
Decidability Issues for Processes
with Infinitely Many States

Antonín Kučera

Ph.D. Thesis

Faculty of Informatics

Masaryk University

1997

Acknowledgements

First of all I want to thank my supervisor Mojmír Křetínský for continuous
support, guidance and encouragement. It is difficult to express how much
I owe to him; I am very grateful for his help I could always rely on.

My warm thanks go to Ivana Černá and Petr Jančar. I have learned
much from our numerous discussions; it was a great pleasure to work
with them.

Thanks are also due to Mogens Nielsen for his kind supervision during
my stay at Aarhus University (BRICS). The results presented in Chapter 3
originated in Denmark.

Special thanks go to my mother for constant emotional and practical
support during my studies, and to Hana for her company, love and un-
derstanding.

I II

Declaration

I declare that this thesis was composed by myself, and all presented re-
sults are my own, unless otherwise stated.

Some of the material has been previously published as [Kuč96a], [Kuč96b],
[ČKK96] and [Kuč97].

Antonín Kučera

III IV

Contents

1 Introduction 1

1.1 Computation and its Semantics 1

1.2 Verification of Concurrent Systems 4

1.3 Layout of the Thesis . 6

2 Basic Definitions 9

2.1 Transition Systems . 9

2.2 Behavioural Equivalences . 10

2.3 Process Algebras . 12

2.3.1 BPA, BPP, BPA� , BPP� , PA — Subclasses of CCS and
ACP . 12

2.3.2 Normal Forms . 15

2.3.3 Normed Processes . 17

2.3.4 Regular Processes . 18

3 Deciding Regularity in Process Algebras 21

3.1 Regularity of Normed PA Processes 22

3.1.1 The Inheritance Tree 23

3.1.2 A Construction of the Process ∆0 in Normal Form . . 31

3.1.3 Possible Generalization 34

3.2 Regularity w.r.t. Other Equivalences 35

3.3 Negative Results . 47

V

3.3.1 The Minsky Machine 4
3.3.2 Extending PA Processes with a Finite-state Control

Unit . 4
3.4 Related Work and Future Research 5

4 Expressibility of nBPA� and nBPP� Processes 5

4.1 The Characterization of nBPA� \ nBPP� 6
4.2 Deciding whether ∆ 2 nBPA� \ nBPP� 7
4.3 Related Work and Future Research 8

5 Parallelization of nBPA Processes 8

5.1 The Characterization of Decomposable nBPA Processes . . . 8
5.1.1 Decomposability of nBPP Processes 8
5.1.2 Decomposability of nBPA Processes 9

5.2 Decidability Results . 10
5.2.1 Effective Decomposability of nBPA Processes 10
5.2.2 Decidability of Bisimilarity for sPA Processes 10

5.3 Conclusions, Future Research 10

6 Conclusions 10

6.1 Summary of the Main Results 10
6.2 Open Problems . 10

A Behavioural Equivalences 11

VI

List of Figures

2.1 van Glabbeek’s hierarchy of behavioural equivalences 11
2.2 SOS rules . 14

3.1 The inheritance tree associated with the path P. 27
3.2 The structure of a derivation schema for ([u]; v). 40
3.3 Transition systems from the proof of Lemma 3.28 44

4.1 An algorithm which (constructively) decides the member-
ship to nBPA� \ nBPP� for nBPP� processes. 74

4.2 An algorithm which (constructively) decides the member-
ship to nBPA� \ nBPP� for nBPA� processes. 80

5.1 Diagrams for the proof of Lemma 5.9 92

VII VIII

Chapter 1

Introduction

The problem of program verification is nearly as old as computer science
(see e.g., [Flo67]). Various models of computation and its semantics were
proposed, emphasizing different aspects of computation. Using this math-
ematical theory, many interesting questions about programs can be exactly
formulated and answered.

1.1 Computation and its Semantics

Denotational semantics, originated by Scott and Strachey in sixties (see
e.g., [Sch86]) identifies each program P with its input-output behaviour.
As input parameters of P are finite strings over a finite (or countably in-
finite) alphabet, each potential parameter can be uniquely and effectively
represented by a natural number. The same applies to output values—the
formal meaning of P can be thus defined by a partial function fP : N ! N.
This approach is based on two implicit assumptions:

� There is no interaction with programs except passing input parame-
ters and fetching output values.

1

2 Chapter 1. Introduction

� Infinite runs of programs are completely uninteresting (they do no
produce any output).

However, reality is considerably different today. Computers are used for
wide variety of applications—they control airports, power stations, stoc
exchanges and even nuclear weapons. Such systems are usually not de
signed to terminate (it would be a disaster in most cases) and their input
output behaviour is “distributed” over many single acts of communicatio
with the surrounding world. To understand and verify properties of thes
concurrent systems, three elementary questions must be answered:

� How to model concurrent systems?

� What is their semantics?

� What systems are semantically equivalent?

There are two main approaches to mentioned problems, based on two dif
ferent classical notions of computability. Ideas around Turing machine
and automata lead to the model of Petri net (see [Pet81] or [Rei85] for gen
eral introduction). Petri nets can be seen as automata with distributed
control units. Semantics is given in terms of partial orders which reflec
causal dependencies between actions.

The model of process algebras (such as CCS [Mil89], CSP [Hoa85] o
ACP [BW90]) has grown out of concepts in �-calculus and structured pro
gramming. It has so-called interleaving semantics, based on transition sys
tems.

The difference between partial order semantics and interleaving se
mantics can be well illustrated by the following example. Assume we hav
two processes X;Y where

X
def
= akb Y

def
= a:b + b:a

1.1. Computation and its Semantics 3

In other words, the process X can run actions a; b independently in par-
allel, while the process Y can do either the sequence a:b or the sequence
b:a (‘+’ stands for nondeterminism and ‘:’ for sequencing). Here we in fact
used the notation of process algebras, but those behaviours could be easily
described by labelled Petri nets too.

Interleaving semantics does not distinguish between X and Y; the “real”
concurrency of X can be equivalently expressed by sequencing and non-
determinism of Y. Associated transition systems are even isomorphic:

�

b ��?
??

??

�

a
����
��
� b

��?
??

??

�

�

a����
��
�

Partial order semantics models concurrency explicitly—the process X is
associated with a set of two events (labelled with ‘a’ and ‘b’) which are
causally independent, hence the ordering is empty. The process Y deter-
mines a set of four events. The ordering is indicated by arrows in the pic-
ture below. Dotted lines represent the symmetric conflict relation which
models the phenomenon of nondeterminism. ?>=<89:; a

��

?>=<89:; b

��
?>=<89:; a ?>=<89:; b

X
def
= akb

?>=<89:; b

Y
def
= a:b + b:a

?>=<89:; a

Obtained structures are rather different, hence X and Y are not considered
as equivalent in the sense of partial order semantics.

Mentioned approaches to process semantics are naturally independent
of a concrete model. They express general ideas which can be “mapped”
on a concrete syntax.

The interleaving semantics actually describes processes from the point
of view of an external observer who cannot detect causality between ac-

4 Chapter 1. Introduction

tions by means of experimentation (see [Mil89]). This approach is adopted
also in this thesis.

1.2 Verification of Concurrent Systems

Process semantics is formally defined by its associated transition system
It remains to clarify what processes should be taken as semantically equiv
alent. Consider the following transition systems:

�
a

��		
		
		 a

��5
55

55
5 �

a
��

�

b
��

�

c
��

�

b

��		
		
		 c

��5
55

55
5

�

T1

� �

T2

�

The systems T1;T2 have the same sets of completed traces1, i.e., fab; acg

T1;T2 can thus be taken as language equivalent in the sense of classica
automata theory. However, language equivalence is obviously not the de
sired notion of “sameness” in this case—the system T1 can emit an action
‘a’ and enter a state where it can do either ‘b’ or ‘c’ (i.e., one of these action
is “blocked” and this is clearly observable). On the other hand, the system
T2 can choose between ‘b’ and ‘c’ after emitting ‘a’, hence its behaviour i
different from the behaviour of T1.

This example indicates that branching structure of transition system
must be taken into account. In Section 2.2 we present van Glabbeek’s hier
archy of behavioural equivalences which gives a nice survey and compar
ison of existing approaches.

1A completed trace is a sequence of labels associated with a path from the root to
leaf.

1.2. Verification of Concurrent Systems 5

Behavioural equivalences can be used for verification of concurrent
systems. For example, correctness a network transport protocol can be
proved as follows:

1. Describe the specification (the intended behaviour). This is rather triv-
ial in this case, because a reliable transport protocol behaves like a
queue—it delivers everything what it receives, preserving original
order.

2. Describe the implementation. The protocol is essentially performed by
three individual cooperating components—Sender sends messages
to Medium which passes them to Receiver. Naturally, a suitable level
of abstraction must be chosen before a detailed analysis is carried
out.

3. Prove that specification and implementation are equivalent. Different be-
havioural equivalences preserve different features (e.g., deadlock or
liveness properties). The choice should be based on a careful consid-
eration.

Naturally, computers can assist at this work—and especially at the last
task. Although all reasonable behavioural equivalences are generally un-
decidable, there are interesting classes of transition systems where some of
them become decidable. For example, if we restrict our attention to finite-
state transition systems, each behavioural equivalence is decidable. In fact,
the theory of finite-state systems and their equivalences can be said to be
well-established today.

Some of those positive results can be even extended to certain classes
of infinite-state transition systems. For example, Baeten, Bergstra and
Klop showed in [BBK87, BBK93] that bisimilarity (see Definition 2.2) is
decidable for processes generated by reduced context-free grammars in
Greibach normal form.2 It was the first result indicating that decidability

2Those processes are also known under the name “normed BPA”—see Section 2.3.1.

6 Chapter 1. Introduction

properties of behavioural equivalences can differ from decidability prop
erties of language equivalence.

Another important approach to verification of concurrent systems uti
lizes various program logics. Intended properties of a process can be ofte
expressed as formulae of certain modal or temporal logic. This leads t
the problem of model checking—given a formula F and a state s of a tran
sition system T, does s satisfy F ? There are many positive answers fo
certain classes of formulae and transition systems; for example, Stirlin
and Walker gave in [SW89] a model checker for modal �-calculus and
finite-state transition systems. Similar results exist also for some classe
of infinite-state transition systems. The problem of model checking is no
considered in this thesis, hence we refer to [Sti92] for further informatio
and references.

1.3 Layout of the Thesis

Each chapter (and most sections) begins with a discussion which aims t
give a reasonable motivation to the considered problem. Notes on related
results and current state of knowledge are included either at the beginnin
or at the end of each section.

Chapter 2 contains definitions of basic notions which are used through
the thesis. We formally introduce transition systems and various be
havioural equivalences over the class of transition systems. Then w
present several process classes such as BPA, BPP, BPA� , BPP� , PA
and we also define normal forms for these processes. Finally, we in
troduce the condition of normedness which specifies important sub
classes of mentioned algebras and we explain what is meant by th
notion of regularity.

1.3. Layout of the Thesis 7

Chapter 3 is devoted to the regularity problem. We prove that regular-
ity of normed PA processes is decidable in polynomial time. More-
over, a bisimilar finite-state process in normal form can be effectively
constructed. This implies decidability of bisimilarity for any pair of
processes such that one process of this pair is a normed PA process
and the other has finitely many states. Obtained results also apply to
normed subclasses of BPA, BPP, BPA� and BPP� and this fact simpli-
fies many considerations in next chapters.

In the next section we examine regularity w.r.t. other equivalences
from van Glabbeek’s hierarchy. We suggest new notions of finite
characterization and strong regularity and we explain their advan-
tages. Then we study the relationship between regularity and strong
regularity. We show that the two conditions may coincide w.r.t. cer-
tain equivalences, but in case of all equivalences from van Glabbeek’s
hierarchy except bisimilarity they express different features.

Finally, we demonstrate that regularity and strong regularity w.r.t.
any equivalence from van Glabbeek’s hierarchy are undecidable for
PAPDA processes (this class of processes is obtained from PA by
adding a finite-state control unit). This is essentially caused by the
fact that PAPDA processes can correctly simulate an arbitrary Min-
sky machine; in other words, PAPDA is a calculus with full Turing
power.

Chapter 4 gives a complete characterization of all processes which can
be equivalently defined by the syntax of normed BPA� and normed
BPP� processes. BPA� processes are in fact primitive sequential pro-
grams, while BPP� can be seen as simple parallel programs. Hence
we actually characterize all normed behaviours which can be consid-
ered as purely sequential as well as purely parallel. This characteri-
zation is formulated in terms of special normal forms for BPA� and

8 Chapter 1. Introduction

BPP� processes, denoted INFBPA and INFBPP, respectively.

Next we show that any normed BPA� or BPP� process which belong
to the “semantical intersection” of BPA� and BPP� can be effectively
transformed to INFBPA or INFBPP, respectively. As a consequence w
obtain decidability of bisimilarity in the union of normed BPA� and
normed BPP� processes.

We also show that mentioned results can be simplified in case o
normed BPA and BPP processes.

Chapter 5 contains results on effective parallelization of normed BPA pro
cesses. A normed BPA process is said to be prime if it cannot be de
composed into a parallel product of two nontrivial processes. W
characterize all normed BPA processes which are not prime togethe
with their decompositions in terms of normal forms.

Moreover, we prove that normed BPA processes can be decompose
(parallelized) effectively. From this we derive other positive decid
ability results—namely decidability of bisimilarity in a natural sub
class of normed PA processes, denoted sPA (the sPA class is com
posed of all processes of the form ∆1k � � � k∆n where n 2 N and ∆i i
a normed BPA or BPP process for each 1 � i � n).

Chapter 6 summarizes main results achieved in this thesis and suggest
possible directions of future research.

Chapter 2

Basic Definitions

In this chapter we present all the definitions which are necessary for un-
derstanding this thesis.

2.1 Transition Systems

Transition systems are widely accepted as a structure which can exactly
define operational semantics of programs by means of structural rules (see
[Plo81]). This approach is especially advantageous in case of interactive
concurrent systems which usually have quite complex input-output be-
haviour.

Definition 2.1. A transition system is a tuple (S;Act;!; r) consisting of a set of
states S, a set of actions (or labels) Act, a transition relation !� S�Act� S
and a distinguished element r 2 S called root.

The reflexive and transitive closure of ‘!’ is denoted by ‘!�’. As usual,
we write A a

! B instead of (A; a;B) 2! and this notation is also extended
to elements of Act� in an obvious way. Moreover, we often write A !� B
instead of A w

! B if w 2 Act� is irrelevant.

9

10 Chapter 2. Basic Definition

Given two states u; v of a transition system T, we say that v is reachabl
from u if u !� v. States of T which are reachable from the root of T ar
said to be reachable.

2.2 Behavioural Equivalences

Before we start to deal with verification of concurrent systems we mus
clarify the question what processes should be considered as “semanticall
equivalent”. As we already know, formal semantics of a concurrent sys
tem is given by its corresponding transition system—but what transitio
systems do exhibit the same behaviour? The answer is not easy; there ar
many different approaches and consequently there are also many differen
equivalences over the class of transition systems which deserve the adjec
tive “behavioural”. R. van Glabbeek presented in [vG90] various equiva
lences in a uniform way, relating them w.r.t. their coarseness, i.e., how man
identifications they make. The resulting lattice is presented in Figure 2.1
The order is determined by the relation “makes strictly more identifica
tions than”.

The finest equivalence in this hierarchy is bisimilarity [Par81], defined
as follows:

Definition 2.2 (bisimilarity). Let T1 = (S1;Act1;!1; r1), T2 = (S2;Act2;!

r2) be transition systems. A binary relation R � S1 � S2 is a bisimulation i
whenever (s; t) 2 R then for each a 2 Act1 [Act2

� if s
a

!1 s0, then t
a

!2 t0 for some t0 such that (s0; t0) 2 R

� if t
a

!2 t0, then s
a

!1 s0 for some s0 such that (s0; t0) 2 R

Transition systems T1, T2 are bisimilar, written T1 � T2, if their roots are relate
by some bisimulation.

2.2. Behavioural Equivalences 11

bisimilarity

?

2-nested simulation equivalence

?

ready simulation equivalence

?

ready trace equivalence

�
�
�
�	

@
@
@
@R

readiness equivalence failure trace equivalence

@
@
@
@R

�
�
�
�	

failure equivalence

?

completed trace equivalence

?

trace equivalence

simulation equivalence

@
@
@
@
@
@
@
@
@
@
@@R

�
�
�
�
�
�
�
�
�
�
��	

possible-futures equivalence

@
@
@
@@R

�
�
�
�
�
�
�
��	

Figure 2.1: van Glabbeek’s hierarchy of behavioural equivalences

12 Chapter 2. Basic Definition

Bisimilarity has many features which indicate that this equivalence is re
ally something special. It is probably the most advantageous way how
to define “sameness” of two concurrent systems. Definitions of the othe
equivalences from van Glabbeek’s hierarchy are moved to Appendix A.

2.3 Process Algebras

The basic idea which stands behind the formalism of process algebras i
that it is possible to define complicated behaviours from simple ones usin
certain operators (e.g., parallel or sequential composition). In other words
processes can carry an algebraic structure.

Many process algebras were proposed in the literature. They adop
various sets of operators (the major difference is the kind of parallel oper
ator and the way how to force cooperation between parallel components
but those sets of operators usually have sufficient expressive power to sim
ulate an arbitrary Turing machine—and therefore many interesting prob
lems are generally undecidable. As examples of popular process algebra
we can mention CCS [Mil89], ACP [BW90], or CSP [Hoa85].

In this thesis we present several positive decidability results about cer
tain process algebras. It is thus clear that those process algebras canno
have full Turing power—they are obtained as natural subclasses of pro
cess algebras mentioned above.

2.3.1 BPA, BPP, BPA� , BPP� , PA — Subclasses of CCS and

ACP

Let Λ = fa; b; c; : : :g be a countably infinite set of atomic actions such tha
for each a 2 Λ there is a corresponding dual action a with the conventio
that a = a. Let Act = Λ [f�g where � 62 Λ is a special (silent) action
Let Var = fX;Y;Z; : : :g be a countably infinite set of variables such tha

2.3. Process Algebras 13

Var \ Act = ;. The classes of BPA, BPP, BPA� , BPP� , and PA expressions
are defined by the following abstract syntax equations:

EBPA ::= � | b | bEBPA | X | EBPA:EBPA | EBPA + EBPA

EBPP ::= � | b | bEBPP | X | EBPPkEBPP | EBPP + EBPP

EBPA� ::= � | a | aEBPA� | X | EBPA� :EBPA� | EBPA� + EBPA�

EBPP� ::= � | a | aEBPP� | X | EBPP� jEBPP� | EBPP� + EBPP�

EPA ::= � | b | bEPA | X | EPA:EPA | EPAkEPA | EPATEPA | EPA + EPA

Here b ranges over Λ, a ranges over Act, and X ranges over Var. The sym-
bol ‘�’ denotes the empty expression.

As usual, we restrict our attention to guarded expressions. A BPA, BPP,
BPA� , BPP� , or PA expression E is guarded if every variable occurrence in
E is within the scope of an atomic action.

A guarded BPA, BPP, BPA� , BPP� , or PA process is defined by a finite
family ∆ of recursive process equations

∆ = fXi
def
= Ei j 1 � i � ng

where Xi are distinct elements of Var and Ei are guarded BPA, BPP, BPA� ,
BPP� , or PA expressions, respectively, containing variables of fX1; : : : ;Xng.
The set of variables which appear in ∆ is denoted by Var(∆).

The variable X1 plays a special role (X1 is sometimes called the leading

variable)—it is a root of a labelled transition system, defined by the process
∆ and SOS rules of Figure 2.2.

Presented rules should be considered modulo structural congruence, de-
fined as follows:

Definition 2.3. Let � be the smallest congruence relation over process expres-
sions such that the following laws hold:

� associativity and ‘�’ as a unit for sequential composition (the ‘:’ operator).

14 Chapter 2. Basic Definition

aE
a

! E
E

a

! E0

E:F
a

! E0:F
E

a

! E0

E + F
a

! E0

F
a

! F0

E + F
a

! F0

E a

! E0

EkF a

! E0kF
F a

! F0

EkF a

! EkF0

E a

! E0

ETF a
! E0kF

E a

! E0

EjF a

! E0jF

F a

! F0

EjF a

! EjF0

E b

! E0 F b

! F0
EjF

�
! E0jF0

(b 6= �) E a

! E0

X a

! E0

(X
def
= E 2 ∆)

Figure 2.2: SOS rules

� associativity, commutativity, and ‘�’ as a unit for pure merge (the ‘k’ oper
ator).

� ‘�’ as a unit for left merge (the ‘T’ operator).

� associativity, commutativity, and ‘�’ as a unit for CCS parallel compositio
(the ‘j’ operator).

� associativity, commutativity, and ‘�’ as a unit for nondeterministic choic
(the ‘+’ operator).

� a� = a.

States of the transition system generated by ∆ are BPA, BPP, BPA� , BPP�

or PA expressions, which are also called states of ∆, or just “states” when
∆ is understood from the context.

Remark 2.4. As each process determines a unique transition system, all notion
which were originally defined for transition systems (see Section 2.1) can be use
for processes too.

Remark 2.5. Guarded processes generate finitely branching transition systems
i.e., the set fF j E a

! F; a 2 Actg is finite for each state E. It is easy to see that i

2.3. Process Algebras 15

would not be true if we allowed unguarded expressions (assume e.g., the process
X

def
= akX).

Remark 2.6. Processes are often identified with their leading variables. Further-
more, if we assume a fixed process ∆, we can view any process expression E (not

necessarily guarded) whose variables are defined in ∆ as a process too; we sim-
ply add a new leading equation X

def
= E0 to ∆, where X is a variable from Var

such that X 62 Var(∆) and E0 is a process expression which is obtained from E
by substituting each variable in E with the right-hand side of its corresponding
defining equation in ∆ (E0 must be guarded now). All notions originally defined
for processes can be used for process expressions in this sense too.

2.3.2 Normal Forms

Many definitions and proofs in this thesis take advantage of the fact that
BPA, BPP, BPA� , BPP� , and PA processes can be equivalently (up to bisimi-
larity) represented in special normal forms. Moreover, those normal forms
can be effectively constructed.

Definition 2.7 (GNF for BPA and BPA� processes). A BPA (or BPA�) pro-
cess ∆ is said to be in Greibach normal form (GNF) if all its defining equations
are of the form

X
def
=

nX

j=1

aj�j

where n 2 N, aj 2 Λ (or aj 2 Act) and �j 2 Var(∆)�. If length(�j) � 2 for each j,
1 � j � n, then ∆ is said to be in 3-GNF. Moreover, we also require that for each
Y 2 Var(∆) there is a reachable state � 2 Var(∆)� such that � begins with Y.

Any BPA or BPA� process can be effectively transformed into 3-GNF (see
[BBK87]). A similar normal form exists also for BPP and BPP� processes
(see [Chr93]). Before the definition we need to introduce the set Var(∆)

16 Chapter 2. Basic Definition

of all finite multisets over Var(∆). Each multiset of Var(∆)
 denotes a BPP
(or BPP�) expression by combining its elements in parallel using the ‘k

operator (or the ‘j’ operator).

Definition 2.8 (GNF for BPP and BPP� processes). A BPP (or BPP�) pro

cess ∆ is said to be in Greibach normal form (GNF) if all its defining equation
are of the form

X
def
=

nX

j=1

aj�j

where n 2 N, aj 2 Λ (or aj 2 Act) and �j 2 Var(∆)
. If card(�j) � 2 for each j
1 � j � n, then ∆ is said to be in 3-GNF. Moreover, we also require that for eac
Y 2 Var(∆) there is a reachable state � 2 Var(∆)
 such that Y 2 �.

A normal form for PA processes is a generalization of Greibach norma
form. First we need to define the set of VPA expressions.

1. The empty expression ‘�’ is a VPA expression.

2. Each variable X 2 Var(∆) is a VPA expression.

3. If �; � are nonempty VPA expressions, then �:�, �k�, and �T� ar
VPA expressions.

4. Each VPA expression can be constructed using the rules 1; 2 and 3 i
a finite number of steps.

The set of VPA expressions which contain only variables from Var(∆
where ∆ is a PA process, is denoted VPA(∆). Finally, the set of variable
which appear in a VPA expression � is denoted Var(�).

Definition 2.9 (normal form for PA processes). A PA process ∆ is said to b
in normal form if all its equations are of the form

X
def
=

nX

j=1

aj�j

2.3. Process Algebras 17

where n 2 N, aj 2 Λ and �j 2 VPA(∆). Moreover, we also require that for each
Y 2 Var(∆) there is a reachable state � 2 VPA(∆) such that Y 2 Var(�).

Any PA process can be effectively presented in the normal form just de-
fined (see [BEH95]).

From now on we assume that all BPA, BPP, BPA� , BPP� , and PA pro-
cesses we are working with are presented in corresponding normal forms.
This justifies also the assumption that reachable states of a BPA, BPP, BPA� ,
BPP� , or PA process ∆ are elements of Var(∆)�, Var(∆)
, Var(∆)�, Var(∆)
,
or VPA(∆), respectively.

The following overloaded function is needed in some proofs of this
thesis:

Definition 2.10 (Length function). The function Length is defined for VPA ex-
pressions and elements of Act�. In the first case it returns the number of variables
which are contained in its argument, distinguishing multiple occurrence of the
same variable. In the latter case it returns the length of its argument. For exam-

ple, Length(X:(YkX)) = 3 and Length(aabac) = 5.

2.3.3 Normed Processes

Important subclasses of BPA, BPP, BPA� , BPP� , and PA processes can be
obtained by an extra restriction of normedness. A variable X 2 Var(∆) is
normed if there is w 2 Act� such that X

w

! �. In that case we define the norm
of X, written jXj, to be the length of the shortest such w. In case of BPP�

processes we also require that no � action which appears in w is a result
of a communication on dual actions in the sense of operational semantics
given in Figure 2.2. This is necessary if we want the norm to be additive
over the ‘j’ operator (� may still occur in w—it can be used as an action
prefix). A process ∆ is normed if all variables of Var(∆) are normed. The
norm of ∆ is then defined to be the norm of its leading variable X1.

18 Chapter 2. Basic Definition

Remark 2.11. As normed processes are intensively studied in this thesis, we em
phasize some properties of the norm:

� The norm of a normed process is easily computed by the following rules:

– jaj = 1

– jE + F j = minfjEj; jFjg
– jE:F j = jEj+ jFj
– jEkF j = jEj+ jFj
– jETF j = jEj+ jFj

– jEjF j = jEj+ jFj

– if Xi
def
= Ei and jEij = n, then jXij = n.

� Bisimilar processes must have the same norm.

In the rest of this thesis we use the prefix ‘n’ for denoting the normed
subclass, writing e.g., ‘nBPA’ instead of ‘normed BPA’.

2.3.4 Regular Processes

One of the problems considered in this thesis is decidability of regularit
for certain process classes. The next definition explains what is meant b
the notion of regularity.

Definition 2.12 (regularity). Let $ be an equivalence over the class of transi
tion systems. A process ∆ is regular w.r.t.$ if there is a process ∆0 with finitel
many states such that ∆ $ ∆0.

In [Mil89] it is shown that finite-state processes (and hence also processe
which are regular w.r.t. bisimilarity) can be represented in the followin
normal form:

2.3. Process Algebras 19

Definition 2.13 (normal form for finite-state processes). A finite-state pro-
cess ∆ is said to be in normal form if all its equations are of the form

X
def
=

nX

j=1

aj[Xj]

where n 2 N, aj 2 Act and Xj 2 Var(∆) (square brackets indicate optional
occurrence).

20 Chapter 2. Basic Definition

Chapter 3

Deciding Regularity in Process
Algebras

Process algebras provide us with a very powerful syntax which can de-
scribe concurrent systems with finitely as well as infinitely many states.
Since the very beginning people have concentrated on finite-state pro-
cesses. Consequently, the theory of finite-state processes is well estab-
lished today and it is also applied—there are many automated tools which
can answer plenty of interesting questions about finite-state processes.

Now we can ask whether it is possible to extend those nice results to
process classes which contain also processes with infinitely many states.
This is problematic of course—many problems become undecidable and
even if some property remains decidable, the algorithm is often not inter-
esting from the practical point of view due to its complexity. If we want
to examine features of some process ∆ with infinitely many states, a good
idea is to ask whether there is an equivalent finite-state process ∆0 which
could be analyzed instead of ∆—and this is exactly what we mean by the
regularity problem. Naturally, we can also ask whether such a process ∆0

can be effectively constructed.

This chapter is devoted to the regularity problem. In Section 3.1 we

21

22 Chapter 3. Deciding Regularity in Process Algebra

prove that regularity (w.r.t. bisimilarity) is decidable for nPA processes i
polynomial time. Moreover, if a nPA process ∆ is regular, then it is als
possible to construct a bisimilar finite-state process ∆0 in normal form (se
Definition 2.13). These results have been previously published in [Kuč96a
and [Kuč96b].

In Section 3.2 we discuss the regularity problem w.r.t. other behavioura
equivalences. We design and justify new notions of finite characterizatio
and strong regularity and we study their relationship. This section is based
on [Kuč95].

Section 3.3 contains some negative (undecidability) results. We explor
a calculus PAPDA obtained from PA by adding a finite-state control uni
We show that an arbitrary Minsky machine [Min67] can be simulated by
(normed) PAPDA process which is effectively constructible. This implie
undecidability of regularity and strong regularity w.r.t. any equivalence o
van Glabbeek’s hierarchy.

In Section 3.4 we summarize related results which are known at th
time of writing this thesis and we also mention major open problems.

3.1 Regularity of Normed PA Processes

In this section we show that regularity w.r.t. bisimilarity (Definition 2.12
is decidable for nPA processes in polynomial time (we speak just abou
“regularity” for short). The basic idea is quite simple—reachable state
of a nPA process ∆ are elements of VPA(∆) (see Definition 2.9). As ∆

is normed, each of its reachable states has a finite norm. As the norm i
additive over ‘k’, ‘T’ and ‘:’ operators (see Remark 2.11), there are onl
finitely many elements of VPA(∆) with a given finite norm. Hence ∆ ca
reach infinitely many states up to bisimilarity iff it can reach a state of an
arbitrary norm. As we shall see, this condition can be easily verified i
polynomial time.

3.1. Regularity of Normed PA Processes 23

We also show that if a nPA process ∆ is regular, then it is possible to
construct a bisimilar finite-state process ∆0 in normal form (see Defini-
tion 2.13). However, this algorithm is of exponential space complexity,
because a regular nPA process with n variables can generally reach expo-
nentially many pairwise non-bisimilar states and each such state requires
a special variable.

Lemma 3.1. A process ∆ is not regular iff there is an infinite path X1 = �0
a0

!

�1
a1

! �2
a2

! � � � such that �i 6� �j for i 6= j.

Proof:

“(” Obvious—∆ can reach infinitely many pairwise non-bisimilar states.
“)” Let T = (S;Act;!; r) be the transition system generated by ∆. If we
identify bisimilar states of T, we obtain a transition system T0 = (S0;Act;!0;

r0) where

� S0 contains equivalence classes of S=� (the equivalence class which
contains E 2 S is denoted by [E])

� the relation !0 is determined by the rule E
a

! F) [E]
a

!0 [F]

� r0 = [r]

Clearly T � T0. Moreover, T0 is infinite but finitely branching (see Re-
mark 2.5), hence due to König’s lemma there must be an infinite path
[X1]

a0

!0 [E1]
a1

!0 [E2]
a2

!0 [E3]
a3

!0 � � � , where X1 is the leading variable of ∆. If
F 2 [Ei], then F

ai

! G for some G 2 [Ei+1] (it follows directly from the def-
inition of bisimulation—see Definition 2.2). Hence the required path in T
can be constructed just by taking suitable representatives of [Ei] for each
i 2 N.

3.1.1 The Inheritance Tree

Let ∆ be a nPA process. The aim of the following definition is to describe
all variables in a state � 2 VPA(∆) which can potentially emit an action:

24 Chapter 3. Deciding Regularity in Process Algebra

Definition 3.2 (FIRE set). Let ∆ be a nPA process. For each � 2 VPA(∆) w
define the set FIRE(�) in the following way:

FIRE(�) =

8>>>><
>>>>:

; if � = �

fXg if � = X
FIRE(�1) if � = �1:�2 or � = �1T�2

FIRE(�1) [FIRE(�2) if � = �1k�2

Lemma 3.3. Let ∆ be a nPA process, � 2 VPA(∆). Then for each X 2 Var(�

there is � 2 VPA(∆) such that �!� � and X 2 FIRE(�).

Proof: By induction on the structure of �:

� � = X : Obvious.

� induction step: The expression � can be of three forms: � =
:�

� =
k� or � =
T�. Furthermore, there are two possibilities:

1. X appears within
. Then (by ind. hypothesis)
 !�
0 for som

0 such that X 2 FIRE(
0). Hence � !�
0:�, � !�
0k�, o

�!�
0T�, respectively. Clearly X 2 FIRE(
0:�), X 2 FIRE(
0k�)

or X 2 FIRE(
0T�), respectively.

2. X appears within �. Then (by ind. hypothesis) � !� �0 for som

�0 such that X 2 FIRE(�0). Moreover, �!� �, hence �!� �0 and
the proof is finished.

The following concept stands behind many constructions of this section:

Definition 3.4 (Tail set). For each � 2 VPA we define the set Tail(�) � Var i
the following way:

Tail(�) =

8><
>:

fXg if � = X

; if � = � or � = �k
 where � 6= � 6=

Tail(
)�Var(�) if � = �:
 or � = �T
 where � 6= � 6=

3.1. Regularity of Normed PA Processes 25

Remark 3.5. The set Tail(�) provides two important pieces of information:

1. If X 2 Var(�) such that X 62 Tail(�), then there is �0 such that � !� �0,
X 2 FIRE(�0) and Length(�0) � 2.

2. If X 2 Tail(�), then the only occurrence of X in � can become active (i.e.,
X can emit an action) after all other variables disappear.

Definition 3.6 (growing variable). Let ∆ be a nPA process. A variable X 2

Var(∆) is growing if there is � 2 VPA(∆) such that X !� �, X 2 FIRE(�)

and Length(�) � 2.

Lemma 3.7. Let ∆ be a nPA process. The problem whether Var(∆) contains a
growing variable is decidable in polynomial time.

Proof: We define the binary relation GROW on Var(∆) in the following
way:

(X;Y) 2 GROW
def

() 9� 2 VPA(∆) such that X !� � where
Length(�) � 2 and Y 2 FIRE(�):

Clearly Var(∆) contains a growing variable iff there is X 2 Var(∆) such
that (X;X) 2 GROW. We show that the relation GROW can be effectively
constructed in polynomial time. We need two auxiliary binary relations
on Var(∆):

X; Y
def

() there is a summand a� in the defining equation for X in ∆

such that Length(�) � 2, Y 2 Var(∆) and Y 62 Tail(�)

X ,! Y
def

() there is a summand a� in the defining equation for X in ∆

such that Y 2 Var(�).

It is easy to prove that GROW = ,!� : ; : ,!� where ,!� denotes the
reflexive and transitive closure of ,!. Moreover, the composition ,!� : ;

: ,!� can be constructed in polynomial time.

26 Chapter 3. Deciding Regularity in Process Algebra

Let ∆ be a nPA process. If ∆ is not regular then there is (due to Lemma 3.1
an infinite path P of the form X1 = �0

a0

! �1
a1

! �2
a2

! � � � such tha

�i 6� �j for i 6= j. To be able to examine properties of P in a detail, w
define for P the corresponding inheritance tree, denoted ITP. The aim o
this construction is to describe the relationship between variables whic
are located in successive states of P. The way how ITP is constructed i
similar to the construction of a derivation tree for a word w 2 L(G) wher
L(G) is a language generated by a context-free grammar G. We start wit
an example which shows how ITP looks for a given prefix of P.

Example 3.8. Let ∆ be a nPA process given by the following set of equations:

X
def
= b + a(Y:(ZkY))

Y
def
= c + b(Y:Z:X)

Z
def
= a + a((ZkY):X)

Let P = X
a

! Y:(ZkY)
c

! ZkY
a

! ((ZkY):X)kY
b

! ((ZkY):X)k(Y:Z:X) � � � . I
we draw a fragment of ITP , we get the tree of Figure 3.1.

Nodes of ITP are labelled with variables of Var(∆). The state �i; i 2 N[f0
of P corresponds to the set of nodes in ITP which have the distance i from
the root of ITP (the root itself has the distance 0). This set of nodes is called
the ith Level of ITP . Each transition �i

ai

! �i+1 is due to a single variabl
A 2 Var(�i) and a transition A

ai

!
 where the expression ai
 is a summand
in the defining equation for A in ∆ (see Definition 2.9). Moreover, �i+

can be obtained from �i by replacing one occurrence of A with
 (here w
must distinguish between multiple occurrence of the variable A within th
state �i). We call the variable A the active variable of �i and the transition
A

ai

!
 the step of �i. The nodes of ITP which correspond to active variable
are called active. Each active node is placed within a box in the tree o
Figure 3.1.

3.1. Regularity of Normed PA Processes 27

X

~~}}
}}
}}
}}

�� A
AA

AA
AA

A

Y Z

��

Y

��
Z

wwooo
ooo

ooo
ooo

ooo

~~}}
}}
}}
}}

��

Y

��
Z

��

Y

��

X�

��

Y

�� ��>
>>

>>
>>

''OO
OOO

OOO
OOO

OOO
O

Z Y X Y Z X�

Figure 3.1: The inheritance tree associated with the path P.

Nodes and edges of ITP are defined inductively—we define all nodes
in Level i + 1 together with their labels, using the nodes from Level i. More-
over, we also define all edges between nodes in these two levels.

1. i=0: There is just one node N in Level 0 — the root, labelled X1.

2. induction step: Let us suppose that nodes of Level i have been al-
ready defined. For each node U of Level i we define its immediate
successors. There are two possibilities:

� U is not active: Then U has just one immediate successor whose
label is the same as the label of U.

� U is active: Let A
ai

!
 be the step of �i and let n = Length(
).
The node U (whose label is A) has n immediate successors (if
n = 0 then U is a leaf). The lth immediate successor of U is la-
belled by the lth variable from
, reading
 from left to right.
Here l ranges from 1 to n. As we cannot afford to lose the in-
formation about the structure of
 completely, we distinguish

28 Chapter 3. Deciding Regularity in Process Algebra

the case when Tail(
) = fBg where B 2 Var(∆). Then we say
that the last successor of U is a tail of U. All tails in the tree o
Figure 3.1 are marked with a black dot.

A node of ITP which has at least two immediate successors is called
branching node. Branching nodes are especially important because thei
labels are potential candidates to be growing variables. This is the basi
idea which stands behind the notion of Allow set.

Definition 3.9 (Allow set). For each node U of ITP we define the set Allow(U)

Var(∆) in the following way:

� If U is the root of ITP , then Allow(U) = Var(∆).

� If U is an immediate successor of a node V, then

– If V is not branching, then Allow(U) = Allow(V).

– If V is branching and U is not a tail of V, then Allow(U) = Allow(V)

fLabel(V)g.

– If V is branching and U is a tail of V, then Allow(U) = Allow(V).

The next lemma explains what is the relationship between a node U and
its associated set Allow(U):

Lemma 3.10. Let U be a node of ITP . If Label(U) 62 Allow(U) then Label(U) i
a growing variable.

Proof: Let A = Label(U). As A 62 Allow(U), the node U has an ancesto
V such that Label(V) = A, V is branching and U is a descendant of an
immediate successor V0 of V which is not a tail of V. Let B = Label(V0)

As V is branching, it is also active and hence it corresponds to some step
A a

!
 where B 2 Var(
) and B 62 Tail(
). Moreover,
 !�
0 for some

such that B 2 FIRE(
0) and Length(
0) � 2 (see Remark 3.5). Furthermore
as U is a descendant of V0, B !� � where A is contained in �. Due to

3.1. Regularity of Normed PA Processes 29

Lemma 3.3 there is �0 such that � !� �0 and A 2 FIRE(�0). To sum up,
we have A !�
0 !� � where � is obtained from
0 by substituting B

with �0. Clearly Length(�) � 2 and A 2 FIRE(�), hence A is growing as
required.

Now we prove the first main theorem of this chapter:

Theorem 3.11. A nPA process ∆ is regular iff Var(∆) does not contain any
growing variable.

Proof:

“)” If Var(∆) contains a growing variable X, then ∆ is non-regular as it
can reach a state of an arbitrary norm. To see this, it suffices to realize that
X !�
 where Length(
) � 2 and X 2 FIRE(
). Moreover, there is a reach-
able state � of ∆ such that X 2 FIRE(�). Now we can repeatedly substitute
X by
 within �, producing a reachable state of an arbitrary Length (and
hence also norm).

“(” This part of the proof is more complicated. The basic scheme is
similar to the method which was used by Mauw and Mulder in [MM94]
and can be described in the following way: We need to show that if ∆

is not regular then there is a growing variable X 2 Var(∆). As ∆ is
not regular, there is (due to Lemma 3.1) an infinite path P of the form
X1 = �0

a0

! �1
a1

! �2
a2

! � � � such that �i 6� �j for i 6= j. We show that if
Var(∆) does not contain any growing variable, then there are i 6= j such
that �i � �j. It contradicts the assumption above—hence Var(∆) contains
at least one growing variable.

Let ITP be the inheritance tree for the path P. To complete the proof
we need to divide ITP into more manageable units called blocks. Levels of
ITP which contain just one node are called delimiters of ITP. A block of ITP

is a subgraph S of ITP composed of:

1. all nodes and edges between two successive delimiters i and j where
i < j. The only node of Level i is called the opening node of S and the

30 Chapter 3. Deciding Regularity in Process Algebra

only node of Level j is called the closing node of S. Out-going edge
of the closing node and in-going edges of the opening node are not
part of S.

2. all nodes below the delimiter i (including Level i), if there is no de
limiter j with j > i. The only node of Level i is called the opening nod
of S. In-going edges of the opening node are not a part of S.

As Level 0 is a delimiter of ITP , we can view ITP as a vertical sequenc
of blocks. The width of ITP is defined to be the least n 2 N such tha
cardinality of the ith Level of ITP is less or equal n for each i 2 N [f0g. I
there is no such n, the width of ITP is defined to be 1. Similarly, if S i
a block of ITP , the width of S is the least n 2 N such that the cardinalit
of each Level which is a part of S is less or equal n. If there is no such n

the width of S is 1. Furthermore, we define the branching degree of ITP to
be the least n 2 N such that each node U of ITP has at most n immediat
successors. The branching degree of ITP is always finite—it is denoted
by D in the rest of this proof. Each node U of ITP defines its associated
subtree, rooted by U. This subtree is denoted Subtree(U). Although th
notions of block, width, tail, branching node, etc. were originally defined
for ITP , they can be used also for any Subtree(U) of ITP in an obviou
way. We prove that if Var(∆) does not contain any growing variable, the
for each node U of ITP the Subtree(U) has the width at most Dn�1, wher
n = card(Allow(U)). We proceed by induction on n = card(Allow(U)).

1. n=0: If Allow(U) = ;, then clearly Label(U) 62 Allow(U) and henc
Label(U) is growing due to Lemma 3.10. So the implication triviall
holds.

2. induction step: Let card(Allow(U)) = n. We prove that each block o
Subtree(U) has the width at most Dn�1. Let S be a block of Subtree(U
and let V be its opening node. Clearly card(Allow(V)) � n. If V ha
no successors then the width of S is 1. If V is not branching then

3.1. Regularity of Normed PA Processes 31

the only immediate successor of V is the closing node of S, thus the
width of S equals 1. If V is branching, there are two possibilities:

� V does not have a tail. Then each immediate successor V0 of
V has the property card(Allow(V0)) � n � 1. By the inductive
hypothesis, the width of Subtree(V0) is at most Dn�2. As V can
have at most D immediate successors, the width of Subtree(V)

is at most D:Dn�2 = Dn�1. Thus the width of S is also at most

Dn�1.

� V has a tail T. Each immediate successor V0 of V which is dif-
ferent from T has the property card(Allow(V0)) � n � 1. Hence
we can use the inductive hypothesis for each such V0. The only
problem is the node T. However, it suffices to realize that if T
has a branching successor, then the first active successor of T is
the closing node of S (see Remark 3.5). Hence the width of S is
at most (D � 1):Dn�2 + 1.

We have just proved that if Var(∆) does not contain any growing variable
then the width of ITP is at mostDcard(Var(∆))�1. As Var(∆) is finite, there are
only finitely many VPA(∆) expressions with this bounded Length. Hence

�i = �j for some i 6= j and thus �i � �j.

3.1.2 A Construction of the Process ∆0 in Normal Form

In this section we show that if a given nPA process ∆ is regular, then ∆

can be effectively transformed into a finite-state process ∆0 in normal form
such that ∆ � ∆0. Our algorithm is based on the following fact (see Defi-
nition 2.3):

Lemma 3.12. A nPA process ∆ is regular iff ∆ can reach only finitely many
states up to �.

32 Chapter 3. Deciding Regularity in Process Algebra

Our algorithm finds all reachable states � 2 VPA(∆) of ∆ up to �. Fo
each such � a new variable and corresponding defining equation is added
to ∆0.

The relationship between variables of ∆0 and reachable states of ∆ i
described by the set MEM � Var � VPA(∆). This set is initialized t
MEM = f(Y1;X1)g where X1 is the leading variable of ∆ and Y1 is th
leading variable of ∆0.

An element (Y; �) of MEM is said to be undefined if there is no definin
equation for Y in ∆0. The algorithm chooses any undefined element o
MEM and adds a new defining equation for Y to ∆0, possibly producing
new undefined elements of MEM. The algorithm halts when MEM doe
not contain any undefined elements.

Let (Y; �) be an undefined element of MEM. To obtain the definin
equation for Y, the expression �must be first unfolded. The function Unfol

is defined as follows:

Unfold(�) =

8>>>><
>>>>:

P

aij�ij if � = Xj and Xj
def
=

P

aij�ij 2 ∆

Distr(Unfold(�1); �2) if � = �1:�2

Expand1(�1; �2) if � = �1k�2

Expand2((�1; �2) if � = �1T�2

where Expand1, Expand2 and Distr are defined as follows (the function
Expand1 and Expand2 are instances of the CCS expansion law (see [Mil89]
and the function Distr is a form of the right distributivity law (see [BW90])

Expand1(�1; �2) =

P
f a(�01k�2) j �1

a

! �01; a 2 Actg

+

P
f a(�1k�
0

2) j �2
a

! �02; a 2 Actg

Expand2(�1; �2) =

P
f a(�01k�2) j �1

a

! �01; a 2 Actg

Distr(

P

aij�ij; �) =

P

aij(�ij:�)

3.1. Regularity of Normed PA Processes 33

The function Unfold returns an expression of the form

nX

i=1

ai�i

where n 2 N, ai 2 Act and �i 2 VPA(∆). Now the algorithm replaces each

�i with a single variable. There are two possibilities: if the set MEM con-
tains an element (Z; �) such that �i � �, then the expression �i is replaced
with Z. Otherwise, the expression �i is replaced with a new variable W
and the pair (W; �i) is added to MEM. After the replacement of each �i the
defining equation for Y is obtained and it is added to ∆0.

It is easy to see that each variable of ∆0 corresponds to a reachable
state of the process ∆0. Hence the algorithm has to terminate (due to
Lemma 3.12).

Example 3.13. Let ∆ be a nPA process given by the following set of equations:

X
def
= b + a(YkZ):X

Y
def
= c + a(Zk(Z:Z))

Z
def
= c

The process ∆0 is constructed in the following way (the first two elements
of each line constitute an element of MEM, the third element is a result of
Unfold and the last element is the defining equation):

A = X = b + a(YkZ):X = b + aB
B = (YkZ):X = a(Zk(Z:Z)kZ):X + c(Z:X) + c(Y:X) = aC + cD

+ cE
C = (Zk(Z:Z)kZ):X = c((ZkZkZ):X) + c((Zk(Z:Z)):X) = cF + cG
D = Z:X = cX = cA
E = Y:X = cX + a((Zk(Z:Z)):X) = cA + aG
F = (ZkZkZ):X = c((ZkZ):X) = cH
G = (Zk(Z:Z)):X = c(Z:Z:X) + c((ZkZ):X) = cI + cH
H = (ZkZ):X = c(Z:X) = cD
I = (Z:Z:X) = c(Z:X) = cD

34 Chapter 3. Deciding Regularity in Process Algebra

Using this algorithm it is possible to decide bisimilarity for any pair of pro
cesses (∆1;∆2), where ∆1 is a nPA process and ∆2 has finitely many states
First, we check whether ∆1 is regular. If not, then ∆1 6� ∆2. Otherwise, w
construct a finite-state process ∆0

1 in normal form such that ∆1 � ∆0

1 and
check whether ∆0

1 � ∆2.

Theorem 3.14. Bisimulation equivalence is decidable for any pair of processe
such that one process of this pair is a nPA process and the other process has finitel

many states.

3.1.3 Possible Generalization

We already mentioned that the major difference between various proces
algebras is the kind of parallel operator they are equipped with. For ex
ample, CCS has the ‘j’ operator which allows synchronizations on comple
mentary actions (see Section 2.3.1). An obvious question is, whether it i
possible to replace the ‘k’ operator with the ‘j’ operator in the definition o
nPA processes without the loss of decidability of regularity. In this particu
lar case the answer is positive. All constructions used in previous section
are still valid. This is basically due to the fact that synchronizations can
not be forced—each ‘� ’ action which is a result of some synchronization can
be “decomposed” into a sequence of two transitions with complementar
labels. Consequently, we can “decompose” an arbitrary sequence of tran
sitions in such a way that each transition is due to a single variable. Ou
result on nPA processes can be thus applied to nBPA, nBPP, nBPA� , and
nBPP� processes as follows:

Definition 3.15. Let ∆ be a nBPA, nBPP, nBPA� , or nBPP� process. A variabl
X 2 Var(∆) is growing if X !� X:�, X !� Xk�, X !� X:�, or X !� Xj�

where � is a nonempty expression, respectively.

Proposition 3.16. A nBPA, nBPP, nBPA� , or nBPP� process ∆ is regular if
Var(∆) does not contain any growing variable.

3.2. Regularity w.r.t. Other Equivalences 35

Naturally, there are also well-known parallel operators which cannot be
plugged into nPA syntax so painlessly—if we choose e.g., the ‘kA’ operator
of CSP (see [Hoa85]) which forces synchronizations on actions from A,
regularity becomes undecidable. This basically due to the fact that counters
can be simulated using the ‘kA’ operator. Those counters can be combined
in parallel with a finite-state control unit and forced to cooperate with it.
In other words, using this operator it is possible to simulate an arbitrary
Minsky machine (see [Min67]). Undecidability of regularity follows from
a simple reduction of the halting problem of the Minsky machine. Details
are discussed in Section 3.3.

Another possible generalization of PA syntax is to add a finite-state
control unit to PA processes. This class of processes is formally introduced
in Section 3.3 where we prove that an arbitrary Minsky machine can be
simulated by a PA process with finite-state control unit (even by a normed
one). Regularity is thus undecidable again.

An obvious question we have not addressed so far is whether regular-
ity is decidable for all (not necessarily normed) PA processes. This prob-
lem is open at the time of writing this thesis—however, P. Jančar recently
observed that this problem is at least semi-decidable. Further information
can be found in Section 3.4.

3.2 Regularity w.r.t. Other Equivalences

Bisimilarity is not the only behavioural equivalence which appeared in
the literature. In Section 2.2 we presented van Glabbeek’s hierarchy of be-
havioural equivalences, whose definitions can be found in Appendix A.
The notion of regularity can be defined w.r.t. those equivalences in the
same way as in case of bisimilarity (see Definition 2.12). However, there
is a notable difference: if we have bisimilar transition systems T1;T2 such
that T2 has finitely many states, then for each reachable state p of T1 there

36 Chapter 3. Deciding Regularity in Process Algebra

is a reachable state q of T2 such that p � q. In other words, T2 gives
complete characterization of all reachable states of T1. This is no more tru
for the other equivalences; if we take e.g., trace equivalence and two tran
sition systems T1;T2 such that T1 =tr T2 and T2 has finitely many states
then the only thing we can say about T1 and T2 is that their roots have th
same sets of traces—but if we take a reachable state p of T1 (which is no
the root of T1), it need not be trace equivalent to any reachable state of T2

If we want to check some temporal property (e.g., something bad neve
happens) of T1, then we are usually interested in all reachable states of T1

it is thus sensible to ask whether there is a finite transition system T3 such
that each reachable state of T1 is equivalent to some state of T3. If so, w
can examine features of T3 instead of T1 and as T3 is finite, it should b
easier. This is the basic idea which leads to the notions of finite characteri
zation and strong regularity. In this section we present some basic result
which describe the relationship between regularity and strong regularit
and between finite representations and finite characterizations.

As we want to keep this section general, we abstract from the concret
model of process algebras and we define all notions in terms of transitio
systems (we adopt the definition of transition system from Section 2.1
The class of all transition systems is denoted by T .

Remark 3.17. Each state p of a transition system T = (S;Act;!; r) determine
a unique transition system T(p) = (S;Act;!; p). All notions originally define
for transition systems can be used for their states in this sense too.

Definition 3.18 (finite representation). Let T be a transition system and le

$ be an equivalence over T . A finite-state transition system T0 is said to be
finite representation of T w.r.t. $ if T $ T0.

A finite representation T0 of T represents the behaviour of the proces
which is associated with the root of T. As we shall see, representation
generally do not say much about behaviours associated with reachabl
states of T. We need another notion:

3.2. Regularity w.r.t. Other Equivalences 37

Definition 3.19 (finite characterization). Let T be a transition system and let

$ be an equivalence over T . A finite-state transition system T0 is a finite char-
acterization of T w.r.t. $ if the following conditions hold:

� T $ T0

� States of T0 are pairwise nonequivalent w.r.t. $.

� For each reachable state p of T there is a reachable state q of T0 with p $ q.

A finite characterization T0 of T describes the whole system T—for each
reachable state of T there is its finite characterization within T0 (in the sense
of Remark 3.17).

Now we examine the question when finite characterizations exist and
what is their relationship with representations. First we need to introduce
further notions:

Definition 3.20 (quotients). Let $ be an equivalence over T . For each transi-
tion system T = (S;Act;!; r) we define the transition system T=$ = (S0;Act;

!0; r0) in the following way:

� S0 contains equivalence classes of S=$ (the equivalence class containing
p 2 S is denoted by [p]).

� The relation !0 is determined by the rule p
a

! q) [p]
a

!0 [q].

� r0 = [r]

The equivalence$ is said to have quotients if for any T 2 T the natural projec-
tion p : T �! T=$, assigning to each state q of T the state [q] of T=$, is a part
of $ (i.e., q $ [q] for each state q of T in the sense of Remark 3.17).

The notion of finite characterization is naturally motivated. Now we can
ask what features of a transition system T guarantee an existence of a finite
characterization of T. This is the aim of the following definition:

38 Chapter 3. Deciding Regularity in Process Algebra

Definition 3.21 (strong regularity). Let $ be an equivalence over T . A tran
sition system T is strongly regular w.r.t. $ if T can reach only finitely man

states up to $.

The next lemma says when the condition of strong regularity guarantee
an existence of a finite characterization.

Lemma 3.22. Let $ be an equivalence over T which has quotients. Then T ha
a finite characterization w.r.t. $ iff T is strongly regular w.r.t. $.

Proof:

“)” Obvious.
“(” As T is strongly regular w.r.t. $ and $ has quotients, the transition
system T=$ is a finite characterization of T.

Now we prove that the requirement of “having quotients” from the previ
ous lemma is not too restrictive in fact. There are many reasonable equiv
alences which satisfy this condition.

Lemma 3.23. The equivalences =tr, =ct, =f, =r, =ft, =rt, =pf have quotients.

Proof: We will not give a separate proof for each of those equivalences
because the main idea is always the same. The crucial thing is to real
ize that equivalent states always have the same sets of initial actions (se
Appendix A). Here we present a full proof for failure equivalence.

Let T = (S;Act;!; r) be a transition system and let p 2 S be a state o
T. We show that F(p) = F([p]) where [p] denotes the equivalence class o
S==f containing the state p:

“�”: Let (w;Φ) 2 Act� �P(Act) be a failure pair of p (see Appendix A). By
definition, there is a state p0 2 S such that p

w

! p0 and I(p0) \ Φ = ;. Bu
then also [p]

w

! [p0]. The set I([p0]) is the union of all I(q) such that q 2 [p0

As u =f v implies I(u) = I(v), we can conclude that I([p0]) = I(p0), henc
I([p0]) \ Φ = ;, thus (w;Φ) 2 F([p]).

3.2. Regularity w.r.t. Other Equivalences 39

“�”: Let (w;Φ) 2 Act� � P(Act) be a failure pair of [p] and let w = ak : : : a1.
By definition, there is a sequence of transitions [pk]

ak

! [pk�1]
ak�1

! : : :

a1

! [p0]

in T==f such that p 2 [pk] and I([p0])\Φ = ;. We show that for each state q
of T such that q 2 [pi], where i 2 f0; : : : ; kg, the pair (ai : : : a1;Φ) belongs to
F(q). We proceed by induction on i:

� i = 0 : as I(q) = I([p0]), we have (�;Φ) 2 F(q).

� induction step: as [pi]
ai

! [pi�1], there are states u; v of T such that
u

ai

! v, u 2 [pi] and v 2 [pi�1]. By the inductive hypothesis we have
(ai�1 : : : a1;Φ) 2 F(v), hence (ai : : : a1;Φ) 2 F(u). As q =f u, the pair
(ai : : : a1;Φ) belongs to F(q).

Lemma 3.24. Simulation equivalence, ready simulation equivalence and 2-nested
simulation equivalence have quotients.

Proof: Let T = (S;Act;!; r) be a transition system and let p 2 S be a state
of T. First we show that p =s [p] where [p] denotes the equivalence class of
S==s containing the node p. By definition, we must show an existence of
two simulations P;R such that (p; [p]) 2 P and ([p]; p) 2 R. The simulation
P is exactly the natural projection p : T ! T==s :

P = f(q; [q]) j q 2 Sg

It is easy to check that P is indeed a simulation. The way how R is defined
is more complicated:

([u]; v) 2 R iff there exists a derivation scheme for ([u]; v):
A derivation scheme for ([u]; v) of depth k � 0 consists of:

� a path [m0]
a1

! [m1]
a2

! : : :

ak

! [mk] in T==s ,

� a set of nodes fqi;j j 0 � i � k; i � j � kg � S

� a set of states fr0; : : : ; rk�1g � S; if k > 0

40 Chapter 3. Deciding Regularity in Process Algebra

q0;0 = pr0

q0;1q1;1r1

q0;2q1;2q2;2r2

q0;k�1q1;k�1q2;k�1q3;k�1qk�1;k�1rk�1

q0;k = vq1;kq2;kq3;kqk�1;kqk;k

� �

� �

� �

� �

� �� �

� �� �� �

� �� �� �� �

� �

??

???

??????

a1a1

a2a2a2

U0

U0

U0

U1

U1U2

U0

U0

U1

U1

U2

U2

Uk�1

Uk�1

akakakakakak

......

......

......

......
.........

.........

[p] = [m0] = r0 q0;0

[m1] = r1 q1;1

[m2] = r2 q2;2

[mk�1] = rk�1 qk�1;k�1

[u] = [mk] = qk;k

@@R
@@R

@@R

a1

a2

ak

......

Figure 3.2: The structure of a derivation schema for ([u]; v).

� a set of simulations fU0; : : : ;Uk�1g; if k > 0

such that:
� p = q0;0, u 2 [mk], v = q0;k

� ri 2 [mi] for 0 � i < k, qi;i 2 [mi] for 0 � i � k

� ri
ai+1

! qi+1;i+1 for 0 � i < k

� qi;j
aj+1

! qi;j+1 for 0 � j < k, 0 � i � j

� (ri; qi;i) 2 Ui for 0 � i < k

� (qi+1;j; qi;j) 2 Ui for 0 � i < k, i < j � k

The structure of a derivation scheme for ([u]; v) is shown in Figure 3.2.
The relation R is a simulation—whenever ([u]; v) 2 R and [u]

a

! [u0

then there is a state v0 such that v a

! v0 and ([u0]; v0) 2 R. This is due to an
existence of a derivation scheme for the pair ([u]; v). We can simply add

3.2. Regularity w.r.t. Other Equivalences 41

new “layer” to the scheme and construct a derivation scheme for the pair
([u0]; v0). The way how it is done is obvious. Moreover, R contains the pair
([p]; p) because this pair has a derivation scheme of depth 0.

This construction can be also used for ready simulation equivalence.
The simulation P becomes a ready simulation. It follows directly from
the fact that two states which are ready simulation equivalent have the
same sets of initial actions. The notion of derivation scheme has to be
modified slightly—we now require that fU0; : : : ;Uk�1g is a set of ready
simulations. Then R is also a ready simulation: assume that ([u]; v) 2 R.
Then I([u]) = I(v) because qk;k 2 [u] and U0; : : : ;Uk�1 are ready simulations
now.

In case of 2-nested simulation equivalence the construction can be used
too. The simulation P becomes a 2-nested simulation because we can eas-
ily prove that p =s [p] for each state p of T. The notion of derivation scheme
has to be modified again—fU0; : : : ;Uk�1g must be a set of 2-nested simu-
lations now. We prove that R is a 2-nested simulation. Let ([u]; v) 2 R. We
need to show that [u] =s v. By definition, two simulations Q;V such that
([u]; v) 2 Q and (v; [u]] 2 V have to be constructed. Clearly R is a simu-
lation which contains the pair ([u]; v), hence we can choose Q = R. The
construction of V is slightly more complicated. As ([u]; v) 2 R, there is a
derivation scheme for ([u]; v). U0; : : : ;Uk�1 are 2-nested simulations, hence
qk;k =s v. Therefore there is a simulation K containing the pair (v; qk;k). It
is easy to check that V = f(e; [f]) j (e; f) 2 Kg is a simulation. Moreover,
(v; [u]) 2 V because qk;k 2 [u].

We have just proved the following theorem:

Theorem 3.25. Each equivalence in van Glabbeek’s hierarchy has quotients.

There are also other well-known equivalences which have quotients, e.g.,
weak bisimilarity (see [Mil89]) or branching bisimilarity (see [vGW89]).
But this property is naturally not general—there are also equivalences

42 Chapter 3. Deciding Regularity in Process Algebra

which do not have quotients. A simple example is language equivalenc
(denoted by ‘=L’). Two transition systems are language equivalent if thei
roots have the same sets of completed traces (realize that language equiv
alence is different from completed trace equivalence and it is even incom
parable with trace equivalence—see Appendix A). As a counterexampl
we can choose e.g., the transition system T = (S;Act;!; r) where

S = fr; p; qg

Act = fa; bg

! = f(r; a; p); (r; b; q); (q; b; q)g

Transition systems T and T==L look as follows:
�

a

��		
		
		 b

��5
55

55
5 �

b
��

a
��

� �

b

ZZ �

b

ZZ

Clearly r 6=L [r] because ct(r) = fag and ct([r]) = ;.
We have seen that if we restrict our attention to behavioural equiva

lences which have quotients, then the condition of strong regularity be
comes necessary and sufficient for an existence of a finite characterization
An interesting question is, what is the exact relationship between condi
tions of regularity and strong regularity. First, we already know that ther
are equivalences for which these two conditions coincide (e.g., bisimilar
ity). The following notion aims to cover further examples of such equiva
lences:

Definition 3.26. An equivalence $ over T is safe if whenever T $ T0 then fo
each reachable state p of T there is a reachable state p0 of T0 such that p $ p0.

Lemma 3.27. Let $ be a safe equivalence over T which has quotients. Then T
is strongly regular w.r.t. $ iff T is regular w.r.t. $.

3.2. Regularity w.r.t. Other Equivalences 43

Proof:

“)” Obvious.
“(” We prove that the transition system T=$ is a finite characterization
of T. As $ has quotients, T $ T=$. As $ is safe, for each reachable state
p of T there is a reachable state [q] of T=$ such that p $ [q]. Moreover,
states of T=$ are pairwise nonequivalent.

In other words, if$ is a safe equivalence over T which has quotients then
each transition system T has a finite representation iff T has a finite char-
acterization. We have already mentioned some examples—bisimilarity,
weak bisimilarity and branching bisimilarity are safe and have quotients.
But there are also equivalences for which conditions of regularity and
strong regularity are really different.

Lemma 3.28. For each behavioural equivalence $ which lies under ready simu-
lation equivalence in van Glabbeek’s hierarchy (including this relation) there is a
transition system T such that T is regular w.r.t. $ and T is not strongly regular
w.r.t. $.

Proof: Let T1 = (S1;Act1;!1; r1), T2 = (S2;Act2;!2; r2) be transition sys-
tems where:

S1 =

1[

i=0

f(i; j) j i; j 2 N [f0g; 0 � j � i + 1g

Act1 = fag

!1 =

1[

i=0

f ((i; j); a; (i; j + 1)) j 0 � j � ig [f((0; 0); a; (0; 0))g

[f ((i; 0); a; (i + 1; 0)) j i 2 N [f0gg

r1 = (0; 0)

44 Chapter 3. Deciding Regularity in Process Algebra

r�
��
?

a

a

- - - -a a a a

?b ?
?

b
b

b

a

a

?
?

?
b

b
b

b

a

a

a

?
?

?
?

b
b

b
b

b

a

a

a

a
?

?
?

?
?

b
b

b
b

b
b

a

a

a

a

a

.....
r b-�

��
?

a

a

T1 T2

Figure 3.3: Transition systems from the proof of Lemma 3.28

S2 = fA;Bg

Act2 = fag

!2 = f(A; a;A); (A; a;B)g

r2 = A

If we draw these transition systems, we obtain pictures of Figure 3.3.
The transition system T1 is not strongly regular w.r.t. trace equivalence

because tr((i; 1)) (tr((i + 1; 1)) for each i 2 N [f0g, thus T1 contain
infinitely many states up to trace equivalence. Therefore T1 is not strongly
regular w.r.t. any equivalence in van Glabbeek’s hierarchy.

Now we show that T1 =rs T2. By definition, two ready simulations R;S

such that (r1; r2) 2 R and (r2; r1) 2 S have to be constructed:

R =

1[

i=0

f ((i; j);A) : 0 � j � ig [

1[

i=0

f ((i; i + 1);B) g

S = f (A; (0; 0)); (B; (0; 1)) g

It is easy to check that R;S are ready simulations. Moreover, ((0; 0);A) 2 R

3.2. Regularity w.r.t. Other Equivalences 45

and (A; (0; 0)) 2 S.
As T1 =rs T2, transition systems T1;T2 are equivalent w.r.t. any be-

havioural equivalence which lies under ready simulation equivalence in
van Glabbeek’s hierarchy. As T2 is finite, the system T1 is regular w.r.t.
each of these equivalences.

Lemma 3.29. There is a transition system T such that T is regular w.r.t. possible-
futures equivalence and 2-nested simulation equivalence, but T is not strongly
regular w.r.t. these equivalences.

Proof: Let T1 = (S1;Act1;!1; r1), T2 = (S2;Act2;!2; r2) be transition sys-
tems where:

S1 = N [f0g

Act1 = fag

!1 = f (i; a; i + 1) j i 2 Ng [f (i; a; i� 1) j i 2 Ng

r1 = 1

S2 = fA;B;Cg

Act2 = fag

!2 = f (A; a;B); (A; a;C); (C; a;A) g

r2 = A

Systems T1;T2 can be depicted as follows:

r

a

- - - -� � � �

a a a a

a a a a

b b b b

?b

..... r

a

?b

b-�

a

a

T1 T2

We show that T1 has infinitely many states w.r.t. =pf and =2. Let i; j 2

N; i < j, be states of T1. The state i has a possible future (ai; ;). Clearly

46 Chapter 3. Deciding Regularity in Process Algebra

(ai; ;) 62 PF (j), hence i 6=pf j. As 2-nested simulation equivalence is abov
possible-futures equivalence in van Glabbeek’s hierarchy, the system T

has infinitely many states also w.r.t. =2, thus T1 is not strongly regula
w.r.t. =2 and =pf.

It remains to prove that T1 is regular w.r.t. =2 and =pf . We show tha
T1 =2 T2. First we have to realize which states of T1 and T2 are simulation
equivalent. Clearly 0 =s B. If i 2 N is odd then i =s A and if i 2 N is even
then i =s C. Following relations are the required simulations:

Ri = f (k;A) j k 2 N ^ k is oddg [f (k;C) j k 2 N [f0g ^ k is eveng

Si = f (A; i); (B; i + 1); (C; i + 1) g

Now we can define two 2-nested simulations which relate roots of T1 and
T2:

R = f (i;A) j i 2 N ^ i is oddg [f (i;C) j k 2 N ^ i is eveng [f(0;B)g

S = f (A; 1); (B; 0); (C; 2) g

Elements of R;S are pairs of simulation equivalent states. Now it is eas
to check that R;S are 2-nested simulations. As (1;A) 2 R and (A; 1) 2 S
transition systems T1;T2 are 2-nested simulation equivalent.

As T1 =2 T2 and possible-futures equivalence lies under 2-nested simu
lation equivalence in van Glabbeek’s hierarchy, systems T1 and T2 are also
possible-futures equivalent. Thus T1 is regular w.r.t. =2 and =pf.

We have just proved the following theorem:

Theorem 3.30. Let $ be an equivalence in van Glabbeek’s hierarchy which lie
under bisimilarity. Then there is T 2 T such that T is regular w.r.t. $ and T i

not strongly regular w.r.t. $.

An open problem is whether the notions of regularity and strong regu
larity have different decidability features. In the next section we presen

3.3. Negative Results 47

some negative results, stating that both regularity and strong regularity
can be undecidable in certain process algebras. From the practical point of
view it would be much more interesting to obtain some positive results,
but this area seems to be quite unexplored.

3.3 Negative Results

In this section we present some negative results, stating that regularity
and strong regularity w.r.t. all equivalences of van Glabbeek’s hierarchy
are undecidable in the class of processes which is obtained from PA by
adding a finite-state control unit. As we shall see, those problems are un-
decidable even for normed processes of that class. Our results are proved
in a uniform way by a simple reduction of the halting problem of the Min-
sky machine. This technique can also be applied to other process algebras
which are powerful enough to simulate an arbitrary Minsky machine.

3.3.1 The Minsky Machine

The Minsky machine (denoted here by M) is equipped with two counters
C1;C2 which can store nonnegative integers. The behaviour ofM is deter-
mined by a finite-state program, composed of m 2 N labelled statements:

l1 : s1

l2 : s2

...
lm�1 : sm�1

lm : HALT

where for each i; 1 � i < m the statement si has one of the two forms:

si =

8<
:

Cj = Cj + 1; goto lk

if Cj = 0 then goto lk else Cj = Cj � 1; goto ln;

48 Chapter 3. Deciding Regularity in Process Algebra

where j 2 f1; 2g. The machine M starts its execution (with given inpu
values on C1;C2) from the command l1. M halts if it reaches the command
‘HALT’ in a finite number of steps, and diverges otherwise. Undecidabilit
of the halting problem of the Minsky machine has been demostrated b
Minsky in [Min67].

3.3.2 Extending PA Processes with a Finite-state Contro

Unit

In this section we explore a calculus obtained by extending PA processe
with a finite-state control unit. First we explain what happens if we add
a finite-state control unit to BPA and BPP processes, because these model
have been already studied by other researchers.

Any BPA process ∆ in GNF can be viewed as a push-down proces
(PDA; see e.g., [MS85]) whose control unit has just one state—we can
imagine that reachable states of ∆ are stored on a stack with the left
most variable on the top. A well-known fact from the theory of forma
languages and automata says that if we are interested in language equiva
lence, then the expressive power of context-free grammars and push-dow
automata coincide. As BPA processes can be seen as context-free gram
mars in GNF, we can ask the same question for bisimilarity. The answer i
surprising—there are PDA processes for which there are no bisimilar BPA
processes (this was demonstrated in [CM90]). In other words, if we add
a finite-state control unit to BPA, we get a strictly more expressive calcu
lus. Stirling has recently shown in [Sti96] that bisimilarity is decidable fo
normed PDA processes (he defines a PDA process to be normed if it ca
always empty its stack). It is easy to see that regularity w.r.t. bisimilarity i
also decidable for normed PDA processes—such a process is not regular if
there is no bound on the length (or height) of the stack, and this is clearl
decidable. Further decidability issues for PDA processes are discussed i

3.3. Negative Results 49

Section 3.4.

The idea of adding a finite-state control unit is quite general—the unit
can be seen as a finite-state context for process variables which can behave
differently under different contexts and which can change the context by
emitting an action. If we extend BPP processes in this way, we obtain so-
called parallel push-down processes (PPDA). The only difference between
PDA and PPDA processes is that the “stack” of PPDA has random access
capability (remember that reachable states of BPP processes are multisets
of variables which are stored on the “stack” now). Moller demonstrated
in [Mol96] that the expressive power of PPDA in strictly greater then the
one of BPP. Decidability properties of PPDA were examined by Hirshfeld;
he noticed that PPDA processes form a subclass of Petri nets and hence
all positive decidability results on Petri nets also apply to PPDA (see Sec-
tion 3.4). However, some negative results remain valid too—the most sig-
nificant example is undecidability of bisimilarity for PPDA1 (see [Mol96]).

Now we can ask what happens if we add a finite-state control unit
to PA processes (we denote the resulting calculus PAPDA for short). We
show that PAPDA processes are strictly more expressive than PA, PDA
and PPDA. The reason is quite simple—PAPDA is a calculus with full Tur-
ing power. We show that an arbitrary Minsky machine can be simulated
by an effectively constructible PAPDA process (even by a normed one).
This fact brings other negative results on PAPDA processes, e.g., unde-
cidability of regularity and strong regularity w.r.t. any equivalence of van
Glabbeek’s hierarchy.

Definition 3.31 (PAPDA processes). A PAPDA process is formally defined as
a tuple (Q;V;Λ;P;R) where

� Q is a finite set of states.

1This result is due to Hirshfeld; it is obtained by utilizing Jančar’s technique for show-
ing undecidability of bisimilarity for labelled Petri nets [Jan94].

50 Chapter 3. Deciding Regularity in Process Algebra

� V is a finite set of variables.

� Λ is a finite set of actions.

� P � (Q�V)�Λ� (Q�VPA(V)) is a finite transition relation (VPA(V
denotes the set of all VPA expressions over V—see Section 2.3.2).

� R 2 Q� VPA(V) is a distinguished pair called root.

As usual, we will write p� instead of (p; �) where (p; �) 2 Q�VPA(V), and
pX a

! q� instead of ((p;X); a; (q; �)) 2 P. Furthermore, we will identify al
VPA expressions which are structurally congruent (see Definition 2.3).

To be able to extend the transition relation P to elements of Q�VPA(V
we first need to introduce a predicate Active(X; i; �) which is true iff the it

occurrence of the variable X within a VPA expression � (reading � from
left to right) can emit an action.

Definition 3.32 (Active predicate). The predicate Active is defined inductivel
on the structure of �:

� � = Y. Then Active(X; i; �) is True if Y = X and i = 1, and False other
wise.

� � = �:
 or � = �T
. Then Active(X; i; �) = Active(X; i; �).

� � = �k
. Then Active(X; i; �) = Active(X; i; �)_Active(X; i�k;
), wher
k denotes the number of occurrences of X in �.

The transition relation P is extended to elements of Q�VPA(V) in the fol
lowing way: p�

a

! q� iff there is a transition pX
a

! q
 in P and i 2 N such
that Active(X; i; �) is True, and � can be obtained from � by substitutin
the ith occurrence of X with
. The way how PAPDA processes determin
their associated transition systems is now obvious.

Now we show that an arbitrary Minsky machine M whose program
consists of m statements can be simulated by a PAPDA process which can

3.3. Negative Results 51

be effectively constructed. For simplicity, assume that M starts its exe-
cution with both counters initialized to 0 (we can afford this because the
halting problem is clearly undecidable also for this subclass of Minsky
machines). The simulating PAPDA process = (Q;V;Λ;P;R) looks as
follows:

� Q = fq1; : : : ; qmg

� V = fI1; I2;Z1;Z2g

� Λ = fag

� R = q1(Z1kZ2)

The transition relation P is constructed using the following rules:

1. If the program of M contains an instruction of the form

li : Cj = Cj + 1; goto lk

then P contains the elements qiZj
a

! qk(Ij:Zj) and qiIj
a

! qk(Ij:Ij).

2. If the program of M contains an instruction of the form

li : if Cj = 0 then goto lk else Cj = Cj � 1; goto ln

then P contains the elements qiZj
a

! qkZj and qiIj
a

! qn.

3. Each element of P can be derived using the rule 1 or 2.

Intuitively, counters of M are simulated by two BPA processes which are
combined in parallel on the “stack” and the program of M is simulated
by the finite-state control unit of . Each step of M is mimicked by

which emits the action a. Let Y be a process defined by Y
def
= aY. If the

machine M diverges then � Y, hence $ Y for any equivalence $ of
van Glabbeek’s hierarchy. If the machine M halts then 6=tr Y, because

emits the action a only finitely many times (note that M is deterministic).
Hence 6$ Y for any equivalence $ of van Glabbeek’s hierarchy. This
reduction proves the following theorem:

52 Chapter 3. Deciding Regularity in Process Algebra

Theorem 3.33. Let be a PAPDA process, let ∆ be a finite-state process an
let $ be an equivalence of van Glabbeek’s hierarchy. It is undecidable whethe

 $ ∆.

It is worth noting that M can be simulated even by a normed2 PAPDA
process 0 which can be obtained from just by adding a special state t t
Q and the following set of transitions to P:

fqiU
a

! t j U 2 V; 1 � i < mg

The only difference between and 0 is that 0 can terminate in one step
at any moment (due to the deadlock in the state t). If M diverges, then

has an infinite run—it is thus bisimilar to Y0

def
= aY0 + a. If M halts, then

is not trace equivalent to Y0. Theorem 3.33 is thus valid also for normed
PAPDA processes.

Theorem 3.34. Let ' be a PAPDA process and let $ be an equivalence of va
Glabbeek’s hierarchy. It is undecidable whether ' is (strongly) regular w.r.t. $.

Proof: We show that the halting problem of the Minsky machine can b
reduced to both mentioned problems. Let M be an arbitrary Minsky ma
chine and let be the PAPDA process which simulates the execution o

M. Now we modify the process slightly, producing a new PAPDA pro
cess %: we add a new state s to Q, two new variables B;C to V and th
following set of transitions to P:

fqmU
b

! sB j U 2 Vg [fsB
b

! sBC; sB
c

! s; sC
c

! sg

If M diverges, then % � � Y where Y
def
= aY, hence % is (strongly) regula

w.r.t. $. Now we show that if M halts, then % is not (strongly) regula
w.r.t. $.

2A PAPDA process is normed if its corresponding transition system has the featur
that from any state it is possible to reach a state which does not have any successors.

3.3. Negative Results 53

As M halts, % is normed because % ak

! qm� for some k 2 N [f0g, � 2

VPA(V) and qm� is normed (realize that the first k steps of % are completely
deterministic). Traces of % are thus exactly prefixes of completed traces of

% which look as follows:

ct(%) = fakbici j i 2 Ng

Assume that % is trace equivalent to some finite-state process E with n
states. Then E has a trace akbncn. As E has only n states, it had to pass
through the same state twice before emitting the first c; there are three
possibilities:

1. E ap

! F aq

! F arbncn

! G where p + q + r = k, q � 1. But then also ap+rbncn

is a trace of E and as this sequence of actions is not a prefix of any
element of ct(%), % 6=tr E and we have a contradiction.

2. E
ap

! F
aqbr

! F
bscn

! G where p + q = k, r + s = n, r � 1. But then apbscn is a
trace of E which is not a trace of % (because s < n).

3. E
akbp

! F
bq

! F
brcn

! where p + q + r = n, q � 1. Then akbp+rcn is a trace of
E which is not a trace of %.

We just proved that ifM halts, then % is not regular w.r.t. trace equivalence.
Hence % is not regular w.r.t.$. As$ has quotients, strong regularity w.r.t.

$ implies regularity w.r.t. $. Thus non-regularity of % w.r.t. $ implies
that % is not strongly regular w.r.t. $.

The previous theorem is valid also for normed PAPDA processes—we can
use the same proof, replacing with 0.

This technique also works for other process algebras which are suffi-
ciently expressive to simulate any Minsky machine. We can mention e.g.,
BPP processes where the merge operator ‘k’ is replaced with the ‘kA’ paral-

54 Chapter 3. Deciding Regularity in Process Algebra

lel operator of CSP (see [Hoa85]). This operator has the following seman
tics (A is a set of actions):

E
b

! E0

EkAF
b

! E0kAF
(b 62 A) F

b

! F0

EkAF
b

! EkAF0

(b 62 A) E
a

! E0 F
a

! F0

EkAF
a

! E0kAF0

(a 2 A)

The ‘kA’ operator forces synchronizations on actions from the set A. Taub
ner proved in [Tau89] that using this operator it is possible to simulat
counters (and consequently an arbitrary Minsky machine—it suffices t
combine two counters in parallel with a finite-state process which simu
lates the control unit. The three components can be forced to cooperate).

Another example is BPP� algebra enhanced with the restriction opera
tor ‘nL’ (see [Mil89]) which can force synchronizations on complementar
actions (L is a set of actions such that � 62 L):

E a

! E0

EnL a

! E0nL
(a; a 62 L)

BPP� processes can simulate an arbitrary Minsky machine in a similar wa
as the previously mentioned ones. The crucial thing is the description o
counters which is due to Taubner [Tau89] again.

3.4 Related Work and Future Research

In this section we present further results which are related to the subject o
this chapter. Here we discuss the work of other researchers and therefor
we will not give full proofs of all theorems. Nevertheless, sometimes w
describe the basic idea of the proof or comment the technique briefly, be
cause it well illustrates the variety of possible approaches to the problem

The question whether for a given infinite-state behaviour there is a
equivalent finite-state one has been known from the theory of formal lan
guages for a long time. However, the problem is not too interesting in thi

3.4. Related Work and Future Research 55

setting, because it becomes undecidable even for context-free grammars—
it is folklore that the problem whether a given context-free grammar G

generates regular language is undecidable.

The question was later “rediscovered” within the framework of con-
currency theory (after new, well-motivated equivalences appeared). Taub-
ner proved in his Ph.D. thesis (also published as [Tau89]) that regularity
w.r.t. bisimilarity and trace equivalence is undecidable for certain process
algebras, namely for CCS and TCSP. The crucial idea is that it is possible to
simulate an arbitrary Minsky machine by an effectively constructible pro-
cess of CCS and TCSP. Taubner also showed that mentioned algebras can
simulate counters (and consequently an arbitrary Minsky machine) even
without the use of renaming. Obtained sub-algebras correspond to BPP�

enhanced with the restriction operator, and BPP where the merge operator
‘k’ is replaced with the parallel operator ‘kA’ of CSP, respectively.

In Section 3.3.2 we have presented another process algebra with full
Turing power—PAPDA. We have also extended Taubner’s undecidability
results to all equivalences of van Glabbeek’s hierarchy using a simple re-
duction of the halting problem.

The first positive decidability result on regularity is due to Mauw and
Mulder. They proved in [MM94] that “regularity” is decidable for BPA
processes. The quotes are important here because Mauw and Mulder used
the word regularity in a different sense—a BPA process ∆ is “regular” if
for each variable Y 2 Var(∆) there is a finite-state process ∆Y such that
Y � ∆Y. The notion of “regularity” is thus strongly dependent on BPA
syntax. It is not clear how to define “regularity” for e.g., Petri nets. Never-
theless, this result is valuable because in case of normed BPA processes the
notions of regularity and “regularity” coincide (as observed in [Kuč95]).
Moreover, our proof of decidability of regularity for nPA processes (see
Section 3.1) was inspired by the technique used in [MM94].

Bosscher and Griffionen later proved that regularity is actually decid-

56 Chapter 3. Deciding Regularity in Process Algebra

able in a larger subclass of BPA processes (see [BG96]) which includes als
some BPA processes which are not normed.

A definitive answer was given by Burkart, Caucal and Steffen [BCS96]
They proved that regularity is decidable for all BPA processes. The tech
nique is rather different from the previous ones—it is shown that for an
BPA process ∆ which generates a transition system T it is possible to con
struct a deterministic graph grammar Gwhich generates the transition sys
tem T=� . Hence ∆ is non-regular iff G generates an infinite graph, and i
is easily decidable.

Jančar and Esparza presented in [JE96] another positive result statin
that regularity is decidable for labelled Petri nets. This implies decidabilit
of regularity for BPP and PPDA processes because any BPP or PPDA pro
cess can also be seen as a (rather special) Petri net. The proof is obtained
by a combination of two semi-decidability results. Semi-decidability o
the positive subcase follows from the fact that bisimilarity is decidabl
for pairs of labelled Petri nets such that one net of this pair is bounded.
A labelled Petri net N is regular iff there is a bounded net R such tha
N � R. But this condition is clearly semi-decidable because we can enu
merate all bounded nets and check whether we already found R. Semi
decidability of the negative subcase is obtained by showing that if a give
Petri net is not regular, then there is a special marking which fulfills certai
semi-decidable conditions. This marking plays the role of finite “witness
of non-regularity, whose existence is again semi-decidable by exhaustiv
search.

Decidability of regularity w.r.t. other equivalences of van Glabbeek’
hierarchy is discussed in [JM95]. Jančar and Moller proved that regular
ity w.r.t. trace equivalence and simulation equivalence is undecidable fo

3A Petri net N is bounded if the total number of tokens which are stored within place
of N cannot exceed certain limit during the execution of N. Bounded Petri nets thu
correspond to finite-state processes.

3.4. Related Work and Future Research 57

labelled Petri nets. At the same time they proved that mentioned equiva-
lences are decidable for pairs of labelled Petri nets such that one net of this
pair is bounded. From this we can conclude that the negative subcase of
the regularity problem is even not semi-decidable for these equivalences.

An important open problem in the area of “regularity testing” is de-
cidability of regularity w.r.t. bisimilarity for PDA and PA processes. A re-
cent result [Jan97] due to Jančar says that bisimilarity and regularity w.r.t.
bisimilarity are decidable for one-counter processes (i.e., PDA processes
where the stack alphabet has just one symbol besides a special bottom
symbol). Regularity is also easily decidable for normed PDA processes
(if we adopt Stirling’s definition of normedness as presented in [Sti96]).
Regularity of general PDA processes is at least semi-decidable, because it
is possible to check bisimilarity between a PDA process and a finite-state
process. The same result holds for PA processes.4 Our conjecture is that
regularity is in fact decidable in both process classes.

4Those facts can be presented due to a private communication with Petr Jančar.

58 Chapter 3. Deciding Regularity in Process Algebra

Chapter 4

Expressibility of nBPA� and nBPP�

Processes

In this chapter we study the relationship between the classes of transi-
tion systems which are generated by normed BPA� and normed BPP�

processes. We also examine such a relationship between their respec-
tive subclasses, namely normed BPA and normed BPP processes (see Sec-
tion 2.3.1).

BPA processes can be seen as simple sequential programs (they are
equipped with a binary sequential operator). This class of processes has
been intensively studied by many researchers. Baeten, Bergstra and Klop
proved in [BBK87] that bisimilarity is decidable for normed BPA processes.
Much simpler proofs of this were later given in [Cau88, HS91, Gro91].
In [HS91] Hüttel and Stirling used a tableau decision method and gave
also sound and complete equational theory. Hirshfeld, Jerrum and Moller
demonstrated in [HJM94a] that the problem is decidable in polynomial
time. The decidability result was later extended to the whole class of BPA
processes by Christensen, Hüttel and Stirling in [CHS92].

If we replace the binary sequential operator with the parallel (merge)
operator, we obtain BPP processes. They can thus be seen as simple paral-

59

60 Chapter 4. Expressibility of nBPA� and nBPP� Processe

lel programs. Christensen, Hirshfeld and Moller proved in [CHM93a] tha
bisimilarity is decidable for BPP processes. A polynomial decision algo
rithm for normed BPP processes was presented in [HJM94b] by Hirshfeld
Jerrum and Moller.

If we allow a parallel operator not to specify just merge but also a
internal communication between two BPP processes resulting in a specia
action � , we obtain the class of BPP� processes [Chr93]. In order to com
pare this class with its sequential counterpart we employ the class of BPA
processes [BK88]. Decidability and complexity results just mentioned hold
for these classes as well.

This chapter is organized as follows. In Section 4.1 we give an exac
characterization of those transition systems which can be equivalently (up
to bisimilarity) described by the syntax of nBPA� and nBPP� processes
Next we show that if we restrict ourselves to nBPA and nBPP processe
we obtain a simpler (and hopefully nicer) characterization of those be
haviours which are common to these subclasses. In Section 4.2 we demon
strate that it is decidable whether for a given nBPA, nBPA� , nBPP, or nBPP
process ∆ there is some nBPP, nBPP� , nBPA, or nBPA� process ∆0 such tha
∆ � ∆0, respectively. These algorithms are polynomial. We also show tha
if the answer to the previous question is positive, then the process ∆0 can
be effectively constructed. Unfortunately, this construction is no longe
polynomial. As an important consequence we also obtain decidabilit
of bisimulation equivalence in the union of nBPA� and nBPP� processes
We conclude with remarks on related work and future research. The re
sults which are presented is this chapter have been previously published
as [ČKK96].

Remark 4.1. In this chapter we use previously established results on regularit
of nBPA� nBPP� , nBPA and nBPP processes (see Section 3.1.3). Here the wor
“regularity” always means regularity w.r.t. bisimilarity.

4.1. The Characterization of nBPA� \ nBPP� 61

4.1 The Characterization of nBPA� \nBPP�

In this section we give an exact characterization of those normed processes
which can be equivalently defined by BPA� and BPP� syntax.

Definition 4.2 (nBPA� \ nBPP�). The semantical intersection of nBPA� and
nBPP� processes is defined as follows:

nBPA� \ nBPP� = f∆ 2 nBPA� ; j 9∆0 2 nBPP� such that ∆ � ∆0g [

f∆ 2 nBPP� ; j 9∆0 2 nBPA� such that ∆ � ∆0g

The class nBPA� \ nBPP� is clearly nonempty because each normed finite-
state process belongs to nBPA� \ nBPP� . But nBPA� \ nBPP� contains also
processes with infinitely many states—consider the following process:

X
def
= a(XjX) + a (4.1)

X is a nBPP� process with infinitely many states. If we replace the ‘j’ oper-
ator with the ‘:’ operator, we obtain a bisimilar nBPA� process:

X
def
= a(X:X) + a (4.2)

Clearly X � X because transition systems generated by those processes
are even isomorphic:

�

a //

a
��

�

a //
a

oo �

a //
a

oo �

a
oo

�

Now we modify the process X slightly:

X
def
= a(XjX) + a + a (4.3)

Although the process (4.3) does not differ from the process (4.1) too much,
it is not hard to prove that there is no nBPA� process bisimilar to (4.3).

62 Chapter 4. Expressibility of nBPA� and nBPP� Processe

Now we prove that each nBPP� processes from nBPA� \ nBPP� can b
represented in a special normal form, denoted INFBPP (Intersection Norma
Form for nBPP� processes). Before the definition of INFBPP we first intro
duce the notion of reduced process:

Definition 4.3 (reduced process). Let ∆ be a nBPA� or nBPP� process. W
say that ∆ is reduced if its variables are pairwise non-bisimilar.

As bisimilarity is decidable for nBPA� and nBPP� processes in polynomia
time (see [HJM94a], [HJM94b]), each nBPA� or nBPP� process can be effec
tively transformed into a bisimilar reduced process in polynomial time.

In the rest of this chapter we often use the notation �i where � is a stat
of a nBPA� or nBPP� process. It has the following meaning:

�i = �:�: � � � :�| {z }

i

if � is a state of some nBPA� or nBPA process

�i = �j�j � � � j�| {z }

i

if � is a state of some nBPP� process
�i = �k�k � � � k�| {z }

i

if � is a state of some nBPP process

Definition 4.4 (INFBPP). Let ∆ be a reduced nBPP� process.

1. A variable Z 2 Var(∆) is simple if all summands in the def. equation fo
Z are of the form aZi, where a 2 Act and i 2 N [f0g. Moreover, at leas
one of those summands must be of the form aZk where a 2 Act and k � 2

Finally, the def. equation for Z must not contain two summands of the form
b; b, where b 2 Λ.

2. The process ∆ is said to be in INFBPP if whenever a� is a summand in a de
equation from ∆ such that Length(�) � 2, then � = Zi for some simpl
variable Z and i � 2.

Note that if Z is a simple variable, then jZj = 1 because Z could not b
normed otherwise.

4.1. The Characterization of nBPA� \ nBPP� 63

Example 4.5. The following process as well as process (4.1) are in INFBPP, while
the processes (4.3) is not:

X
def
= aY + b(ZjZ) + b + b

Y
def
= cY + bX + a(ZjZjZ)

Z
def
= a(ZjZ) + a(ZjZjZ) + b + a

Remark 4.6. The set of all reachable states of a process ∆ in INFBPP looks as fol-
lows:

Var(∆) [fZi j Z 2 Var(∆) is a simple variable and i 2 N [f0gg

Proposition 4.7. Each process ∆ in INFBPP belongs to nBPA� \ nBPP� .

Proof: We show that a bisimilar nBPA� process ∆ is even effectively con-
structible. First we need to define the notion of closed simple variable—a
simple variable Z 2 Var(∆) is closed if the following condition holds: If
the def. equation for Z contains two summands of the form bZi; bZj, then
it also contains a summand �Zi+j�1 (the case i = j = 0 is impossible by
Definition 4.4).

The set Var(∆) looks as follows: for each V 2 Var(∆) we fix a fresh
variable V. Moreover, for each simple non-closed variable Z 2 Var(∆) we
also fix a fresh variable ZC. Now we can start to transform ∆ to ∆. For
each equation Y

def
=

Pn
i=1 ai�i of ∆ we add the equation Y

def
=

Pn
i=1 T (ai�i) to

∆, where T is defined as follows:

1. T (ai) = ai

2. T (aiV) = aiV for each V 2 Var(∆).

3. If �i = Zj where Z 2 Var(∆) is a closed simple variable and j � 2,
then T (aiZj) = aiZ

j
.

4. If �i = Zj where Z 2 Var(∆) is a non-closed simple variable and
j � 2, then T (aiZj) = aiZC

j�1

:Z.

64 Chapter 4. Expressibility of nBPA� and nBPP� Processe

The defining equation for ZC, where Z 2 Var(∆) is a non-closed simpl
variable, is constructed using following rules:

1. if aZi is a summand in the def. equation for Z, then aZC

i
is a summand

in the def. equation for ZC in ∆.

2. if bZi, bZj are summands in the def. equation for Z, then �ZC

i+j�1
is

summand in the def. equation for ZC in ∆.

The fact ∆ � ∆ is easy to check.

Example 4.8. If we apply the transformation algorithm to the process of Exam

ple 4.5, we obtain the following bisimilar nBPA� process:

X
def
= aY + b(ZC:Z) + b + b

Y
def
= cY + bX + a(ZC:ZC:Z)

Z
def
= a(ZC:Z) + a(ZC:ZC:Z) + b + a

ZC
def
= a(ZC:ZC) + a(ZC:ZC:ZC) + b + a + �(ZC:ZC:ZC:ZC) + �ZC

Now we prove that each nBPP� process from nBPA� \ nBPP� is bisimila
to a process in INFBPP. Several auxiliary definitions and lemmas are needed

Definition 4.9 (Assoc set). Let ∆ be a nBPP� process. For each growing vari
able Y 2 Var(∆) we define the set Assoc(Y) � Var(∆) in the following way:

Assoc(Y) = fP 2 Var(∆); Y !� Pg [

fP 2 Var(∆); PjY is a reachable state of ∆g

A variable L 2 Var(∆) is lonely if L 62 Assoc(Y) for any growing variabl
Y 2 Var(∆).

Lemma 4.10. Let ∆ 2 nBPA� \ nBPP� be a reduced nBPP� process. Let Y 2

Var(∆) be a growing variable. Then there is exactly one variable ZY 2 Var(∆
such that:

4.1. The Characterization of nBPA� \ nBPP� 65

� ZY is non-regular and jZYj = 1

� If P 2 Assoc(Y), then ZY is reachable from P and P � ZjPj

Y .

� If a� is a summand in the defining equation for ZY in ∆, then � � Zj�j

Y

Proof: As Y is growing, Y !� Yj� where � 2 Var(∆)
, � 6= ;. As ∆ is
normed and in GNF, there is ZY 2 Var(∆), jZYj = 1 such that � !� ZY.
Hence Y !� Yj�i !� YjZi

Y for any i 2 N (note that ZY is reachable from
Y). From this and the definition of Assoc set we can easily conclude that if
P 2 Assoc(Y) then the state PjZi

Y is reachable for any i 2 N.

As ∆ 2 nBPA� \ nBPP� , there is a bisimilar nBPA� process ∆0. Let
n = jPj, m = maxfjAj; A 2 Var(∆0)g. The state PjZn:m

Y is a reachable state
of ∆ and therefore there is
 2 Var(∆0)� such that PjZn:m

Y �
. Bisimilar
states must have the same norm, hence
 is a sequence of at least n + 1

variables —
 = A1:A2 : : :An+1:� where � 2 Var(∆0)�. As jPj = n, P s

!

� for some s 2 Act� with Length(s) = jPj — hence PjZn:m
Y

s

! Zn:m
Y . The

state A1:A2 : : :An+1:� must be able to match the norm reducing sequence of
actions s. As Length(s) = n, at most the first n variables of A1:A2 : : :An+1:�

can contribute to the sequence s, i.e., A1:A2 : : :An+1:�

s

! �:An+1:� where

� 2 Var(∆0)�. As ∆0 is normed, �:An+1:�

t

! An+1:� for some t 2 Act� with
Length(t) = j�j. The state Zn:m

Y can match the sequence t only by removing
Length(t) copies of ZY:

PjZn:m
Y � A1 : : :An+1:�??ys

??ys

Zn:m
Y � �:An+1:�??yt

??yt

Zn:m�j�j

Y � An+1:�

Now let k = Length(s) + Length(t) (i.e., k = jA1 : : :Anj). Clearly k �

n:m and as jZYj = 1, PjZn:m
Y

p

! PjZn:m�k
Y where Length(p) = k. The state

66 Chapter 4. Expressibility of nBPA� and nBPP� Processe

A1:A2 : : :An+1:� can match the sequence p only by A1:A2 : : :An+1:�

p

! An+1:

By transitivity of � we now obtain PjZn:m�k
Y � Zn:m�j�j

Y , hence P � ZjPj

Y .

As the variable Y is non-regular and Y � ZjYj
Y , the variable ZY is also

non-regular. Moreover, ZY is a unique variable with the property P � ZjP
Y

for each P 2 Assoc(Y) because ∆ is reduced.

A similar argument can be used to prove that ZY is reachable from each
P 2 Assoc(Y). As P is normed, P !� P0 where jP0j = 1. As P � ZjPj

Y , P0 � Z
and hence P0 = ZY.

It remains to check that if a� is a summand of the defining equation
for ZY in ∆ then � � Zj�j

Y . But each variable V 2 � belongs to Assoc(Y
(because Y !� ZY !

� V) and thus V � ZjVj

Y . Hence � � Zj�j

Y .

Remark 4.11. The symbol ZY always denotes the unique variable of Lemma 4.1
in the rest of this chapter.

Lemma 4.12. Let ∆ 2 nBPA� \ nBPP� be a reduced nBPP� process. Let AjB
be a reachable state of ∆ such that A 2 Assoc(Y) and B 2 Assoc(Q). Then
ZY = ZQ.

Proof: As ∆ is reduced, it suffices to prove that ZY � ZQ. As A 2 Assoc(Y
A !� ZY (see Lemma 4.10). Similarly, B !� ZQ and hence ZYjZQ is
reachable state of ∆. As ZQ is non-regular, it can reach a state of an arbi
trary norm—for each i 2 N there is �i 2 Var(∆)
 such that ZQ !

� �i and

j�ij = i. Clearly �i � Zi
Q because each variable of �i belongs to Assoc(Q)

Hence ZYj�i � ZYjZi
Q.

As ∆ 2 nBPA� \ nBPP� , there is a bisimilar nBPA� process ∆0. Le
m = maxfjVj; V 2 Var(∆0)g. The state ZYj�m is a reachable state of ∆

and therefore there is
 2 Var(∆0)� such that ZYj�m �
 and hence also
ZYjZm

Q �
. Moreover,
 is a sequence of at least two variables.

Now we can use a similar construction as in the proof of Lemma 4.1
and conclude that ZYjZ

j
Q � Zj+1

Q for some j 2 N. This implies ZY � ZQ.

4.1. The Characterization of nBPA� \ nBPP� 67

Lemma 4.13. Let ∆ 2 nBPA� \ nBPP� be a reduced nBPP� process. Let LjA be
a reachable state of ∆ such that L is a lonely variable. Then A is a regular process

(see Remark 2.6).

Proof: Let us assume that A is not regular. Then A !� Y, where Y 2

Var(∆) is a growing variable (see Proposition 3.16). But then LjA !� LjY,
thus L 2 Assoc(Y) and we have a contradiction.

Proposition 4.14. Let ∆ 2 nBPA� \ nBPP� be a nBPP� process. Then there is
a process ∆0 in INFBPP such that ∆ � ∆0.

Proof: We can assume (w.l.o.g.) that ∆ is reduced and in 3-GNF. The pro-
cess ∆0 can be obtained by the following transformation of defining equa-
tions of ∆ (which can also add completely new variables and correspond-
ing defining equations): if X

def
=

Pm
j=1 aj�j is a defining equation from ∆,

then X
def
=

Pm
j=1 T (aj�j) is added to ∆0, where T is defined as follows:

� if card(�j) � 1, then T (aj�j) = aj�j

� if card(�j) = 2 (i.e., �j = AjB) then there are three possibilities:

1. A 2 Assoc(Y) and B 2 Assoc(Q). Then A � ZjAj

Y and B � ZjBj

Q (see
Lemma 4.10). As AjB is a reachable state, we can conclude (with
a help of Lemma 4.12) that ZY = ZQ, hence AjB � ZjAj+jBj

Y . Thus

T (a(AjB)) = a(ZjAj+jBj

Y).

2. A 2 Assoc(Y) and B is lonely. But then A � ZjAj

Y and as ZY is
not regular, A is not regular either. As the state AjB is reachable
and B is lonely, it contradicts Lemma 4.13. Hence this case is in
fact impossible (as well as the case when A is lonely and B 2

Assoc(Q)).

3. A and B are lonely. Then A and B are regular (due to Lemma
4.13) and therefore the state AjB is also regular. Each regular
process can be represented in normal form (see Definition 2.13).

68 Chapter 4. Expressibility of nBPA� and nBPP� Processe

Let ∆AjB be a regular process in normal form which is bisimila
to AjB. We can assume (w.l.o.g.) that Var(∆AjB)\Var(∆0) = ;. T

adds all equations from ∆AjB to ∆0 and T (a(AjB)) = a:N wher
N is the leading variable of ∆AjB.

The transformation T preserves bisimilarity—hence ∆ � ∆0. It remains to
check that ∆0 is in INFBPP. Clearly each summand of each defining equation
from ∆0 is of the form which is admitted by INFBPP. If aZj is a summand o
a defining equation in ∆0 such that j � 2, then Z = ZY for some grow
ing variable Y 2 Var(∆). Let a� be a summand in the original definin
equation for ZY in ∆. We need to show that each such summand mus
have been transformed into aZj�j

Y by T . But it is obvious as each variabl
from � belongs to Assoc(Y). If � is composed of a single variable V, then
V = ZY because V � ZY (due to Lemma 4.10) and ∆ is reduced. More
over, at least one summand in the defining equation for ZY in ∆0 is of th
form aZl

Y where l � 2, because ZY would be regular otherwise. To com
plete the proof we need to show that the defining equation for ZY in ∆

cannot contain two summands of the form b; b. Assume the converse. A
∆0 2 nBPA� \ nBPP� , there is a nBPA� process ∆2 such that ∆0 � ∆2

As Zi
Y is a reachable state of ∆0 for each i 2 N [f0g (see Remark 4.6)

there is �i 2 Var(∆2)� such that Zi
Y � �i for each i. Moreover, we can as

sume (w.l.o.g.) that each �i is of maximal Length, i.e., if �i � � for som

� 2 Var(∆2)�, then Length(�i) � Length(�). Let k be the minimal num
ber with the property Length(�k) � 2. Clearly Length(�k) = 2, becaus
otherwise we could easily obtain a contradiction with the minimality o
k. Hence �k = P:Q for some P;Q 2 Var(∆2). As Zk

Y
b

! Zk�1
Y , we also hav

P:Q
b

!
 for some
 � �k�1. By definitions of �i and k,
 must be composed
of a single variable. The only such state which can be reached from P:Q i
one step is Q, hence �k�1 � Q. As the defining equation for ZY contain
two summands b; b, we also have a transition Zk

Y

�
! Zk�2

Y . But P:Q canno
reach a state which is bisimilar to �k�2 in one step, because �k�2 is (again

4.1. The Characterization of nBPA� \ nBPP� 69

by definitions of �i and k) composed of at most one variable which must
be different from Q because �k�1 6� �k�2. Hence �k 6� Zk

Y and we have a
contradiction.

Propositions 4.7 and 4.14 give us the classification of nBPA� \ nBPP� in
terms of nBPP� syntax.

Theorem 4.15. The class nBPA� \ nBPP� contains exactly (up to bisimilarity)

nBPP� processes in INFBPP.

The class nBPA� \ nBPP� can also be characterized using nBPA� syntax.
To do this, we introduce a special normal form for nBPA� processes:

Definition 4.16 (INFBPA). Let ∆ be a reduced nBPA� process.

1. Let X;Y 2 Var(∆) be non-regular variables. We say that Y is a commu-
nication closure (C-closure) of X if the following conditions hold:

� All summands in the def. equation for X are either of the form a where
a 2 Act, or a(Yi:X) where a 2 Act and i 2 N [f0g. Moreover, at
least one summand is of the form a(Yk:X) where k � 1.

� All summands in the def. equation for Y are of the form aYi, where
a 2 Act and i 2 N [f0g.

� aYi is a summand in the def. equation for Y iff one of the following
conditions holds:

(a) i = 0 and a is a summand in the def. equation for X.

(b) i � 1 and a(Yi�1:X) is a summand in the def. equation for X.

(c) a = � and there are two summands of the form b�1; b�2 in the
def. equation for X such that i = Length(�1) + Length(�2) � 1

(note that this condition ensures that def. equations for X;Y do
not contain two summands of the form b; b).

70 Chapter 4. Expressibility of nBPA� and nBPP� Processe

2. The process ∆ is said to be in INFBPA if whenever a� is a summand in a de
equation from ∆ such that Length(�) � 2, then � = Yi:X for some i 2 N

and X;Y 2 Var(∆) such that Y is a C-closure of X (note that X;Y need no
be different—variables which are C-closures of themselves may exist).

Note that if Y is a C-closure of X, then jYj = jXj = 1. Another interestin
property of X and Y is presented in the remark below.

Remark 4.17. It is easy to check that if Y is a C-closure of X, then Yi:X � X
i+

where X is a nBPP� process composed of a single variable whose def. equation i
obtained from the def. equation for X by substituting ‘:’ with ‘j’ and replacin
each occurrence of X and Y with X.

Theorem 4.18. The class nBPA� \ nBPP� contains exactly (up to bisimilarity
nBPA� processes in INFBPA.

Proof: Each nBPA� process in INFBPA belongs to nBPA� \ nBPP� , as a bisim
ilar nBPP� process can be easily constructed by an algorithm which is in
verse to the algorithm presented in the proof of Proposition 4.7 (see Re
mark 4.17). The fact that for each nBPA� process of nBPA� \ nBPP� ther
is a bisimilar nBPA� process in INFBPA follows directly from Proposition 4.
and Proposition 4.14 (note that the algorithm presented in the proof o
Proposition 4.7 returns a nBPA� process which is almost in INFBPA—th
only “problem” is that it can contain different bisimilar variables and henc
it need not be reduced.).

Our results can be applied to nBPA and nBPP processes as well. So far w
have investigated the intersection of nBPA� and nBPP� . It was desirabl
to work with this unrestricted syntax, because we could also examine th
problem when the “real” communications of a nBPP� process can be sim
ulated by a sequential nBPA� process. However, the characterization o
nBPA \ nBPP is much simpler and therefore we present it explicitly.

Definition 4.19 (INF). Let ∆ be a reduced nBPA (or nBPP) process in GNF.

4.2. Deciding whether ∆ 2 nBPA� \ nBPP� 71

1. A variable Z 2 Var(∆) is simple if all summands in the def. equation for
Z are of the form aZi, where a 2 Act and i 2 N [f0g. Moreover, at least

one of those summands must be of the form aZk where a 2 Act and k � 2.

2. The process ∆ is said to be in INF if whenever a� is a summand in a def.
equation from ∆ such that Length(�) � 2 (or card(�) � 2), then � = Zi

for some simple variable Z and i � 2.

Note that nBPA (or nBPP) processes in INF have a nice property—a bisim-
ilar nBPP (or nBPA) process can be obtained just by replacing the ‘:’ op-
erator with the ‘k’ operator (or by replacing the ‘k’ operator with the ‘:’
operator).

Theorem 4.20. The class nBPA \ nBPP contains exactly (up to bisimilarity)
nBPA (or nBPP) processes in INF.

4.2 Deciding whether ∆ 2 nBPA� \nBPP�

In this section we prove that the problem whether a given nBPA� or nBPP�

process ∆ belongs to nBPA� \ nBPP� is decidable in polynomial time. The
technique is essentially similar in both cases—we check whether each sum-
mand of each defining equation of ∆ whose form is not admitted by INFBPA

(or INFBPP) can be in principal transformed so that requirements of INFBPA

(or INFBPP) are satisfied. We also show that if a nBPA� (or nBPP�) process
belongs to nBPA� \ nBPP� , then a bisimilar process ∆0 in INFBPA (or INFBPP)
is effectively constructible. Simplified versions of our algorithms which
work for nBPA and nBPP processes are presented as well.

Definition 4.21 (S(∆);R(∆) and G(∆) sets). Let ∆ be a nBPA� or nBPP�

process in GNF.

� The set S(∆) � Var(∆) is composed of all variables V such that jVj = 1,
V is non-regular and if a� is a summand in the defining equation for V in
∆, then � � Vj�j.

72 Chapter 4. Expressibility of nBPA� and nBPP� Processe

� The set R(∆) � Var(∆) contains all regular variables of ∆.

� The set G(∆) � Var(∆) contains all growing variables of ∆.

The sets S(∆), R(∆) and G(∆) can be constructed in polynomial time be
cause bisimilarity and regularity are decidable for nBPA� and nBPP� pro
cesses in polynomial time (see [HJM94a], [HJM94b] and Section 3.1.3).

If ∆ is a nBPA� (or nBPP�) process from nBPA� \ nBPP� , then there i
∆0 in INFBPA (or INFBPP) such that ∆ � ∆0. In case of nBPP� processes th
set S(∆) contains in fact variables which can be (potentially) bisimilar t
simple variables of ∆0. In case of nBPA� processes the set S(∆) contain
variables which can be bisimilar to C-closures of variables from Var(∆0).

The three lemmas below together prove correctness of our algorithm
which decides the membership to nBPA� \ nBPP� for nBPP� processes.

Lemma 4.22. Let ∆ be a reduced nBPP� process in 3-GNF and let a(AjB) b
a summand of a defining equation from ∆ such that A is regular and B is non
regular. Then ∆ 62 nBPA� \ nBPP� .

Proof: Assume there is a nBPP� process ∆0 in INFBPP such that ∆ � ∆0. Le
n = maxfjYj; Y 2 Var(∆0)g. As B is non-regular, it can reach a state of an
arbitrary norm—let B !� � where j�j > n. Then Aj� is a reachable state o
∆ and thus Aj� � �0 for some reachable state �0 of ∆0. As jAj� j > n, w
can conclude that �0 = ZjAj� j where Z 2 Var(∆0) is a simple variable (se
Remark 4.6). Hence A � ZjAj and as each simple variable is growing (se
Definition 4.4), it contradicts regularity of A.

Lemma 4.23. Let ∆ be a reduced nBPP� process in 3-GNF which belongs t
nBPA� \ nBPP� . Let a(AjB) be a summand of a defining equation from ∆ suc
that A and B are non-regular. Then there is exactly one variable Z 2 S(∆) suc
that AjB � ZjAjB j.

Proof: Let ∆0 be a nBPP� process in INFBPP such that ∆ � ∆0. Let n =

maxfjYj; Y 2 Var(∆0)g. Using the same argument as in the proof o

4.2. Deciding whether ∆ 2 nBPA� \ nBPP� 73

Lemma 4.22 we obtain A � PjAj, B � QjBj where P;Q 2 Var(∆0) are simple
variables. We show that P = Q. Let A !� � where j�j > n. Then clearly

� � Pj�j and as �jB is a reachable state of ∆, �jB � Rj�jBj where R 2 Var(∆0)

is a simple variable. To sum up, we have �jB � Pj�jjQjBj � Rj�jB j. Hence
P � R � Q and thus P = R = Q because ∆0 is reduced. As e.g. P is a
reachable state of ∆0, there is a reachable state
 of ∆ such that P �
. As

jPj = 1, we can conclude
 = Z for some Z 2 Var(∆) which clearly belongs
to S(∆). Moreover, Z is unique because ∆ is reduced.

Lemma 4.24. Let ∆ be a nBPP� process in GNF and let X 2 S(∆). If the
defining equation for X contains two summands of the form b; b, then ∆ 62

nBPA� \ nBPP� .

Proof: Assume there is a nBPP� process ∆0 in INFBPP such that ∆ � ∆0.
Using the same kind of argument as in the proof of Lemma 4.22 we obtain
X � Z for some simple variable Z 2 Var(∆0). As the def. equation for X

contains two summands of the form b; b and X � Z, the def. equation for
Z must contain those summands too—hence Z is not simple and we have
a contradiction.

The promised (constructive) algorithm which decides the membership to
nBPA� \ nBPP� for nBPP� processes is presented in Figure 4.1. Steps which
are executed only by the constructive algorithm are shaded—if we omit
everything on a grey background, we obtain a non-constructive polyno-
mial algorithm. The abbreviation “NFR(∆)” stands for the Normal Form
of the Regular process ∆, which can be effectively constructed (see Sec-
tion 3.1.2). We always assume that NFR(∆) contains fresh variables which
are not contained in any other process we are working with. When the
command return is executed, the algorithm halts and returns the value
which follows immediately after the keyword return.

The constructive algorithm is not polynomial because the construc-
tion of NFR is not polynomial—a regular nBPP� process in 3-GNF with n

74 Chapter 4. Expressibility of nBPA� and nBPP� Processe

Algorithm: A constructive test of the membership to nBPA� \ nBPP� for
nBPP� processes.

Input: A reduced nBPP� process ∆ in 3-GNF.

Output: YES and a nBPP� process ∆0 in INFBPP such that ∆ � ∆0

if ∆ 2 nBPA� \ nBPP� .
NO otherwise.

1. Construct the sets S(∆), R(∆) and G(∆).

2. If there is X 2 S(∆) whose def. equation contains two summands of
the form b; b then

return NO;

3. If G(∆) = ; then
∆0 :=NFR(∆) ;

return YES and ∆0 ;

4. ∆0 := ∆ ;

5. for each summand of the form a(AjB) in defining equations of ∆ do

if A; B 2 R(∆) then
Construct NFR(AjB) ;

Replace the summand a(AjB) with aN in ∆0, where N is the

leading variable of NFR(AjB) ;

∆0 := ∆0[NFR(AjB) ;

if (A 2 R(∆) and B 62 R(∆)) or (A 62 R(∆) and B 2 R(∆)) then
return NO;

if A; B 62 R(∆) then
if there exists Z 2 S(∆) such that AjB � Zj AjB j

then Replace the summand a(AjB) with a(Zj AjB j) in ∆0 ;
else return NO;

6. return YES and ∆0 ;

Figure 4.1: An algorithm which (constructively) decides the membership
to nBPA� \ nBPP� for nBPP� processes.

4.2. Deciding whether ∆ 2 nBPA� \ nBPP� 75

variables can generally reach exponentially many pairwise non-bisimilar
states and each of these states requires a special variable.

Our algorithm for nBPP� processes works for pure nBPP processes as
well. It suffices to replace the ‘j’ operator with the ‘k’ operator in our de-
scription. As there are no communications in nBPP, the notion of dual
action is no longer sensible—hence the second step of our algorithm can
be removed in case of nBPP processes.

Now we provide an analogous algorithm for nBPA� processes. We start
with some auxiliary definitions and lemmas.

Definition 4.25 (CL sets). Let ∆ be a nBPA� . For each Y 2 S(∆) we define the
set CL(Y), composed of all X 2 Var(∆) which satisfy the following conditions:

� If a� is a summand in the def. equation for X such that Length(�) � 1,

then � � Yj�j�1:X.

� The def. equation for Y contains a summand bisimilar to aYk, k 2 N [f0g,
iff one of the following conditions holds:

1. k = 0 and the def. equation for X contains a summand ‘a’.

2. k > 0 and the def. equation for X contains a summand which is bisim-
ilar to a(Yk�1:X).

3. a = � and the def. equation for X contains two summands of the form

b�1, b�2 such that k = Length(�1) + Length(�2)� 1.

It is easy to see that the set CL(Y) can be constructed in polynomial time
for each Y 2 S(∆). The following lemma is due to D. Caucal (see [Cau88]):

Lemma 4.26. Let ∆;∆0 be nBPA� processes in GNF and let �; � 2 Var(∆)�,

�0; �0 2 Var(∆0)� such that � � �0 and �:� � �0:�0. Then � � �0
Lemma 4.27. Let ∆;∆0 be nBPA� processes. Let A1; : : : ;Ak 2 Var(∆), X;Y 2

Var(∆0) such that jXj = jYj = 1 and A1: � � � :Ak � Yl:X where l = jA1: � � � :Akj�

1. Then Ak � YjAkj�1:X and Ai � YjAij for 1 � i < k.

76 Chapter 4. Expressibility of nBPA� and nBPP� Processe

Proof: Clearly Ak � YjAkj�1:X. Hence A1: � � � :Ak�1 � YjA1:��� :Ak�1j (due to
Lemma 4.26). The fact Ai � YjAij for 1 � i < k can be proved by induction
on k. If k = 2 then A1 � YjA1j and our lemma holds. If k > 2, then clearly
Ak�1 � YjAk�1j and due to Lemma 4.26 we have A1: � � � :Ak�2 � YjA1:��� :Ak�2

Now we can use the inductive hypothesis and conclude that Ai � YjAij fo
1 � i < (k� 2).

Lemma 4.28. Let ∆ be a reduced nBPA� process in 3-GNF which belongs t

nBPA� \ nBPP� . Let Q:� be a reachable state of ∆ such that Q 2 G(∆), � 6=

�. Then there are unique variables Y 2 S(∆), X 2 CL(Y) such that Q:� �

YjQ:�j�1:X.

Proof: As ∆ 2 nBPA� \ nBPP� , there is a nBPA� process ∆0 in INFBPA such
that ∆ � ∆0. Let n = maxfjAj; A 2 Var(∆0)g. As Q is growing, Q !� Q:

where
 6= �. Hence the state Q:
n:� is a reachable state of ∆ and therefor
there is a reachable state � of ∆0 such that Q:
n:� � �. As jQ:
n:�j > n
we can conclude � = RjQ:
n:�j�1:S, where R is a C-closure of S (see Defini
tion 4.16). Hence Q:
n:� � RjQ:
n:�j�1:S and due to Lemma 4.27 we hav

� � Rj�j�1:S and Q � RjQj, thus Q:� � RjQ:�j�1:S. Now it suffices to show
that there are Y 2 S(∆), X 2 CL(Y) such that Y � R and X � S. As ∆

is normed, Q s

! Y where jYj = 1 and s is a norm-decreasing sequenc
of actions. Then Q:� s

! Y:� and as Q:� � RjQ:�j�1:S, the state RjQ:�j�1:S
must be able to match the sequence s and enter a state bisimilar to Y:�. A
s is norm-decreasing and jRj = 1, the only such state is RjY:�j�1:S. Henc
Y:� � RjY:�j�1:S and due to Lemma 4.27 we have Y � R. The fact Y 2 S(∆

follows directly from Definition 4.16. As S is a reachable state of ∆0, ther
is a variable X 2 S(∆) such that X � S. Clearly X 2 CL(Y) (see Defini
tion 4.16). Variables X;Y are unique because ∆ is reduced.

It is worth noting that the variables X;Y of the previous lemma need no
be different—if a nBPA� process ∆ belongs to nBPA� \ nBPP� , then each
Y 2 S(∆) belongs to CL(Y).

4.2. Deciding whether ∆ 2 nBPA� \ nBPP� 77

To prove correctness of our algorithm which decides the membership
to nBPA� \ nBPP� for nBPA� processes we need some lemmas about sum-
mands:

Lemma 4.29. Let ∆ be a reduced nBPA� process in 3-GNF and let a(A:B) be
a summand of a defining equation from ∆ such that A is non-regular and B is
regular. Then ∆ 62 nBPA� \ nBPP� .

Proof: As a(A:B) is a summand of a defining equation from ∆ and ∆ is
normed and in GNF, there is a reachable state of the form A:B:�. As A is
non-regular, A !� Q:� where Q 2 G(∆). Hence Q:�:B:� is a reachable
state of ∆ and due to Lemma 4.28 we have Q:�:B:� � YjQ:�:B:�j�1:X for
some Y 2 S(∆), X 2 CL(Y). With a help of Lemma 4.27 we obtain that
B � YjBj or B � YjBj�1:X (the latter possibility holds if � = �). As X;Y are
growing, it contradicts regularity of B.

Lemma 4.30. Let ∆ be a reduced nBPA� process in 3-GNF. Let a(A:B) be a sum-
mand of a defining equation from ∆ such that A is regular and B is non-regular.
Then it is possible to replace the summand a(A:B) with aN where N 62 Var(∆)

and to add a finite number of new equations in INFBPA to ∆ such that the resulting
process ∆1 is bisimilar to ∆.

Proof: As A is regular, it is possible to construct ∆A := NFR(A) such
that Var(∆) \ Var(∆A) = ;. Now we modify defining equations of ∆A

slightly—each summand of the form a where a 2 Act is replaced with
aB. The resulting system of equations is in INFBPA. If we add the modified
system ∆A to ∆ and replace the summand a(A:B) with aN where N is the
leading variable of ∆A, we obtain a process ∆1 which is clearly bisimilar
to ∆.

Lemma 4.31. Let ∆ be a reduced nBPA� process in 3-GNF and let a(A:B) be a
summand of a defining equation from ∆ such that A and B are non-regular. Then

1. If ∆ 2 nBPA� \ nBPP� then there are unique variables Y 2 S(∆), X 2

CL(Y) such that B � YjBj�1:X

78 Chapter 4. Expressibility of nBPA� and nBPP� Processe

2. Let B � YjBj�1:X for some Y 2 S(∆) and X 2 CL(Y). If there is a sequenc
of transitions A = A0

a0

! A1:�1
a1

! A2:�2
a2

! � � �

ak

! Ak:�k such that k � 0

Ak 2 G(∆) and Ak:�k 6� YjAk:�kj, then ∆ 62 nBPA� \ nBPP� .

3. Let B � YjBj�1:X for some Y 2 S(∆) and X 2 CL(Y). If for each sequenc
of transitions A = A0

a0

! A1:�1
a1

! A2:�2
a2

! � � �

ak

! Ak:�k such tha
Ak 2 G(∆) the state Ak:�k is bisimilar to YjAk:�kj, then the summand a(A:B
can be replaced with aN where N 62 Var(∆) and a finite number of new
equations in INFBPA can be added to ∆ such that the resulting process ∆2 i
bisimilar to ∆.

Proof:

1. As A is non-regular, A !� Q:� where Q 2 G(∆). The proof can b
easily completed with a help of Lemma 4.27 and Lemma 4.28.

2. This is a consequence of Lemma 4.27 and Lemma 4.28.

3. It suffices to realize that if A = A0
a0

! A1:�1
a1

! A2:�2
a2

! � � �

ak

! Ak:�

is a sequence of transitions such that A0; : : : ;Ak�1 62 G(∆) and Ak 2

G(∆), then Length(Ai:�i) � card(Var(∆)) for 0 � i � k � 1 (her
we use the assumption that ∆ is in 3-GNF. Naturally, Length(Ai:�i

is bounded also in case of general GNF). As there are only finitel
many sequences of variables of this bounded length, we can intro
duce a fresh variable for each of them. To construct the process ∆2

we use a similar procedure as in the proof of Lemma 4.30.

An existence of a sequence A = A0
a0

! A1:�1
a1

! A2:�2
a2

! � � �

ak

! Ak:�k such
that Ak 2 G(∆) and Ak:�k 6� YjAk:�kj is decidable in polynomial time:

Lemma 4.32. Let ∆ be a reduced nBPA� process in 3-GNF. Let A 2 Var(∆) be
non-regular variable and let Y 2 S(∆). The problem whether A can reach a stat

of the form Q:� where Q 2 G(∆) and Q:� 6� YjQ:�j is decidable in polynomia
time.

4.2. Deciding whether ∆ 2 nBPA� \ nBPP� 79

Proof: We divide the set Var(∆) into two disjoint subsets of successful and
unsuccessful variables. P 2 Var(∆) is unsuccessful if one of the following
conditions holds:

� P is growing and P 6� YjPj.

� The defining equation for P in ∆ contains a summand of the form
a(R:S) where R is non-regular and S 6� YjSj.

A variable is successful if it is not unsuccessful. Furthermore, we define
the binary relation ‘)’ on Var(∆): U) V iff U is successful and the defin-
ing equation for U in ∆ contains a summand which is of one of the follow-
ing forms:

� aV

� a(V:W) where W 2 Var(∆)

� a(W:V) where W 2 Var(∆) is regular

Let ‘)�’ be the reflexive and transitive closure of ‘)’. It is not hard to
prove that A can reach a state of the form Q:� where Q is growing and
Q:� 6� YjQ:�j iff A)� T for some unsuccessful variable T. As the relation
‘)�’ can be constructed in polynomial time, the proof is finished.

An algorithm which decides the membership to nBPA� \ nBPP� for nBPA�
processes is presented in Figure 4.2. We use the same notation as in the
case of nBPP� .

In case of nBPA processes our algorithm must be slightly modified (and
simplified). This is a consequence of the fact that a nBPA process ∆ be-
longs to nBPA \ nBPP iff it can be represented in INF—and INF is a lit-
tle different from INFBPA (see Definitions 4.19 and 4.16). Lemma 4.29 and
Lemma 4.30 are valid also for nBPA processes. Instead of Lemma 4.31 we
can prove the following (in a similar way):

80 Chapter 4. Expressibility of nBPA� and nBPP� Processe

Algorithm: A constructive test of the membership to nBPA� \ nBPP� for
nBPA� processes.

Input: A reduced nBPA� process ∆ in 3-GNF.

Output: YES and a nBPA� process ∆0 in INFBPA such that ∆ � ∆0

if ∆ 2 nBPA� \ nBPP� .
NO otherwise.

1. Construct the sets S(∆), R(∆), G(∆) and for each Y 2 S(∆) construct
the set CL(Y).

2. If (G(∆) = ;) then
∆0 :=NFR(∆) ;

return YES and ∆0 ;

3. ∆0 := ∆ ;

4. for each summand of the form a(A:B) in defining equations of ∆ do

if A; B 2 R(∆) then
Construct NFR(A:B) ;

Replace the summand a(A:B) with aN in ∆0, where N is the

leading variable of NFR(A:B) ;

∆0 := ∆0[NFR(A:B) ;

if A 62 R(∆) and B 2 R(∆) then
return NO;

if A 2 R(∆) and B 62 R(∆) then
Construct the process ∆1 of Lemma 4.30 ;

∆0 := ∆1 ;

if A; B 62 R(∆) then
if there exist Y 2 S(∆); X 2 CL(Y) such that B � YjBj�1

:X
then if A can reach a state Q:� where Q 2 G(∆) and Q:� 6� YjQ:�j

then return NO;
else Construct the process ∆2 of Lemma 4.31 ;

∆0 := ∆2 ;
else return NO;

5. return YES and ∆0 ;

Figure 4.2: An algorithm which (constructively) decides the membership
to nBPA� \ nBPP� for nBPA� processes.

4.2. Deciding whether ∆ 2 nBPA� \ nBPP� 81

Lemma 4.33. Let ∆ be a reduced nBPA process in 3-GNF and let a(A:B) be a
summand of a defining equation from ∆ such that A and B are non-regular. Then

1. If ∆ 2 nBPA \ nBPP then there is a unique variable Z 2 S(∆) such that

B � ZjBj

2. Let B � ZjBj for some Z 2 S(∆). If there is a sequence of transitions

A = A0
a0

! A1:�1
a1

! A2:�2
a2

! � � �

ak

! Ak:�k such that k � 0, Ak 2 G(∆)

and Ak:�k 6� ZjAk:�kj, then ∆ 62 nBPA \ nBPP.

3. Let B � ZjBj for some Z 2 S(∆). If for each sequence of transitions A =

A0
a0

! A1:�1
a1

! A2:�2
a2

! � � �

ak

! Ak:�k such that Ak 2 G(∆) the state
Ak:�k is bisimilar to ZjAk:�kj, then the summand a(A:B) can be replaced
with aN where N 62 Var(∆) and a finite number of new equations in INF
can be added to ∆ such that the resulting process ∆2 is bisimilar to ∆.

Our algorithm for nBPA processes differs from the algorithm of Figure 4.2
in two things—the sets CL(Y) for Y 2 S(∆) are not computed at all and the
last if statement in the loop of step 4 is replaced with the following code:

if A; B 62 R(∆) then
if there exist Z 2 S(∆) such that B � ZjBj

then if A can reach a state Q:� where Q 2 G(∆) and Q:� 6� ZjQ:�j

then return NO;
else Construct the process ∆2 of Lemma 4.33 ;

∆0 := ∆2 ;
else return NO;

The existence of constructive variants of presented algorithms allow us to
prove the following theorem:

Theorem 4.34. Bisimilarity is decidable in the union of nBPA� and nBPP� pro-
cesses.

Proof: Given two nBPA� or nBPP� processes, it is possible to check bisim-
ilarity using algorithms which were published in [HJM94a] and [HJM94b].

82 Chapter 4. Expressibility of nBPA� and nBPP� Processe

If we get a nBPP� process ∆1 and a nBPA� process ∆2, then we run one o
the constructive algorithms presented earlier. We can choose e.g., the firs
algorithm with ∆1 on input. If it answers NO, then ∆1 6� ∆2. Otherwis
we obtain a nBPP� process ∆0

1 in INFBPP which is bisimilar to ∆1. Now
it suffices to check bisimilarity between two nBPA� processes ∆0

1 and ∆2

where ∆0

1 is obtained by running the algorithm presented in the proof o
Proposition 4.7 with ∆0

1 on input.

Note that the corresponding statement holds for nBPA and nBPP processe
by specialization.

4.3 Related Work and Future Research

The problem whether a given nBPP process belongs to nBPA \ nBPP ha
been independently examined by Blanco in [Bla95] where it is shown tha
given a nBPP process, one can decide whether there is a bisimilar nBPA
process. Blanco’s approach is based on special properties of BPA transi
tion graphs (see [CM90]). A test whether a given nBPP graph has thes
properties is given in the work. Consequently, this result does not allow
for testing whether a given nBPA process belongs to the intersection. Th
generalization to nBPA� and nBPP� classes is not considered at all.

Our result on the classification of nBPA \ nBPP might be of some in
terest from the point of view of formal languages/automata theory a
well. INF (for nBPA processes) can be taken as a special type of CF gram
mars which generate languages of the form R:(L1 [: : : [Ln), where R i
regular and each Li can be generated by a CF grammar having just on
nonterminal and rules of the form Z ! aZk; k � 0. Considering lan
guage equivalence only, it is obvious that languages of the mentioned typ
R:(L1 [: : : [Ln) can be recognized by nondeterministic one-counter au
tomata. Hence our result on the classification of nBPA \ nBPP can be con
sidered as a refinement of the result achieved in [Sch92] on the context

4.3. Related Work and Future Research 83

freeness of languages generated by Petri nets, as BPP processes form a
proper subclass of Petri nets.

An obvious question is whether our results can be extended to classes
of all (not only normed) BPA and BPP processes. The class BPA \ BPP
contains also processes which cannot be presented in INF. Consider the
following BPP process (this example is due to I. Černá):

X
def
= a(YkX)

Y
def
= b

The process X cannot be presented in INF. But it obviously belongs to
BPA \ BPP; a bisimilar BPA process looks as follows:

A
def
= a(B:A)

B
def
= a(B:B) + b

Transition systems generated by X and A are isomorphic:

�

a // �

a //

b
oo �

a //

b
oo �

b
oo

This indicates that the problem is actually more complicated. Techniques
which were used for normed processes cannot be applied—it seems how-
ever, that a deeper study of the structure of BPA and BPP transition graphs
could help.

84 Chapter 4. Expressibility of nBPA� and nBPP� Processe

Chapter 5

Parallelization of nBPA Processes

A general problem considered by many researchers is how to improve
performance of sequential programs by parallelization. In this chapter
we study this problem within the framework of process algebras. They
provide us with a pleasant formalism which allows to specify sequential
as well as parallel programs. Here we adopt nBPA processes as a simple
model of sequential behaviours.

The problem of possible decomposition of processes into a parallel
product of primes1 was first addressed by Milner and Moller in [MM93].
A more general result was later proved by Christensen, Hirshfeld and
Moller (see [CHM93b])—it says that each normed process has a unique
decomposition into primes up to bisimilarity. However, the proof is non-
constructive.

This chapter is organized as follows. In Section 5.1 we characterize
all decomposable nBPA processes together with their decompositions via
special normal forms. As a consequence we also obtain a refinement of the
result achieved in [BS94].

In Section 5.2 we show that any nBPA process can be decomposed into

1A process is prime if it cannot be equivalently expressed as a parallel product of two
nontrivial processes.

85

86 Chapter 5. Parallelization of nBPA Processe

a parallel product of primes effectively. We also prove several related de
cidability results. Finally, we prove that bisimilarity is decidable in a larg
subclass of nPA processes (see [BW90]), which consists of processes of th
form ∆1k � � � k∆n, where each ∆i is a nBPA or nBPP process. As bisimilarit
coincides with language equivalence in the class of normed deterministi
processes, obtained results can also be applied to determistic context-fre
grammars (which are in fact deterministic nBPA processes). For example
it is decidable whether a given deterministic CF grammar generates a lan
guage which can be defined as a shuffle of two nonempty deterministic C
languages L1 and L2. If the answer is positive, then deterministic CF gram
mars generating L1 and L2 can be effectively constructed. See Section 5.
for details. Presented results have been previously published as [Kuč97].

Remark 5.1. In this chapter we rely on previously proved results on regularit
of nBPA and nBPP processes (see Section 3.1.3) and decidability of bisimilarit
in the union of nBPA and nBPP processes (see Theorem 4.34).

Remark 5.2 (special notation). In the rest of this chapter we also use some spe
cial notation (due to the lack of general standard). To improve readability, we pu
all specialties to one place:

� if � is a regular state of a nBPA or nBPP process (see Remark 2.6), then
NFR(�) denotes a bisimilar regular process in normal form, which can b
effectively constructed (see Section 3.1.2). Furthermore, we always assum
that NFR(�) contains completely fresh variables which are not containe
in any other process we deal with.

� the class of all processes for which there is a bisimilar nBPA (or nBPP
process is denoted S(nBPA) (or S(nBPP)).

� if ∆1; : : : ;∆n are processes from nBPA[nBPP and Xi is the leading variabl
of ∆i for 1 � i � n, then ∆1k � � � k∆n denotes the process X1k � � � kXn in
the sense of Remark 2.6.

5.1. The Characterization of Decomposable nBPA Processes 87

� square brackets ‘[’ and ‘]’ indicate optional occurrence—if we say that some
expression is of the form a[A][B], we mean that this expression is either a,

aA, aB or aAB.

� upper indexes are used heavily; they appear in two forms:

�i = �k � � � k�| {z }

i

�.i = �: � � � :�| {z }

i

5.1 The Characterization of Decomposable nBPA

Processes

In this section we design special normal forms for nBPA processes which
allow us to characterize all decomposable nBPA processes together with
their decompositions.

Definition 5.3 (prime processes). Let nil be a special name for the process
which cannot emit any action (i.e., nil � �). A nBPA or nBPP process ∆ is
prime if ∆ 6� nil and whenever ∆ � ∆1k∆2 we have that either ∆1 � nil or
∆2 � nil.

Natural questions are, what processes have a decomposition into a fi-
nite parallel product of primes and whether this decomposition is unique.
This problem was first examined by Milner and Moller in [MM93]. They
proved that each normed finite-state process has a unique decomposition
up to bisimilarity. A more general result is due to Christensen, Hirshfeld
and Moller—they proved the following proposition (see [CHM93b]):

Proposition 5.4. Let ∆ be a nBPP process. Then ∆ has a unique decomposition
(up to bisimilarity) into a parallel product of primes.

88 Chapter 5. Parallelization of nBPA Processe

Proof: An existence of a finite decomposition of ∆ into a parallel produc
of primes is obvious—it suffices to realize that the norm is additive ove
the ‘k’ operator. For uniqueness, suppose that ∆ has two distinct prim
decompositions given by

� � 'k1

1 k � � � k'
kn
n

� � 'l1
1 k � � � k'

ln
n

where 'i 6� 'j for i 6= j and j'ij � j'jj for i � j. Furthermore, assume tha
∆ is a counterexample of the smallest norm, i.e., each process ∆0 such tha

j∆0j < j∆j has a unique decomposition. Let i be the maximal number with
the property ki 6= li. We can assume (w.l.o.g.) that ki > li. Now we distin
guish three cases, and in each case we show that process � may perform
norm-reducing transition � a

! �0 that cannot be matched by any transition

�

a

! �0 with �0 � �0, which will supply the desired contradiction. Observ
that by minimality of the counterexample if �0 and �0 are to be bisimila
then their prime decompositions must be identical.

� If kj > 0 for some j < i, then � can perform some norm-reducin
action via process 'j. Process � cannot match this transition, as i
cannot increase the exponent li without decreasing the exponent o
some prime with norm greater than that of 'j.

� If kj > 0 for some j > i, then � can perform a norm-reducing transi
tion via process 'j that maximizes (after reduction into primes) th
increase in the exponent ki. Again the process � is unable to match
this transition.

� If the process � � 'ki
i is a prime power, then note that lj = 0 for al

j > i by choice of i, and that ki � 2 by the definition of prime. If li > 0

then � can perform a norm-reducing transition via 'i. This transition
cannot be matched by �, because it would require the exponent ki to
decrease by at least two. On the other hand, if li = 0 then � can

5.1. The Characterization of Decomposable nBPA Processes 89

perform a norm-reducing transition via 'i and this transition cannot
be matched by �, because � is unable to increase the exponent li.

These cases are inclusive, so the proof is finished.

Remark 5.5. Proposition 5.4 in fact holds for any normed process (namely for
nBPA). The proof does not depend on a concrete syntax—it could be easily formu-
lated in terms of normed transition systems.

Proposition 5.4 actually says that each normed process ∆ can be paral-
lelized in the “best” way and that this way is in some sense unique. How-
ever, this nice theoretical result is non-constructive. It is not clear how
to construct the decomposition and how to test whether some process is
prime. This is the subject of next sections.

An immediate consequence of Proposition 5.4 is the following “cance-
lation” lemma (see [Chr93]):

Lemma 5.6. Let ∆;Γ;Ψ;Φ be normed processes such that ∆kΨ � ΓkΦ and
Ψ � Φ. Then ∆ � Γ.

5.1.1 Decomposability of nBPP Processes

Each nBPP processes ∆ can be easily decomposed into a parallel product
of primes—all what has to be done is a construction of a bisimilar canonical
process (see [Chr93]).

Theorem 5.7. Let ∆ be a nBPP process. It is decidable whether ∆ is prime and
if not, its decomposition into primes can be effectively constructed.

Proof: By induction on n = j∆j:

� n=1: each nBPP process whose norm is 1 is prime.

� Induction step: Suppose ∆ � ∆1k∆2. As ∆1;∆2 are reachable states
of ∆1k∆2, there are �1; �2 2 Var(∆)
 such that ∆1 � �1 and ∆2 � �2,

90 Chapter 5. Parallelization of nBPA Processe

thus ∆ � �1k�2. Furthermore, j∆j = j�1j + j�2j. We show tha
there are only finitely many candidates for �1; �2. First, there ar
only finitely many pairs [k1; k2] 2 N �N such that k1 + k2 = j∆j. Fo
each such pair [k1; k2] there are only finitely many pairs [�1; �2] such
that �1; �2 2 Var(∆)
, j�1j = k1 and j�2j = k2. It is obvious that the se

M of all such pairs can be effectively constructed. For each elemen
[�1; �2] of M we check whether ∆ � �1k�2 (it can be done becaus
bisimilarity is decidable for nBPP processes). If there is no such pai
then ∆ is prime. Otherwise, we check whether �1; �2 are prime (it i
possible by ind. hypothesis) and construct their decompositions. I
we combine obtained decompositions in parallel, we get a decompo
sition of ∆.

As each normed regular process in normal form can be seen as a nBPP
process in GNF, Theorem 5.7 (and especially its constructive proof) ca
be used also for regular nBPA processes. In the next section we can thu
concentrate on non-regular nBPA processes.

5.1.2 Decomposability of nBPA Processes

It this section we give an exact characterization of non-prime nBPA pro
cesses. As we already know from the previous section, the problem i
actually interesting only for non-regular nBPA processes, hence the mai
characterization theorem does not concern regular nBPA processes. Ou
results bring also interesting consequences—we obtain a refinement of th
result achieved in [BS94] (see Remark 5.19).

The layout of this subsection is as follows: first we prove two technica
lemmas (Lemma 5.8 and 5.9). Then we consider the following problem: i
∆ is a non-regular nBPA process such that ∆ � ∆1k∆2, where ∆1;∆2 ar
some (unspecified) processes, how do the processes ∆;∆1;∆2 look like? I
is clear that ∆1;∆2 2 S(nBPA), hence the assumption that ∆1;∆2 are nBPA

5.1. The Characterization of Decomposable nBPA Processes 91

processes can be used w.l.o.g. This problem is solved by Proposition 5.12
and 5.17, with a help of several definitions. Having this, the proof of The-
orem 5.23 is easy to complete.

Lemma 5.8. Let ∆ be a nBPA process. Let �;
 2 Var(∆)+, Q;C 2 Var(∆)

such that jQj = jCj = 1 and �kQ � C:
. Then � � Qj�j.

Proof: It suffices to prove that if �kQi � C:
 where � 2 Var(∆)+ and i 2

N, then �kQi � �0kQi+1 for some �0 2 Var(∆)�. As jCj = 1, all states which
are reachable from �kQi in one norm-decreasing step are bisimilar. As ∆

is normed, � a

! �0 where j�j = j�0j+ 1 and a 2 Act. Hence �kQi�1 � �0kQi

and by substitution we obtain �kQi � �0kQi+1.

The proof of the following lemma is probably the most technical part of
this chapter. Diagrams of Figure 5.1 could ease the reading.

Lemma 5.9. Let ∆ be a nBPA process, �; �;
 2 Var(∆)� such that � is non-
regular and �k� �
. Let � !� Q where jQj = 1. Then � � Qj�j.

Proof: As � is non-regular, it can reach a state of an arbitrary length, i.e.,
for each i 2 N there is �0 such that � !� �0 and Length(�0) = i. Let
m = maxfjXj; X 2 Var(∆)g and let �!� �1 where Length(�1) � m:(j�j+1).
Then �1k� �
1 for some
1 2 Var(∆)�. As � !� Q, �1kQ �
2 where

2 2 Var(∆)� and Length(
2) > 1 — hence
2 is of the form P:! where

! 2 Var(∆)+. Let �1
s

! �2 where s is a norm-decreasing sequence of ac-
tions such that Length(s) = jPj � 1. As �1kQ s

! �2kQ and �1kQ � P:!,
P:!

s

! C:! where jCj = 1 and �2kQ � C:!. Now we can apply Lemma 5.8
and conclude �2 � Qj�2j. As �1

s

! �2 where Length(s) = jPj � 1 < m,
only the first m � 1 variables of �1 could contribute to the sequence s —
hence �1; �2 must have a common suffix whose length is at least m:j�j, i.e.,

�1 = �:�, �2 = �:� where Length(�) � m:j�j. As �1k� �
1 and �1 = �:�,
we can conclude �k� �
3 for some
3 2 Var(∆)�. Clearly Length(
3) >

j�j, because Length(�) � m:j�j (and thus also j�j � m:j�j) and therefore

92 Chapter 5. Parallelization of nBPA Processe

�k� �

��

��

Qj�jk� �

t
��

v

����
��
��
��
��
��
��
��
��
�

A1: � � � :Aj�j+1:�

t
��

v

xx

�1k� �

��

1

��

Qj�j �

u
��

':Aj�j+1:�

u
��

�1kQ �

s
��

2 = P:!

s

��

Qj�j�jA1:��� :Aj�jjk� � Qj�j�j'j � Aj�j+1:�

�2kQ � C:!

Figure 5.1: Diagrams for the proof of Lemma 5.9

j �k� j > m:j�j. Thus
3 is of the form A1: � � � :Aj�j+1:� where � 2 Var(∆)�

Furthermore, � � Qj�j because �2 � Qj�2j and �2 = �:�. To sum up, w
have Qj�jk� � A1: � � � :Aj�j+1:�. Now we prove that � � Qj�j. Let � t

!

where Length(t) = j�j. Then Qj�jk�

t

! Qj�j and the state A1: � � � :Aj�j+1:

must be able to match the sequence t and enter a state bisimilar to Qj�j. A
Length(t) = j�j, only the first j�j variables of A1: � � � :Aj�j+1:� can contribut
to the sequence t, i.e., A1: � � � :Aj�j+1:�

t

! ':Aj�j+1:� where ' 2 Var(∆)�

Now let ':Aj�j+1:�

u

! Aj�j+1:� where Length(u) = j'j. The state Qj�j can
match the sequence u only by removing j'j copies of Q — hence Qj�j�j'j �

Aj�j+1:�. As j�j � m:j�j, it is clear that j�j � jA1: � � � :Aj�jj. Therefore ther
is v 2 Act�, Length(v) = jA1: � � � :Aj�jj such that Qj�j v

! Qj�j�jA1:��� :Aj�jj and
thus Qj�jk�

v

! Qj�j�jA1:��� :Aj�jjk�. The state A1: � � � :Aj�j+1:� can match the se
quence v only by removing A1: � � � :Aj�j — hence Qj�j�jA1:��� :Aj�jjk� � Aj�j+1:

and by transitivity of bisimilarity we have Qj�j�j'j � Qj�j�jA1:��� :Aj�jjk�. From
this we obtain � � Qj�j.

Definition 5.10 (simple processes). A nBPA process ∆ is simple if Var(∆
contains just one variable, i.e., card(Var(∆)) = 1.

We will often identify simple processes with their leading (and only) vari
ables in the rest of this chapter. Moreover, it is easy to see that a simpl

5.1. The Characterization of Decomposable nBPA Processes 93

process Q is non-regular iff the def. equation for Q contains a summand
of the form aQ.k where a 2 Act and k � 2. The norm of Q is one, because
Q could not be normed otherwise. Another important property of simple
processes is presented in the remark below:

Remark 5.11. Each simple nBPA process Q belongs to S(nBPP)—a bisimilar
nBPP process can be obtained just by replacing the ‘:’ operator with ‘k’ opera-
tor in the def. equation for Q. Consequently, any process expressions built over
k copies of Q using ‘:’ and ‘k’ operators are bisimilar (e.g., (Q:(QkQ))kQ �

(QkQ):(QkQ)).

Proposition 5.12. Let ∆1;∆2 be non-regular nBPA processes. Then ∆1k∆2 2

S (nBPA) iff ∆1 � Qj∆1j and ∆2 � Qj∆2j for some non-regular simple process Q.

Proof:

“(” Easy—see Remark 5.11.
“)” Assume there is some nBPA process ∆ such that ∆1k∆2 � ∆. Then
there are �1; �2 2 Var(∆)� such that ∆1 � �1 and ∆2 � �2. Thus�1k�2 � ∆

and as �1; �2 are non-regular, we can use Lemma 5.9 and conclude that
there are Q1;Q2 2 Var(∆) such that jQ1j = jQ2j = 1, �1 !

� Q1, �2 !
� Q2

and �1 � Qj�1j

1 , �2 � Qj�2j

2 . First we prove that Q1 � Q for some simple
process Q. To do this, it suffices to prove that if a
 is a summand in the def.
equation for Q1, then
 � Q.j
j

1 . As �1k�2 !
� Q1k�2

a

!
k�2, the process

k�2 belongs to S(nBPA). Let
 !� R where jRj = 1. Then
 � Rj
j (due to
Lemma 5.9) and as �1 !

�
 !� R, we also have �1 � Rj�1j. Hence R � Q1

and
 � Qj
j

1 � Q.j
j

1 .
To finish the proof, we need to show that Q1 � Q2. Let m = maxfjXj;

X 2 Var(∆)g. As �1 is non-regular, it can reach a state of an arbitrary
norm—let �1 !

� �01 where j�01j = m. Then �01kQ2 � � for some � 2 Var(∆)�

whose length is at least two—� = A:B:�0. Clearly �01 � Q
j�0

1j

1 (we can use
the same argument as in the first part of this proof—Q2 is non-regular and

�0 plays the role of
), hence Q

j�0

1j

1 kQ2 � A:B:�0. As Q
j�0

1j�jAj

1 kQ2 � B:�0 and

94 Chapter 5. Parallelization of nBPA Processe

Q

j�0

1j�jAj+1

1 � B:�0, we have Q

j�0

1j�jAj

1 kQ2 � Q

j�0

1j�jAj+1

1 by transitivity and
thus Q1 � Q2.

Proposition 5.12 in fact says that if ∆ is a non-regular nBPA process such
that ∆ � ∆1k∆2, where ∆1;∆2 are non-regular processes, then each o
those three processes can be equivalently represented as a power of som
non-regular simple process. This representation is very special and can b
seen as normal form.

If ∆ is a non-regular nBPA process such that ∆ � ∆1k∆2, it is also
possible that ∆1 is non-regular and ∆2 regular. Before we start to examin
this possibility, we introduce a special normal form for nBPA processes (a
we shall see, ∆ and ∆1 can be represented in this normal form):

Definition 5.13 (DNF(Q)). Let ∆ be a non-regular nBPA process in GNF, Q 2

Var(∆). We say that ∆ is in DNF (Q) if all summands in all defining equation
from ∆ are of the form a([Y]:[Q.i]), where Y 2 Var(∆), i 2 N and a 2 Act

Furthermore, all summands in the def. equation for Q must be of the form a[Q
where a 2 Act.

Example 5.14. The following process is in DNF (Q):

X
def
= a(Y:Q:Q) + bX + a(Q:Q:Q) + c

Y
def
= bQ + cX + c(Y:Q) + b

Q
def
= aQ + bQ + a + c

Remark 5.15. Reachable states of a nBPA process ∆ in DNF (Q) are of the form
[Y]:[Q.i] where Y 2 Var(∆) and i 2 N [f0g. As ∆ is non-regular, the state Q.
is reachable for each k 2 N.

Note that the variable Q itself is a regular simple process. The next lemm
says that if ∆ is a process in DNF (Q), then the variable Q is in some sens
unique:

5.1. The Characterization of Decomposable nBPA Processes 95

Lemma 5.16. Let ∆ and ∆0 be processes in DNF (Q) and DNF (R), respectively.
If ∆ � ∆0, then Q � R.

Proof: Let m = maxfjXj; X 2 Var(∆0)g. As the state Q.m+1 is a reachable
state of ∆, Q.m+1 � [Y]:R.i for some Y 2 Var(∆0), i 2 N (see Remark 5.15).
Hence Q � R.

Proposition 5.17. Let ∆1;∆2 be nBPA processes such that ∆1 is non-regular
and ∆2 is regular. Then ∆1k∆2 2 S(nBPA) iff there is a process ∆0

1 in DNF (Q)

such that ∆1 � ∆0

1 and ∆2 � Qj∆2j.

Proof:

“)” Let ∆2 !
� Q0 where Q0 2 Var(∆2), jQ0j = 1. Using the same kind

of argument as in the proof of Proposition 5.12 we obtain that Q0 � Q
for some regular simple process Q such that ∆2 � Qj∆2j. It remains to
prove that there is a process ∆0

1 in DNF (Q) such that ∆1 � ∆0

1. We show
that each summand of each defining equation from ∆1 can be transformed
into a form which is admitted by DNF (Q). First, let us realize two facts
about summands—if a� is a summand in a def. equation from ∆1, then

1. If � = �:Y:
 where Y is a non-regular variable, then each variable P
of
 is bisimilar to QjPj.

2. � contains at most one non-regular variable.

The first fact is a consequence of Lemma 5.8—let ∆ be a nBPA process
such that ∆1k∆2 � ∆. As ∆1 is normed, ∆1 !� Y:
:� for some � 2
Var(∆1)�. As Y is non-regular, it can reach a state of an arbitrary length—
let m = maxfjXj; X 2 Var(∆1)g and let Y !� ! where Length(!) = m.
As ∆1k∆2 !

� !:
:�kQ0, there is ' 2 Var(∆)� such that !:
:�kQ0 � '. Let

' = C:'0 and let s be a norm-decreasing sequence of actions such that
Length(s) = jCj � 1 and !

s

! !0. Then !0:
:�kQ0 � C0:'0 where jC0j = 1

and due to Lemma 5.8 (and the fact that Q0 � Q) we have !0:
:� � Qj!0:
:�j,
hence
 � Qj
j and P � QjPj for each variable P which appears in
.

96 Chapter 5. Parallelization of nBPA Processe

The second fact is a consequence of the first one—assume that � =

�:Y:
:Z:� where Y;Z are non-regular. Then Z � QjZj and as Q is regular
QjZj is regular too. Hence Z is regular and we have a contradiction.

Now we can describe the promised transformation of ∆1 into ∆0

1: i
X

def
=

Pn
i=1 ai�i is a def. equation in ∆1, then X

def
=

Pn
i=1 aiT (�i) is a def

equation in ∆0

1, where T is defined as follows:

� If �i does not contain any non-regular variable, then T (�i) = A
where A is the leading variable of NFR(�i). Moreover, defining equa
tions of NFR(�i) are added to ∆0

1.

� If �i = �:Y:
 where Y is a non-regular variable, then T (�i) = A

where A is the leading variable of the process ∆0 which is obtained
by the following modification of the process NFR(�): each summand
in each def. equation of NFR(�) which is of the form b, where b 2 Act
is replaced with b(Y:Q.j
j) — remember B � Qj
j � Q.j
j. Moreover
def. equations of ∆0 are added to ∆0

1.

The defining equation for Q is also added to ∆0

1. The resulting process i
in DNF (Q) and as T preserves bisimilarity, ∆1 � ∆0

1.

“(” We show how to construct a nBPA process ∆ which is bisimilar t
∆0

1kQj∆2j. Let k = j∆2j. The set of variables of ∆ looks as follows:

Var(∆) = fQg [fYi; Y 2 Var(∆0

1);Y 6= Q and i 2 f0; : : : ; kgg

Defining equations of ∆ are constructed using following rules:

� the def. equation for Q is the same as in ∆0

1

� if a(Y:Qj), where j 2 N[f0g, Y 6= Q, is a summand in the def. equation
for Z 2 Var(∆0

1), then a(Yi:Qj) is a summand in the def. equation fo
Zi for each i 2 f0; : : : ; kg

5.1. The Characterization of Decomposable nBPA Processes 97

� if a(Qj) where j 2 N [f0g is a summand in the def. equation for
Z 2 Var(∆0

1), then a(Qj+i) is a summand in the def. equation for Zi

for each i 2 f0; : : : ; kg

� if aQ is a summand in the def. equation for Q and Z 2 Var(∆0

1),
Z 6= Q, then aZi is a summand in the def. equation for Zi for each
i 2 f1; : : : ; kg

� if a is a summand in the def. equation for Q and Z 2 Var(∆0

1), Z 6=

Q, then aZi�1 is a summand in the def. equation for Zi for each i 2

f1; : : : ; kg

The intuition which stands behind this construction is that lower indexes
of variables indicate how many copies of Q in Qj∆2j have not disappeared
yet. The fact ∆0

1kQj∆2j � ∆ is easy to check.

Example 5.18. If we apply the algorithm presented in the “(” part of the proof
of Proposition 5.17 to the process XkQ2, where X;Q are variables of the process
presented in Example 5.14, we obtain the following output:

X2
def
= a(Y2:Q:Q) + bX2 + a(Q:Q:Q:Q:Q) + c(Q:Q) + aX2 + bX2 + aX1 + cX1

X1
def
= a(Y1:Q:Q) + bX1 + a(Q:Q:Q:Q) + cQ + aX1 + bX1 + aX0 + cX0

X0
def
= a(Y0:Q:Q) + bX0 + a(Q:Q:Q) + c

Y2
def
= b(Q:Q:Q) + cX2 + c(Y2:Q) + b(Q:Q) + aY2 + bY2 + aY1 + cY1

Y1
def
= b(Q:Q) + cX1 + c(Y1:Q) + bQ + aY1 + bY1 + aY0 + cY0

Y0
def
= bQ + cX0 + c(Y0:Q) + b

Q
def
= aQ + bQ + a + c

Remark 5.19. Proposition 5.17 can also be seen as a refinement of the result
achieved in [BS94]—Burkart and Steffen proved that PDA processes are closed
under parallel composition with finite-state processes, while BPA processes lack
this property. Proposition 5.17 says precisely, what nBPA processes can remain
nBPA if they are combined in parallel with a regular process. Moreover, it also
characterizes all such regular processes.

98 Chapter 5. Parallelization of nBPA Processe

It is easy to see that the algorithm from the proof of Proposition 5.17 al
ways outputs a process in DNF (Q) (see Example 5.18). Moreover, th
structure of this process is very specific; we can observe that each vari
able belongs to a special “level”. This intuition is formally expressed b
the following definition (it is a little complicated—but it pays because w
will be able to characterize all non-prime nBPA processes):

Definition 5.20. Let ∆ be a nBPA process in DNF (Q). The level of ∆, denote
Level(∆), is the maximal l 2 N such that the set Var(∆)�fQg can be divided int
l disjoint linearly ordered subsets L1; : : : ;Ll of the same cardinality k. Moreover

the following conditions must be true (the jth element of Li is denoted Ai;j):

� Al;1 is the leading variable of ∆.

� Defining equations for variables of L1 contain only variables from
L1 [fQg

� The defining equation for Ai;j, where i � 2, 1 � j � k, contains exactly
those summands which can be derived by one of the following rules

1. If aQ is a summand in the defining equation for Q, then aAi;j i
a summand in the defining equation for Ai;j for each 2 � i � l

1 � j � k.

2. If a is a summand in the defining equation for Q, then aAi�1;j i
a summand in the defining equation for Ai;j for each 2 � i � l
1 � j � k.

3. If a(A1;m:Q.n) is a summand in the defining equation for A1

such that A1;m 6= Q, then a(Ai;m:Q.n) is a summand in the defin
ing equation for Ai;j for each 2 � i � l.

4. If aQ.n is a summand in the defining equation for A1;j, then
aQ.(n+i�1) is a summand in the defining equation for Ai;j, wher
2 � i � l.

5.1. The Characterization of Decomposable nBPA Processes 99

Example 5.21. The process of Example 5.18 has the level 3; L1 = fX0;Y0g,
L2 = fX1;Y1g and L3 = fX2;Y2g.

Lemma 5.22. Let Q be a non-regular simple process and let ∆ be a nBPA process
such that ∆kQ 2 S(nBPA). Then ∆ � Qj∆j.

Proof: Let ∆ !� R where jRj = 1. As Q is non-regular, we can use
Lemma 5.9 and conclude that ∆ � Rj∆j. Now it suffices to prove that
R � Q. Let ∆0 be a nBPA process such that ∆kQ � ∆0 and let m =

maxfjXj; X 2 Var(∆0)g. As Q is simple and non-regular, Q !� Q.m (see
Remark 5.15). Hence RkQ.m � � for some � 2 Var(∆0)� whose length is
at least 2 — thus � = A:� for some � 2 Var(∆0)+. Let k = jAj. Then each
two states, which are reachable from RkQ.m in k norm-decreasing steps are
bisimilar—hence RkQ.m�k � Q.m�k+1 and from this we have R � Q.

Now we can prove the first main theorem of this chapter:

Theorem 5.23. Let ∆ be a non-regular nBPA process and let ∆ � ∆1k � � � k∆n,
where n � 2, ∆i is a prime process for each 1 � i � n and ∆1 is non-regular.
Then one of the following possibilities holds:

� There is a non-regular simple process Q such that ∆ � Q.j∆j and ∆i � Q
for each 1 � i � n.

� There are nBPA processes ∆0;∆0

1 in DNF (Q) such that ∆ � ∆0, ∆1 � ∆0

1,
Level(∆0) = n, Level(∆0

1) = 1 and ∆i � Q for each 2 � i � n.

Proof: We proceed by induction on n:

� n=2: this is an immediate consequence of Proposition 5.12 and Propo-
sition 5.17.

� Induction step: let ∆ � ∆1k � � � k∆n. As ∆1k � � � k∆n !
� ∆1k � � � k∆n�1,

there is a reachable state � of ∆ such that � � ∆1k � � � k∆n�1 — hence
we can use ind. hypothesis (note that � must be non-regular) and
conclude that there are two possibilities:

100 Chapter 5. Parallelization of nBPA Processe

1. There is a non-regular simple process Q such that ∆i � Q fo
each 1 � i � n � 1. We prove that ∆n � Q. As ∆ � Qn�1k∆

and Qn�1k∆n !
� Qk∆n, we can use Lemma 5.22 and conclud

∆n � Qj∆nj. Hence ∆n � Q because ∆n would not be prim
otherwise.

2. There is a nBPA process ∆0
1 in DNF (Q) such that ∆1 � ∆0

1

Level(∆0

1) = 1 and ∆i � Q for each 1 � i � n � 1. First w
prove that ∆n � Q. As ∆1k∆n is a reachable state of ∆1k � � � k∆n

it belongs to S(nBPA). Let us realize that ∆n is regular. Assum
the converse—then we can use Proposition 5.12 and conclud
that ∆1 � Rj∆1j for some non-regular simple process R. From
this and Remark 5.15 we can easily prove that R � Q and i
contradicts regularity of Q.

As ∆n is regular and ∆1k∆2 2 S(nBPA), we can apply Propo
sition 5.17; from this (and also from Lemma 5.16) we get tha
∆n � Qj∆nj and thus ∆n � Q because ∆n is prime.

It remains to prove that there is a process ∆0 in DNF (Q) such
that Level(∆0) = n and ∆ � ∆0. But the process ∆0 can be easily
constructed by the algorithm from the proof of Proposition 5.1
with ∆0

1kQn�1 on input.

5.2 Decidability Results

In this section we present several positive decidability results. We show
that it is decidable whether a given nBPA process is prime and if the an
swer is negative, then its decomposition into primes can be effectively con
structed. There are also other decidable properties which are summarize
in Theorem 5.28.

5.2. Decidability Results 101

5.2.1 Effective Decomposability of nBPA Processes

Lemma 5.24. Let ∆ be a nBPA process. It is decidable whether there is a nBPA
process ∆0 in DNF (Q) such that ∆ � ∆0. Moreover, if the answer to the previous
question is positive, then the process ∆0 can be effectively constructed.

Proof: We can assume (w.l.o.g.) that ∆ is in 3-GNF. If there is a process
∆0 in DNF (Q) such that ∆ � ∆0, then there is R 2 Var(∆) such that R � Q,
because Q is a reachable state of ∆0. As Q is a regular simple process, each
summand in the def. equation for R must be of the form a[P], where R � P.
As bisimilarity is decidable for nBPA processes, we can construct the set

M of all variables of Var(∆) with this property. Each variable from this set
is a potential candidate for the variable which is bisimilar to Q (if the set

M is empty, then ∆ cannot be bisimilar to any process in DNF (Q)).

For each variable V 2 M we now modify the process ∆ slightly—we
replace each summand of the form aP in the def. equation for V with aV.
The resulting process is denoted ∆V (clearly ∆ � ∆V). For each ∆V we
check whether ∆V can be transformed into a process in DNF (V). To do
this, we first need to realize the following fact: if there is ∆0

V in DNF (V)

such that ∆V � ∆0

V and a(A:B) is a summand in a def. equation from ∆V

such that A is non-regular, then B � V.jBj. It is easy to prove by the tech-
nique we already used many times in this chapter—as A is non-regular, it
can reach a state of an arbitrary norm. Furthermore, there is a reachable
state of ∆V which is of the form A:B:
 where
 2 Var(∆V)�. We choose suf-
ficiently large � such that A !� � and �:B:
 must be bisimilar to a state of
∆0

V which is of the form [Y]:V.i where i � jB:
j. From this we get B � V.jBj.
Now we can describe the promised transformation T of ∆V into a pro-

cess ∆0

V in DNF (V). If this transformation fails, then there is no process
in DNF (V) bisimilar to ∆V. T is invoked on each summand of each def.
equation from ∆V and works as follows:

� T (a) = a

102 Chapter 5. Parallelization of nBPA Processe

� T (aA) = aA

� T (a(A:B)) = aN if A is regular. The variable N is the leading vari
able of NFR(A), whose def. equations are also added to ∆0

V afte
the following modification: each summand in each def. equation o
NFR(A) which is of the form b where b 2 Act is replaced with bB.

� T (a(A:B)) = a(A:V.jBj) if A is non-regular and B � V.jBj. If A i
non-regular and B 6� V.jBj, then T fails.

If there is V 2M such that T succeeds for ∆V, then the process ∆0

V � ∆ i
the process we are looking for. Otherwise, there is no process in DNF (Q

bisimilar to ∆.

Proposition 5.25. Let ∆1; : : : ;∆n, n � 2 be nBPA processes. It is decidabl
whether ∆1k � � � k∆n 2 S(nBPA). Moreover, if the answer to the previous ques
tion is positive, then a nBPA process ∆ such that ∆1k � � � k∆n � ∆ can be effec
tively constructed.

Proof: By induction on n:

� n=2: we distinguish three possibilities (it is decidable which one ac
tually holds—see Remark 5.1):

1. ∆1 and ∆2 are regular. Then ∆1k∆2 2 S(nBPA) and a bisimila
regular process ∆ in normal form can be easily constructed.

2. ∆1 and ∆2 are non-regular. Proposition 5.12 says that there is
non-regular simple process Q such that ∆1 � Qj∆1j � Q.j∆1j and
∆2 � Qj∆2j � Q.j∆2j. As Q is a reachable state of Q.j∆2j, ther
is R 2 Var(∆1) such that Q � R. As reachable states of Q are o
the form Q.i where i 2 N [f0g, each summand a� in the def
equation for R has the property � � R.j�j. As bisimilarity is de
cidable for nBPA processes, we can find all variables of Var(∆

5.2. Decidability Results 103

which have this property—we obtain a set of possible candi-
dates for R (if this set is empty, then ∆1k∆2 62 S(nBPA)). Now
we check whether the constructed set of candidates contains a
variable R such that ∆1 � R.j∆1j. If not, then ∆1k∆2 62 S(nBPA).
Otherwise we have R which is bisimilar to Q.

The same procedure is now applied to ∆2. If it succeeds, it
outputs some S 2 Var(∆). Now we check whether R � S. If
not, then ∆1k∆2 62 S(nBPA). Otherwise ∆1k∆2 2 S(nBPA) and
∆1k∆2 � R.j∆1j+j∆2j.

3. ∆1 is non-regular and ∆2 is regular (or ∆1 is regular and ∆2

is non-regular—this is symmetric). Due to Proposition 5.17 we
know that there is a regular simple process Q and a nBPA pro-
cess ∆0

1 in DNF (Q) such that ∆1 � ∆0

1 and ∆2 � Qj∆2j � Q.j∆2j.
An existence of ∆0

1 can be checked effectively (see Lemma 5.24).
If it does not exist, then ∆1k∆2 62 S(nBPA). If it exists, it can
be also constructed and thus the only thing which remains is to
test whether ∆2 � Q.j∆2j. If this test succeeds, then ∆1k∆2 2

S (nBPA) and we invoke the algorithm from the proof of Propo-
sition 5.17 with ∆0

1kQj∆2j on input—it outputs a nBPA process
which is bisimilar to ∆1k∆2.

� Induction step: if ∆1k � � � k∆n 2 S(nBPA), then also ∆1k � � � k∆n�1 2

S (nBPA) and this is decidable by ind. hypothesis—if the answer is
negative, then ∆1k � � � k∆n 62 S(nBPA) and if it is positive, then we
can construct a nBPA process ∆0 such that ∆1k � � � k∆n�1 � ∆0. Now
we check whether ∆0k∆n 2 S(nBPA) and construct a bisimilar nBPA
process ∆ if needed.

As an immediate consequence of Proposition 5.25 we get:

Proposition 5.26. Let ∆;∆1; : : : ;∆n be nBPA processes. It is decidable whether
∆ � ∆1k � � � k∆n.

104 Chapter 5. Parallelization of nBPA Processe

Now it is easy to prove the following theorem:

Theorem 5.27. Let ∆ be a nBPA process. It is decidable whether ∆ is prime an
if not, its decomposition into primes can be effectively constructed.

Proof: The technique is the same as in the proof of Theorem 5.7. We ca
almost copy the whole proof—the crucial result which allows us to do s
is Proposition 5.26.

Decidability results which were proved in this section are summarized i
the following theorem:

Theorem 5.28. Let ∆;∆1; : : : ;∆n be nBPA processes. The following problem
are decidable:

� Is ∆ prime? (If not, its decomposition can be effectively constructed)

� Is ∆ bisimilar to ∆1k � � � k∆n?
� Does the process ∆1k � � � k∆n belong to S(nBPA)?

� Is there any process ∆0 such that ∆k∆0 2 S(nBPA)? (if so, an example o
such a process can be effectively constructed).

� Is there any process ∆0 such that ∆ � ∆1k � � � k∆nk∆0? (if so, ∆0 can b
effectively constructed).

5.2.2 Decidability of Bisimilarity for sPA Processes

A “structural” way how to construct new processes from older ones is t
combine them together in parallel. If we do this with nBPA and nBPP
processes, we obtain a natural subclass of normed PA processes denoted
sPA (simple PA processes):

5.3. Conclusions, Future Research 105

Definition 5.29 (sPA processes). The class of sPA processes is defined as fol-
lows:

sPA = f∆1k � � � k∆n j n 2 N; ∆i 2 nBPA [nBPP for each 1 � i � ng

The class sPA is strictly greater than the union of nBPA and nBPP pro-
cesses. This is demonstrated by the following example:

Example 5.30. Let ∆1;∆2 be nBPA processes defined as follows:

∆1 : X
def
= zX + i(Y:X) + q ∆2 : A

def
= aA + b(B:A) + r

Y
def
= i(Y:Y) + d B

def
= b(B:B) + c

Then there is no nBPA or nBPP process bisimilar to the sPA process ∆1k∆2. This
can be easily proved with the help of pumping lemmas for context-free languages
and for languages generated by nBPP processes—see [Chr93].

Theorem 5.31. Let Φ = '1k � � � k'n, Ψ = 1k � � � k m be sPA processes. It is
decidable whether Φ � Ψ.

Proof: As each 'i, 1 � i � n and j, 1 � j � m can be effectively de-
composed, we can also construct decompositions of Φ and Ψ. If Φ � Ψ,
then these decompositions must be the same up to bisimilarity (see Re-
mark 5.5). In other words, there must be a one-to-one correspondence
between primes forming the two decompositions which preserves bisim-
ilarity. An existence of such a correspondence can be checked effectively,
because bisimilarity is decidable in the union of nBPA and nBPP processes
(see Theorem 4.34).

5.3 Conclusions, Future Research

The main characterization theorem (Theorem 5.23) says that non-regular
nBPA processes which are not prime can be divided into two groups:

106 Chapter 5. Parallelization of nBPA Processe

1. Processes which can be equivalently expressed as a power of som
non-regular simple process. It is obvious that each such nBPA pro
cess belongs to S(nBPP)—see Remark 5.11.

2. Processes which can be equivalently represented in DNF (Q). It ca
be proved (with the help of results achieved in Section 5.1) that each
such process does not belong to S(nBPP).

From this we can observe that our division based on normal forms corre
sponds to the membership to S(nBPP).

It is worth mentioning that our results are also of some interest from th
point of view of formal languages/automata theory. Bisimilarity coincide
with language equivalence in the class of deterministic normed transition
systems. Deterministic normed BPA processes in GNF are in fact deter
ministic context-free grammars. Parallel composition of processes (the ‘k

operator) has also its counterpart in the theory of formal languages in th
form of shuffle operator (see [HU79] for definition). All decidability result
of Theorem 5.28 can be easily reformulated for deterministic CF gram
mars, language equivalence, and shuffle.

The first possible generalization of our results could be the replacemen
of the ‘k’ operator with the parallel operator of CCS which allows synchro
nizations on complementary actions. This should not be hard, but we can
expect more complicated normal forms. Decidability results should be th
same.

A natural question is whether our results can be extended to the clas
of all (not necessarily normed) BPA processes. The answer is no, becaus
there are quite primitive BPA processes which do not have any decompo
sition at all—assume e.g., the process X

def
= aX.

Another related open problem is decidability of bisimilarity for norme
PA processes. It seems that it should be possible to design at least rich sub
classes of normed PA processes where bisimilarity remains decidable.

Chapter 6

Conclusions

In this chapter we give a brief summary of main results achieved in this
thesis and we also mention some major open problems.

6.1 Summary of the Main Results

In Chapter 3 we have concentrated on regularity problem. Regularity w.r.t.
bisimilarity has been proved to be decidable for normed PA processes in
polynomial time (Theorem 3.11). Furthermore, if a normed PA process ∆

is regular, then a bisimilar finite-state process in normal form can be effec-
tively constructed (Section 3.1.2). From this we have obtained decidability
of bisimilarity for pairs of processes such that one process of this pair is a
normed PA process and the other process has finitely many states (Theo-
rem 3.14).

The notion of regularity can also be defined w.r.t. other equivalences
from van Glabbeek’s hierarchy. We have designed and justified new no-
tions of finite characterization and strong regularity. Strong regularity
guarantees an existence of a finite characterization in case of all equiva-
lences from van Glabbeek’s hierarchy (Theorem 3.25). Moreover, we have
shown that the conditions of regularity and strong regularity express dif-

107

108 Chapter 6. Conclusion

ferent features w.r.t. all equivalences from van Glabbeek’s hierarchy excep
bisimilarity (Theorem 3.30).

In the last section of Chapter 3 we have extended PA processes with
finite-state control unit. As the resulting calculus (denoted PAPDA) ha
full Turing power, regularity and strong regularity are undecidable in thi
class of processes (Theorem 3.34).

In Chapter 4 we have studied the relationship between sequential and
parallel compositions. The semantical intersection of nBPA� and nBPP
(denoted nBPA� \ nBPP�) has been exactly characterized in terms of nor
mal forms INFBPP (Theorem 4.15) and INFBPA (Theorem 4.18), designed fo
nBPP� and nBPA� processes, respectively.

We have also demonstrated that the membership to nBPA� \ nBPP� i
decidable for nBPA� and nBPP� processes in polynomial time (Section 4.2)
Moreover, each nBPA� or nBPP� process from nBPA� \ nBPP� can be effec
tively transformed into INFBPA or INFBPP, respectively. Simplified version
of mentioned algorithms which work for nBPA and nBPP processes ha
been given too. Finally, as an immediate consequence we have obtained
decidability of bisimilarity in the union of nBPA� and nBPP� processe
(Theorem 4.34).

The problem of effective decomposability of nBPA processes has bee
examined in Chapter 5. First, we have presented a complete character
ization of decomposable nBPA processes together with their decomposi
tions by means of special normal forms (Theorem 5.23). Using this re
sult, we have shown that any nBPA process can be decomposed into
parallel product of primes effectively (Theorem 5.27), i.e. “the most paral
lel” version of a given nBPA process is effectively constructible. Related
decidability results are summarized in Theorem 5.28. Finally, we hav
demonstrated decidability of bisimilarity in a natural subclass of normed
PA processes (Theorem 5.31).

6.2. Open Problems 109

6.2 Open Problems

An interesting problem which remains open is decidability of regularity
w.r.t. bisimilarity in other process classes, namely PDA and PA. This prob-
lem is at least semi-decidable (see Section 3.4), hence it suffices to establish
semi-decidability of the negative subcase. Our conjecture is that regularity
w.r.t. bisimilarity is in fact decidable for PDA and PA processes.

Theorem 4.34 says that bisimilarity is decidable in the union of nBPA�

and nBPP� processes. However, our algorithm is exponential because it
involves transformations of regular nBPA� (or nBPP�) processes into nor-
mal form. From the practical point of view it would be more interesting to
obtain a better (polynomial-time) algorithm. Furthermore, one may won-
der if the decidability result can be extended to the union of all (not only
normed) BPA� and BPP� processes. In Section 4.3 we have mentioned that
the class BPA \ BPP contains also processes which cannot be equivalently
represented in INF. Moreover, techniques which have been used in Chap-
ter 4 cannot be applied, hence the characterization of BPA \ BPP seems to
be a more complicated task.

Naturally, it would be nice to compare other classes of behaviours
which are generated by different types of syntax, e.g., Petri nets and BPA.
A “complete” result should contain an exact characterization of the “se-
mantical intersection” and two (constructive) algorithms which can decide
the membership to the intersection for both types of syntax (and possibly
construct an equivalent description in the other syntax).

A prime decomposition of a process ∆ expresses all internal concur-
rency of ∆ explicitly—the problem of effective decomposability is thus es-
pecially interesting in process classes which contain sequential behaviours.
It would be nice to obtain some positive results for e.g., normed PDA pro-
cesses.

The problem of effective decomposability is also related to decidability
of bisimilarity in various process classes. For example, if bisimilarity is

110 Chapter 6. Conclusion

decidable for normed PA processes, then normed PA processes can be ef
fectively decomposed. On the other hand, we have obtained decidabilit
of bisimilarity for sPA processes (Theorem 5.31) as a simple consequenc
of effective decomposability of nBPA and nBPP processes.

Bibliography

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of
bisimulation equivalence for processes generating context-free
languages. In Proceedings of PARLE’87, volume 259 of LNCS,
pages 93–114. Springer-Verlag, 1987.

[BBK93] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of
bisimulation equivalence for processes generating context-free
languages. Journal of the Association for Computing Machinery,
40:653–682, 1993.

[BCS96] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse
and the process taxonomy. In Proceedings of CONCUR’96
[Con96], pages 247–262.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite
state processes with sequential and parallel composition. In
Proceedings of POPL’95, pages 95–106. ACM Press, 1995.

[BG96] D.J.B. Bosscher and W.O.D. Griffionen. Regularity for a large
class of context-free processes is decidable. In Proceedings of
ICALP’96 [Ica96], pages 182–192.

[BK88] J.A. Bergstra and J.W. Klop. Process theory based on bisim-
ulation semantics. In Advanced Topics in Artificial Intelligence,
volume 345 of LNCS, pages 50–122. Springer-Verlag, 1988.

111

112 Bibliograph

[Bla95] J. Blanco. Normed BPP and BPA. In Proceedings of ACP’94
Workshops in Computing, pages 242–251. Springer-Verlag
1995.

[BS94] O. Burkart and B. Steffen. Pushdown processes: Parallel com
position and model checking. In Proceedings of CONCUR’9
[Con94], pages 98–113.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 1
in Cambridge Tracts in Theoretical Computer Science. Cam
bridge University Press, 1990.

[Cau88] D. Caucal. Graphes canoniques de graphes algebriques. Rap
port de Recherche 872, INRIA, 1988.

[CHM93a] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is de
cidable for all basic parallel processes. In Proceedings of CON
CUR’93, volume 715 of LNCS, pages 143–157. Springer-Verlag
1993.

[CHM93b] S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability
decidability and axiomatisability for bisimulation equivalenc
on basic parallel processes. In Proceedings of LICS’93. IEEE
Computer Society Press, 1993.

[Chr93] S. Christensen. Decidability and Decomposition in Process Alge
bras. PhD thesis, The University of Edinburgh, 1993.

[CHS92] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equiv
alence is decidable for all context-free processes. In Proceeding
of CONCUR’92, volume 630 of LNCS, pages 138–147. Springer
Verlag, 1992.

[ČKK96] I. Černá, M. Křetínský, and A. Kučera. Bisimilarity is decidabl
in the union of normed BPA and normed BPP processes. In

Bibliography 113

Proceedings of INFINITY’96, MIP-9614, pages 32–46. University
of Passau, 1996.

[CM90] D. Caucal and R. Monfort. On the transition graphs of au-
tomata and grammars. In Graph-Theoretic Concepts in Computer
Science, volume 484 of LNCS, pages 311–337. Springer-Verlag,
1990.

[Con94] Proceedings of CONCUR’94, volume 836 of LNCS. Springer-
Verlag, 1994.

[Con96] Proceedings of CONCUR’96, volume 1119 of LNCS. Springer-
Verlag, 1996.

[Flo67] R.W. Floyd. Assigning meanings to programs. In Mathematical
Aspects of Computer Science. Proc. Symp. Appl. Math., 19, pages
19–32. American Math. Society, 1967.

[Gro91] J.F. Groote. A short proof of the decidability of bisimulation for
normed BPA processes. Information Processing Letters, 42:167–
171, 1991.

[HJM94a] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algo-
rithm for deciding bisimilarity of normed context-free pro-
cesses. Technical report ECS-LFCS-94-286, Department of
Computer Science, University of Edinburgh, 1994.

[HJM94b] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algo-
rithm for deciding bisimulation equivalence of normed basic
parallel processes. Technical report ECS-LFCS-94-288, Depart-
ment of Computer Science, University of Edinburgh, 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

114 Bibliograph

[HS91] H. Hüttel and C. Stirling. Actions speak louder than words
Proving bisimilarity for context-free processes. In Proceeding

of LICS’91, pages 376–386. IEEE Computer Society Press, 1991

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory

Languages, and Computation. Addison-Wesley, 1979.

[Ica96] Proceedings of ICALP’96, volume 1099 of LNCS. Springer
Verlag, 1996.

[Jan94] P. Jančar. Decidability questions for bisimilarity of Petri net
and some related problems. In Proceedings of STACS’94, vol
ume 775 of LNCS, pages 581–592. Springer-Verlag, 1994.

[Jan97] P. Jančar. Bisimulation equivalence is decidable for one
counter processes. To appear in Proc. of ICALP’97. LNCS
Springer-Verlag, 1997.

[JE96] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up t
bisimilarity. In Proceedings of ICALP’96 [Ica96], pages 478–489

[JM95] P. Jančar and F. Moller. Checking regular properties of Petr
nets. In Proceedings of CONCUR’95, volume 962 of LNCS, page
348–362. Springer-Verlag, 1995.

[Kuč95] A. Kučera. Deciding regularity in process algebras. BRICS Re
port Series RS-95-52, Department of Computer Science, Uni
versity of Aarhus, October 1995.

[Kuč96a] A. Kučera. Regularity is decidable for normed BPA and
normed BPP processes in polynomial time. In Proceedings o
SOFSEM’96, volume 1175 of LNCS, pages 377–384. Springer
Verlag, 1996.

Bibliography 115

[Kuč96b] A. Kučera. Regularity is decidable for normed PA processes in
polynomial time. In Proceedings of FST&TCS’96, volume 1180
of LNCS, pages 111–122. Springer-Verlag, 1996.

[Kuč97] A. Kučera. How to parallelize sequential processes. To appear.
In Proceedings of CONCUR’97, LNCS. Springer-Verlag, 1997.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Min67] M.L. Minsky. Computation: Finite and Infinite Machines.
Prentice-Hall, 1967.

[MM93] R. Milner and F. Moller. Unique decomposition of processes.
Theoretical Computer Science, 107(2):357–363, 1993.

[MM94] S. Mauw and H. Mulder. Regularity of BPA-systems is decid-
able. In Proceedings of CONCUR’94 [Con94], pages 34–47.

[Mol96] F. Moller. Infinite results. In Proceedings of CONCUR’96

[Con96], pages 195–216.

[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown
automata, and second order logic. Theoretical Computer Science,
37(1):51–75, 1985.

[Par81] D.M.R. Park. Concurrency and automata on infinite se-
quences. In Proceedings 5th GI Conference, volume 104 of LNCS,
pages 167–183. Springer-Verlag, 1981.

[Pet81] J.L. Peterson. Petri Net Theory and the Modelling of Systems.
Prentice-Hall, 1981.

[Plo81] G. Plotkin. A structural approach to operational semantics.
Technical Report Daimi FN-19, Department of Computer Sci-
ence, University of Aarhus, 1981.

116 Bibliograph

[Rei85] W. Reisig. Petri Nets—An Introduction. Springer-Verlag, 1985.

[Sch86] D.A. Schmidt. Denotational Semantics. Allyn and Bacon, Inc
1986.

[Sch92] S.R. Schwer. The context-freeness of the languages associated
with vector addition systems is decidable. Theoretical Compute
Science, 98(2):199–247, 1992.

[Sti92] C. Stirling. Modal and temporal logics. In S. Abramsky
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Com
puter Science, volume I. Oxford University Press, 1992.

[Sti96] C. Stirling. Decidability of bisimulation equivalence fo
normed pushdown processes. In Proceedings of CONCUR’9
[Con96], pages 217–232.

[SW89] C. Stirling and D. Walker. Local model checking in the moda
mu-calculus. In Proceedings of TAPSOFT’89, I, volume 351 o
LNCS, pages 369–383. Springer-Verlag, 1989.

[Tau89] D. Taubner. Finite Representations of CCS and TCSP Program
by Automata and Petri Nets. Number 369 in LNCS. Springer
Verlag, 1989.

[vG90] R.J. van Glabbeek. The linear time—branching time spectrum
In Proceedings of CONCUR’90, volume 458 of LNCS, pages 278
297. Springer-Verlag, 1990.

[vGW89] R.J. van Glabbeek and W.P. Weijland. Branching time and ab
straction in bisimulation semantics. Information Processing 89
pages 613–618, 1989.

Appendix A

Behavioural Equivalences

In this appendix we present definitions of behavioural equivalences of van
Glabbeek’s hierarchy. Here we adopt the definition of transition system
from Section 2.1, i.e., T = (S;Act;!; r). If s 2 S, then

I(s) = fa 2 Act j 9t 2 S such that s
a

! tg

denotes the set of initial actions of s. Furthermore, P(M) denotes the
power-set of M.

Definition A.1 (Trace equivalence). Let T be a transition system. We define
the set of traces of T in the following way:

tr(T) = fw 2 Act� j 9s 2 S such that r
w

! sg

Transition systems T1;T2 are trace equivalent, written T1 =tr T2, if tr(T1) =

tr(T2).

Definition A.2 (Completed trace equivalence). Let T be a transition system.
We define the set of completed traces of T in the following way:

ct(T) = fw 2 Act� j 9s 2 S such that r w

! s and I(s) = ;g

Transition systems T1;T2 are completed trace equivalent, written T1 =ct T2, if
tr(T1) = tr(T2) and ct(T1) = ct(T2).

117

118 Appendix A. Behavioural Equivalence

Definition A.3 (Failure equivalence). Let T be a transition system. A pai
(w;Φ) 2 Act� � P(Act) is a failure pair of T, if there is a state s 2 S such tha

r
w

! s and I(s)\Φ = ;. Let F(T) denote the set of all failure pairs of T. Transitio
systems T1;T2 are failure equivalent, written T1 =f T2, if F(T1) = F(T2)

Definition A.4 (Readiness equivalence). Let T be a transition system. A
pair (w;Φ) 2 Act��P(Act) is a ready pair of T, if there is a state s 2 S such tha
r w

! A and I(A) = Φ. Let R(T) denote the set of all ready pairs of T. Transition
systems T1;T2 are readiness equivalent, written T1 =r T2, if R(T1) = R(T2).

Definition A.5 (Failure trace equivalence). Let T be a transition system. Th
refusal relations Φ

! for Φ 2 P(L) are definined by:

A Φ

! B iff A = B and I(A) \ Φ = ;

The failure trace relations �
! for � 2 (L [P(L))� are defined as the reflexiv

and transitive closure of both the transition and the refusal relations. � 2 (Act [

P(Act))� is a failure trace of T, if there is a state s 2 S such that r

�
! s. Le

FT(T) denote the set of failure traces of T. Transition systems T1;T2 are failur
trace equivalent, written T1 =ft T2, if FT(T1) = FT(T2).

Definition A.6 (Ready trace equivalence). Let T be a transition system. Th
ready trace relations �

) for � 2 (Act [P(Act))� are defined inductively by:

1. s

�
) s for any s 2 S.

2. s
a

! t implies s
a

) t.

3. s Φ

) t with Φ 2 P(Act) whenever s = t and I(s) = Φ.

4. s �
) t

�
) u implies s

��
) u.

� 2 (Act[P(Act))� is a ready trace of T if there is a state s 2 S such that r �
) s

Let RT(T) denote the set of ready traces of T. Transition systems T1;T2 are ready
trace equivalent, written T1 =rt T2, if RT(T1) = RT(T2).

Appendix A. Behavioural Equivalences 119

Definition A.7 (Simulation equivalence). Let T1;T2 be transition systems.
A binary relation R � S1 � S2 is a simulation if whenever s1Rs2 then

8a 2 Act1 : s1
a

! s01) 9s02 : s2
a

! s02 ^ s01Rs02

Transition systems T1;T2 are simulation equivalent, written T1 =s T2, if there
exists a simulation R with r1Rr2 and a simulation S with r2Sr1.

Definition A.8 (Ready simulation equivalence). Let T1;T2 be transition sys-
tems. A binary relation R � S1 � S2 is a ready simulation if whenever s1Rs2

then:

� 8a 2 Act1 : s1
a

! s01) 9s02 : s2
a

! s02 ^ s01Rs02

� I(s1) = I(s2)

Transition systems T1;T2 are ready simulation equivalent, written T1 =rs T2,
if there exists a ready simulation R with r1Rr2 and a ready simulation S with
r2Sr1.

Definition A.9 (Possible futures equivalence). Let T be a transition system.
A pair (w;Φ) 2 Act� � P(Act�) is a possible future of T if there is a state
s 2 N such that r w

! s and tr(s) = Φ. The set of all possible futures of T
is denoted PF(T). Transition systems T1;T2 are possible-futures equivalent,
written T1 =pf T2, if PF(T1) = PF(T2).

Definition A.10 (2-nested simulation equivalence). Let T1;T2 be transition
systems. A binary relation R � S1 � S2 is a 2-nested simulation if whenever
s1Rs2 then

� 8a 2 Act1 : s1
a

! s01) 9s02 : s2
a

! s02 ^ s01Rs02

� s1 =s s2

Transition systems T1;T2 are 2-nested simulation equivalent, written T1 =2

T2, if there exists a 2-nested simulation R with r1Rr2 and a 2-nested simulation S
with r2Sr1.

