checker for modal p-calculus an
finite-state transition systems. Similar results exist also for some classe
of infinite-state transition systems. The problem of model checking is nc
considered in this thesis, hence we refer to [Sti92] for further informatio
and references.

1.3 Layout of the Thesis

Each chapter (and most sections) begins with a discussion which aims t
give a reasonable motivation to the considered problem. Notes on relate
results and current state of knowledge are included either at the beginnin
or at the end of each section.

Chapter 2 contains definitions of basic notions which are used throug
the thesis. We formally introduce transition systems and various b
havioural equivalences over the class of transition systems. Then w
present several process classes such as BPA, BPP, BPA,, BPP., P,
and we also define normal forms for these processes. Finally, we ir
troduce the condition of normedness which specifies important sul
classes of mentioned algebras and we explain what is meant by th
notion of regularity.

1.3. Layout of the Thesis 7

Chapter 3 is devoted to the regularity problem. We prove that regular-

ity of normed PA processes is decidable in polynomial time. More-
over, a bisimilar finite-state process in normal form can be effectively
constructed. This implies decidability of bisimilarity for any pair of
processes such that one process of this pair is a normed PA process
and the other has finitely many states. Obtained results also apply to
normed subclasses of BPA, BPP, BPA, and BPP.. and this fact simpli-
fies many considerations in next chapters.

In the next section we examine regularity w.r.t. other equivalences
from van Glabbeek’s hierarchy. We suggest new notions of finite
characterization and strong regularity and we explain their advan-
tages. Then we study the relationship between regularity and strong
regularity. We show that the two conditions may coincide w.r.t. cer-
tain equivalences, but in case of all equivalences from van Glabbeek’s
hierarchy except bisimilarity they express different features.

Finally, we demonstrate that regularity and strong regularity w.r.t.
any equivalence from van Glabbeek’s hierarchy are undecidable for
PAPDA processes (this class of processes is obtained from PA by
adding a finite-state control unit). This is essentially caused by the
fact that PAPDA processes can correctly simulate an arbitrary Min-
sky machine; in other words, PAPDA is a calculus with full Turing
power.

Chapter 4 gives a complete characterization of all processes which can

be equivalently defined by the syntax of normed BPA, and normed
BPP.. processes. BPA, processes are in fact primitive sequential pro-
grams, while BPP.. can be seen as simple parallel programs. Hence
we actually characterize all normed behaviours which can be consid-
ered as purely sequential as well as purely parallel. This characteri-
zation is formulated in terms of special normal forms for BPA, and

Chapter 1. Introductio

BPP.. processes, denoted INFR,, and INF;,, respectively.

Next we show that any normed BPA, or BPP.. process which belong
to the “semantical intersection” of BPA, and BPP, can be effectivel
transformed to INF,. or INF,, respectively. As a consequence w
obtain decidability of bisimilarity in the union of normed BPA, an
normed BPP,. processes.

We also show that mentioned results can be simplified in case
normed BPA and BPP processes.

Chapter 5 contains results on effective parallelization of normed BPA pre¢

cesses. A normed BPA process is said to be prime if it cannot be d¢
composed into a parallel product of two nontrivial processes. W
characterize all normed BPA processes which are not prime togethe
with their decompositions in terms of normal forms.

Moreover, we prove that normed BPA processes can be decompose
(parallelized) effectively. From this we derive other positive decic
ability results—namely decidability of bisimilarity in a natural sut
class of normed PA processes, denoted sPA (the sPA class is con
posed of all processes of the form Aq|| - - - [|A, where n € N and A i
anormed BPA or BPP process foreach 1 <i < n).

Chapter 6 summarizes main results achieved in this thesis and sugges

possible directions of future research.

Chapter 2
Basic Definitions

In this chapter we present all the definitions which are necessary for un-
derstanding this thesis.

2.1 Transition Systems

Transition systems are widely accepted as a structure which can exactly
define operational semantics of programs by means of structural rules (see
[Plo81]). This approach is especially advantageous in case of interactive
concurrent systems which usually have quite complex input-output be-
haviour.

Definition 2.1. A transition system is a tuple (S, Act, —, r) consisting of a set of
states S, a set of actions (or labels) Act, a transition relation -C S x Act x S
and a distinguished element r € S called root.

The reflexive and transitive closure of ‘—’ is denoted by ‘—*’. As usual,
we write A = B instead of (A, a,B) €— and this notation is also extended
to elements of Act® in an obvious way. Moreover, we often write A —* B
instead of A = B if w € Act* is irrelevant.

10 Chapter 2. Basic Definitior

Given two states u, v of a transition system T, we say that v is reachab
from u if u —* v. States of T which are reachable from the root of T ai
said to be reachable.

2.2 Behavioural Equivalences

Before we start to deal with verification of concurrent systems we mu:
clarify the question what processes should be considered as “semanticall
equivalent”. As we already know, formal semantics of a concurrent sy:
tem is given by its corresponding transition system—but what transitio
systems do exhibit the same behaviour? The answer is not easy; there ai
many different approaches and consequently there are also many differer
equivalences over the class of transition systems which deserve the adje
tive “behavioural”. R. van Glabbeek presented in [vG90] various equiv:
lences in a uniform way, relating them w.r.t. their coarseness, i.e., how man
identifications they make. The resulting lattice is presented in Figure 2.
The order is determined by the relation “makes strictly more identific:
tions than”.

The finest equivalence in this hierarchy is bisimilarity [Par81], define
as follows:

Definition 2.2 (bisimilarity). LetT; = (S;, Acty, —1,11), T2 = (Sz, Acty, —
ry) be transition systems. A binary relation R C S; x S, is a bisimulation
whenever (s, t) € R then for each a € Act; U Act,

e ifs 5, s/, thent 5, t' for some t’ such that (s, t') € R
o ift 5, t, thens 5, ¢ for some s’ such that (s/,t') € R

Transition systems Ty, T, are bisimilar, written T, ~ Ty, if their roots are relate
by some bisimulation.

2.2. Behavioural Equivalences

11

bisimilarity

2-nested simulation equivalence

ready simulation equivalence

possible-futures equivalence .
ready trace equivalence

NN

readiness equivalence failure trace equivalence

N

failure equivalence

simulation equivalence

completed trace equivalence

trace equivalence

Figure 2.1: van Glabbeek’s hierarchy of behavioural equivalences

12 Chapter 2. Basic Definitior

Bisimilarity has many features which indicate that this equivalence is re
ally something special. It is probably the most advantageous way hoy
to define “sameness” of two concurrent systems. Definitions of the othe
equivalences from van Glabbeek’s hierarchy are moved to Appendix A.

2.3 Process Algebras

The basic idea which stands behind the formalism of process algebras
that it is possible to define complicated behaviours from simple ones usin
certain operators (e.g., parallel or sequential composition). In other word
processes can carry an algebraic structure.

Many process algebras were proposed in the literature. They adoy
various sets of operators (the major difference is the kind of parallel ope
ator and the way how to force cooperation between parallel components
but those sets of operators usually have sufficient expressive power to sin
ulate an arbitrary Turing machine—and therefore many interesting prol
lems are generally undecidable. As examples of popular process algebr:
we can mention CCS [Mil89], ACP [BW90], or CSP [Hoa85].

In this thesis we present several positive decidability results about ce
tain process algebras. It is thus clear that those process algebras cannc
have full Turing power—they are obtained as natural subclasses of pre
cess algebras mentioned above.

2.3.1 BPA, BPP, BPA,, BPP,, PA — Subclasses of CCS ani
ACP

Let A = {a,b,c,...} be a countably infinite set of atomic actions such th:
for each a € A there is a corresponding dual action a with the conventic
thata = a. Let Act = A U {7} where 7 ¢€ A is a special (silent) actiol
Let Var = {X,Y,Z,...} be a countably infinite set of variables such th:

2.3. Process Algebras 13

Var N Act = 0. The classes of BPA, BPP, BPA,, BPP,, and PA expressions
are defined by the following abstract syntax equations:

Ewn = €] b | bEspa | X | EsonEosn | Eson + Eomn

Ewe = €] b | bEws | X | EspollEssr | Espo + Esr

Eam, = €] @] @un | X | Eoon-Eomm, | Eaonr + Eopu,

Eue, = €] @] e, | X | Euor,|Euor, | Eaory + Eoe,

Em = el b | bEsn | X | EnEen | EwllEoa | Ea|[Eea | Een +Ema

Here b ranges over A, a ranges over Act, and X ranges over Var. The sym-
bol ‘e’ denotes the empty expression.

As usual, we restrict our attention to guarded expressions. A BPA, BPP,
BPA,, BPP,, or PA expression E is guarded if every variable occurrence in
E is within the scope of an atomic action.

A guarded BPA, BPP, BPA,, BPP., or PA process is defined by a finite
family A of recursive process equations

def |

A={Xi=E | 1<i<n}

where X; are distinct elements of Var and E; are guarded BPA, BPP, BPA,,
BPP.., or PA expressions, respectively, containing variables of {Xi, ..., Xy}
The set of variables which appear in A is denoted by Var(A).

The variable X; plays a special role (X; is sometimes called the leading
variable)—itis a root of a labelled transition system, defined by the process
A and SOS rules of Figure 2.2.

Presented rules should be considered modulo structural congruence, de-
fined as follows:

Definition 2.3. Let = be the smallest congruence relation over process expres-
sions such that the following laws hold:

e associativity and ‘e’ as a unit for sequential composition (the ‘. operator).

14 Chapter 2. Basic Definitior
ESE ESE FSF
aE S E EF3EF E+FSFE E+FSF
ESE FSF ESE ESE
ElIF 3 E'||F EIIF 3 E|F E|F 5 E|F EIF S EF
a b b a
F—a)FI E_)E/TF_)F/(b7éT) E—a)E/(xgEEA)
EIF = E|F EIF 5 EF =

Figure 2.2: SOS rules

e associativity, commutativity, and ‘e’ as a unit for pure merge (the ‘||” ope
ator).

e ‘¢’ as a unit for left merge (the ‘|| operator).

e associativity, commutativity, and ‘e’ as a unit for CCS parallel compositic
(the ‘|” operator).

e associativity, commutativity, and ‘e’ as a unit for nondeterministic choi
(the ‘4 operator).

® de = a.

States of the transition system generated by A are BPA, BPP, BPA,, BPP.
or PA expressions, which are also called states of A, or just “states” whe
A is understood from the context.

Remark 2.4. As each process determines a unique transition system, all notior
which were originally defined for transition systems (see Section 2.1) can be use
for processes too.

Remark 2.5. Guarded processes generate finitely branching transition system
ie., theset {F |E > F, a € Act} is finite for each state E. It is easy to see that

2.3. Process Algebras 15

would not be true if we allowed unguarded expressions (assume e.g., the process
def

X = a||X).

Remark 2.6. Processes are often identified with their leading variables. Further-
more, if we assume a fixed process A, we can view any process expression E (not
necessarily guarded) whose variables are defined in A as a process too; we sim-
ply add a new leading equation X = E’ to A, where X is a variable from Var
such that X ¢ Var(A) and E' is a process expression which is obtained from E
by substituting each variable in E with the right-hand side of its corresponding
defining equation in A (E' must be guarded now). All notions originally defined
for processes can be used for process expressions in this sense too.

2.3.2 Normal Forms

Many definitions and proofs in this thesis take advantage of the fact that
BPA, BPP, BPA,, BPP., and PA processes can be equivalently (up to bisimi-
larity) represented in special normal forms. Moreover, those normal forms
can be effectively constructed.

Definition 2.7 (GNF for BPA and BPA,; processes). A BPA (or BPA;) pro-
cess A is said to be in Greibach normal form (GNF) if all its defining equations
are of the form

n
def
X = E ajQj
=1

wheren € N, a; € A (or g; € Act) and o € Var(A)*. If length(e;) < 2 for each j,
1 <j < n, then A is said to be in 3-GNF. Moreover, we also require that for each
Y € Var(A) there is a reachable state o € Var(A)* such that o begins with Y.

Any BPA or BPA, process can be effectively transformed into 3-GNF (see
[BBK8T]). A similar normal form exists also for BPP and BPP, processes
(see [Chr93]). Before the definition we need to introduce the set Var(A)®

16 Chapter 2. Basic Definitior

of all finite multisets over Var(A). Each multiset of Var(A)® denotes a BP
(or BPP,) expression by combining its elements in parallel using the ‘|
operator (or the ‘|" operator).

Definition 2.8 (GNF for BPP and BPP.. processes). A BPP (or BPP,) pre
cess A is said to be in Greibach normal form (GNF) if all its defining equatior
are of the form

n
def
X = ajQ
17
=1

wheren € N, a; € A (or @ € Act) and o; € Var(A)®. If card(a;) < 2 for each
1 <j < n, then A is said to be in 3-GNF. Moreover, we also require that for eac
Y € Var(A) there is a reachable state o € Var(A)® such that Y € a.

A normal form for PA processes is a generalization of Greibach norm:
form. First we need to define the set of VPA expressions.

1. The empty expression ‘e’ is a VPA expression.
2. Each variable X € Var(A) is a VPA expression.

3. If o, B are nonempty VPA expressions, then a.3, o||3, and |8 at
VPA expressions.

4. Each VPA expression can be constructed using the rules 1,2 and 3 i
a finite number of steps.

The set of VPA expressions which contain only variables from Var(A
where A is a PA process, is denoted VPA(A). Finally, the set of variable
which appear in a VPA expression « is denoted Var(a).

Definition 2.9 (normal form for PA processes). A PA process A is said tot
in normal form if all its equations are of the form

n
def
X = E qjQ
-1

2.3. Process Algebras 17

wheren € N, a; € A and o5 € VPA(A). Moreover, we also require that for each
Y € Var(A) there is a reachable state o € VPA(A) such that Y € Var(a).

Any PA process can be effectively presented in the normal form just de-
fined (see [BEH95]).

From now on we assume that all BPA, BPP, BPA,, BPP., and PA pro-
cesses we are working with are presented in corresponding normal forms.
This justifies also the assumption that reachable states of a BPA, BPP, BPA,,
BPP,, or PA process A are elements of Var(A)*, Var(A)®, Var(A)*, Var(A)®,
or VPA(A), respectively.

The following overloaded function is needed in some proofs of this
thesis:

Definition 2.10 (Length function). The function Length is defined for VPA ex-
pressions and elements of Act*. In the first case it returns the number of variables
which are contained in its argument, distinguishing multiple occurrence of the
same variable. In the latter case it returns the length of its argument. For exam-
ple, Length(X.(Y]|X)) = 3 and Length(aabac) = 5.

2.3.3 Normed Processes

Important subclasses of BPA, BPP, BPA,, BPP.., and PA processes can be
obtained by an extra restriction of normedness. A variable X € Var(A) is
normed if there isw € Act* such that X - . In that case we define the norm
of X, written |X], to be the length of the shortest such w. In case of BPP,
processes we also require that no 7 action which appears in w is a result
of a communication on dual actions in the sense of operational semantics
given in Figure 2.2. This is necessary if we want the norm to be additive
over the ‘| operator (T may still occur in w—it can be used as an action
prefix). A process A is normed if all variables of Var(A) are normed. The
norm of A is then defined to be the norm of its leading variable X;.

18 Chapter 2. Basic Definitior

Remark 2.11. As normed processes are intensively studied in this thesis, we en
phasize some properties of the norm:

e The norm of a normed process is easily computed by the following rules:

- laj=1
- |E+F| = min{[E[, |F[}

- |EF|=[E|+|F|
- |ElIF| = [E| +|F|
- |E[[F| = |E[+ [F|
- |EIF| = [E| +|F|

def

— if X; = Ejand |Ej| = n, then | X;| = n.
e Bisimilar processes must have the same norm.

In the rest of this thesis we use the prefix ‘n’ for denoting the norme
subclass, writing e.g., ‘nBPA’ instead of ‘normed BPA'.

2.3.4 Regular Processes

One of the problems considered in this thesis is decidability of regularit
for certain process classes. The next definition explains what is meant b
the notion of regularity.

Definition 2.12 (regularity). Let <> be an equivalence over the class of trans
tion systems. A process A is regular w.r.t. « if there is a process A’ with finitel
many states such that A « A/,

In [Mil89] it is shown that finite-state processes (and hence also processe
which are regular w.r.t. bisimilarity) can be represented in the followin
normal form:

2.3. Process Algebras 19

Definition 2.13 (normal form for finite-state processes). A finite-state pro-
cess A is said to be in normal form if all its equations are of the form
n
X=X
j=1
where n € N, g € Act and X; € Var(A) (square brackets indicate optional
occurrence).

20

Chapter 2. Basic Definitior

Chapter 3

Deciding Regularity in Process
Algebras

Process algebras provide us with a very powerful syntax which can de-
scribe concurrent systems with finitely as well as infinitely many states.
Since the very beginning people have concentrated on finite-state pro-
cesses. Consequently, the theory of finite-state processes is well estab-
lished today and it is also applied—there are many automated tools which
can answer plenty of interesting questions about finite-state processes.

Now we can ask whether it is possible to extend those nice results to
process classes which contain also processes with infinitely many states.
This is problematic of course—many problems become undecidable and
even if some property remains decidable, the algorithm is often not inter-
esting from the practical point of view due to its complexity. If we want
to examine features of some process A with infinitely many states, a good
idea is to ask whether there is an equivalent finite-state process A’ which
could be analyzed instead of A—and this is exactly what we mean by the
regularity problem. Naturally, we can also ask whether such a process A’
can be effectively constructed.

This chapter is devoted to the regularity problem. In Section 3.1 we

21

22 Chapter 3. Deciding Regularity in Process Algebre

prove that regularity (w.r.t. bisimilarity) is decidable for nPA processes i
polynomial time. Moreover, if a nPA process A is regular, then it is als
possible to construct a bisimilar finite-state process A’ in normal form (se
Definition 2.13). These results have been previously published in [Kut96:
and [Kuc96b].

In Section 3.2 we discuss the regularity problem w.r.t. other behaviour
equivalences. We design and justify new notions of finite characterizatic
and strong regularity and we study their relationship. This section is base
on [Kuc95].

Section 3.3 contains some negative (undecidability) results. We explol
a calculus PAPDA obtained from PA by adding a finite-state control uni
We show that an arbitrary Minsky machine [Min67] can be simulated by
(normed) PAPDA process which is effectively constructible. This implie
undecidability of regularity and strong regularity w.r.t. any equivalence «
van Glabbeek’s hierarchy.

In Section 3.4 we summarize related results which are known at th
time of writing this thesis and we also mention major open problems.

3.1 Regularity of Normed PA Processes

In this section we show that regularity w.r.t. bisimilarity (Definition 2.1:
is decidable for nPA processes in polynomial time (we speak just abot
“regularity” for short). The basic idea is quite simple—reachable state
of a nPA process A are elements of VPA(A) (see Definition 2.9). As .
is normed, each of its reachable states has a finite norm. As the norm
additive over ‘|’, ||’ and ‘.’ operators (see Remark 2.11), there are onl
finitely many elements of VPA(A) with a given finite norm. Hence A ca
reach infinitely many states up to bisimilarity iff it can reach a state of a
arbitrary norm. As we shall see, this condition can be easily verified i
polynomial time.

3.1. Regularity of Normed PA Processes 23

We also show that if a nPA process A is regular, then it is possible to
construct a bisimilar finite-state process A’ in normal form (see Defini-
tion 2.13). However, this algorithm is of exponential space complexity,
because a regular nPA process with n variables can generally reach expo-
nentially many pairwise non-bisimilar states and each such state requires
a special variable.

Lemma 3.1. A process A is not regular iff there is an infinite path X; = op
a3 ay 3 -+ such that o o o fori # j.

Proof:

“<” Obvious—A can reach infinitely many pairwise non-bisimilar states.
“=” Let T = (S, Act, —, r) be the transition system generated by A. If we
identify bisimilar states of T, we obtain a transition system T' = (S, Act, —/,
r') where

e S' contains equivalence classes of S/A, (the equivalence class which
contains E € S is denoted by [E])

e the relation —' is determined by the rule E 3 F = [E]3/ [F]

o« r'=1r
Clearly T ~ T'. Moreover, T’ is infinite but finitely branching (see Re-
mark 2.5), hence due to Konig’s lemma there must be an infinite path
X3 [E] 3 [Eo) B! [Es] S -, where X is the leading variable of A. If
F € [Ei], then F 2 G for some G € [Ei4] (it follows directly from the def-
inition of bisimulation—see Definition 2.2). Hence the required path in T

can be constructed just by taking suitable representatives of [E| for each
i €N. O

3.1.1 The Inheritance Tree

Let A be a nPA process. The aim of the following definition is to describe
all variables in a state o € VPA(A) which can potentially emit an action:

24 Chapter 3. Deciding Regularity in Process Algebré

Definition 3.2 (FIRE set). Let A be a nPA process. For each a € VPA(A) w
define the set FIRE(«) in the following way:

0 ifa=c¢
FIRE()) = I{:T(R}E(o - X -
161) |fa—181.ﬁ2 Ora—ﬁluﬁz

FIRE(B,) UFIRE(B,) if a = BB,

Lemma 3.3. Let A be a nPA process, o € VPA(A). Then for each X € Var(c
there is B € VPA(A) such that o —=* Band X € FIRE(3).

Proof: By induction on the structure of a:
e a = X : Obvious.

e induction step: The expression o can be of three forms: o = 7.
a = 9]|6 or a = «y||8. Furthermore, there are two possibilities:

1. X appears withinv. Then (by ind. hypothesis) y —* 4 for som
7' such that X € FIRE(y'). Hence a —=* 7.4, a —=* ||4, C
a —* 9|4, respectively. Clearly X € FIRE(y'.8), X € FIRE(Y'||é
or X € FIRE(7'[|9), respectively.

2. X appears within §. Then (by ind. hypothesis) § —* §' for som
¢’ such that X € FIRE(¢'). Moreover, a —* §, hence a —* §' an
the proof is finished. [

The following concept stands behind many constructions of this section:

Definition 3.4 (Tail set). For each o € VPA we define the set Tail(a) C Var i
the following way:

{X3} ifa=X
Tail(a) =4 0 ifa =eora=pg|ywhere3#e#vy
Tail(y) — Var(B) if o =B.yoroa = 0| ywhere 3 # e # v

3.1. Regularity of Normed PA Processes 25

Remark 3.5. The set Tail(a) provides two important pieces of information:

1. If X € Var(a) such that X ¢ Tail(a), then there is o/ such that a —* o/,
X € FIRE(e) and Length(a) > 2.

2. If X € Tail(a), then the only occurrence of X in o can become active (i.e.,
X can emit an action) after all other variables disappear.

Definition 3.6 (growing variable). Let A be a nPA process. A variable X €
Var(A) is growing if there is a € VPA(A) such that X —=* a, X € FIRE(«)
and Length(a) > 2.

Lemma3.7. Let A be a nPA process. The problem whether Var(A) contains a
growing variable is decidable in polynomial time.

Proof: We define the binary relation GROW on Var(A) in the following
way:

def

(X,Y) € GROW <= 30 € VPA(A) such that X —* 8 where
Length(B) > 2and Y € FIRE(S).

Clearly Var(A) contains a growing variable iff there is X € Var(A) such
that (X, X) € GROW. We show that the relation GROW can be effectively
constructed in polynomial time. We need two auxiliary binary relations
on Var(A):

def

X~»Y <= thereisasummand aa in the defining equation for X in A
such that Length(a) > 2, Y € Var(A) and Y ¢ Tail(a)

def

X =Y <= thereisasummand aa in the defining equation for X in A
such thatY € Var(a).

It is easy to prove that GROW =<* . ~» . —* where —* denotes the
reflexive and transitive closure of <. Moreover, the composition —* . ~»
. <—* can be constructed in polynomial time. |

26 Chapter 3. Deciding Regularity in Process Algebre

Let A be a nPA process. If A is not regular then there is (due to Lemma 3.
an infinite path P of the form X; = oy 3 o1 3 ay 3 --- such th
aj o ajfori # j. To be able to examine properties of P in a detail, w
define for P the corresponding inheritance tree, denoted I1Tp. The aim c
this construction is to describe the relationship between variables whic
are located in successive states of P. The way how ITp is constructed |
similar to the construction of a derivation tree for a word w € L(G) whel
L(G) is a language generated by a context-free grammar G. We start wit
an example which shows how IT» looks for a given prefix of P.

Example 3.8. Let A be a nPA process given by the following set of equations:

X = b+ aY.(z|y))
Y £ ¢+ b(Y.ZX)
Z £ a+a((Z|Y).Xx)

Let P = X3 Y.(ZIIY) S ZIY S (ZIY)-X)NY 2 (ZIY)X)N(Y.ZX) - -
we draw a fragment of ITp, we get the tree of Figure 3.1.

Nodes of ITp are labelled with variables of Var(A). The state o, 1 € NU{0
of P corresponds to the set of nodes in IT» which have the distance i fror
the root of ITp (the root itself has the distance 0). This set of nodes is calle
the it Level of ITp. Each transition o; LN ais1 is due to a single variabl
A € Var(cy) and a transition A 2 y where the expression &y is a summan
in the defining equation for A in A (see Definition 2.9). Moreover, o,
can be obtained from o; by replacing one occurrence of A with «y (here w
must distinguish between multiple occurrence of the variable A within th
state ;). We call the variable A the active variable of o; and the transitio
AS «y the step of a;. The nodes of IT» which correspond to active variable
are called active. Each active node is placed within a box in the tree c
Figure 3.1.

3.1. Regularity of Normed PA Processes 27

Figure 3.1: The inheritance tree associated with the path P.

Nodes and edges of ITp are defined inductively—we define all nodes
in Level i + 1 together with their labels, using the nodes from Level i. More-
over, we also define all edges between nodes in these two levels.

1. i=0: There is just one node N in Level 0 — the root, labelled X;.

2. induction step: Let us suppose that nodes of Level i have been al-
ready defined. For each node U of Level i we define its immediate
successors. There are two possibilities:

e Uisnotactive: Then U has just one immediate successor whose
label is the same as the label of U.

e Uisactive: Let A 5 7 be the step of o; and let n = Length(y).
The node U (whose label is A) has n immediate successors (if
n = 0 then U is a leaf). The I" immediate successor of U is la-
belled by the I variable from +, reading v from left to right.
Here | ranges from 1 to n. As we cannot afford to lose the in-
formation about the structure of v completely, we distinguish

28 Chapter 3. Deciding Regularity in Process Algebrs

the case when Tail(y) = {B} where B € Var(A). Then we sa
that the last successor of U is a tail of U. All tails in the tree
Figure 3.1 are marked with a black dot.

A node of IT» which has at least two immediate successors is called
branching node. Branching nodes are especially important because the
labels are potential candidates to be growing variables. This is the bas
idea which stands behind the notion of Allow set.

Definition 3.9 (Allow set). For each node U of ITp we define the set Allow(U)
Var(A) in the following way:

e If U is the root of ITp, then Allow(U) = Var(A).
e If U is an immediate successor of a node V, then

— If V is not branching, then Allow(U) = Allow(V).

— IfVisbranching and U is not a tail of V, then Allow(U) = Allow(V)
{Label(V)}.
— If Vis branching and U is a tail of V, then Allow(U) = Allow(V).

The next lemma explains what is the relationship between a node U an
its associated set Allow(U):

Lemma 3.10. Let U be a node of ITp. If Label(U) ¢ Allow(U) then Label(U)
a growing variable.

Proof: Let A = Label(U). As A ¢ Allow(U), the node U has an ancestc
V such that Label(V) = A, V is branching and U is a descendant of a
immediate successor V' of V which is not a tail of V. Let B = Label(V'
As V is branching, it is also active and hence it corresponds to some ste
A 5 y where B € Var(y) and B ¢ Tail(y). Moreover, y —* 4/ for some -
such that B € FIRE(y') and Length(v") > 2 (see Remark 3.5). Furthermor
as U is a descendant of V', B —* § where A is contained in §. Due t

3.1. Regularity of Normed PA Processes 29

Lemma 3.3 there is ¢’ such that § —* ¢’ and A € FIRE(d’). To sum up,
we have A —=* v/ —=* n where 7 is obtained from «' by substituting B
with §'. Clearly Length(n) > 2 and A € FIRE(n), hence A is growing as
required. O

Now we prove the first main theorem of this chapter:

Theorem 3.11. A nPA process A is regular iff Var(A) does not contain any
growing variable.

Proof:

“=" If Var(A) contains a growing variable X, then A is non-regular as it
can reach a state of an arbitrary norm. To see this, it suffices to realize that
X —* v where Length(y) > 2 and X € FIRE(y). Moreover, there is a reach-
able state a of A such that X € FIRE(a). Now we can repeatedly substitute
X by v within «, producing a reachable state of an arbitrary Length (and
hence also norm).

“«<" This part of the proof is more complicated. The basic scheme is
similar to the method which was used by Mauw and Mulder in [MM94]
and can be described in the following way: We need to show that if A
is not regular then there is a growing variable X € Var(A). As A is
not regular, there is (due to Lemma 3.1) an infinite path P of the form
Xi=ap S8 a; B a, B .- such that a; o o for i # j. We show that if
Var(A) does not contain any growing variable, then there are i # j such
that o; ~ q;. It contradicts the assumption above—hence Var(A) contains
at least one growing variable.

Let ITp be the inheritance tree for the path P. To complete the proof
we need to divide ITp into more manageable units called blocks. Levels of
ITp which contain just one node are called delimiters of ITp. A block of ITp
is a subgraph S of IT» composed of:

1. all nodes and edges between two successive delimiters i and j where
i < j. The only node of Level i is called the opening node of S and the

30 Chapter 3. Deciding Regularity in Process Algebrz

only node of Level j is called the closing node of S. Out-going edge
of the closing node and in-going edges of the opening node are not
part of S.

2. all nodes below the delimiter i (including Level i), if there is no d
limiter j with j > i. The only node of Level i is called the opening noc
of S. In-going edges of the opening node are not a part of S.

As Level 0 is a delimiter of ITp, we can view ITp as a vertical sequenc
of blocks. The width of 1T, is defined to be the least n € N such the
cardinality of the i" Level of 1T is less or equal n for each i € N U {0}.
there is no such n, the width of 1T, is defined to be co. Similarly, if S|
a block of ITp, the width of S is the least n € N such that the cardinalit
of each Level which is a part of S is less or equal n. If there is no such |
the width of S is co. Furthermore, we define the branching degree of ITp t
be the least n € N such that each node U of ITy has at most n immediat
successors. The branching degree of ITp is always finite—it is denote
by D in the rest of this proof. Each node U of ITp defines its associate
subtree, rooted by U. This subtree is denoted Subtree(U). Although tt
notions of block, width, tail, branching node, etc. were originally define
for ITp, they can be used also for any Subtree(U) of ITp in an obviou
way. We prove that if Var(A) does not contain any growing variable, the
for each node U of ITp the Subtree(U) has the width at most D", wher
n = card(Allow(U)). We proceed by induction on n = card(Allow(U)).

1. n=0: If Allow(U) = 0, then clearly Label(U) ¢ Allow(U) and henc
Label(U) is growing due to Lemma 3.10. So the implication triviall
holds.

2. induction step: Let card(Allow(U)) = n. We prove that each block ¢
Subtree(U) has the width at most D", Let S be a block of Subtree(L
and let V be its opening node. Clearly card(Allow(V)) < n. If V he
no successors then the width of S is 1. If V is not branching the

3.1. Regularity of Normed PA Processes 31

the only immediate successor of V is the closing node of S, thus the
width of S equals 1. If V is branching, there are two possibilities:

e V does not have a tail. Then each immediate successor V' of
V has the property card(Allow(V')) < n — 1. By the inductive
hypothesis, the width of Subtree(V’) is at most D"2. As V can
have at most D immediate successors, the width of Subtree(V)
is at most D.D""2 = D"!. Thus the width of S is also at most
DL

e V has atail T. Each immediate successor V' of V which is dif-
ferent from T has the property card(Allow(V')) < n — 1. Hence
we can use the inductive hypothesis for each such V'. The only
problem is the node T. However, it suffices to realize that if T
has a branching successor, then the first active successor of T is
the closing node of S (see Remark 3.5). Hence the width of S'is
atmost (D —1).D"2 + 1.

We have just proved that if Var(A) does not contain any growing variable
then the width of ITp is at most Ded(Var(A)—1 As Var(A) is finite, there are
only finitely many VPA(A) expressions with this bounded Length. Hence
a;j = o for some i # jand thus o5 ~ ;. O

3.1.2 A Construction of the Process A’ in Normal Form

In this section we show that if a given nPA process A is regular, then A
can be effectively transformed into a finite-state process A’ in normal form
such that A ~ A’. Our algorithm is based on the following fact (see Defi-
nition 2.3):

Lemma 3.12. A nPA process A is regular iff A can reach only finitely many
states up to =.

32 Chapter 3. Deciding Regularity in Process Algebrs

Our algorithm finds all reachable states o € VPA(A) of A up to =. Fc
each such a a new variable and corresponding defining equation is adde
to A

The relationship between variables of A’ and reachable states of A |
described by the set MEM C Var x VPA(A). This set is initialized t
MEM = {(Y1,X1)} where X; is the leading variable of A and Y; is th
leading variable of A'.

An element (Y, a) of MEM is said to be undefined if there is no definin
equation for Y in A’. The algorithm chooses any undefined element c
MEM and adds a new defining equation for Y to A/, possibly producin
new undefined elements of MEM. The algorithm halts when MEM dog
not contain any undefined elements.

Let (Y,a) be an undefined element of MEM. To obtain the definin
equation for Y, the expression a must be first unfolded. The function Unfol
is defined as follows:

Zaijaij ifa= Xj and Xj “ Zaijcxij €A
Unfold(a) B DiStr(UnfOId(ﬁl),ﬂg) ifa = ﬂl.ﬂg
]| Expandi(gi,) if a = B1/|82

Expand2((8;, B2) if o = (1] G2

where Expandl, Expand2 and Distr are defined as follows (the functior
Expandl and Expand2 are instances of the CCS expansion law (see [Mil89
and the function Distr is a form of the right distributivity law (see [BW90])

Expand1(Bi,3:) = Y{a(BillB>) | B = B;,a € Act}
+ Y{a(BullBy) | B: = Py, a € Act}

Expand2(8;, 32) > {a(BiliB:) | B1 = By, a € Act}

Distr(>_ aijaij,,@) = > aij(aij'ﬁ)

3.1. Regularity of Normed PA Processes 33

The function Unfold returns an expression of the form

n
Z ajQ
i=1

wheren € N, g € Act and o; € VPA(A). Now the algorithm replaces each
aj with a single variable. There are two possibilities: if the set MEM con-
tains an element (Z, 8) such that o; = 3, then the expression a; is replaced
with Z. Otherwise, the expression ¢; is replaced with a new variable W
and the pair (W, o) is added to MEM. After the replacement of each o; the
defining equation for Y is obtained and it is added to A'.

It is easy to see that each variable of A’ corresponds to a reachable
state of the process A’. Hence the algorithm has to terminate (due to
Lemma 3.12).

Example 3.13. Let A be a nPA process given by the following set of equations:

def

X = b+ a(Y[|Z2).X
Y ¢ + a(Z||(Z2.2))
Z = ¢

&
K

The process A’ is constructed in the following way (the first two elements
of each line constitute an element of MEM, the third element is a result of
Unfold and the last element is the defining equation):

A = X = b + a(Y]|Z2).X = b +aB
B (Y[|1Z2).X = a(Z||(2.2)]|12).X + ¢(ZX) + c(Y.X) = aC + cD
+CcE

C = ((ZI(z2))|12).X = c((Z]|1Z]|Z2).X) + c((Z]|(Z.2)).X) = CcF + ¢G
D = zZX = cX = CA

E = YX = X + a((Z|(Z2.2)).X) = CcA + aG
F = (Z]12]|2).X = ¢((Z12).X) = cH

G = (ZI(Zzz2).X = ¢Z2zZX) + c((Z]|2).X) = cl + cH
H = (Z12).X = ¢(ZX) = ¢D

I (2.2.X) = ¢(zX) = ¢D

34 Chapter 3. Deciding Regularity in Process Algebre

Using this algorithm it is possible to decide bisimilarity for any pair of pre
cesses (A1, Ay), where A; isa nPA process and A, has finitely many state:
First, we check whether A, is regular. If not, then A; % A,. Otherwise, w
construct a finite-state process A in normal form such that A; ~ A7 an
check whether Al ~ A,.

Theorem 3.14. Bisimulation equivalence is decidable for any pair of process:
such that one process of this pair is a nPA process and the other process has finitel
many states.

3.1.3 Possible Generalization

We already mentioned that the major difference between various proce:
algebras is the kind of parallel operator they are equipped with. For e
ample, CCS has the ‘|” operator which allows synchronizations on comple
mentary actions (see Section 2.3.1). An obvious question is, whether it
possible to replace the ‘||’ operator with the ‘|’ operator in the definition
NnPA processes without the loss of decidability of regularity. In this partict
lar case the answer is positive. All constructions used in previous sectior
are still valid. This is basically due to the fact that synchronizations car
not be forced—each ‘7’ action which is a result of some synchronization ca
be “decomposed” into a sequence of two transitions with complementar
labels. Consequently, we can “decompose” an arbitrary sequence of trar
sitions in such a way that each transition is due to a single variable. OL
result on nPA processes can be thus applied to nBPA, nBPP, nBPA,, an
NBPP.. processes as follows:

Definition 3.15. Let A be a nBPA, nBPP, nBPA.., or nBPP.. process. A variab
X € Var(A) is growing if X =* X.a, X =* X||a, X =* X.a, or X —=* X]|
where a is a nonempty expression, respectively.

Proposition 3.16. A nBPA, nBPP, nBPA,, or nBPP.. process A is regular i
Var(A) does not contain any growing variable.

3.2. Regularity w.r.t. Other Equivalences 35

Naturally, there are also well-known parallel operators which cannot be
plugged into nPA syntax so painlessly—if we choose e.g., the ‘||’ operator
of CSP (see [Hoa85]) which forces synchronizations on actions from A,
regularity becomes undecidable. This basically due to the fact that counters
can be simulated using the ‘||»” operator. Those counters can be combined
in parallel with a finite-state control unit and forced to cooperate with it.
In other words, using this operator it is possible to simulate an arbitrary
Minsky machine (see [Min67]). Undecidability of regularity follows from
a simple reduction of the halting problem of the Minsky machine. Details
are discussed in Section 3.3.

Another possible generalization of PA syntax is to add a finite-state
control unit to PA processes. This class of processes is formally introduced
in Section 3.3 where we prove that an arbitrary Minsky machine can be
simulated by a PA process with finite-state control unit (even by a normed
one). Regularity is thus undecidable again.

An obvious question we have not addressed so far is whether regular-
ity is decidable for all (not necessarily normed) PA processes. This prob-
lem is open at the time of writing this thesis—however, P. Jantar recently
observed that this problem is at least semi-decidable. Further information
can be found in Section 3.4.

3.2 Regularity w.r.t. Other Equivalences

Bisimilarity is not the only behavioural equivalence which appeared in
the literature. In Section 2.2 we presented van Glabbeek’s hierarchy of be-
havioural equivalences, whose definitions can be found in Appendix A.
The notion of regularity can be defined w.r.t. those equivalences in the
same way as in case of bisimilarity (see Definition 2.12). However, there
is a notable difference: if we have bisimilar transition systems Ty, T, such
that T, has finitely many states, then for each reachable state p of T; there

36 Chapter 3. Deciding Regularity in Process Algebrz

is a reachable state q of T, such that p ~ ¢. In other words, T, gives
complete characterization of all reachable states of T;. This is no more tru
for the other equivalences; if we take e.g., trace equivalence and two trar
sition systems Ty, T, such that T; =, T, and T, has finitely many state
then the only thing we can say about T; and T, is that their roots have th
same sets of traces—but if we take a reachable state p of T; (which is nc
the root of Ty), it need not be trace equivalent to any reachable state of T
If we want to check some temporal property (e.g., something bad neve
happens) of Ty, then we are usually interested in all reachable states of T
it is thus sensible to ask whether there is a finite transition system T; suc
that each reachable state of T; is equivalent to some state of Ts. If so, w
can examine features of T instead of T, and as Ts is finite, it should b
easier. This is the basic idea which leads to the notions of finite character
zation and strong regularity. In this section we present some basic resuls
which describe the relationship between regularity and strong regularit
and between finite representations and finite characterizations.

As we want to keep this section general, we abstract from the concre
model of process algebras and we define all notions in terms of transitio
systems (we adopt the definition of transition system from Section 2.1
The class of all transition systems is denoted by T.

Remark 3.17. Each state p of a transition system T = (S, Act, —, r) determing
a unique transition system T(p) = (S, Act, =, p). All notions originally define
for transition systems can be used for their states in this sense too.

Definition 3.18 (finite representation). Let T be a transition system and |
< be an equivalence over T. A finite-state transition system T’ is said to be
finite representation of Tw.rt. < if T & T'.

A finite representation T’ of T represents the behaviour of the proce:s
which is associated with the root of T. As we shall see, representatior
generally do not say much about behaviours associated with reachabl
states of T. We need another notion:

3.2. Regularity w.r.t. Other Equivalences 37

Definition 3.19 (finite characterization). Let T be a transition system and let
+ be an equivalence over T. A finite-state transition system T’ is a finite char-
acterization of T w.r.t. & if the following conditions hold:

e T&T
e States of T’ are pairwise nonequivalent w.r.t. <.
e For each reachable state p of T there is a reachable state q of T’ with p & q.

A finite characterization T’ of T describes the whole system T—for each
reachable state of T there is its finite characterization within T’ (in the sense
of Remark 3.17).

Now we examine the question when finite characterizations exist and
what is their relationship with representations. First we need to introduce
further notions:

Definition 3.20 (quotients). Let < be an equivalence over T. For each transi-
tion system T = (S, Act, —, r) we define the transition system T/ = (S, Act,
—', ') in the following way:

e S’ contains equivalence classes of S/ (the equivalence class containing
p € S is denoted by [p]).

e The relation —' is determined by the rule p = q = [p]>' [q].
o r'=1r]

The equivalence «+ is said to have quotients if for any T € T the natural projec-
tionp: T — T/, assigning to each state q of T the state [q] of T/ , is a part
of & (i.e., q « [q] for each state g of T in the sense of Remark 3.17).

The notion of finite characterization is naturally motivated. Now we can
ask what features of a transition system T guarantee an existence of a finite
characterization of T. This is the aim of the following definition:

38 Chapter 3. Deciding Regularity in Process Algebre

Definition 3.21 (strong regularity). Let < be an equivalence over T. A trar
sition system T is strongly regular w.r.t. < if T can reach only finitely mar
states up to .

The next lemma says when the condition of strong regularity guarantee
an existence of a finite characterization.

Lemma 3.22. Let + be an equivalence over T which has quotients. Then T h:
a finite characterization w.r.t. « iff T is strongly regular w.r.t. <.

Proof:

“=" Obvious.

“<” As T is strongly regular w.r.t. < and « has quotients, the transitio
system T/« is a finite characterization of T. [

Now we prove that the requirement of “having quotients” from the prev
ous lemma is not too restrictive in fact. There are many reasonable equi\
alences which satisfy this condition.

Lemma 3.23. The equivalences =, =¢, =, =r, =f, =rn;, =pr NAVe quotients.

Proof: We will not give a separate proof for each of those equivalence
because the main idea is always the same. The crucial thing is to rea
ize that equivalent states always have the same sets of initial actions (se
Appendix A). Here we present a full proof for failure equivalence.

Let T = (S, Act, —,r) be a transition system and let p € S be a state ¢
T. We show that F(p) = F([p]) where [p] denotes the equivalence class ¢
S/=; containing the state p:

“C”: Let (w, @) € Act® x P(Act) be a failure pair of p (see Appendix A). B
definition, there is a state p’ € S such that p — p’ and I(p)N® = 0. B
then also [p] = [p]. The set I([p']) is the union of all I(q) such that q € [p/
As u =¢ vimplies I(u) = I(v), we can conclude that I([p']) = I(p’), henc
I([p']) N ® = 0, thus (w, ®) € F([p]).

3.2. Regularity w.r.t. Other Equivalences 39

“2”: Let (w, @) € Act® x P(Act) be a failure pair of [p] and letw = a. . .a;.
By definition, there is a sequence of transitions [p] = [pi_1] RS [Po]
in T/= such that p € [p] and I([po]) N ® = 0. We show that for each state
of T such that q € [pi], where i € {0,...,k}, the pair (a...a;, ®) belongs to
F(q). We proceed by induction on i:

e i=0:asl(q) = I([po]), we have (¢, @) € F(q).

e induction step: as [pj N [pi—1], there are states u,v of T such that
udvue [pi] and v € [pi—1]. By the inductive hypothesis we have
(@i—1...a1,®) € F(v), hence (ai...a;, ®) € F(u). As q =; u, the pair
(ai...a;, D) belongs to F(q). O

Lemma 3.24. Simulation equivalence, ready simulation equivalence and 2-nested

simulation equivalence have quotients.

Proof: LetT = (S, Act, —,r) be a transition system and let p € S be a state
of T. First we show that p = [p] where [p] denotes the equivalence class of
S/=, containing the node p. By definition, we must show an existence of
two simulations P, R such that (p, [p]) € P and ([p],p) € R. The simulation
P is exactly the natural projectionp : T — T/

P={(a,[a]) | g €S}

It is easy to check that P is indeed a simulation. The way how R is defined
is more complicated:

([u],v) € R iff there exists a derivation scheme for ([u], V).
A derivation scheme for ([u], v) of depth k > 0 consists of:
e apath[mg] 3 [m] 3 ... 5 [minT/=,
e asetofnodes {qi; |0 <i<k i<j<k}CS

e aset of states {rg,...,rc—1} CS, ifk >0

40 Chapter 3. Deciding Regularity in Process Algebrs

I LR
Uk—1 U U U)
M1 Q—1k—1 q:s,rk—l ! QQ,Ll 7(h,ﬂfl K Jo,k—1 [my—1] =
ay ag ag ak ay ay \gk
Uk—1 Us Uy Uo
Ok k Qk—1k T g3,k Y2,k "1k Yok =V [u]=[m]=

Figure 3.2: The structure of a derivation schema for ([u], v).

e aset of simulations {U, ..., U1}, ifk >0
such that:

° p = q0,0v ue [mk], V= qO,k

ri € [mij] for0 <i<k, g€ [mjfor0o<i<k
o I ai—+)1 Qiv1,ic1 for 0 S i<k

Gy 25 G FOr0 < j <k, 0<i<j

(ri,gii) € Uiforo <i<k
® (Gir1,Gij) €Uiforo<i<ki<j<k

The structure of a derivation scheme for ([u], v) is shown in Figure 3.2.
The relation R is a simulation—whenever ([u],v) € R and [u] = [u

then there is a state v/ such that v = v/ and ([u'], V') € R. This is due to a

existence of a derivation scheme for the pair ([u], v). We can simply add

3.2. Regularity w.r.t. Other Equivalences 41

new “layer” to the scheme and construct a derivation scheme for the pair
([u],v"). The way how it is done is obvious. Moreover, R contains the pair
([p], p) because this pair has a derivation scheme of depth 0.

This construction can be also used for ready simulation equivalence.
The simulation P becomes a ready simulation. It follows directly from
the fact that two states which are ready simulation equivalent have the
same sets of initial actions. The notion of derivation scheme has to be
modified slightly—we now require that {Uy,...,Ux_1} is a set of ready
simulations. Then R is also a ready simulation: assume that ([u],v) € R.
Then I([u]) = I(v) because gk € [u] and Uy, ..., Uy_; are ready simulations
NOW.

In case of 2-nested simulation equivalence the construction can be used
too. The simulation P becomes a 2-nested simulation because we can eas-
ily prove that p =, [p] for each state p of T. The notion of derivation scheme
has to be modified again—{U, ..., Ux_1} must be a set of 2-nested simu-
lations now. We prove that R is a 2-nested simulation. Let ([u],v) € R. We
need to show that [u] = v. By definition, two simulations Q, V such that
([u],v) € Qand (v, [u]] € V have to be constructed. Clearly R is a simu-
lation which contains the pair ([u], V), hence we can choose Q = R. The
construction of V is slightly more complicated. As ([u],v) € R, there is a
derivation scheme for ([u], V). Uy, ..., Uy_; are 2-nested simulations, hence
Okk =s V. Therefore there is a simulation K containing the pair (v, gx). It
is easy to check that V = {(e,[f]) | (e,f) € K} is a simulation. Moreover,
(v, [u]) € V because gk € [u]. O

We have just proved the following theorem:
Theorem 3.25. Each equivalence in van Glabbeek’s hierarchy has quotients.

There are also other well-known equivalences which have quotients, e.g.,
weak bisimilarity (see [Mil89]) or branching bisimilarity (see [vGW89]).
But this property is naturally not general—there are also equivalences

42 Chapter 3. Deciding Regularity in Process Algebre

which do not have quotients. A simple example is language equivalen
(denoted by ‘=’). Two transition systems are language equivalent if the
roots have the same sets of completed traces (realize that language equi
alence is different from completed trace equivalence and it is even incon
parable with trace equivalence—see Appendix A). As a counterexamp
we can choose e.g., the transition system T = (S, Act, =, r) where

S = {rvpiq}
Act = {a,b}

G — {(r,a,p), (r,b,q), (q’b’q)}

Transition systems T and T/=, look as follows:

7N {)
.

b b
Clearly r #_ [r] because ct(r) = {a} and ct([r]) = 0.

We have seen that if we restrict our attention to behavioural equive
lences which have quotients, then the condition of strong regularity b
comes necessary and sufficient for an existence of a finite characterizatiol
An interesting question is, what is the exact relationship between cond
tions of regularity and strong regularity. First, we already know that thei
are equivalences for which these two conditions coincide (e.g., bisimila
ity). The following notion aims to cover further examples of such equiv:
lences:

Definition 3.26. An equivalence « over T is safe if whenever T < T’ then ft
each reachable state p of T there is a reachable state p’ of T' such that p « p'.

Lemma 3.27. Let < be a safe equivalence over T which has quotients. Then
is strongly regular w.r.t. < iff T is regular w.r.t. <.

3.2. Regularity w.r.t. Other Equivalences 43

Proof:

“=" Obvious.

“<” We prove that the transition system T/ is a finite characterization
of T. As & has quotients, T & T/ . As « is safe, for each reachable state
p of T there is a reachable state [q] of T/ such that p « [q]. Moreover,
states of T/ are pairwise nonequivalent. O

In other words, if < is a safe equivalence over T which has quotients then
each transition system T has a finite representation iff T has a finite char-
acterization. We have already mentioned some examples—hbisimilarity,
weak bisimilarity and branching bisimilarity are safe and have quotients.
But there are also equivalences for which conditions of regularity and
strong regularity are really different.

Lemma 3.28. For each behavioural equivalence < which lies under ready simu-
lation equivalence in van Glabbeek’s hierarchy (including this relation) there is a
transition system T such that T is regular w.r.t. «> and T is not strongly regular
W.r.t. .

Proof: LetT; = (Sy, Acty, =1,r1), T2 = (Sg, Acty, =9, I'2) be transition sys-
tems where:

[ee]

s = JLGhlijeNu{} 0<j<i+1}
i=0
Act; = {a}

= = JL@Dai+1))10<j<iy U {((0,0),3(0,0)}

i=0

U{((i,0),a,(i+1,0)) | i € NU{0}}
rn = (0,0)

44 Chapter 3. Deciding Regularity in Process Algebrz

Ty Ty

Figure 3.3: Transition systems from the proof of Lemma 3.28

Sy, = {A,B}

Act, = {a}

-, = {(A/a,A),(A,a,B)}
rr = A

If we draw these transition systems, we obtain pictures of Figure 3.3.
The transition system T, is not strongly regular w.r.t. trace equivalenc
because tr((i,1)) € tr((i + 1,1)) for each i € N U {0}, thus T, contain
infinitely many states up to trace equivalence. Therefore T; is not strongl
regular w.r.t. any equivalence in van Glabbeek’s hierarchy.
Now we show that T; = T,. By definition, two ready simulations R,

such that (ry,r) € Rand (rq, r1) € S have to be constructed:

R = (M@ 0<i<ibu H(Gi+1),8)}
S = {(A(0,0), B 0,1}

Itis easy to check that R, S are ready simulations. Moreover, ((0,0),A) €

3.2. Regularity w.r.t. Other Equivalences 45

and (A, (0,0)) € S.

As T, =, T,, transition systems Ty, T, are equivalent w.r.t. any be-
havioural equivalence which lies under ready simulation equivalence in
van Glabbeek’s hierarchy. As T, is finite, the system T; is regular w.r.t.
each of these equivalences. O

Lemma 3.29. Thereisa transition system T such that T is regular w.r.t. possible-
futures equivalence and 2-nested simulation equivalence, but T is not strongly
regular w.r.t. these equivalences.

Proof: LetT; = (Sy,Acty, =1,r1), To = (Sg, Acty, =4, I'2) be transition sys-
tems where:

Sy = Nu{0}
Act; = {a}
= = {(,ai+1)]ieNyu{(i,ai—1)]i€N}
rn =1
S, = {A,B,C}
Act, = {a}
- = {(A,aB),(AaC),(CaA)}
r{ = A

Systems T, T, can be depicted as follows:

L] a o a o é o] a Q e '4a>0
al a a a a . “a
o o
T Ty

We show that T; has infinitely many states w.r.t. =y and =,. Leti,j €
N, i < j, be states of T,. The state i has a possible future (a, 0). Clearly

46 Chapter 3. Deciding Regularity in Process Algebrz

(a,0) ¢ PF(j), hence i £y j. As 2-nested simulation equivalence is abov
possible-futures equivalence in van Glabbeek’s hierarchy, the system 1
has infinitely many states also w.r.t. =,, thus T; is not strongly regulc
W.r.t. = and =.

It remains to prove that T, is regular w.r.t. =, and =y. We show th:
T, =, Ts. First we have to realize which states of T, and T, are simulatio
equivalent. Clearly 0 = B. Ifi € N isodd theni =, Aand ifi € N is eve
then i = C. Following relations are the required simulations:

Ri = {(kA)|keNAkisodd}U{(kC)|ke NU{0}Akiseven}
S = {(Ai),B,i+1),(Ci+1)}

Now we can define two 2-nested simulations which relate roots of T; an
Ts:

R = {(i,A)]ieNAiisodd}U{(i,C)| k€N Aiiseven}U{(0,B)}
S = {(A1),(8B,0),(C,2)}

Elements of R, S are pairs of simulation equivalent states. Now it is eas
to check that R, S are 2-nested simulations. As (1,A) € Rand (A,1) € !
transition systems Ty, T, are 2-nested simulation equivalent.

As T; =5 Ty and possible-futures equivalence lies under 2-nested simt
lation equivalence in van Glabbeek’s hierarchy, systems T, and T, are als
possible-futures equivalent. Thus T, is regular w.r.t. =, and =. [

We have just proved the following theorem:

Theorem 3.30. Let «» be an equivalence in van Glabbeek’s hierarchy which li
under bisimilarity. Then there is T € T such that T is regular w.r.t. <> and T
not strongly regular w.r.t. <.

An open problem is whether the notions of regularity and strong regt
larity have different decidability features. In the next section we preser

3.3. Negative Results 47

some negative results, stating that both regularity and strong regularity
can be undecidable in certain process algebras. From the practical point of
view it would be much more interesting to obtain some positive results,
but this area seems to be quite unexplored.

3.3 Negative Results

In this section we present some negative results, stating that regularity
and strong regularity w.r.t. all equivalences of van Glabbeek’s hierarchy
are undecidable in the class of processes which is obtained from PA by
adding a finite-state control unit. As we shall see, those problems are un-
decidable even for normed processes of that class. Our results are proved
in a uniform way by a simple reduction of the halting problem of the Min-
sky machine. This technique can also be applied to other process algebras
which are powerful enough to simulate an arbitrary Minsky machine.

3.3.1 The Minsky Machine

The Minsky machine (denoted here by M) is equipped with two counters
C,, C, which can store nonnegative integers. The behaviour of M is deter-
mined by a finite-state program, composed of m € N labelled statements:

|1 : S1
|2 : So
Im—1 : Sm-1
In : HALT

where for each i, 1 < i < m the statement s; has one of the two forms:

Ci =Cj;+1; goto Ik
Si =
if Cj = 0 then goto Iy else Cj = Cj — 1; goto Iy;

48 Chapter 3. Deciding Regularity in Process Algebre

where j € {1,2}. The machine M starts its execution (with given inpt
values on Cy, C,) from the command ;. M halts if it reaches the comman
‘HALT’ in a finite number of steps, and diverges otherwise. Undecidabilit
of the halting problem of the Minsky machine has been demostrated b
Minsky in [Min67].

3.3.2 Extending PA Processes with a Finite-state Contrc
Unit

In this section we explore a calculus obtained by extending PA processe
with a finite-state control unit. First we explain what happens if we ad
a finite-state control unit to BPA and BPP processes, because these mode
have been already studied by other researchers.

Any BPA process A in GNF can be viewed as a push-down proces
(PDA,; see e.g., [MS85]) whose control unit has just one state—we ca
imagine that reachable states of A are stored on a stack with the lef
most variable on the top. A well-known fact from the theory of form:
languages and automata says that if we are interested in language equiv
lence, then the expressive power of context-free grammars and push-dow
automata coincide. As BPA processes can be seen as context-free gran
mars in GNF, we can ask the same question for bisimilarity. The answer
surprising—there are PDA processes for which there are no bisimilar BP.
processes (this was demonstrated in [CM90]). In other words, if we ad
a finite-state control unit to BPA, we get a strictly more expressive calct
lus. Stirling has recently shown in [Sti96] that bisimilarity is decidable fc
normed PDA processes (he defines a PDA process to be normed if it ca
always empty its stack). It is easy to see that regularity w.r.t. bisimilarity
also decidable for normed PDA processes—such a process is not regular i
there is no bound on the length (or height) of the stack, and this is clearl
decidable. Further decidability issues for PDA processes are discussed i

3.3. Negative Results 49

Section 3.4.

The idea of adding a finite-state control unit is quite general—the unit
can be seen as a finite-state context for process variables which can behave
differently under different contexts and which can change the context by
emitting an action. If we extend BPP processes in this way, we obtain so-
called parallel push-down processes (PPDA). The only difference between
PDA and PPDA processes is that the “stack” of PPDA has random access
capability (remember that reachable states of BPP processes are multisets
of variables which are stored on the “stack” now). Moller demonstrated
in [Mol96] that the expressive power of PPDA in strictly greater then the
one of BPP. Decidability properties of PPDA were examined by Hirshfeld;
he noticed that PPDA processes form a subclass of Petri nets and hence
all positive decidability results on Petri nets also apply to PPDA (see Sec-
tion 3.4). However, some negative results remain valid too—the most sig-
nificant example is undecidability of bisimilarity for PPDA! (see [Mol96]).

Now we can ask what happens if we add a finite-state control unit
to PA processes (we denote the resulting calculus PAPDA for short). We
show that PAPDA processes are strictly more expressive than PA, PDA
and PPDA. The reason is quite simple—PAPDA is a calculus with full Tur-
ing power. We show that an arbitrary Minsky machine can be simulated
by an effectively constructible PAPDA process (even by a normed one).
This fact brings other negative results on PAPDA processes, e.g., unde-
cidability of regularity and strong regularity w.r.t. any equivalence of van
Glabbeek’s hierarchy.

Definition 3.31 (PAPDA processes). A PAPDA process is formally defined as
a tuple (Q, V, A, P,R) where

e Qisafinite set of states.

1This result is due to Hirshfeld; it is obtained by utilizing Jantar’s technique for show-
ing undecidability of bisimilarity for labelled Petri nets [Jan94].

50 Chapter 3. Deciding Regularity in Process Algebre

e Visa finite set of variables.
e A isafinite set of actions.

e PC (QxV)xAx(QxVPA(V))isafinite transition relation (VPA(\
denotes the set of all VPA expressions over V—see Section 2.3.2).

e R e Q x VPA(V) is adistinguished pair called root.

As usual, we will write pa instead of (p, a) where (p, a) € QxVPA(V), an
pX 5 ga instead of ((p, X), a, (9, @) € P. Furthermore, we will identify a
VPA expressions which are structurally congruent (see Definition 2.3).

To be able to extend the transition relation P to elements of Q x VPA(\
we first need to introduce a predicate Active(X, i, a) which is true iff the i
occurrence of the variable X within a VPA expression a (reading o fror
left to right) can emit an action.

Definition 3.32 (Active predicate). The predicate Active is defined inductivel
on the structure of a:

e o =Y. Then Active(X,i,a) is True if Y = X and i = 1, and False othe
wise.

o o= f[.yoroa=_p0|y. Then Active(X,i, o) = Active(X,i,0).

o o = (|ly. Then Active(X, i,) = Active(X, i, 3) V Active(X, i —k,), whel
k denotes the number of occurrences of X in 3.

The transition relation P is extended to elements of Q x VPA(V) in the fo
lowing way: pa = q iff there is a transition pX = gy in P and i € N suc
that Active(X, i, o) is True, and 3 can be obtained from «a by substitutin
the i* occurrence of X with . The way how PAPDA processes determir
their associated transition systems is now obvious.

Now we show that an arbitrary Minsky machine M whose prograr
consists of m statements can be simulated by a PAPDA process which ca

3.3. Negative Results 51

be effectively constructed. For simplicity, assume that M starts its exe-
cution with both counters initialized to 0 (we can afford this because the
halting problem is clearly undecidable also for this subclass of Minsky
machines). The simulating PAPDA process ¥ = (Q,V, A,P,R) looks as
follows:

e Q={t,...,0m}
o V=A{l,,Z,Z5}
o A={a}
* R=0:(Z1l|Z,)
The transition relation P is constructed using the following rules:

1. If the program of M contains an instruction of the form
li: C;=Cj+1; gotoly
then P contains the elements ;Z; = q«(1;.Z;) and gil; = q(1;.1;).

2. If the program of M contains an instruction of the form
li: if Cj = 0 then goto Iy else C; = Cj — I;goto |,

then P contains the elements g;Z; = qcZ; and g;l; = gn.
3. Each element of P can be derived using the rule 1 or 2.

Intuitively, counters of M are simulated by two BPA processes which are
combined in parallel on the “stack™ and the program of M is simulated
by the finite-state control unit of ¢ . Each step of M is mimicked by 1
which emits the action a. Let Y be a process defined by Y £ aY. If the
machine M diverges then ¢ ~ Y, hence ¢ < Y for any equivalence « of
van Glabbeek’s hierarchy. If the machine M halts then ¢ #,, Y, because ¥
emits the action a only finitely many times (note that M is deterministic).
Hence ¢ # Y for any equivalence < of van Glabbeek’s hierarchy. This
reduction proves the following theorem:

52 Chapter 3. Deciding Regularity in Process Algebrz

Theorem 3.33. Let 4 be a PAPDA process, let A be a finite-state process an
let +> be an equivalence of van Glabbeek’s hierarchy. It is undecidable wheth
P& A

It is worth noting that M can be simulated even by a normed? PAPD;
process ¢ which can be obtained from % just by adding a special state t t
Q and the following set of transitions to P:

{gUSt|UeV,1<i<m}

The only difference between 1 and 4/ is that ¥’ can terminate in one ste
at any moment (due to the deadlock in the state t). If M diverges, then
has an infinite run—it is thus bisimilar to Y’ £ aY’ + a. If M halts, then 1
is not trace equivalent to Y’. Theorem 3.33 is thus valid also for norme

PAPDA processes.

Theorem 3.34. Let ¢ be a PAPDA process and let <+ be an equivalence of va
Glabbeek’s hierarchy. It is undecidable whether ¢ is (strongly) regular w.r.t. <.

Proof: We show that the halting problem of the Minsky machine can k
reduced to both mentioned problems. Let M be an arbitrary Minsky m:
chine and let 3 be the PAPDA process which simulates the execution ¢
M. Now we modify the process 1 slightly, producing a new PAPDA prc¢
cess p: we add a new state s to Q, two new variables B, C to V and th
following set of transitions to P:

{qmU > sB | U € V}IU{sB > sBC, sBSs, sC -5 s}

If M diverges, then p ~ ¢ ~ Y where Y £ aY, hence p is (strongly) regule
w.rt. <. Now we show that if M halts, then p is not (strongly) regule
W.It. &.

2A PAPDA process is normed if its corresponding transition system has the featu
that from any state it is possible to reach a state which does not have any successors.

3.3. Negative Results 53

As M halts, p is normed because p 2 gma for some k € N U {0}, a €
VPA(V) and gy is normed (realize that the first k steps of p are completely
deterministic). Traces of p are thus exactly prefixes of completed traces of
o which look as follows:

ct(p) = {akb'c' | i € N}

Assume that p is trace equivalent to some finite-state process E with n
states. Then E has a trace a“b"c". As E has only n states, it had to pass
through the same state twice before emitting the first c; there are three
possibilities:
1. ESFSF G where p+q+r =Kk q2> 1. Butthen also a"*"b"c"
is a trace of E and as this sequence of actions is not a prefix of any
element of ct(p), p A« E and we have a contradiction.

a’b"

2 ESFYES Gwherep+q=Xk,r+s=n,r> 1. Butthenalbsc" isa
trace of E which is not a trace of p (because s < n).
k ren
3. EXF LS E% where p+q+r=n,q> 1 Then abP*c" is a trace of
E which is not a trace of p.

We just proved that if M halts, then p is not regular w.r.t. trace equivalence.
Hence p is not regular w.r.t. ++. As < has quotients, strong regularity w.r.t.
< implies regularity w.r.t. <. Thus non-regularity of p w.r.t. & implies
that p is not strongly regular w.r.t. &. O

The previous theorem is valid also for normed PAPDA processes—Wwe can
use the same proof, replacing 1 with /"

This technique also works for other process algebras which are suffi-
ciently expressive to simulate any Minsky machine. We can mention e.g.,
BPP processes where the merge operator ‘||” is replaced with the ‘||z’ paral-

54 Chapter 3. Deciding Regularity in Process Algebrz

lel operator of CSP (see [Hoa85]). This operator has the following sematr
tics (A is a set of actions):

E—Z)E’ b A) F—E)F’ bga) EDE ESF hca
EllaF = E'||aF E||aF = E|[aF’ EllaF = E'l|aF’
The ||a’ operator forces synchronizations on actions from the set A. Taul
ner proved in [Tau89] that using this operator it is possible to simula
counters (and consequently an arbitrary Minsky machine—it suffices t
combine two counters in parallel with a finite-state process which simt
lates the control unit. The three components can be forced to cooperate).

Another example is BPP.. algebra enhanced with the restriction oper:
tor “\L’ (see [Mil89]) which can force synchronizations on complementar
actions (L is a set of actions such that 7 ¢ L):

ESE
E\L S E/\L

a,agl)

BPP.. processes can simulate an arbitrary Minsky machine in a similar wa
as the previously mentioned ones. The crucial thing is the description
counters which is due to Taubner [Tau89] again.

3.4 Related Work and Future Research

In this section we present further results which are related to the subject ¢
this chapter. Here we discuss the work of other researchers and therefor
we will not give full proofs of all theorems. Nevertheless, sometimes w
describe the basic idea of the proof or comment the technique briefly, b
cause it well illustrates the variety of possible approaches to the problen

The question whether for a given infinite-state behaviour there is a
equivalent finite-state one has been known from the theory of formal lar
guages for a long time. However, the problem is not too interesting in th

3.4. Related Work and Future Research 55

setting, because it becomes undecidable even for context-free grammars—
it is folklore that the problem whether a given context-free grammar G
generates regular language is undecidable.

The question was later “rediscovered” within the framework of con-
currency theory (after new, well-motivated equivalences appeared). Taub-
ner proved in his Ph.D. thesis (also published as [Tau89]) that regularity
w.r.t. bisimilarity and trace equivalence is undecidable for certain process
algebras, namely for CCS and TCSP. The crucial idea is that it is possible to
simulate an arbitrary Minsky machine by an effectively constructible pro-
cess of CCS and TCSP. Taubner also showed that mentioned algebras can
simulate counters (and consequently an arbitrary Minsky machine) even
without the use of renaming. Obtained sub-algebras correspond to BPP.
enhanced with the restriction operator, and BPP where the merge operator
‘||” is replaced with the parallel operator ‘||5’ of CSP, respectively.

In Section 3.3.2 we have presented another process algebra with full
Turing power—PAPDA. We have also extended Taubner’s undecidability
results to all equivalences of van Glabbeek’s hierarchy using a simple re-
duction of the halting problem.

The first positive decidability result on regularity is due to Mauw and
Mulder. They proved in [MM94] that “regularity” is decidable for BPA
processes. The quotes are important here because Mauw and Mulder used
the word regularity in a different sense—a BPA process A is “regular” if
for each variable Y € Var(A) there is a finite-state process Ay such that
Y ~ Ay. The notion of “regularity” is thus strongly dependent on BPA
syntax. It is not clear how to define “regularity” for e.g., Petri nets. Never-
theless, this result is valuable because in case of normed BPA processes the
notions of regularity and “regularity” coincide (as observed in [Kuc95]).
Moreover, our proof of decidability of regularity for nPA processes (see
Section 3.1) was inspired by the technique used in [MM94].

Bosscher and Griffionen later proved that regularity is actually decid-

56 Chapter 3. Deciding Regularity in Process Algebre

able in a larger subclass of BPA processes (see [BG96]) which includes als
some BPA processes which are not normed.

A definitive answer was given by Burkart, Caucal and Steffen [BCS96
They proved that regularity is decidable for all BPA processes. The tecl
nique is rather different from the previous ones—it is shown that for an
BPA process A which generates a transition system T it is possible to cor
struct a deterministic graph grammar G which generates the transition sy:
tem T/~ . Hence A is non-regular iff G generates an infinite graph, and
is easily decidable.

JanCar and Esparza presented in [JE96] another positive result statin
that regularity is decidable for labelled Petri nets. This implies decidabilit
of regularity for BPP and PPDA processes because any BPP or PPDA prt
cess can also be seen as a (rather special) Petri net. The proof is obtaine
by a combination of two semi-decidability results. Semi-decidability ¢
the positive subcase follows from the fact that bisimilarity is decidabl
for pairs of labelled Petri nets such that one net of this pair is bounded
A labelled Petri net N is regular iff there is a bounded net R such th:
N ~ R. But this condition is clearly semi-decidable because we can ent
merate all bounded nets and check whether we already found R. Sem
decidability of the negative subcase is obtained by showing that if a give
Petri net is not regular, then there is a special marking which fulfills certai
semi-decidable conditions. This marking plays the role of finite “witness
of non-regularity, whose existence is again semi-decidable by exhaustiv
search.

Decidability of regularity w.r.t. other equivalences of van Glabbeek
hierarchy is discussed in [JM95]. Jancar and Moller proved that regula
ity w.r.t. trace equivalence and simulation equivalence is undecidable fc

3A Petri net N is bounded if the total number of tokens which are stored within plac
of N cannot exceed certain limit during the execution of N. Bounded Petri nets thi
correspond to finite-state processes.

3.4. Related Work and Future Research 57

labelled Petri nets. At the same time they proved that mentioned equiva-
lences are decidable for pairs of labelled Petri nets such that one net of this
pair is bounded. From this we can conclude that the negative subcase of
the regularity problem is even not semi-decidable for these equivalences.

An important open problem in the area of “regularity testing” is de-
cidability of regularity w.r.t. bisimilarity for PDA and PA processes. A re-
cent result [Jan97] due to JanCar says that bisimilarity and regularity w.r.t.
bisimilarity are decidable for one-counter processes (i.e., PDA processes
where the stack alphabet has just one symbol besides a special bottom
symbol). Regularity is also easily decidable for normed PDA processes
(if we adopt Stirling’s definition of normedness as presented in [Sti96]).
Regularity of general PDA processes is at least semi-decidable, because it
is possible to check bisimilarity between a PDA process and a finite-state
process. The same result holds for PA processes* Our conjecture is that
regularity is in fact decidable in both process classes.

4Those facts can be presented due to a private communication with Petr JanZar.

58

Chapter 3. Deciding Regularity in Process Algebrs

Chapter 4

Expressibility of nBPA, and nBPP.
Processes

In this chapter we study the relationship between the classes of transi-
tion systems which are generated by normed BPA, and normed BPP.
processes. We also examine such a relationship between their respec-
tive subclasses, namely normed BPA and normed BPP processes (see Sec-
tion 2.3.1).

BPA processes can be seen as simple sequential programs (they are
equipped with a binary sequential operator). This class of processes has
been intensively studied by many researchers. Baeten, Bergstra and Klop
proved in [BBK87] that bisimilarity is decidable for normed BPA processes.
Much simpler proofs of this were later given in [Cau88, HS91, Gro91].
In [HS91] Huttel and Stirling used a tableau decision method and gave
also sound and complete equational theory. Hirshfeld, Jerrum and Moller
demonstrated in [HIM94a] that the problem is decidable in polynomial
time. The decidability result was later extended to the whole class of BPA
processes by Christensen, Huttel and Stirling in [CHS92].

If we replace the binary sequential operator with the parallel (merge)
operator, we obtain BPP processes. They can thus be seen as simple paral-

59

60 Chapter 4. Expressibility of nBPA and nBPP.. Processt

lel programs. Christensen, Hirshfeld and Moller proved in [CHM?933a] th:
bisimilarity is decidable for BPP processes. A polynomial decision algc
rithm for normed BPP processes was presented in [HIM94b] by Hirshfel
Jerrum and Moller.

If we allow a parallel operator not to specify just merge but also a
internal communication between two BPP processes resulting in a speci
action 7, we obtain the class of BPP, processes [Chr93]. In order to con
pare this class with its sequential counterpart we employ the class of BPA
processes [BK88]. Decidability and complexity results just mentioned hol
for these classes as well.

This chapter is organized as follows. In Section 4.1 we give an exa
characterization of those transition systems which can be equivalently (u
to bisimilarity) described by the syntax of nBPA, and nBPP. processe:
Next we show that if we restrict ourselves to nBPA and nBPP processe
we obtain a simpler (and hopefully nicer) characterization of those b
haviours which are common to these subclasses. In Section 4.2 we demor
strate that it is decidable whether for a given nBPA, nBPA,, nBPP, or nBPF
process A there is some nBPP, nBPP,, nBPA, or nBPA, process A’ such the
A ~ A’ respectively. These algorithms are polynomial. We also show th:
if the answer to the previous question is positive, then the process A’ ca
be effectively constructed. Unfortunately, this construction is no longe
polynomial. As an important consequence we also obtain decidabilit
of bisimulation equivalence in the union of nBPA, and nBPP.. processe:
We conclude with remarks on related work and future research. The ri
sults which are presented is this chapter have been previously publishe
as [CKK96].

Remark 4.1. In this chapter we use previously established results on regularit
of nBPA, nBPP., nBPA and nBPP processes (see Section 3.1.3). Here the wor
“regularity”” always means regularity w.r.t. bisimilarity.

4.1. The Characterization of nBPA. N nBPP.; 61

4.1 The Characterization of nBPA, nnBPP-

In this section we give an exact characterization of those normed processes
which can be equivalently defined by BPA, and BPP,. syntax.

Definition 4.2 (nBPA,; N nBPP,.). The semantical intersection of nBPA. and
NBPP.. processes is defined as follows:

nBPA, NnBPP, = {A €nBPA,, | 3A’ € nBPP, suchthat A ~ A’} U
{A € nBPP,, | 3A’ € nBPA, suchthat A ~ A’}

The class nBPA. N nBPP.. is clearly nonempty because each normed finite-
state process belongs to nBPA,; N nBPP... But nBPA, N nBPP,. contains also
processes with infinitely many states—consider the following process:

X £ aX|X)+a (4.1)
X is a nBPP,. process with infinitely many states. If we replace the ‘|” oper-
ator with the ‘. operator, we obtain a bisimilar nBPA process:

X £ aXX)+a (4.2)
Clearly X ~ X because transition systems generated by those processes

are even isomorphic:

Now we modify the process X slightly:

def

X a(X|X)+a+a (4.3)

Although the process (4.3) does not differ from the process (4.1) too much,
it is not hard to prove that there is no nBPA,. process bisimilar to (4.3).

62 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

Now we prove that each nBPP,. processes from nBPA, N nBPP.. can b
represented in a special normal form, denoted INF;, (Intersection Norm:
Form for nBPP, processes). Before the definition of INF, we first intrc
duce the notion of reduced process:

Definition 4.3 (reduced process). Let A be a nBPA, or nBPP,. process. W
say that A is reduced if its variables are pairwise non-bisimilar.

As bisimilarity is decidable for nBPA.. and nBPP.. processes in polynomi:
time (see [HIM94a], [HIM94b]), each nBPA. or nBPP.. process can be effe
tively transformed into a bisimilar reduced process in polynomial time.

In the rest of this chapter we often use the notation o/ where « is a stat
of a nBPA.. or nBPP.. process. It has the following meaning:

o = ao. . if a is a state of some nBPA.. or nBPA process
H,—J
1
o = ala|---|a if a is a state of some nBPP.. process
\—_,—/
1
o = allal---|la if ais astate of some NBPP process
—.,—/
I

Definition 4.4 (INF;,). Let A be a reduced nBPP.. process.

1. Avariable Z € Var(A) is simple if all summands in the def. equation f
Z are of the form aZ', where a € Actand i € N U {0}. Moreover, at lea:
one of those summands must be of the form aZk where a € Act and k >
Finally, the def. equation for Z must not contain two summands of the for
b, b, where b € A.

2. The process A is said to be in INF if whenever aa is a summand in a de
equation from A such that Length(a) > 2, then a = Z' for some simp
variable Z and i > 2.

Note that if Z is a simple variable, then |Z| = 1 because Z could not k
normed otherwise.

4.1. The Characterization of nBPA. N nBPP.; 63

Example 4.5. The following process as well as process (4.1) are in INF,, while
the processes (4.3) is not:

X aY +b(Z|Z)+b+b
Y £ cY+bX+a(Z|Z|2)
z a(Z|Zz)+a(Z|Z|Z) +b+a

Remark 4.6. The set of all reachable states of a process A in INFg, looks as fol-
lows:

Var(A)U{Z'| Z € Var(A) is a simple variable and i € N U {0}}
Proposition 4.7. Each process A in INF;, belongs to nBPA, N nBPP...

Proof: We show that a bisimilar nBPA, process A is even effectively con-
structible. First we need to define the notion of closed simple variable—a
simple variable Z € Var(A) is closed if the following condition holds: If
the def. equation for Z contains two summands of the form bZ,bZi, then
it also contains a summand 7Zi-! (the case i = j = 0 is impossible by
Definition 4.4).

The set Var(A) looks as follows: for each V € Var(A) we fix a fresh
variable V. Moreover, for each simple non-closed variable Z € Var(A) we
also fix a fresh variable Z.. Now we can start to transform A to A. For
each equation Y £ 3" aia; of A we add the equation Y = 31| T (aiy) to
A, where T is defined as follows:

1. T(ai) = g
2. T(aV) = aV for each V € Var(A).

3. If aj = ZI where Z € Var(A) is a closed simple variable and j > 2,
then T (aZl) = aZ.

4. If aj = Z where Z € Var(A) is a non-closed simple variable and
j> 2, then T(aZ)) = aZd .Z.

64 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

The defining equation for Z., where Z € Var(A) is a non-closed simpl
variable, is constructed using following rules:

1. ifaZ'isasummand in the def. equation for Z, then aZi isasumman
in the def. equation for Z. in A.

2. ifbZ!, bzl are summands in the def. equation for Z, then 7Z. 7 s
summand in the def. equation for Z in A.

The fact A ~ A is easy to check. [

Example 4.8. If we apply the transformation algorithm to the process of Exan
ple 4.5, we obtain the following bisimilar nBPA,. process:

X £ aY¥ +b(Z.Z) +b+b

Y £ oY +bX+a(ZeZ.2)

Z £ a(ZeZ)+3a(ZeZeZ)+b+7a

Ze = a(ZeZo) +A(ZeZeZe) + b+ 8+ T(ZeZe Ze Ze) + TZe

Now we prove that each nBPP.. process from nBPA, N nBPP.. is bisimile
to a process in INF;,. Several auxiliary definitions and lemmas are needec

Definition 4.9 (Assoc set). Let A be a nBPP;. process. For each growing var
able Y € Var(A) we define the set Assoc(Y) C Var(A) in the following way:

Assoc(Y) = {PeVar(A), Y =*P}U
{P € Var(A), P|Y is a reachable state of A}

A variable L € Var(A) is lonely if L ¢ Assoc(Y) for any growing variab
Y € Var(A).

Lemma 4.10. Let A € nBPA. N nBPP, be a reduced nBPP,. process. Let Y
Var(A) be a growing variable. Then there is exactly one variable Zy € Var(A
such that:

4.1. The Characterization of nBPA. N nBPP.; 65

e Zyisnon-regularand |Zy| =1
e If P € Assoc(Y), then Zy is reachable from P and P ~ Z'YP'.
e Ifaa is a summand in the defining equation for Zy in A, then a ~ Z'f"

Proof: As Y is growing, Y —* Y|3 where 8 € Var(A)®, B # 0. As A'is
normed and in GNF, there is Zy € Var(A), |Zy| = 1 such that § —* Zy.
Hence Y —* Y|B' —* Y|Z| for any i € N (note that Zy is reachable from
Y). From this and the definition of Assoc set we can easily conclude that if
P € Assoc(Y) then the state P|Z!, is reachable for any i € N.

As A € nBPA.NNBPP,, there is a bisimilar nBPA, process A’. Let
n = |P[, m = max{|A|, A € Var(A')}. The state P|Z{™ is a reachable state
of A and therefore there is y € Var(A')* such that P|Z§™ ~ «. Bisimilar
states must have the same norm, hence v is a sequence of at least n + 1
variables — 7 = A;.A;... A 1.0 where § € Var(A')*. As|P| =n, P >
e for some s € Act’ with Length(s) = |P| — hence P|Z}™ = Zo™. The
state A;.A; ... An, 1.6 must be able to match the norm reducing sequence of
actions s. As Length(s) = n, at most the first n variables of A;.Ay...Ap, 1.6
can contribute to the sequence s, i.e., Aj.Ay...An1.0 =N n.An;1.0 Where
n € Var(A")*. As A’ is normed, n.An; 1.6 5 Ans1.6 for some t € Act® with
Length(t) = |n|. The state Z{™ can match the sequence t only by removing
Length(t) copies of Zy:

PIZM ~ Ay And
5 [

VAV n.Ant1.0
| |

Zs'm_lnl ~ Ani1.6

Now let k = Length(s) + Length(t) (i.e., k = |A;...Ay]). Clearly k <
n.mand as |Zy| = 1, P|ZJ™ LN P|Z§‘('"“k where Length(p) = k. The state

66 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

Ai.A, ... A, 1.0 can match the sequence ponly by A A, ... Aniq.0 LN Anti
By transitivity of ~ we now obtain P|Z}™ ™ ~ Zi’mfl”l, hence P ~ Z\/'.

As the variable Y is non-regular and Y ~ Z‘J', the variable Zy is als
non-regular. Moreover, Zy is a unique variable with the property P ~ Zﬂ
for each P € Assoc(Y) because A is reduced.

A similar argument can be used to prove that Zy is reachable from eac
P € Assoc(Y). As P isnormed, P —* P’ where |P'| = 1. AsP ~ Z'f', P~ Z
and hence P! = Zy.

It remains to check that if ac is a summand of the defining equatio
for Zy in A then & ~ Z*. But each variable V € a belongs to Assoc(Y
(because Y —* Zy —* V) and thus V ~ ZY!. Hence a ~ Z!%. [

Remark 4.11. The symbol Zy always denotes the unique variable of Lemma 4.1
in the rest of this chapter.

Lemma 4.12. Let A € nBPA, N nBPP, be a reduced nBPP.. process. Let A|
be a reachable state of A such that A € Assoc(Y) and B € Assoc(Q). The
Zy =Zq.

Proof: As A isreduced, it suffices to prove that Zy ~ Zg. As A € Assoc(Y
A —=* Zy (see Lemma 4.10). Similarly, B —=* Zg and hence Zy|Zg is
reachable state of A. As Zg is non-regular, it can reach a state of an arb
trary norm—for each i € N there is o; € Var(A)® such that Zg —* o an
|aj| = i. Clearly o ~ Z‘Q because each variable of a; belongs to Assoc(Q
Hence Zy|aj ~ ZY|Z'Q.

As A € nBPA, N nNBPP,, there is a bisimilar nBPA, process A’. Le
m = max{|V|, V € Var(A")}. The state Zy|an is a reachable state of
and therefore there is y € Var(A')* such that Zy|ay, ~ v and hence als
Zy|Zg ~ . Moreover, v is a sequence of at least two variables.

Now we can use a similar construction as in the proof of Lemma 4.1
and conclude that ZY|ZjQ ~ 2151 for some j € N. This implies Zy ~ Zq. |

4.1. The Characterization of nBPA. N nBPP.; 67

Lemma 4.13. Let A € nBPA. N nBPP, be a reduced nBPP.. process. Let L|A be
a reachable state of A such that L is a lonely variable. Then A is a regular process
(see Remark 2.6).

Proof: Let us assume that A is not regular. Then A —* Y, where Y €
Var(A) is a growing variable (see Proposition 3.16). But then L|A —* L|Y,
thus L € Assoc(Y) and we have a contradiction. O

Proposition 4.14. Let A € nBPA, N nBPP, be a nBPP, process. Then there is
a process A’ in INR;, such that A ~ A/,

Proof: We can assume (w.l.0.g.) that A is reduced and in 3-GNF. The pro-
cess A’ can be obtained by the following transformation of defining equa-
tions of A (which can also add completely new variables and correspond-
ing defining equations): if X = ij:l aja; is a defining equation from A,

def

then X = 371", T(ajy) is added to A', where T is defined as follows:
e if card(ej) < 1, then T (ajoj) = ajcy
e if card(oy) = 2 (i.e., oj = A|B) then there are three possibilities:

1. A € Assoc(Y) and B € Assoc(Q). Then A ~ Z'f' and B ~ Z‘QBI (see
Lemma 4.10). As A|B is a reachable state, we can conclude (with
a help of Lemma 4.12) that Zy = Zq, hence A|B ~ Z'YAH'B'. Thus
T(a(AB)) = a(Z{"* ™).

2. A € Assoc(Y) and B is lonely. But then A ~ ZI* and as Zy is
not regular, A is not regular either. As the state A|B is reachable
and B is lonely, it contradicts Lemma 4.13. Hence this case is in
fact impossible (as well as the case when A is lonely and B €

Assoc(Q)).

3. A and B are lonely. Then A and B are regular (due to Lemma
4.13) and therefore the state A|B is also regular. Each regular
process can be represented in normal form (see Definition 2.13).

68 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

Let Aajg be a regular process in normal form which is bisimile
to A|B. We can assume (w.l.0.9.) that Var(Aag) N Var(A') = 0.
adds all equations from Axjg to A’ and T (a(A|B)) = a.N wher
N is the leading variable of Aag.

The transformation T preserves bisimilarity—hence A ~ A’. It remains t
check that A’ is in INF;.. Clearly each summand of each defining equatio
from A’ is of the form which is admitted by INF;.. If aZl is a summand c
a defining equation in A’ such that j > 2, then Z = Z, for some grow
ing variable Y € Var(A). Let ao be a summand in the original definin
equation for Zy in A. We need to show that each such summand mus
have been transformed into aZ‘Y"“ by T. But it is obvious as each variabl
from a belongs to Assoc(Y). If a is composed of a single variable V, the
V = Zy because V ~ Zy (due to Lemma 4.10) and A is reduced. More
over, at least one summand in the defining equation for Zy in A’ is of th
form aZ'Y where | > 2, because Zy would be regular otherwise. To con
plete the proof we need to show that the defining equation for Zy in /
cannot contain two summands of the form b, b. Assume the converse. A
A’ € nBPA, N nBPP,, there is a NnBPA, process A, such that A’ ~ A
As Z‘Y is a reachable state of A’ for each i € N U {0} (see Remark 4.6
there is a; € Var(Ay)* such that Z‘Y ~ qa; for each i. Moreover, we can a
sume (w.l.o.g.) that each «; is of maximal Length, i.e., if o; ~ 3 for som
B € Var(A,)* then Length(a;) > Length(3). Let k be the minimal nun
ber with the property Length(ax) > 2. Clearly Length(oy) = 2, becaus
otherwise we could easily obtain a contradiction with the minimality ¢
k. Hence oy = P.Q for some P,Q € Var(A,). As Z LN Z¥!, we also hav
P.Q 2 « for some v ~ ay_. By definitions of o; and k, y must be compose
of a single variable. The only such state which can be reached from P.Q i
one step is Q, hence ox_; ~ Q. As the defining equation for Zy contain
two summands b, b, we also have a transition ¥ 5 Z¥2. But P.Q cannc
reach a state which is bisimilar to ax_» in one step, because ay_» is (agai

4.1. The Characterization of nBPA. N nBPP.; 69

by definitions of a; and k) composed of at most one variable which must
be different from Q because oy_; % ay_». Hence oy # Z¥ and we have a
contradiction. O

Propositions 4.7 and 4.14 give us the classification of nBPA, N nBPP.. in
terms of nBPP, syntax.

Theorem 4.15. The class nBPA, N nBPP,. contains exactly (up to bisimilarity)
NBPP.. processes in INF;.

The class nBPA. N nBPP.;. can also be characterized using nBPA, syntax.
To do this, we introduce a special normal form for nBPA,. processes:

Definition 4.16 (INF;,). Let A be a reduced nBPA, process.

1. Let X, Y € Var(A) be non-regular variables. We say that Y is a commu-
nication closure (C-closure) of X if the following conditions hold:

e All summands in the def. equation for X are either of the form a where
a € Act, or a(Y'.X) where a € Actand i € N U {0}. Moreover, at
least one summand is of the form a(Y*.X) where k > 1.

e All summands in the def. equation for Y are of the form aY', where
a€ Actandi e NU {0}

e aY'is a summand in the def. equation for Y iff one of the following
conditions holds:

(@) i =0andaisasummand in the def. equation for X.

(b) i > 1anda(Y~1.X) is a summand in the def. equation for X.

(c) a = 7 and there are two summands of the form ba1,5a2 in the
def. equation for X such that i = Length(ca;) + Length(ay) — 1
(note that this condition ensures that def. equations for X,Y do
not contain two summands of the form b,_b).

70 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

2. The process A is said to be in INF,, if whenever aa is a summand in a de
equation from A such that Length(a) > 2, then o = Y. X for some i € |
and X, Y € Var(A) such that Y is a C-closure of X (note that X, Y need n
be different—uvariables which are C-closures of themselves may exist).

Note that if Y is a C-closure of X, then |Y| = |X] = 1. Another interestin
property of X and Y is presented in the remark below.

Remark 4.17. It is easy to check that if Y is a C-closure of X, then Y.X ~ X
where X is a nBPP, process composed of a single variable whose def. equation
obtained from the def. equation for X by substituting ‘.” with ‘| and replacir
each occurrence of X and Y with X.

Theorem 4.18. The class nBPA, N nBPP,. contains exactly (up to bisimilarity
NBPA.; processes in INF,.

Proof: Each nBPA. process in INF,, belongs to nBPA, N nBPP., as a bisir
ilar nBPP,. process can be easily constructed by an algorithm which is ir
verse to the algorithm presented in the proof of Proposition 4.7 (see R
mark 4.17). The fact that for each nBPA, process of nBPA, N nBPP, ther
is a bisimilar nBPA, process in INF;,, follows directly from Proposition 4
and Proposition 4.14 (note that the algorithm presented in the proof ¢
Proposition 4.7 returns a nBPA, process which is almost in INF,,—th
only “problem” is that it can contain different bisimilar variables and henc
it need not be reduced.). [

Our results can be applied to nBPA and nBPP processes as well. So far w
have investigated the intersection of nBPA, and nBPP,.. It was desirabl
to work with this unrestricted syntax, because we could also examine tr
problem when the “real” communications of a nBPP.. process can be sin
ulated by a sequential nBPA, process. However, the characterization
nBPA N nBPP is much simpler and therefore we present it explicitly.

Definition 4.19 (INF). Let A be a reduced nBPA (or nBPP) process in GNF.

4.2. Deciding whether A € nBPA, N nBPP. 71

1. Avariable Z € Var(A) is simple if all summands in the def. equation for
Z are of the form aZ', where a € Act and i € N U {0}. Moreover, at least
one of those summands must be of the form aZX where a € Act and k > 2.

2. The process A is said to be in INF if whenever ac is a summand in a def.
equation from A such that Length(a) > 2 (or card(a) > 2), then o = Z
for some simple variable Z and i > 2.

Note that nBPA (or nBPP) processes in INF have a nice property—a bisim-
ilar nBPP (or nBPA) process can be obtained just by replacing the ‘.” op-
erator with the ‘||” operator (or by replacing the ‘||’ operator with the ‘.’
operator).

Theorem 4.20. The class nBPA N nBPP contains exactly (up to bisimilarity)
NBPA (or nBPP) processes in INF.

4.2 Deciding whether A e nBPA; nnBPP-

In this section we prove that the problem whether a given nBPA,. or nBPP..
process A belongs to nBPA. N nBPP.. is decidable in polynomial time. The
technique is essentially similar in both cases—we check whether each sum-
mand of each defining equation of A whose form is not admitted by INF;,
(or INR;) can be in principal transformed so that requirements of INFR;,
(or INF;;) are satisfied. We also show that if a nBPA, (or nBPP..) process
belongs to nBPA.. N nBPP., then a bisimilar process A’ in INR, (OF INFgp)
is effectively constructible. Simplified versions of our algorithms which
work for nBPA and nBPP processes are presented as well.

Definition 4.21 (S(A), R(A) and G(A) sets). Let A be a nBPA; or nBPP,
process in GNF.

e The set S(A) C Var(A) is composed of all variables V such that [V| = 1,
V is non-regular and if ac is a summand in the defining equation for V in
A, then a ~ V1o,

72 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

e Theset R(A) C Var(A) contains all regular variables of A.
e Theset G(A) C Var(A) contains all growing variables of A.

The sets S(A), R(A) and G(A) can be constructed in polynomial time b
cause bisimilarity and regularity are decidable for nBPA.,. and nBPP.. prc
cesses in polynomial time (see [HIM94a], [HIM94b] and Section 3.1.3).

If AisanBPA, (or nBPP,) process from nBPA, N nBPP,, then there |
A’ in INFR;, (or INFRg:) such that A ~ A’ In case of nBPP, processes th
set S(A) contains in fact variables which can be (potentially) bisimilar t
simple variables of A’. In case of nBPA, processes the set S(A) contair
variables which can be bisimilar to C-closures of variables from Var(A").

The three lemmas below together prove correctness of our algorithi
which decides the membership to nBPA, N nBPP,. for nBPP.. processes.

Lemma 4.22. Let A be a reduced nBPP, process in 3-GNF and let a(A|B) t
a summand of a defining equation from A such that A is regular and B is nor
regular. Then A ¢ nBPA,. N nBPP...

Proof: Assume there is a nBPP, process A’ in INF;, such that A ~ A/, L¢
n = max{|Y|, Y € Var(A’)}. As B is non-regular, it can reach a state of a
arbitrary norm—let B —* @ where |3| > n. Then A|G is a reachable state
A and thus A|3 ~ (@ for some reachable state 3’ of A'. As |A|B| > n, w
can conclude that 8 = ZIABl where Z € Var(A') is a simple variable (se
Remark 4.6). Hence A ~ Z/Al and as each simple variable is growing (se
Definition 4.4), it contradicts regularity of A. [

Lemma 4.23. Let A be a reduced nBPP, process in 3-GNF which belongs 1
NBPA. N nBPP,. Let a(A|B) be a summand of a defining equation from A suc
that A and B are non-regular. Then there is exactly one variable Z € S(A) suc
that A|B ~ ZIABI,

Proof: Let A’ be a nBPP, process in INF such that A ~ A’. Letn -
max{]Y|, Y € Var(A")}. Using the same argument as in the proof ¢

4.2. Deciding whether A € nBPA, N nBPP. 73

Lemma 4.22 we obtain A ~ PAl B ~ QIBl where P,Q € Var(A') are simple
variables. We show that P = Q. Let A —* a where |a| > n. Then clearly
a ~ Pleland as B is a reachable state of A, a|B ~ RI?Blwhere R € Var(A')
is a simple variable. To sum up, we have a|B ~ Pl™|QBl ~ RI*BI Hence
P~R~ Qandthus P = R = Q because A’ is reduced. Ase.g. Pisa
reachable state of A', there is a reachable state v of A such that P ~ v. As
|P| = 1, we can conclude y = Z for some Z € Var(A) which clearly belongs
to S(A). Moreover, Z is unigque because A is reduced. O

Lemma4.24. Let A be a nBPP, process in GNF and let X € S(A). If the
defining equation for X contains two summands of the form b,b, then A ¢
nBPA, N nBPP,.

Proof: Assume there is a nBPP, process A’ in INF,. such that A ~ A’
Using the same kind of argument as in the proof of Lemma 4.22 we obtain
X ~ Z for some simple variable Z € Var(A'). As the def. equation for X
contains two summands of the form b,B and X ~ Z, the def. equation for
Z must contain those summands too—hence Z is not simple and we have
a contradiction. O

The promised (constructive) algorithm which decides the membership to
nBPA. N nBPP.. for nBPP,. processes is presented in Figure 4.1. Steps which
are executed only by the constructive algorithm are shaded—if we omit
everything on a grey background, we obtain a non-constructive polyno-
mial algorithm. The abbreviation “NFR(A)” stands for the Normal Form
of the Regular process A, which can be effectively constructed (see Sec-
tion 3.1.2). We always assume that NFR(A) contains fresh variables which
are not contained in any other process we are working with. When the
command return is executed, the algorithm halts and returns the value
which follows immediately after the keyword return.

The constructive algorithm is not polynomial because the construc-
tion of NFR is not polynomial—a regular nBPP, process in 3-GNF with n

74 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

Algorithm: A constructive test of the membership to nBPA; N nBPP.. for
nBPP; processes.

Input: A reduced nBPP.. process A in 3-GNF.
Output: YES and a nBPP.- process A’ in INFspp such that A ~ A’

if A € nBPA, N nBPP...
NO otherwise.

1. Construct the sets S(A), R(A) and G(A).

2. Ifthereis X € S(A) whose def. equation contains two summands of

the form b, b then
return NO;

3. IfG(A) = 0then
A" :=NFR(A) ;
return YES and A’ ;
4. A=A
5. for each summand of the form a(A|B) in defining equations of A do
if A,B € R(A) then
Construct NFR(A|B) ;
Replace the summand a(A|B) with aN in A’, where N is the
leading variable of NFR(A|B) ;
A’ := A'UNFR(A|B) ;
if (A € R(A)and B ¢ R(A)) or (A ¢ R(A)and B € R(A)) then
return NO,;

if A,B € R(A) then
if there exists Z € S(A) such that A|B ~ Z/AlBI
then Replace the summand a(A|B) with a(ZIABl) in A’ ;
else return NO;

6. return YES and A’ ;

Figure 4.1: An algorithm which (constructively) decides the membershi
to nBPA. N nBPP.. for nBPP.. processes.

4.2. Deciding whether A € nBPA, N nBPP. 75

variables can generally reach exponentially many pairwise non-bisimilar
states and each of these states requires a special variable.

Our algorithm for nBPP.. processes works for pure nBPP processes as
well. It suffices to replace the ‘|’ operator with the ‘||” operator in our de-
scription. As there are no communications in nBPP, the notion of dual
action is no longer sensible—hence the second step of our algorithm can
be removed in case of NBPP processes.

Now we provide an analogous algorithm for nBPA,. processes. We start
with some auxiliary definitions and lemmas.

Definition 4.25 (CL sets). Let A be a nBPA,. For each Y € S(A) we define the
set CL(Y), composed of all X € Var(A) which satisfy the following conditions:

e If ac is a summand in the def. equation for X such that Length(a) > 1,
then a ~ YloI=1.X.

e The def. equation for Y contains a summand bisimilar to aY, k € N U {0},
iff one of the following conditions holds:

1. k = 0 and the def. equation for X contains a summand ‘a’.

2. k > 0 and the def. equation for X contains a summand which is bisim-
ilar to a(Y<1.X).

3. a = 7 and the def. equation for X contains two summands of the form
bay, bary such that k = Length(ay) + Length(ay) — 1.

It is easy to see that the set CL(Y) can be constructed in polynomial time
foreach Y € S(A). The following lemma is due to D. Caucal (see [Cau88]):

Lemma 4.26. Let A, A’ be nBPA, processes in GNF and let a, 3 € Var(A)*,
o,B" € Var(A")* such that 3 ~ 3 and a.f ~ o/.3". Then o ~ o

Lemma 4.27. Let A, A’ be nBPA. processes. Let Aq,..., A € Var(A), X,Y €
Var(A')suchthat |X| = |Y| = 1land A;.--- .Ax ~ Y. X wherel = |A;. -+ Ay|—
1. Then Ay ~ YIAd=1 X and A; ~ YAl for 1 < i < k.

76 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

Proof: Clearly Ay ~ YA=1. X, Hence A;.--- A, ~ Y/Ar—Acil (due t
Lemma 4.26). The fact A; ~ Yl for 1 < i < k can be proved by inductio
onk. Ifk = 2 then A, ~ Y™l and our lemma holds. If k > 2, then clearl

Aw_1 ~ Y"1l and due to Lemma 4.26 we have A;.- - Ay ~ YA Ao
Now we can use the inductive hypothesis and conclude that A; ~ YAl fc
1<i< (k—2). [

Lemma 4.28. Let A be a reduced nBPA, process in 3-GNF which belongs 1
nNBPA. NnBPP,. Let Q.a be a reachable state of A such that Q € G(A), a ;
€. Then there are unique variables Y € S(A), X € CL(Y) such that Q.o
YIQal=1 X,

Proof: As A € nBPA. N nBPP., there is a nBPA. process A’ in INFR;, suc
that A ~ A’. Let n = max{|A|, A € Var(A")}. As Q is growing, Q —* Q.
where v # €. Hence the state Q.¢".« is a reachable state of A and therefor
there is a reachable state § of A’ such that Q.y".a ~ §. As [Q.y".a| > I
we can conclude § = RI®1"2~1.S where R is a C-closure of S (see Defin
tion 4.16). Hence Q.4".ac ~ RI?7"2I=1.S and due to Lemma 4.27 we hav
a ~ R 1 Sand Q ~ R thus Q.a ~ RIQ=1.S Now it suffices to shoy
that there are Y € S(A), X € CL(Y) suchthatY ~ Rand X ~ S. As .
is normed, Q = Y where |Y| = 1 and s is a norm-decreasing sequenc
of actions. Then Q. > Y.a and as Q.ac ~ RIQ@-1.S the state RIQa-1,
must be able to match the sequence s and enter a state bisimilar to Y.a. A
s is norm-decreasing and |R| = 1, the only such state is RI¥*/=1.S. Henc
Y.a ~ R¥l=1.S and due to Lemma 4.27 we have Y ~ R. The fact Y € S(A
follows directly from Definition 4.16. As S is a reachable state of A/, ther
is a variable X € S(A) such that X ~ S. Clearly X € CL(Y) (see Defin
tion 4.16). Variables X, Y are unique because A is reduced. [

It is worth noting that the variables X, Y of the previous lemma need nc
be different—if a nBPA, process A belongs to nBPA. N nBPP.., then eac
Y € S(A) belongs to CL(Y).

4.2. Deciding whether A € nBPA, N nBPP. 77

To prove correctness of our algorithm which decides the membership
to nBPA. N nBPP.. for nBPA. processes we need some lemmas about sum-
mands:

Lemma 4.29. Let A be a reduced nBPA, process in 3-GNF and let a(A.B) be
a summand of a defining equation from A such that A is non-regular and B is
regular. Then A ¢ nBPA. N nBPP..

Proof: As a(A.B) is a summand of a defining equation from A and A is
normed and in GNF, there is a reachable state of the form A.B.3. As A is
non-regular, A —=* Q.a where Q € G(A). Hence Q.a.B.G is a reachable
state of A and due to Lemma 4.28 we have Q.a.B.3 ~ YIQaBAI~1 X for
some Y € S(A), X € CL(Y). With a help of Lemma 4.27 we obtain that
B ~ YBlor B ~ YIBI=1.X (the latter possibility holds if 3 = €). As X,Y are
growing, it contradicts regularity of B. O

Lemma 4.30. Let A be a reduced nBPA,, process in 3-GNF. Let a(A.B) be a sum-
mand of a defining equation from A such that A is regular and B is non-regular.
Then it is possible to replace the summand a(A.B) with aN where N ¢ Var(A)
and to add a finite number of new equations in INF, to A such that the resulting
process A; is bisimilar to A.

Proof: As A is regular, it is possible to construct Ay := NFR(A) such
that Var(A) N Var(Aa) = 0. Now we modify defining equations of Aa
slightly—each summand of the form a where a € Act is replaced with
aB. The resulting system of equations is in INF;.. If we add the modified
system Ap to A and replace the summand a(A.B) with aN where N is the
leading variable of Aa, we obtain a process A; which is clearly bisimilar
to A. O

Lemma 4.31. Let A be a reduced nBPA, process in 3-GNF and let a(A.B) be a
summand of a defining equation from A such that A and B are non-regular. Then

1. If A € nBPA; N nBPP; then there are unique variables Y € S(A), X €
CL(Y) such that B ~ YIBI-1.X

78 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

2. Let B ~ YBI=1. X for some Y € S(A) and X € CL(Y). If there is a sequenc
of transitions A = Ay 3 Aj.a; 3 Ag.as 3 -+ 2 Aoy such that k >
Ay € G(A) and Ay.ay # YAl then A ¢ nBPA, N nBPP,.

3. Let B ~ YBI=1L.X for some Y € S(A) and X € CL(Y). If for each sequenc
of transitions A = Ay 3 Ar.a; D Avas 3 -+ 3 Ay such the
Ay € G(A) the state Ay.ay is bisimilar to Y/« then the summand a(A.E
can be replaced with aN where N ¢ Var(A) and a finite number of ne
equations in INF;, can be added to A such that the resulting process A, |
bisimilar to A.

Proof:

1. As Ais non-regular, A —»* Q.a where Q € G(A). The proof can b
easily completed with a help of Lemma 4.27 and Lemma 4.28.

2. This is a consequence of Lemma 4.27 and Lemma 4.28.

3. It suffices to realize that if A = Ay 33 Aoy 2 Agar 3 -+ 5 Ao
is a sequence of transitions such that Ay, ..., Ax—; € G(A) and A,
G(A), then Length(Aj.ci) < card(Var(A)) for 0 < i < k —1 (her
we use the assumption that A is in 3-GNF. Naturally, Length(Ai.a
is bounded also in case of general GNF). As there are only finitel
many sequences of variables of this bounded length, we can intrc
duce a fresh variable for each of them. To construct the process A
we use a similar procedure as in the proof of Lemma 4.30. [

An existence of a sequence A = Ay 3 Ao 3 Avor 3 -+ B Aoy suc
that A, € G(A) and Ay.ax ¢ YA« is decidable in polynomial time:

Lemma 4.32. Let A be a reduced nBPA. process in 3-GNF. Let A € Var(A) be
non-regular variable and let Y € S(A). The problem whether A can reach a stal
of the form Q.a where Q € G(A) and Q.a ¢ Y!Ql is decidable in polynomi:
time.

4.2. Deciding whether A € nBPA, N nBPP. 79

Proof: We divide the set Var(A) into two disjoint subsets of successful and
unsuccessful variables. P € Var(A) is unsuccessful if one of the following
conditions holds:

e Pisgrowing and P ¢ Y,

e The defining equation for P in A contains a summand of the form
a(R.S) where R is non-regular and S 2 YIS/,

A variable is successful if it is not unsuccessful. Furthermore, we define
the binary relation ‘=’ on Var(A): U = V iff U is successful and the defin-
ing equation for U in A contains a summand which is of one of the follow-
ing forms:

e aVv
e a(V.W) where W € Var(A)
e a(W.V) where W € Var(A) is regular

Let ‘=*" be the reflexive and transitive closure of ‘=’. It is not hard to
prove that A can reach a state of the form Q.a where Q is growing and
Q.a # YRl jff A =* T for some unsuccessful variable T. As the relation
‘=*’ can be constructed in polynomial time, the proof is finished. O

An algorithm which decides the membership to nBPA, N nBPP.. for nBPA..
processes is presented in Figure 4.2. We use the same notation as in the
case of nBPP,.

In case of NnBPA processes our algorithm must be slightly modified (and
simplified). This is a consequence of the fact that a nBPA process A be-
longs to nBPA N nBPP iff it can be represented in INF—and INF is a lit-
tle different from INR;, (see Definitions 4.19 and 4.16). Lemma 4.29 and
Lemma 4.30 are valid also for nBPA processes. Instead of Lemma 4.31 we
can prove the following (in a similar way):

80 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

Algorithm: A constructive test of the membership to nBPA; N nBPP. for
nBPA . processes.

Input: A reduced nBPA process A in 3-GNF.
Output: YES and a nBPA.. process A’ in INRpa such that A ~ A/

if A € nBPA, N NBPP,.
NO otherwise.

1. Construct the sets S(A), R(A), G(A) and for each Y € S(A) construct
the set CL(Y).

2. If (G(A) = 0) then
A" :=NFR(A) ;
return YES and A’ ;

3. PA=IAY:
4. for each summand of the form a(A.B) in defining equations of A do
if A,B € R(A) then
Construct NFR(A.B) ;
Replace the summand a(A.B) with aN in A/, where N is the
leading variable of NFR(A.B) ;
A’ := A'UNFR(A.B) ;
if AZ R(A)and B € R(A) then
return NO;
if A€ R(A)and B ¢ R(A) then
Construct the process A; of Lemma 4.30 ;
ANUE=P/\'N
if A,B ¢ R(A) then
if there exist Y € S(A), X € CL(Y) such that B ~ YIBI=1.X

then if A can reach a state Q. where Q € G(A) and Q.a o YIQ-@l
then return NO;

else Construct the process A, of Lemma 4.31 ;
A 5= A2 N
else return NO;

5. return YES and A’ ;

Figure 4.2: An algorithm which (constructively) decides the membershi
to nBPA. N nBPP.. for nBPA, processes.

4.2. Deciding whether A € nBPA, N nBPP. 81

Lemma 4.33. Let A be a reduced nBPA process in 3-GNF and let a(A.B) be a
summand of a defining equation from A such that A and B are non-regular. Then

1. If A € nBPA N nBPP then there is a unique variable Z € S(A) such that
B ~ ZIBI

2. Let B ~ ZIBl for some Z € S(A). If there is a sequence of transitions
A=A B A0 B A, B 3 Aoy such thatk > 0, A, € G(A)
and Ay.ay ¢ ZAd then A ¢ nBPA N nBPP.

3. Let B ~ ZIBI for some Z € S(A). If for each sequence of transitions A =
Ao B Arar B Ay B - B Aoy such that A, € G(A) the state
Ay.ay is bisimilar to ZA«e then the summand a(A.B) can be replaced
with aN where N ¢ Var(A) and a finite number of new equations in INF
can be added to A such that the resulting process A, is bisimilar to A.

Our algorithm for nBPA processes differs from the algorithm of Figure 4.2
in two things—the sets CL(Y) for Y € S(A) are not computed at all and the
last if statement in the loop of step 4 is replaced with the following code:

it A,B ¢ R(A) then
if there exist Z € S(A) such that B ~ ZIBl
then if A can reach a state Q.ac where Q € G(A) and Q.a % ZIQ-2l
then return NO;
else Construct the process A, of Lemma 4.33 ;
A= Ay
else return NO;

The existence of constructive variants of presented algorithms allow us to
prove the following theorem:

Theorem 4.34. Bisimilarity is decidable in the union of nBPA, and nBPP,. pro-
Cesses.

Proof: Giventwo nBPA, or nBPP, processes, it is possible to check bisim-
ilarity using algorithms which were published in [HIM94a] and [HIM94b].

82 Chapter 4. Expressibility of nBPA, and nBPP.. Processe

If we get a nBPP.. process A; and a nBPA. process A,, then we run one ¢
the constructive algorithms presented earlier. We can choose e.g., the fir
algorithm with A; on input. If it answers NO, then A; # A,. Otherwis
we obtain a nBPP, process A} in INFR. which is bisimilar to A;. No
it suffices to check bisimilarity between two nBPA,. processes K’l and A
where K’l is obtained by running the algorithm presented in the proof ¢
Proposition 4.7 with A} on input. [

Note that the corresponding statement holds for nBPA and nBPP processe
by specialization.

4.3 Related Work and Future Research

The problem whether a given nBPP process belongs to nBPA N nBPP he
been independently examined by Blanco in [Bla95] where it is shown th:
given a nBPP process, one can decide whether there is a bisimilar nBP,
process. Blanco’s approach is based on special properties of BPA trans
tion graphs (see [CM90]). A test whether a given nBPP graph has thes
properties is given in the work. Consequently, this result does not alloy
for testing whether a given nBPA process belongs to the intersection. Tt
generalization to nBPA,, and nBPP.. classes is not considered at all.

Our result on the classification of nBPA N nBPP might be of some ir
terest from the point of view of formal languages/automata theory ¢
well. INF (for nBPA processes) can be taken as a special type of CF gran
mars which generate languages of the form R.(L; U ... U L), where R |
regular and each L; can be generated by a CF grammar having just or
nonterminal and rules of the form Z — aZ, k > 0. Considering lar
guage equivalence only, it is obvious that languages of the mentioned tyf
R.(L; U...UL,) can be recognized by nondeterministic one-counter at
tomata. Hence our result on the classification of nBPA N nBPP can be cor
sidered as a refinement of the result achieved in [Sch92] on the contex

4.3. Related Work and Future Research 83

freeness of languages generated by Petri nets, as BPP processes form a
proper subclass of Petri nets.

An obvious question is whether our results can be extended to classes
of all (not only normed) BPA and BPP processes. The class BPA N BPP
contains also processes which cannot be presented in INF. Consider the
following BPP process (this example is due to I. éerné):

def

X £ a(Y|x)

def

Y =D

The process X cannot be presented in INF. But it obviously belongs to
BPA N BPP; a bisimilar BPA process looks as follows:

A £ aB.A)

def

B = a(B.B)+b

Transition systems generated by X and A are isomorphic:

This indicates that the problem is actually more complicated. Techniques
which were used for normed processes cannot be applied—it seems how-
ever, that a deeper study of the structure of BPA and BPP transition graphs
could help.

84

Chapter 4. Expressibility of nBPA, and nBPP.. Processe

Chapter 5
Parallelization of nBPA Processes

A general problem considered by many researchers is how to improve
performance of sequential programs by parallelization. In this chapter
we study this problem within the framework of process algebras. They
provide us with a pleasant formalism which allows to specify sequential
as well as parallel programs. Here we adopt nBPA processes as a simple
model of sequential behaviours.

The problem of possible decomposition of processes into a parallel
product of primes! was first addressed by Milner and Moller in [MM93].
A more general result was later proved by Christensen, Hirshfeld and
Moller (see [CHM93b])—it says that each normed process has a unique
decomposition into primes up to bisimilarity. However, the proof is non-
constructive.

This chapter is organized as follows. In Section 5.1 we characterize
all decomposable nBPA processes together with their decompositions via
special normal forms. As a consequence we also obtain a refinement of the
result achieved in [BS94].

In Section 5.2 we show that any nBPA process can be decomposed into

1A process is prime if it cannot be equivalently expressed as a parallel product of two
nontrivial processes.

85

86 Chapter 5. Parallelization of nBPA Processt

a parallel product of primes effectively. We also prove several related dt
cidability results. Finally, we prove that bisimilarity is decidable in a larg
subclass of nPA processes (see [BW90]), which consists of processes of th
form Aq]| - - - ||An, where each Aj is a nBPA or nBPP process. As bisimilarit
coincides with language equivalence in the class of normed determinist
processes, obtained results can also be applied to determistic context-fre
grammars (which are in fact deterministic nBPA processes). For exampli
it is decidable whether a given deterministic CF grammar generates a lar
guage which can be defined as a shuffle of two nonempty deterministic C
languages L, and L,. If the answer is positive, then deterministic CF gran
mars generating L; and L, can be effectively constructed. See Section 5
for details. Presented results have been previously published as [Ku€97]

Remark 5.1. In this chapter we rely on previously proved results on regularit
of nBPA and nBPP processes (see Section 3.1.3) and decidability of bisimilarit
in the union of NBPA and nBPP processes (see Theorem 4.34).

Remark 5.2 (special notation). In the rest of this chapter we also use some sp
cial notation (due to the lack of general standard). To improve readability, we pt
all specialties to one place:

e if o is a regular state of a nNBPA or nBPP process (see Remark 2.6), the
NFR(c) denotes a bisimilar regular process in normal form, which can |
effectively constructed (see Section 3.1.2). Furthermore, we always assurr
that NFR(«) contains completely fresh variables which are not containe
in any other process we deal with.

o the class of all processes for which there is a bisimilar nBPA (or nBPF
process is denoted S(NBPA) (or S(nBPP)).

o if Ay,..., Apareprocesses from nBPAUNBPP and X; is the leading variab
of Ajfor 1 <i < n,then Aq|---||An denotes the process Xq|| -« || Xn i
the sense of Remark 2.6.

5.1. The Characterization of Decomposable nBPA Processes 87

e square brackets ‘[’ and ‘]’ indicate optional occurrence—if we say that some
expression is of the form a[A][B], we mean that this expression is either a,
aA, aB or aAB.

e upper indexes are used heavily; they appear in two forms:

—

I
a'' = a.--- .«
—

5.1 The Characterization of Decomposable nBPA
Processes

In this section we design special nhormal forms for nBPA processes which
allow us to characterize all decomposable nBPA processes together with
their decompositions.

Definition 5.3 (prime processes). Let nil be a special name for the process
which cannot emit any action (i.e., nil ~ ¢€). A nBPA or nBPP process A is
prime if A o nil and whenever A ~ A;||A, we have that either A; ~ nil or
AQ ~ nll

Natural questions are, what processes have a decomposition into a fi-
nite parallel product of primes and whether this decomposition is unique.
This problem was first examined by Milner and Moller in [MM93]. They
proved that each normed finite-state process has a unique decomposition
up to bisimilarity. A more general result is due to Christensen, Hirshfeld
and Moller—they proved the following proposition (see [CHM93Db]):

Proposition 5.4. Let A be a nBPP process. Then A has a unique decomposition
(up to bisimilarity) into a parallel product of primes.

88 Chapter 5. Parallelization of nBPA Processt

Proof: An existence of a finite decomposition of A into a parallel produ
of primes is obvious—it suffices to realize that the norm is additive ove
the ‘||” operator. For uniqueness, suppose that A has two distinct prim
decompositions given by

a =il

B=gllllign
where ¢; % @ for i # jand |gi| < |g;| for i < j. Furthermore, assume the
A is a counterexample of the smallest norm, i.e., each process A’ such the
|A’| < |Al has a unique decomposition. Let i be the maximal number wit
the property k # l;. We can assume (w.l.0.g.) that k; > I;. Now we distir
guish three cases, and in each case we show that process a may perform
norm-reducing transition a - o that cannot be matched by any transitio
B > B with o ~ B, which will supply the desired contradiction. Observ
that by minimality of the counterexample if o/ and (3’ are to be bisimile
then their prime decompositions must be identical.

e If k; > 0 for some j < i, then o can perform some norm-reducin
action via process ;. Process 8 cannot match this transition, as
cannot increase the exponent l; without decreasing the exponent c
some prime with norm greater than that of ¢;.

e If kj > 0 for some j > i, then o can perform a norm-reducing trans
tion via process y; that maximizes (after reduction into primes) th
increase in the exponent ki. Again the process 3 is unable to matc
this transition.

e If the process a = Lp:(i is a prime power, then note that |, = 0 for a
j > i by choice of i, and that k; > 2 by the definition of prime. If l; > (
then @ can perform a norm-reducing transition via ¢;. This transitio
cannot be matched by «, because it would require the exponent k; t
decrease by at least two. On the other hand, if [= 0 then « ca

5.1. The Characterization of Decomposable nBPA Processes 89

perform a norm-reducing transition via ¢; and this transition cannot
be matched by 3, because 3 is unable to increase the exponent |

These cases are inclusive, so the proof is finished. O

Remark 5.5. Proposition 5.4 in fact holds for any normed process (namely for
nBPA). The proof does not depend on a concrete syntax—it could be easily formu-
lated in terms of normed transition systems.

Proposition 5.4 actually says that each normed process A can be paral-
lelized in the “best” way and that this way is in some sense unique. How-
ever, this nice theoretical result is non-constructive. It is not clear how
to construct the decomposition and how to test whether some process is
prime. This is the subject of next sections.

An immediate consequence of Proposition 5.4 is the following “cance-
lation” lemma (see [Chr93]):

Lemmab5.6. Let A, T", U, ® be normed processes such that A||¥ ~ T'||® and
U~ ® Then A ~T.

5.1.1 Decomposability of nBPP Processes

Each nBPP processes A can be easily decomposed into a parallel product
of primes—all what has to be done is a construction of a bisimilar canonical
process (see [Chr93]).

Theorem 5.7. Let A be a nBPP process. It is decidable whether A is prime and
if not, its decomposition into primes can be effectively constructed.

Proof: By inductiononn = |A|:
e n=1. each nBPP process whose norm is 1 is prime.

e Induction step: Suppose A ~ A;]|A,. As A, A, are reachable states
of A1||Aq, there are oy, oy € Var(A)® such that Ay ~ a; and Ay ~ ay,

90 Chapter 5. Parallelization of nBPA Processt

thus A ~ ai|as. Furthermore, |A| = |az| + |as|. We show the
there are only finitely many candidates for oy, as. First, there ar
only finitely many pairs [k;, ke] € N x N such that k; + k, = |A]. Fc
each such pair [k, k] there are only finitely many pairs [, 8] suc
that 8y, 3. € Var(A)®, |6:| = k; and |Bs| = k. It is obvious that the se
M of all such pairs can be effectively constructed. For each elemer
[B1, B2] of M we check whether A ~ (3,]|3; (it can be done becaus
bisimilarity is decidable for nBPP processes). If there is no such pa
then A is prime. Otherwise, we check whether 3, 3, are prime (it |
possible by ind. hypothesis) and construct their decompositions.

we combine obtained decompositions in parallel, we get a decompc
sition of A. I

As each normed regular process in normal form can be seen as a nBP
process in GNF, Theorem 5.7 (and especially its constructive proof) ca
be used also for regular nBPA processes. In the next section we can tht
concentrate on non-regular nBPA processes.

5.1.2 Decomposability of nBPA Processes

It this section we give an exact characterization of non-prime nBPA pre
cesses. As we already know from the previous section, the problem
actually interesting only for non-regular nBPA processes, hence the mai
characterization theorem does not concern regular nBPA processes. Ot
results bring also interesting consequences—we obtain a refinement of tf
result achieved in [BS94] (see Remark 5.19).

The layout of this subsection is as follows: first we prove two technici
lemmas (Lemma 5.8 and 5.9). Then we consider the following problem:
A is a non-regular nBPA process such that A ~ A;]|A,, where Ay, A, ar
some (unspecified) processes, how do the processes A, A;, A, look like?
is clear that A, A, € S(nBPA), hence the assumption that A;, A, are nBP,

5.1. The Characterization of Decomposable nBPA Processes 91

processes can be used w.l.o.g. This problem is solved by Proposition 5.12
and 5.17, with a help of several definitions. Having this, the proof of The-
orem 5.23 is easy to complete.

Lemma5.8. Let A be a nBPA process. Let o,y € Var(A)™, Q,C € Var(A)
such that |Q| = |C| = 1 and ||Q ~ C.y. Then a ~ QI

Proof: It suffices to prove that if §]|Q' ~ C.y where 3 € Var(A)* and i €
N, then 8]|Q' ~ B'||Q! for some B € Var(A)*. As |C| = 1, all states which
are reachable from G||Q' in one norm-decreasing step are bisimilar. As A
is normed, 8 = B where 3| = || + 1 and a € Act. Hence 8]|Q""! ~ #'||Q!
and by substitution we obtain 8]|Q' ~ B'||Q™. O

The proof of the following lemma is probably the most technical part of
this chapter. Diagrams of Figure 5.1 could ease the reading.

Lemma5.9. Let A be a nBPA process, o, 3,y € Var(A)* such that a is non-
regular and a|3 ~ 7. Let 8 —* Q where |Q| = 1. Then 3 ~ Q.

Proof: As «a is non-regular, it can reach a state of an arbitrary length, i.e.,
for each i € N there is o such that « —* o' and Length(o/) = i. Let
m = max{|X|, X € Var(A)}and let « =* a; where Length(a;;) > m.(|3]+1).
Then oy||@ ~ 7, for some y; € Var(A)*. As B —=* Q, o4||Q ~ 72 where
Y2 € Var(A)* and Length(y,) > 1 — hence 1, is of the form P.w where
w € Var(A)*. Let oy > ay, where s is a norm-decreasing sequence of ac-
tions such that Length(s) = [P| — 1. As ay]|Q = a,|Q and o||Q ~ P.w,
P.w > C.w where IC| = 1and a,||Q ~ C.w. Now we can apply Lemma 5.8
and conclude o, ~ Ql*2l. As a; = a, where Length(s) = |[P| — 1 < m,
only the first m — 1 variables of a; could contribute to the sequence s —
hence a;, a; must have a common suffix whose length is at least m.|3], i.e.,
a; = v.n, ap = 0.9 where Length(n) > m.|8]. As o||B ~ 11 and a; = v.q,
we can conclude n[|3 ~ «; for some 3 € Var(A)*. Clearly Length(ys) >
|8|, because Length(n) > m.|3| (and thus also |n| > m.|@]) and therefore

92 Chapter 5. Parallelization of nBPA Processt

all ~ 7 QB ~ A Agirp

:)
Qn ~ pApp)

u

alld ~ M
u

allQ ~7=Pw QM Amlg ~ QInizlel ~ Agyrp

S S

a]|Q ~ Cuw

Figure 5.1: Diagrams for the proof of Lemma 5.9

InllB| > m.|8]. Thus ~s is of the form A,.--- .Ajg41.p Where p € Var(A)
Furthermore, n ~ QI because a; ~ Q*2l and a; = 4.n. To sum up, w
have QM||8 ~ A,.--- .Ap1.p. Now we prove that § ~ Q. Let § —
where Length(t) = [8|. Then Q||3 & QI and the state A;.--- .Apg;.
must be able to match the sequence t and enter a state bisimilar to Q. A
Length(t) = |8], only the first |3| variables of A;. - - - .Ag..1.p can contribut
to the sequence t, i.e.,, Aj.--- .Apg1.p 5 ©.Ajgj+1.p Where ¢ € Var(A)
Now let ¢.Ag11.p = Apji1.p Where Length(u) = |p|. The state Ql ca
match the sequence u only by removing |¢| copies of Q — hence Qnl-I¢l .
Apg+1-p- As |nl > m.|@], itis clear that |n| > |A;.--- .Ag|. Therefore ther
isv € Act’, Length(v) = |A,.--- .Ag| such that Qi1 = QIn=1A1~ Al an
thus QI||8 = QIl=IA1-Apll||8, The state A,.- - - .Ajg41.p can match the s

quence v only by removing A;. - - - .Ajgj— hence QIM=1A1--AiBll||3 ~ Apg 1.
and by transitivity of bisimilarity we have QM=l¢l ~ QI=1A1-Asil|| 3, Fror
this we obtain 3 ~ QIFl. [

Definition 5.10 (simple processes). A nBPA process A is simple if Var(2
contains just one variable, i.e., card(Var(A)) = 1.

We will often identify simple processes with their leading (and only) var
ables in the rest of this chapter. Moreover, it is easy to see that a simp!

5.1. The Characterization of Decomposable nBPA Processes 93

process Q is non-regular iff the def. equation for Q contains a summand
of the form aQ*¥ where a € Act and k > 2. The norm of Q is one, because
Q could not be normed otherwise. Another important property of simple
processes is presented in the remark below:

Remark 5.11. Each simple nBPA process Q belongs to S(nBPP)—a bisimilar
NBPP process can be obtained just by replacing the *.” operator with ‘||” opera-
tor in the def. equation for Q. Consequently, any process expressions built over
k copies of Q using “.” and ‘||’ operators are bisimilar (e.g., (Q.(Q||Q))|IQ ~
(QlQ)-(QIIQ)).

Proposition 5.12. Let A, A, be non-regular nBPA processes. Then A4||A, €
S(nBPA) iff A; ~ Q!4 and A, ~ Ql42! for some non-regular simple process Q.

Proof:
“«<” Easy—see Remark 5.11.
“=" Assume there is some nBPA process A such that A;||A; ~ A. Then
there are oy, ay € Var(A)*suchthat A; ~ o and Ay ~ a,. Thus a4|jas ~ A
and as ap, as are non-regular, we can use Lemma 5.9 and conclude that
there are Q;, Q2 € Var(A) such that |Q| = |Qa] = 1, oy =* Qq, oz =* Qq
and a; ~ Q'l"“', oy~ Q‘;Z'. First we prove that Q; ~ Q for some simple
process Q. To do this, it suffices to prove that if ay is a summand in the def.
equation for Q,, then y ~ Q;”'. As aq|las —=* Qqf|as 5 vllea, the process
vllas belongs to S(NBPA). Let y —* R where |R| = 1. Then y ~ R1 (due to
Lemma5.9) and as a; —* 7 =* R, we also have a; ~ Rl*l. Hence R ~ Q;
and v~ Q|1’Y| ~ QI\’Yl_

To finish the proof, we need to show that Q; ~ Q.. Let m = max{|X|,
X € Var(A)}. As oy is non-regular, it can reach a state of an arbitrary
norm—Ilet a; —* o where [a| = m. Then & ||Q, ~ § for some § € Var(A)*
whose length is at least two—0 = A.B.¢'. Clearly o ~ Q‘f‘/1| (we can use
the same argument as in the first part of this proof—Q; is non-regular and

loy | oy [=IA]

o' plays the role of), hence Q, "'[|Q> ~ A.B.&'. As Q, [|Q, ~ B.§' and

94 Chapter 5. Parallelization of nBPA Processt

AT L BLE, we have QTMIQ, ~ QT by transitivity an
thus Q; ~ Q. [

Proposition 5.12 in fact says that if A is a non-regular nBPA process suc
that A ~ A4||A,, where Ay, A, are non-regular processes, then each ¢
those three processes can be equivalently represented as a power of sonr
non-regular simple process. This representation is very special and can &
seen as normal form.

If A is a non-regular nBPA process such that A ~ A;||A,, it is als
possible that A; is non-regular and A, regular. Before we start to examir
this possibility, we introduce a special normal form for nBPA processes (
we shall see, A and A, can be represented in this normal form):

Definition 5.13 (DNF(Q)). Let A be a non-regular nBPA process in GNF, Q
Var(A). We say that A is in DNF(Q) if all summands in all defining equatior
from A are of the form a([Y].[Q*]), where Y € Var(A),i € Nand a € Ac
Furthermore, all summands in the def. equation for Q must be of the form a[Q
where a € Act.

Example 5.14. The following process is in DNF(Q):

def

X a(Y.Q.Q) + bX +a(Q.Q.Q) +¢
Y = bQ+cX+c(Y.Q)+b
Q aQ+bQ+a+c

Remark 5.15. Reachable states of a nBPA process A in DNF (@) are of the for
[Y].[Q*] where Y € Var(A) and i € N U{0}. As A is non-regular, the state Q:
is reachable for each k € N.

Note that the variable Q itself is a regular simple process. The next lemrr
says that if A is a process in DNF(Q), then the variable Q is in some sens
unique:

5.1. The Characterization of Decomposable nBPA Processes 95

Lemma 5.16. Let A and A’ be processes in DNF(Q) and DNF'(R), respectively.
IfA~ A’ thenQ ~R.

Proof: Letm = max{|X|, X € Var(A")}. As the state Q*™*! is a reachable
state of A, Q"™ ~ [Y].R*! for some Y € Var(A’), i € N (see Remark 5.15).
Hence Q ~ R. O

Proposition 5.17. Let A, A, be nBPA processes such that A; is non-regular
and A, is regular. Then A||A, € S(NBPA) iff there is a process A} in DNF(Q)
such that A; ~ Al and A, ~ Ql42l,

Proof:

“=” Let Ay —* Q' where Q' € Var(A,), |Q'| = 1. Using the same kind
of argument as in the proof of Proposition 5.12 we obtain that Y ~ Q
for some regular simple process Q such that A, ~ Q42 It remains to
prove that there is a process A} in DNF(Q) such that A; ~ A. We show
that each summand of each defining equation from A; can be transformed
into a form which is admitted by DNF(Q). First, let us realize two facts
about summands—if ac is a summand in a def. equation from Ay, then

1. If a = B3.Yy where Y is a non-regular variable, then each variable P
of v is bisimilar to QIPI.

2. a contains at most one non-regular variable.

The first fact is a consequence of Lemma 5.8—let A be a nBPA process
such that A;[|[A, ~ A. As A; is normed, A; —* Y.y.6 for some § €
Var(A;)*. AsY is non-regular, it can reach a state of an arbitrary length—
let m = max{|X|, X € Var(A;)} and let Y —* w where Length(w) = m.
As A]|A; =* w.y.0]|Q’, there is ¢ € Var(A)* such that w.y.0]|Q" ~ ¢. Let
p = C.p' and let s be a norm-decreasing sequence of actions such that
Length(s) = |C| — 1 and w = «’. Then w'y.0]|Q" ~ C'.¢' where |C'| =1
and due to Lemma 5.8 (and the fact that Q' ~ Q) we have w'.y.§ ~ Q“"14l,
hence y ~ Q" and P ~ QI for each variable P which appears in 1.

96 Chapter 5. Parallelization of nBPA Processt

The second fact is a consequence of the first one—assume that o
B.Y.y.Z.6 where Y, Z are non-regular. Then Z ~ Q% and as Q is regula
Q'?l'is regular too. Hence Z is regular and we have a contradiction.

Now we can describe the promised transformation of A; into A}:
X Z > aai is a def. equation in A;, then X = >or aiT (o) is a de
equation in A’, where T is defined as follows:

o If o; does not contain any non-regular variable, then T (o) = £
where A is the leading variable of NFR(«;). Moreover, defining equz
tions of NFR(«;) are added to A].

e If aj = B.Y.y where Y is a non-regular variable, then T (o;) = /
where A is the leading variable of the process A’ which is obtaine
by the following modification of the process NFR(3): each summan
in each def. equation of NFR(8) which is of the form b, whereb € Ac
is replaced with b(Y.Q*") — remember B ~ Q"1 ~ Q1. Moreove
def. equations of A" are added to A].

The defining equation for Q is also added to A. The resulting process |
in DNF(Q) and as T preserves bisimilarity, A; ~ Al.

“<" We show how to construct a nBPA process A which is bisimilar t
A!]|Q122!. Let k = |A,|. The set of variables of A looks as follows:

Var(A) = {Q}U{Yi, Y € Var(A)),Y #Qandi € {0,...,k}}
Defining equations of A are constructed using following rules:
o the def. equation for Q is the same as in A}

o ifa(Y.Q)), wherej € NU{0},Y # Q, isasummand in the def. equatio
for Z € Var(A!), then a(Y;.Q)) is a summand in the def. equation fc
Ziforeachi € {0,...,k}

5.1. The Characterization of Decomposable nBPA Processes 97

e if a(Q)) where j € N U {0} is a summand in the def. equation for
Z € Var(A)), then a(Qi*1) is a summand in the def. equation for Z;
foreachi € {0,...,k}

e if aQ is a summand in the def. equation for Q and Z € Var(A)),
Z # Q, then aZ; is a summand in the def. equation for Z; for each
ie{l,...,k}

e if a is a summand in the def. equation for Q and Z € Var(A!), Z #
Q, then aZ;_, is a summand in the def. equation for Z; for each i €

{1,...,k}

The intuition which stands behind this construction is that lower indexes
of variables indicate how many copies of Q in Q22! have not disappeared
yet. The fact A/[|Q!22/ ~ A is easy to check. O

Example 5.18. If we apply the algorithm presented in the “<” part of the proof
of Proposition 5.17 to the process X||Q?, where X, Q are variables of the process
presented in Example 5.14, we obtain the following output:

X2 = a(Y2.Q.Q) +bXz +a(Q.Q.Q.Q.Q) +¢(Q.Q) + aXa + bXg + aXy + cX;
(Y1.Q.Q) +bX;1 +a(Q.Q.Q.Q) + ¢Q + aXy + bXy +aXg + X

Xo = a(Y0.Q.Q) +bXo+a(Q.Q.Q) +c
(

X1 = a

Y2 = b(Q.Q.Q)+cXz+c(Y2.Q) +b(Q.Q) +aYz +bYz +aYy +cY;
Yi 2 b(Q.Q)+ X1 +c(Y1.Q) + bQ +aYy + bY; +aYg +cYo
Yo £ bQ+cXo+c(Yo.Q)+b

Q = aQ+bQ+a+c

Remark 5.19. Proposition 5.17 can also be seen as a refinement of the result
achieved in [BS94]—Burkart and Steffen proved that PDA processes are closed
under parallel composition with finite-state processes, while BPA processes lack
this property. Proposition 5.17 says precisely, what nBPA processes can remain
NBPA if they are combined in parallel with a regular process. Moreover, it also
characterizes all such regular processes.

98 Chapter 5. Parallelization of nBPA Processt

It is easy to see that the algorithm from the proof of Proposition 5.17 a
ways outputs a process in DNF(Q) (see Example 5.18). Moreover, tf
structure of this process is very specific; we can observe that each var
able belongs to a special “level”. This intuition is formally expressed b
the following definition (it is a little complicated—but it pays because w
will be able to characterize all non-prime nBPA processes):

Definition 5.20. Let A be a nBPA process in DNF (). The level of A, denote
Level(A), is the maximal | € N such that the set Var(A)—{Q} can be divided in
I disjoint linearly ordered subsets L, . .. , L, of the same cardinality k. Moreove
the following conditions must be true (the j* element of L; is denoted A; j):

e A, is the leading variable of A.

e Defining equations for variables of L; contain only variables fror

L, U{Q}

e The defining equation for A;j, where i > 2,1 < j <k, contains exactl
those summands which can be derived by one of the following rule

1. If aQ is a summand in the defining equation for Q, then aA; |
a summand in the defining equation for A;j foreach 2 <i <
1<j<k

2. Ifais a summand in the defining equation for Q, then aA;_ |
a summand in the defining equation for A;j foreach 2 <i <
1<j<k

3. If a(A m.Q™") is a summand in the defining equation for A,

such that A; , # Q, then a(A;i,.Q*") is a summand in the defir
ing equation for A;j foreach2 <i < |

4. If aQ*" is a summand in the defining equation for A;;, the
aQ* (™1 js a summand in the defining equation for A; j, wher
2<i<l.

5.1. The Characterization of Decomposable nBPA Processes 99

Example 5.21. The process of Example 5.18 has the level 3; Ly = {Xo, Yo},
Ly = {X;, Y1} and Ly = {Xy, Yo}

Lemma 5.22. Let Q be a non-regular simple process and let A be a nBPA process
such that A||Q € S(nBPA). Then A ~ Q4!

Proof: Let A —* R where |R| = 1. As Q is non-regular, we can use
Lemma 5.9 and conclude that A ~ RI2l, Now it suffices to prove that
R ~ Q. Let A’ be a nBPA process such that A[|Q ~ A’ and let m =
max{|X|, X € Var(A")}. As Q is simple and non-regular, Q —* Q*™ (see
Remark 5.15). Hence R||Q*™ ~ a for some a € Var(A')* whose length is
at least 2 — thus a = A3 for some 3 € Var(A')*. Let k = |A|. Then each
two states, which are reachable from R||Q*™ in k norm-decreasing steps are
bisimilar—hence R||Q*™k ~ Q*™—k+1 and from this we have R ~ Q. O

Now we can prove the first main theorem of this chapter:

Theorem 5.23. Let A be a non-regular nBPA process and let A ~ Aq|| - - [|An,
where n > 2, A is a prime process for each 1 <'i < nand A, is non-regular.
Then one of the following possibilities holds:

e There is a non-regular simple process Q such that A ~ Q*'4land A;j ~ Q
foreach1 <i<n.

e There are nBPA processes A’, A’ in DNF(Q) suchthat A ~ A’ Ay ~ A,
Level(A') = n, Level(A]) = 1and Aj ~ Qforeach2 <i<n.
Proof: We proceed by induction on n:

e n=2: thisis an immediate consequence of Proposition 5.12 and Propo-
sition 5.17.

e Inductionstep: let A ~ Ay||---||An. ASA|| - ||An =* Aq]]-- - ||An_1,
there is a reachable state a of A such thata ~ A|| - -- ||An—1 — hence
we can use ind. hypothesis (note that o must be non-regular) and
conclude that there are two possibilities:

100 Chapter 5. Parallelization of nBPA Processt

1. There is a non-regular simple process Q such that A; ~ Q fc
each1 <i < n-1. Weprove that A, ~ Q. As A ~ Q"!||A
and Q" '|A, —* Q||A,, we can use Lemma 5.22 and conclud
A, ~ Q!*I Hence A, ~ Q because A, would not be prim
otherwise.

2. There is a nBPA process A in DNF(Q) such that A; ~ A
Level(A]) = 1and Aj ~ Q foreach1 < i < n—1. Firstw
prove that A, ~ Q. As A;||A, is a reachable state of A4|| - - - || A
it belongs to S(nBPA). Let us realize that A, is regular. Assum
the converse—then we can use Proposition 5.12 and conclud
that A; ~ Rl21l for some non-regular simple process R. Fror
this and Remark 5.15 we can easily prove that R ~ Q and
contradicts regularity of Q.

As A, is regular and A;||A, € S(NBPA), we can apply Propc
sition 5.17; from this (and also from Lemma 5.16) we get th:
A, ~ Q4 and thus A, ~ Q because A, is prime.

It remains to prove that there is a process A’ in DNF(Q) suc
that Level(A’) = nand A ~ A’. But the process A’ can be easil
constructed by the algorithm from the proof of Proposition 5.1
with A/ ||Q"! on input. [

5.2 Decidability Results

In this section we present several positive decidability results. We sho
that it is decidable whether a given nBPA process is prime and if the ar
swer is negative, then its decomposition into primes can be effectively cor
structed. There are also other decidable properties which are summarize
in Theorem 5.28.

5.2. Decidability Results 101

5.2.1 Effective Decomposability of nBPA Processes

Lemma 5.24. Let A be a nBPA process. It is decidable whether there is a nBPA
process A’ in DNF(Q) such that A ~ A’. Moreover, if the answer to the previous
question is positive, then the process A’ can be effectively constructed.

Proof: We can assume (w.l.0.g.) that A is in 3-GNF. If there is a process
A'in DNF(Q) such that A ~ A/, then there isR € Var(A) such thatR ~ Q,
because Q is a reachable state of A’. As Q is a regular simple process, each
summand in the def. equation for R must be of the form a[P], where R ~ P.
As bisimilarity is decidable for nBPA processes, we can construct the set
M of all variables of Var(A) with this property. Each variable from this set
is a potential candidate for the variable which is bisimilar to Q (if the set
M is empty, then A cannot be bisimilar to any process in DNF(Q)).

For each variable V € M we now modify the process A slightly—we
replace each summand of the form aP in the def. equation for V with aV.
The resulting process is denoted Ay (clearly A ~ Ay). For each Ay we
check whether Ay can be transformed into a process in DNF (V). To do
this, we first need to realize the following fact: if there is A{, in DNF(V)
such that Ay ~ A, and a(A.B) is a summand in a def. equation from Ay,
such that A is non-regular, then B ~ V*Bl_ |t is easy to prove by the tech-
nigue we already used many times in this chapter—as A is non-regular, it
can reach a state of an arbitrary norm. Furthermore, there is a reachable
state of Ay which is of the form A.B.y where y € Var(Ay)*. We choose suf-
ficiently large o such that A —* a and a.B.y must be bisimilar to a state of
A}, which is of the form [Y].V*! where i > |B.7|. From this we get B ~ VEl.

Now we can describe the promised transformation T of Ay into a pro-
cess A, in DNF(V). If this transformation fails, then there is no process
in DNF(V) bisimilar to Ay. T is invoked on each summand of each def.
equation from Ay, and works as follows:

e T(a)=a

102 Chapter 5. Parallelization of nBPA Processt

e T(aA) =aA

e T(a(A.B)) = aN if A'is regular. The variable N is the leading var
able of NFR(A), whose def. equations are also added to A, afte
the following modification: each summand in each def. equation
NFR(A) which is of the form b where b € Act is replaced with bB.

e T(a(A.B)) = a(A.V'Bl) if A is non-regular and B ~ V*Bl If A |
non-regular and B # V*Bl then T fails.

If there is V € M such that T succeeds for Ay, then the process A{, ~ A |
the process we are looking for. Otherwise, there is no process in DNF((
bisimilar to A. [

Proposition 5.25. Let Aq,..., A, n > 2 be nBPA processes. It is decidab!
whether A4||---||An € S(NBPA). Moreover, if the answer to the previous que:
tion is positive, then a nBPA process A such that Aq]| - - - ||An ~ A can be effe
tively constructed.

Proof: By induction on n:

e n=2: we distinguish three possibilities (it is decidable which one a
tually holds—see Remark 5.1):

1. A; and A, are regular. Then A||A; € S(nBPA) and a bisimile
regular process A in normal form can be easily constructed.

2. A; and A, are non-regular. Proposition 5.12 says that there is
non-regular simple process Q such that A; ~ QI41 ~ Q*141l an
A, ~ Ql22l ~ Q1221 As Q is a reachable state of Q*122!, ther
isR € Var(A;) such that Q ~ R. As reachable states of Q are ¢
the form Q*' where i € N U {0}, each summand ax in the de
equation for R has the property o ~ R**. As bisimilarity is de
cidable for nBPA processes, we can find all variables of Var(2

5.2. Decidability Results 103

which have this property—we obtain a set of possible candi-
dates for R (if this set is empty, then A;||A; ¢ S(NBPA)). Now
we check whether the constructed set of candidates contains a
variable R such that A; ~ R*/21, If not, then A,||A; € S(NBPA).
Otherwise we have R which is bisimilar to Q.

The same procedure is now applied to A,. If it succeeds, it
outputs some S € Var(A). Now we check whether R ~ S. If
not, then A;||As € S(nBPA). Otherwise A;||A; € S(NBPA) and
Aq]|Ay ~ R®lA1l1+]Az]

3. A; is non-regular and A, is regular (or A; is regular and A,
is non-regular—this is symmetric). Due to Proposition 5.17 we
know that there is a regular simple process Q and a nBPA pro-
cess A’ in DNF(Q) suchthat A; ~ A and A, ~ Q142l ~ Q1221
An existence of A’ can be checked effectively (see Lemma 5.24).
If it does not exist, then A;||A; € S(nBPA). If it exists, it can
be also constructed and thus the only thing which remains is to
test whether A, ~ Q+12:2l |f this test succeeds, then A{||A, €
S(nBPA) and we invoke the algorithm from the proof of Propo-
sition 5.17 with A’[|Q!?2! on input—it outputs a NnBPA process
which is bisimilar to A;||As.

e Induction step: if A||---[|A, € S(NBPA), then also Aq]|---||An_1 €
S(nBPA) and this is decidable by ind. hypothesis—if the answer is
negative, then Aq||---[|JA, € S(nBPA) and if it is positive, then we

can construct a nBPA process A’ such that Aq|---||An_1 ~ A’. Now
we check whether A'||A, € S(nBPA) and construct a bisimilar nBPA
process A if needed. O

As an immediate consequence of Proposition 5.25 we get:

Proposition 5.26. Let A, Ay, ..., A, be nBPA processes. It is decidable whether
A~ Ayl]| An.

104 Chapter 5. Parallelization of nBPA Processt

Now it is easy to prove the following theorem:

Theorem 5.27. Let A be a nBPA process. It is decidable whether A is prime an
if not, its decomposition into primes can be effectively constructed.

Proof: The technique is the same as in the proof of Theorem 5.7. We ca
almost copy the whole proof—the crucial result which allows us to do s
is Proposition 5.26. [

Decidability results which were proved in this section are summarized i
the following theorem:

Theorem 5.28. Let A, Ay, ..., A, be nBPA processes. The following problern
are decidable:

e Is A prime? (If not, its decomposition can be effectively constructed)

Is A bisimilar to Aq]|-- - ||An?

Does the process A4|| - - - || A, belong to S(nNBPA)?

Is there any process A’ such that A[|A’ € S(hBPA)? (if so, an example «
such a process can be effectively constructed).

Is there any process A’ such that A ~ Aq]|--- [|An]|A’? (if so, A’ can &
effectively constructed).

5.2.2 Decidability of Bisimilarity for sSPA Processes

A “structural” way how to construct new processes from older ones is
combine them together in parallel. If we do this with nBPA and nBP
processes, we obtain a natural subclass of normed PA processes denote
SPA (simple PA processes):

5.3. Conclusions, Future Research 105

Definition 5.29 (sPA processes). The class of sPA processes is defined as fol-
lows:

SPA = {A]|---||An | n € N, Aj € nBPAUNBPP foreach1 <i < n}

The class sPA is strictly greater than the union of nBPA and nBPP pro-
cesses. This is demonstrated by the following example:

Example 5.30. Let A, A, be nBPA processes defined as follows:

Ar: XEzZX+i(Y.X) +q Ay: AZaA+Db(BA)+T
Y £i(Y.Y) +d BZh(B.B)+c
Then there is no nBPA or nBPP process bisimilar to the SPA process A;||A,. This
can be easily proved with the help of pumping lemmas for context-free languages

and for languages generated by nBPP processes—see [Chr93].

Theorem 5.31. Let ® = ¢y« |lpn, U = ;]| - - - ||3hm be SPA processes. It is
decidable whether & ~ W,

Proof: Aseach ¢, 1 <i < nand4; 1 <j < mcan be effectively de-
composed, we can also construct decompositions of ® and ¥. If & ~ U,
then these decompositions must be the same up to bisimilarity (see Re-
mark 5.5). In other words, there must be a one-to-one correspondence
between primes forming the two decompositions which preserves bisim-
ilarity. An existence of such a correspondence can be checked effectively,
because bisimilarity is decidable in the union of nBPA and nBPP processes
(see Theorem 4.34). O

5.3 Conclusions, Future Research

The main characterization theorem (Theorem 5.23) says that non-regular
NBPA processes which are not prime can be divided into two groups:

106 Chapter 5. Parallelization of nBPA Processt

1. Processes which can be equivalently expressed as a power of som
non-regular simple process. It is obvious that each such nBPA pre¢
cess belongs to S(nBPP)—see Remark 5.11.

2. Processes which can be equivalently represented in DNF(Q). It ca
be proved (with the help of results achieved in Section 5.1) that eac
such process does not belong to S(nBPP).

From this we can observe that our division based on normal forms corr
sponds to the membership to S(nBPP).

It is worth mentioning that our results are also of some interest from tf
point of view of formal languages/automata theory. Bisimilarity coincide
with language equivalence in the class of deterministic normed transitio
systems. Deterministic normed BPA processes in GNF are in fact dete
ministic context-free grammars. Parallel composition of processes (the *
operator) has also its counterpart in the theory of formal languages in tr
form of shuffle operator (see [HU79] for definition). All decidability resul
of Theorem 5.28 can be easily reformulated for deterministic CF gran
mars, language equivalence, and shuffle.

The first possible generalization of our results could be the replacemel
of the ‘||’ operator with the parallel operator of CCS which allows synchre
nizations on complementary actions. This should not be hard, but we ca
expect more complicated normal forms. Decidability results should be tF
same.

A natural question is whether our results can be extended to the cla:
of all (not necessarily normed) BPA processes. The answer is no, becaus
there are quite primitive BPA processes which do not have any decompc
sition at all—assume e.g., the process X 2 aX.

Another related open problem is decidability of bisimilarity for norme
PA processes. It seems that it should be possible to design at least rich sul
classes of normed PA processes where bisimilarity remains decidable.

Chapter 6
Conclusions

In this chapter we give a brief summary of main results achieved in this
thesis and we also mention some major open problems.

6.1 Summary of the Main Results

In Chapter 3 we have concentrated on regularity problem. Regularity w.r.t.
bisimilarity has been proved to be decidable for normed PA processes in
polynomial time (Theorem 3.11). Furthermore, if a normed PA process A
is regular, then a bisimilar finite-state process in normal form can be effec-
tively constructed (Section 3.1.2). From this we have obtained decidability
of bisimilarity for pairs of processes such that one process of this pair is a
normed PA process and the other process has finitely many states (Theo-
rem 3.14).

The notion of regularity can also be defined w.r.t. other equivalences
from van Glabbeek’s hierarchy. We have designed and justified new no-
tions of finite characterization and strong regularity. Strong regularity
guarantees an existence of a finite characterization in case of all equiva-
lences from van Glabbeek’s hierarchy (Theorem 3.25). Moreover, we have
shown that the conditions of regularity and strong regularity express dif-

107

108 Chapter 6. Conclusior

ferent features w.r.t. all equivalences from van Glabbeek’s hierarchy excey
bisimilarity (Theorem 3.30).

In the last section of Chapter 3 we have extended PA processes with
finite-state control unit. As the resulting calculus (denoted PAPDA) he
full Turing powver, regularity and strong regularity are undecidable in th
class of processes (Theorem 3.34).

In Chapter 4 we have studied the relationship between sequential an
parallel compositions. The semantical intersection of nBPA, and nBPF
(denoted nBPA, N nBPP.) has been exactly characterized in terms of nol
mal forms INFR, (Theorem 4.15) and INF,, (Theorem 4.18), designed fc
nBPP.. and nBPA. processes, respectively.

We have also demonstrated that the membership to nBPA, N nBPP., |
decidable for nBPA.. and nBPP.. processes in polynomial time (Section 4.2
Moreover, each nBPA or nBPP.. process from nBPA.. N nBPP.. can be effe
tively transformed into INF;, or INF., respectively. Simplified versior
of mentioned algorithms which work for nBPA and nBPP processes he
been given too. Finally, as an immediate consequence we have obtaine
decidability of bisimilarity in the union of nBPA; and nBPP, processe
(Theorem 4.34).

The problem of effective decomposability of nBPA processes has bee
examined in Chapter 5. First, we have presented a complete characte
ization of decomposable nBPA processes together with their decompos
tions by means of special normal forms (Theorem 5.23). Using this re
sult, we have shown that any nBPA process can be decomposed into
parallel product of primes effectively (Theorem 5.27), i.e. “the most para
lel” version of a given nBPA process is effectively constructible. Relate
decidability results are summarized in Theorem 5.28. Finally, we hav
demonstrated decidability of bisimilarity in a natural subclass of norme
PA processes (Theorem 5.31).

6.2. Open Problems 109

6.2 Open Problems

An interesting problem which remains open is decidability of regularity
w.r.t. bisimilarity in other process classes, namely PDA and PA. This prob-
lem is at least semi-decidable (see Section 3.4), hence it suffices to establish
semi-decidability of the negative subcase. Our conjecture is that regularity
w.r.t. bisimilarity is in fact decidable for PDA and PA processes.

Theorem 4.34 says that bisimilarity is decidable in the union of nBPA,
and nBPP; processes. However, our algorithm is exponential because it
involves transformations of regular nBPA,. (or nBPP..) processes into nor-
mal form. From the practical point of view it would be more interesting to
obtain a better (polynomial-time) algorithm. Furthermore, one may won-
der if the decidability result can be extended to the union of all (not only
normed) BPA, and BPP.. processes. In Section 4.3 we have mentioned that
the class BPA N BPP contains also processes which cannot be equivalently
represented in INF. Moreover, techniques which have been used in Chap-
ter 4 cannot be applied, hence the characterization of BPA N BPP seems to
be a more complicated task.

Naturally, it would be nice to compare other classes of behaviours
which are generated by different types of syntax, e.g., Petri nets and BPA.
A “complete” result should contain an exact characterization of the “se-
mantical intersection” and two (constructive) algorithms which can decide
the membership to the intersection for both types of syntax (and possibly
construct an equivalent description in the other syntax).

A prime decomposition of a process A expresses all internal concur-
rency of A explicitly—the problem of effective decomposability is thus es-
pecially interesting in process classes which contain sequential behaviours.
It would be nice to obtain some positive results for e.g., normed PDA pro-
Ccesses.

The problem of effective decomposability is also related to decidability
of bisimilarity in various process classes. For example, if bisimilarity is

110 Chapter 6. Conclusior

decidable for normed PA processes, then normed PA processes can be e
fectively decomposed. On the other hand, we have obtained decidabilit
of bisimilarity for sPA processes (Theorem 5.31) as a simple consequenc
of effective decomposability of nBPA and nBPP processes.

Bibliography

[BBKS7]

[BBK93]

[BCS96]

[BEH95]

[BG96]

[BK8S]

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of
bisimulation equivalence for processes generating context-free
languages. In Proceedings of PARLE’87, volume 259 of LNCS,
pages 93-114. Springer-Verlag, 1987.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of
bisimulation equivalence for processes generating context-free
languages. Journal of the Association for Computing Machinery,
40:653-682, 1993.

O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse
and the process taxonomy. In Proceedings of CONCUR’96
[Con96], pages 247-262.

A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite
state processes with sequential and parallel composition. In
Proceedings of POPL’95, pages 95-106. ACM Press, 1995.

D.J.B. Bosscher and W.O.D. Griffionen. Regularity for a large
class of context-free processes is decidable. In Proceedings of
ICALP’96 [Ica96], pages 182-192.

J.A. Bergstra and JW. Klop. Process theory based on bisim-
ulation semantics. In Advanced Topics in Artificial Intelligence,
volume 345 of LNCS, pages 50-122. Springer-Verlag, 1988.

111

112

Bibliograph

[Blags]

[BS94]

[BW90]

[Cau88]

[CHMO3a]

[CHMO3b]

[Chro3]

[CHS92]

[CKK96]

J. Blanco. Normed BPP and BPA. In Proceedings of ACP’9.
Workshops in Computing, pages 242-251. Springer-Verla
1995.

O. Burkart and B. Steffen. Pushdown processes: Parallel con
position and model checking. In Proceedings of CONCUR’C
[Con94], pages 98-113.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 1
in Cambridge Tracts in Theoretical Computer Science. Can
bridge University Press, 1990.

D. Caucal. Graphes canoniques de graphes algebriques. Ray
port de Recherche 872, INRIA, 1988.

S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is d
cidable for all basic parallel processes. In Proceedings of CON
CUR’93, volume 715 of LNCS, pages 143-157. Springer-Verla
1993.

S. Christensen, Y. Hirshfeld, and F. Moller. Decomposabilit
decidability and axiomatisability for bisimulation equivalenc
on basic parallel processes. In Proceedings of LICS'93. IEE
Computer Society Press, 1993.

S. Christensen. Decidability and Decomposition in Process Alg
bras. PhD thesis, The University of Edinburgh, 1993.

S. Christensen, H. Huttel, and C. Stirling. Bisimulation equiy
alence is decidable for all context-free processes. In Proceeding
of CONCUR’92, volume 630 of LNCS, pages 138-147. Springe
Verlag, 1992.

I. Cerna, M. Kretinsky, and A. Kugera. Bisimilarity is decidab
in the union of normed BPA and normed BPP processes. |

Bibliography

113

[CM90]

[Con94]

[Con96]

[Flo67]

[Gro91]

[HIM94a]

[HIM94b]

[Hoa85]

Proceedings of INFINITY’96, MIP-9614, pages 32-46. University
of Passau, 1996.

D. Caucal and R. Monfort. On the transition graphs of au-
tomata and grammars. In Graph-Theoretic Concepts in Computer
Science, volume 484 of LNCS, pages 311-337. Springer-Verlag,
1990.

Proceedings of CONCUR’94, volume 836 of LNCS. Springer-
Verlag, 1994.

Proceedings of CONCUR’96, volume 1119 of LNCS. Springer-
Verlag, 1996.

R.W. Floyd. Assigning meanings to programs. In Mathematical
Aspects of Computer Science. Proc. Symp. Appl. Math., 19, pages
19-32. American Math. Society, 1967.

J.F. Groote. A short proof of the decidability of bisimulation for
normed BPA processes. Information Processing Letters, 42:167—
171, 1991.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algo-
rithm for deciding bisimilarity of normed context-free pro-
cesses. Technical report ECS-LFCS-94-286, Department of
Computer Science, University of Edinburgh, 1994.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algo-
rithm for deciding bisimulation equivalence of normed basic
parallel processes. Technical report ECS-LFCS-94-288, Depart-
ment of Computer Science, University of Edinburgh, 1994,

C.A.R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

114

Bibliograph

[HS91]

[HU79]

[Ica96]

[Jan94]

[Jan97]

[JE96]

[IMO5]

[Kug95]

[Kuc96a]

H. Huttel and C. Stirling. Actions speak louder than word
Proving bisimilarity for context-free processes. In Proceeding
of LICS’91, pages 376-386. IEEE Computer Society Press, 199

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theor
Languages, and Computation. Addison-Wesley, 1979.

Proceedings of ICALP’96, volume 1099 of LNCS. Springe
Verlag, 1996.

P. JanCar. Decidability questions for bisimilarity of Petri ne
and some related problems. In Proceedings of STACS'94, vo
ume 775 of LNCS, pages 581-592. Springer-Verlag, 1994.

P. Jantar. Bisimulation equivalence is decidable for on
counter processes. To appear in Proc. of ICALP’97. LNC
Springer-Verlag, 1997.

P. Jancar and J. Esparza. Deciding finiteness of Petri nets up
bisimilarity. In Proceedings of ICALP’96 [Ica96], pages 478-48¢

P. JanCar and F. Moller. Checking regular properties of Pet
nets. In Proceedings of CONCUR’95, volume 962 of LNCS, page
348-362. Springer-Verlag, 1995.

A. KuCera. Deciding regularity in process algebras. BRICS R
port Series RS-95-52, Department of Computer Science, Un
versity of Aarhus, October 1995.

A. KucCera. Regularity is decidable for normed BPA an
normed BPP processes in polynomial time. In Proceedings
SOFSEM’96, volume 1175 of LNCS, pages 377-384. Springe
Verlag, 1996.

Bibliography

115

[Kug96h]

[Kug97]

[Mil89]

[Min67]

[MM93]

[MM94]

[Mol96]

[MS85]

[Par81]

[Pet81]

[Pl081]

A. Kucera. Regularity is decidable for normed PA processes in
polynomial time. In Proceedings of FST&TCS’96, volume 1180
of LNCS, pages 111-122. Springer-Verlag, 1996.

A. Kutera. How to parallelize sequential processes. To appear.
In Proceedings of CONCUR’97, LNCS. Springer-Verlag, 1997.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

M.L. Minsky. Computation: Finite and Infinite Machines.
Prentice-Hall, 1967.

R. Milner and F. Moller. Unique decomposition of processes.
Theoretical Computer Science, 107(2):357-363, 1993.

S. Mauw and H. Mulder. Regularity of BPA-systems is decid-
able. In Proceedings of CONCUR’94 [Con94], pages 34-47.

F. Moller. Infinite results. In Proceedings of CONCUR’96
[Con96], pages 195-216.

D.E. Muller and P.E. Schupp. The theory of ends, pushdown
automata, and second order logic. Theoretical Computer Science,
37(1):51-75, 1985.

D.M.R. Park. Concurrency and automata on infinite se-
quences. In Proceedings 5" GI Conference, volume 104 of LNCS,
pages 167-183. Springer-Verlag, 1981.

J.L. Peterson. Petri Net Theory and the Modelling of Systems.
Prentice-Hall, 1981.

G. Plotkin. A structural approach to operational semantics.
Technical Report Daimi FN-19, Department of Computer Sci-
ence, University of Aarhus, 1981.

116

Bibliograph

[Reig5]

[Sch86]

[Sch92]

[Sti92]

[Sti96]

[SW89]

[Tau89]

[VG90]

[VGW89]

W. Reisig. Petri Nets—An Introduction. Springer-Verlag, 1985

D.A. Schmidt. Denotational Semantics. Allyn and Bacon, Inc
1986.

S.R. Schwer. The context-freeness of the languages associate
with vector addition systems is decidable. Theoretical Comput
Science, 98(2):199-247, 1992.

C. Stirling. Modal and temporal logics. In S. Abramsk
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Con
puter Science, volume I. Oxford University Press, 1992.

C. Stirling. Decidability of bisimulation equivalence fc
normed pushdown processes. In Proceedings of CONCUR’C
[Con96], pages 217-232.

C. Stirling and D. Walker. Local model checking in the mod:
mu-calculus. In Proceedings of TAPSOFT’89, I, volume 351
LNCS, pages 369-383. Springer-Verlag, 1989.

D. Taubner. Finite Representations of CCS and TCSP Progran
by Automata and Petri Nets. Number 369 in LNCS. Springe
Verlag, 1989.

R.J. van Glabbeek. The linear time—branching time spectrun
In Proceedings of CONCUR’90, volume 458 of LNCS, pages 27¢
297. Springer-Verlag, 1990.

R.J. van Glabbeek and W.P. Weijland. Branching time and al
straction in bisimulation semantics. Information Processing 8
pages 613-618, 1989.

Appendix A

Behavioural Equivalences

In this appendix we present definitions of behavioural equivalences of van
Glabbeek’s hierarchy. Here we adopt the definition of transition system
from Section 2.1, i.e., T = (S, Act, —=,r). If s € S, then

I(s) = {a € Act | 3t € S such that s 5 t}

denotes the set of initial actions of s. Furthermore, P(M) denotes the
power-set of M.

Definition A.1 (Trace equivalence). Let T be a transition system. We define
the set of traces of T in the following way:

tr(T) = {w € Act* | 3s € Ssuch that r — s}

Transition systems Ty, T, are trace equivalent, written T; =¢ To, if tr(T;) =
tr(Ts).

Definition A.2 (Completed trace equivalence). Let T be a transition system.

We define the set of completed traces of T in the following way:
ct(T) = {w € Act* | 3s € Ssuch that r = sand I(s) = 0}

Transition systems Ty, T, are completed trace equivalent, written T; = To, if
tr(T;) = tr(Ty) and ct(T,) = ct(T).

117

118 Appendix A. Behavioural Equivalenc

Definition A.3 (Failure equivalence). Let T be a transition system. A pa
(w, @) € Act® x P(Act) is a failure pair of T, if there is a state s € S such th:
r = sand I(s)N® = 0. Let F(T) denote the set of all failure pairs of T. Transitic
systems Ty, T are failure equivalent, written T, = Ty, if F(T;) = F(T2)

Definition A.4 (Readiness equivalence). Let T be a transition system. .
pair (w, @) € Act* x P(Act) isaready pair of T, if there is a state s € S such the
r 5 Aand I(A) = &. Let R(T) denote the set of all ready pairs of T. Transitio
systems Ty, T, are readiness equivalent, written T; =, To, if R(T;) = R(T2).

Definition A.5 (Failure trace equivalence). Let T be a transition system. Tt
refusal relations - for ® € P(L) are definined by:

ASBiffA=Band I(A)N® =0

The failure trace relations - for § € (L U P(L))* are defined as the reflexiv
and transitive closure of both the transition and the refusal relations. § € (Act
‘P(Act))* is a failure trace of T, if there is a state s € S such that r 5 s L
FT(T) denote the set of failure traces of T. Transition systems Ty, T, are failur
trace equivalent, written Ty =g Ty, if FT(T;) = FT(T3).

Definition A.6 (Ready trace equivalence). Let T be a transition system. Tt
ready trace relations 2 fors e (ActU P(Act))* are defined inductively by:

1. s=>sforanys€S.

2. s 5 timpliess = t.

3. s = twith ® € P(Act) whenever s = tand I(s) = .
4. 5518 uimpliessig u.

0 € (ActUP(Act))* isaready trace of T if there is a state s € S such that r L
Let RT(T) denote the set of ready traces of T. Transition systems T, T, are read
trace equivalent, written T, =y To, if RT(T;) = RT(T»).

Appendix A. Behavioural Equivalences 119

Definition A.7 (Simulation equivalence). Let Ty, T, be transition systems.
A binary relation R C S; x S, is a simulation if whenever s;Rs, then

a a
Vae€Act;: sy =s) = 3s,: s, =8, As|Rs,

Transition systems Ty, T, are simulation equivalent, written T; =g T, if there
exists a simulation R with r;Rry and a simulation S with r,Sr;.

Definition A.8 (Ready simulation equivalence). Let Ty, T, be transition sys-
tems. A binary relation R C S; x S, is a ready simulation if whenever s;Rs,
then:

e VacAct,: s, =8, = 3s,: s, AS|Rs,

e I(s1) = I(s2)

Transition systems Ty, T, are ready simulation equivalent, written T; =5 To,
if there exists a ready simulation R with r;Rry and a ready simulation S with
rySry.

Definition A.9 (Possible futures equivalence). Let T be a transition system.
A pair (w,®) € Act* x P(Act*) is a possible future of T if there is a state
s € N such that r % s and tr(s) = ®. The set of all possible futures of T
is denoted PF(T). Transition systems Ty, T, are possible-futures equivalent,
written Ty =y To, if PF(T;) = PF(T,).

Definition A.10 (2-nested simulation equivalence). Let Ty, T, be transition
systems. A binary relation R C S; x S, is a 2-nested simulation if whenever
s1Rs, then

e VacAct : s, =8, = 3s,: 8=, AS|Rs,
® 5 =595

Transition systems Ty, T, are 2-nested simulation equivalent, written T; =,
T,, if there exists a 2-nested simulation R with r;Rr, and a 2-nested simulation S
with rySry.

