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Abstract. We examine the problem of finite-state representability of infinite-
state processes w.r.t. certain behavioural equivalences.We show that the clas-
sical notion of regularity becomes insufficient in case of all equivalences of van
Glabbeek’s hierarchy except bisimilarity, and we design and justify a generaliza-
tion in the form of strong regularity and finite characterizations. We show that the
condition of strong regularity guarantees an existence of finite characterization
in case of all equivalences of van Glabbeek’s hierarchy, andwe also demonstrate
that there are behaviours which are regular but not stronglyregular w.r.t. all equiv-
alences of the mentioned hierarchy except bisimilarity.

1 Introduction

The problem whether a given infinite-state behaviour (process) can be equivalently rep-
resented by a finite-state one has recently attracted a lot ofattention. A similar problem
has been actually known from the theory of formal languages for a long time—given
a grammarG, one can ask whether there is an equivalentregular grammarG′. The
grammarG′ can be seen as a ‘finite-state representation’ ofG because of the associated
finite-state automaton. However, it is folklore that the mentioned problem isundecid-
ableeven for context-free grammars.

The situation is more complicated within the framework of concurrency theory.
Transition systems are widely accepted as structures whichcan exactly define seman-
tics of concurrent process; however, there are manybehaviouralequivalences over the
class of transition systems which try to formally express ‘sameness’ of two concurrent
systems. Rob van Glabbeek presented in [vG90] a hierarchy ofequivalences, relating
them w.r.t. theircoarseness(see Figure 1).

The problem whether for a given process there is an equivalent finite-state one
has been intensively studied w.r.t.bisimulation equivalence (bisimilarity); it is also
known as the “regularity problem”. Regularity has been proved to be decidable for BPA
processes [MM94,BG96,BCS96], labelled Petri nets (and thus also BPP processes)
[JE96], normed PA processes [Kuč96], and one-counter processes [Jan97]. Those re-
sults are also interesting from the practical point of view—verification of infinite-state
systems is generally difficult, but if we replace an infinite-state system with some
equivalent finite-state one, the procedure can be much easier. Moreover, decidability
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of regularity can simplify various considerations about infinite-state behaviours (see
e.g., [ČKK97,Kuč97]).

In this paper we examine a general question what properties should have a finite-
state transition system if it is to be used as a ‘reliable’ description of some infite-state
one. We argue that in case of all equivalences of van Glabbeek’s hierarchy except bisim-
ilarity the notion of regularity becomes insufficient, as itdoes not characterize reachable
states (see the first paragraph of Section 3). We design and justify a new notion of finite
characterizationand we examine its basic properties. We prove that the condition of
strong regularityguarantees an existence of a finite characterization w.r.t.all equiva-
lences of van Glabbeek’s hierarchy. As regularity and strong regularitycoincidein case
of bisimilarity, the condition of strong regularity can be seen as a ‘proper’ predicate
expressing the feature of finite representability. We also prove that regularity and strong
regularity donot coincide in case of all equivalences of van Glabbeek’s hierarchy ex-
cept bisimilarity, i.e., strong regularity is really a ‘stronger’ condition than regularity.
We conclude with some remarks on future work.

2 Definitions

Definition 1. A transition systemT is a tuple(S, Act,→, r) whereS is a set ofstates,
Act is a set oflabels,→⊆ S×Act×S is atransition relationandr ∈ S is a distinguished
state calledroot. The class of all transition systems is denoted byT .

As usual, we writes
a
→ t instead of(s, a, t) ∈ → and we extend this notation to

elements ofAct∗ in an obvious way (we sometimes writes →∗ t instead ofs
w
→ t if

w ∈ Act∗ is irrelevant). A statet is said to bereachablefrom a states if s →∗ t. The
states which are reachable from the root are said to bereachable.

Variousbehavioural equivalencesover the class of transition systems were pro-
posed in the literature—each of them tries to express a certain level of ‘sameness’
which is proper in certain situations. Rob van Glabbeek presented in [vG90] a hier-
archy of behavioural equivalences, relating them w.r.t. their coarseness, i.e., how many
identifications they make. The resulting lattice is presented in Figure 1.

Definition 2. Let T be a transition system and let↔ be an equivalence overT . The
systemT is regularw.r.t.↔ if there is a finite-state transition systemF such thatT ↔
F . Such a systemF is called a finiterepresentationof T .

3 Finite Characterizations

The notion of finite representation can be used for any equivalence of van Glabbeek’s
hierarchy. It is extremely useful in case of bisimilarity—and we argue this is due to the
following fact: if we take bisimilar transition systemsT andF such thatF has finitely
many states, then for each reachable statet of T there is a bisimilar reachable statef of
F . In other words,F gives a complete characterization ofall reachable states ofT . This
is no more true for the other equivalences of van Glabbeek’s hierarchy; if we take e.g.,
trace equivalence (see Definition 8) and two transition systemsT andF such thatT and
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Fig. 1. van Glabbeek’s hierarchy of behavioural equivalences



F are trace equivalent andF has finitely many states, then the only thing we can say
aboutT andF is that theirrootshave the same sets of traces—but if we take a reachable
statet of T , it need not be trace equivalent to any reachable state ofF . If we want to
check some temporal property ofT (e.g., something bad never happens), then we are
usually interested inall reachable states ofT . It is thus sensible to ask whether there is
a finite-state transition systemF ′ such thateachreachable state ofT is equivalent to
some state ofF ′. If so, we can examine features ofF ′ instead ofT and asF ′ has only
finitely many states, it should be easier. This is the basic idea which leads to the notion
of finite characterization.

Definition 3. LetT be a transition system and let↔ be an equivalence overT . A finite-
state transition systemF is a finitecharacterizationof T w.r.t. ↔ if all the following
conditions are true:T ↔ F , states ofF are pairwise nonequivalent w.r.t.↔, and for
each reachable statet of T there is a reachable statef of F such thatt ↔ f .

Now we examine the question when finite characterizations exist and what is their rela-
tionship with finite representations. First we need to introduce further notions.

Definition 4. Let↔ be an equivalence overT . For each transition systemT = (S, Act,
→, r) we define the transition systemT/↔ = (S′, Act,→′, r′) in the following way:

– S′ contains equivalence classes ofS/↔ (the equivalence class containings ∈ S
is denoted by[s]).

– The relation→′ is determined by the rules
a
→ t =⇒ [s]

a
→′ [t].

– r′ = [r]

The equivalence↔ is said tohave quotientsif for any T ∈ T the natural projection
p : T −→ T/↔ , assigning to each states of T the state[s] of T/↔ , is a part of↔
(i.e.,s ↔ [s] for each states of T ).

The notion of finite characterization is naturally motivated. Now we can ask what fea-
tures of a transition systemT guarantee an existence of a finite characterization ofT .
This is the aim of the following definition:

Definition 5. Let↔ be an equivalence overT . A transition systemT is strongly regular
w.r.t.↔ if T can reach only finitely many states up to↔.

The next lemma says when the condition of strong regularity guarantees an existence
of a finite characterization.

Lemma 1. Let↔ be an equivalence overT which has quotients. ThenT has a finite
characterization w.r.t.↔ iff T is strongly regular w.r.t.↔.

Proof.
“⇒” Obvious.
“⇐” As T is strongly regular w.r.t.↔ and↔ has quotients, the transition systemT/↔
is a finite characterization ofT . ⊓⊔



Now we prove that the requirement of “having quotients” fromthe previous lemma
is not too restrictive in fact—all equivalences of van Glabbeek’s hierarchy have this
property. Due to the lack of space we cannot give a separate proof for each of them;
instead we present just two full proofs which “cover” the whole hierarchy in the sense
that all remaining proofs can be obtained by slight modifications of one of the two
indicated approaches.

Definition 6. Let T = (S, Act,→, r) be a transition system. For each states ∈ S

we define the setI(s) = {a ∈ Act | ∃t ∈ S such thats
a
→ t}. A pair (w, Φ) ∈

Act∗ × P(Act) is a failure pairof T , if there is a states ∈ S such thatr
w
→ s and

I(s) ∩ Φ = ∅. Let F (T ) denote the set of all failure pairs ofT . Transition systems
T1, T2 are failure equivalent, writtenT1 =f T2, if F (T1) = F (T2)

Lemma 2. Failure equivalence has quotients.

Proof. Let T = (S, Act,→, r) be a transition system. We show thatF (p) = F ([p]) for
each statep ∈ S.

“⊆”: Let (w, Φ) ∈ Act∗ × P(Act) be a failure pair ofp. By definition, there is a state
p′ ∈ S such thatp

w
→ p′ andI(p′) ∩ Φ = ∅. But then also[p]

w
→ [p′]. The setI([p′])

is the union of allI(q) such thatq ∈ [p′]. As u =f v implies I(u) = I(v), we can
conclude thatI([p′]) = I(p′), henceI([p′]) ∩ Φ = ∅, thus(w, Φ) ∈ F ([p]).

“⊇”: Let (w, Φ) ∈ Act∗ × P(Act) be a failure pair of[p] and letw = ak . . . a1. By

definition, there is a sequence of transitions[pk]
ak→ [pk−1]

ak−1

→ . . .
a1→ [p0] in T/=f

such thatp ∈ [pk] andI([p0]) ∩ Φ = ∅. We show that for each stateq of T such that
q ∈ [pi], wherei ∈ {0, . . . , k}, the pair(ai . . . a1, Φ) belongs toF (q). We proceed by
induction oni:

– i = 0 : asI(q) = I([p0]), we have(ǫ, Φ) ∈ F (q).
– induction step: as [pi]

ai→ [pi−1], there are statesu, v of T such thatu
ai→ v,

u ∈ [pi] andv ∈ [pi−1]. By induction hypothesis we have(ai−1 . . . a1, Φ) ∈ F (v),
hence(ai . . . a1, Φ) ∈ F (u). As q =f u, the pair(ai . . . a1, Φ) belongs toF (q).

⊓⊔

The same technique can be also applied to trace equivalence,completed trace equiv-
alence, readiness equivalence, failure trace equivalence, ready trace equivalence and
possible-futures equivalence.

Definition 7. Let T1 = (S1, Act1,→1, r1) andT2 = (S2, Act2,→2, r2) be transition
systems. A relationR ⊆ S1 × S2 is a simulationif whenever(s, t) ∈ R then

∀a ∈ Act1 : s
a
→1 s′ =⇒ ∃t′ : t

a
→2 t′ ∧ (s′, t′) ∈ R

Transition systemT1 is simulatedby T2, written T1 ⊑s T2, if there is a simulationR
with (r1, r2) ∈ R. It is easy to see that⊑s is a preorder. Transition systemsT1, T2 are
simulation equivalent, writtenT1 =s T2, if T1 ⊑s T2 andT2 ⊑s T1.

Lemma 3. Simulation equivalence has quotients.



Proof. Let T = (S, Act,→, r) be a transition system. We show thatt =s [t] for each
statet ∈ S. By definition, we must show an existence of two simulationsP, R such
that (t, [t]) ∈ P and([t], t) ∈ R. The simulationP is exactly the natural projection
p : T → T/=s

, i.e.,P = {(u, [u]) : u ∈ S}. It is easy to check thatP is a simulation.
The simulationR is defined as follows:

([u], v) ∈ R
def
⇐⇒ ∃p ∈ [u] : p ⊑s v

We prove thatR is indeed a simulation. Suppose[u]
a
→ [u′]. By definition ofT/=s

,

there areq, q′ ∈ S such thatq
a
→ q′, u =s q, andu′ =s q′. Moreover, by definition of

R there isp ∈ S with p =s q andp ⊑s v. As q ⊑s p ⊑s v, we also haveq ⊑s v by
transitivity of⊑s. Hencev

a
→ v′ for somev′ ∈ S with q′ ⊑s v′. As q′ ∈ [u′], the pair

([u′], v′) belongs toR and the proof is finished. ⊓⊔

This method also works for ready simulation equivalence and2-nested simulation equiv-
alence. As bisimilarity has quotients (this is obvious), wecan now state the following
theorem:

Theorem 1. Each equivalence in van Glabbeek’s hierarchy has quotients.

There are also other well-known equivalences which have quotients, e.g., weak bisimi-
larity (see [Mil89]) or branching bisimilarity (see [vGW89]). But this property is natu-
rally not general—there are also equivalences which do not have quotients. To present
a concrete example, we first need several definitions.

Definition 8. LetT = (S, Act,→, r) be transition system. Atraceof T is any sequence
w ∈ Σ+ such thatr

w
→ s for somes ∈ S. A tracew of T is completedif r

w
→ s for

somes ∈ S which does not have any successors. Transition systemsT1, T2 are

– trace equivalentif they have the same sets of traces.
– completed trace equivalentif they have the same sets of traces and the same sets of

completed traces.
– language equivalent, written T1 =L T2, if they have the same sets of completed

traces.

Language equivalence is well-known from the theory of formal languages and au-
tomata. Note that it is incomparable even with trace equivalence.

Theorem 2. Language equivalence does not have quotients.

Proof. A simple counterexample looks as follows:

T : •
a

����
�� b

��;
;;

; T/=L
: •

b��a ��
◦ ◦

b

ZZ ◦

b

ZZ

Clearlyr 6=L [r] because the set of completed traces ofr is {a} while the set of com-
pleted traces of[r] is empty. ⊓⊔



We have seen that if we restrict our attention to behaviouralequivalences which have
quotients, then the condition of strong regularity becomesnecessary and sufficient for
an existence of a finite characterization. An interesting question is, what is the exact
relationship between conditions of regularity and strong regularity. First, we already
know that there are equivalences for which these two conditions coincide (e.g., bisimi-
larity, weak bisimilarity or branching bisimilarity). Butthere are also equivalences for
which conditions of regularity and strong regularity express different properties.

Theorem 3. Let ↔ be an equivalence of van Glabbeek’s hierarchy which lies under
bisimilarity. Then there is a transition systemT such thatT is regular w.r.t.↔ andT is
not strongly regular w.r.t.↔.

Proof. (sketch) Transition systemsT3 andT4 of Figure 2 are ready simulation equiv-
alent. AsT4 has finitely many states,T3 is regular w.r.t. all equivalences which lie
under ready simulation equivalence in van Glabbeek’s hierarchy. At the same time we
may observe thatT3 can reach infinitely many states which are pairwise nonequivalent
w.r.t. trace equivalence. HenceT3 is not strongly regular w.r.t. any equivalence in van
Glabbeek’s hierarchy.

Similarly, T1 andT2 are 2-nested simulation equivalent, butT1 can reach infinitely
many states which are pairwise nonequivalent w.r.t. possible-futures equivalence. Hence
T1 is regular w.r.t. possible-futures equivalence and 2-nested simulation equivalence,
but not strongly regular w.r.t. the mentioned equivalences. ⊓⊔
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Fig. 2.Transition systems from the proof of Theorem 3



4 Future work

An open problem is whether the notions of regularity and strong regularity have differ-
ent decidability features. However, this area seems to be quite unexplored. The notions
of finite characterization and strong regularity surely deserve a deeper examination, and
this is the subject we would like to work on in the future.
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[JE96] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimilarity. InPro-

ceedings of ICALP’96[Ica96], pages 478–489.
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