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Abstract. We consider the problem of deciding regularity of normed
BPP and normed BPA processes. A process is regular if it is bisimilar to
a process with finitely many states. We show that regularity of normed
BPP and normed BPA processes is decidable in polynomial time and
we present constructive regularity tests. Combining these two results
we obtain a rich subclass of normed PA processes (called sPA) where
the regularity is also decidable. Moreover, constructiveness of this result
implies decidability of bisimilarity for pairs of processes such that one
process of this pair is sPA and the other has finitely many states.

1 Introduction

One of the most popular models for concurrency are process algebras like CCS,
CSP or ACP. Various properties of these models have beed studied in the last
decades. This paper belongs to the bunch which could be labelled “decidability
results”.

We consider the problem of deciding regularity in several process algebras. A
process is regular if it is bisimilar to a process with finitely many states. Almost
all interesting properties are decidable for finite-state processes and designed
algorithms are practically usable.

This is no more true if one moves to process classes which contain also pro-
cesses with infinitely many states (up to bisimilarity). Some problems can remain
decidable—for example, bisimilarity is known to be decidable for BPA (see [1, 3,
9, 7, 6]) and BPP (see [5, 4]) processes. The same problem becomes undecidable
for labelled Petri nets (see [10]). But even if a given property is decidable, the
algorithm is usually not interesting from the practical point of view due to its
complexity. Before running a complex algorithm, it is a good idea to ask whether
the process we are dealing with can be replaced with some equivalent (bisimilar)
process with finitely many states. If so, we can usually run a much more effi-
cient algorithm. Natural questions are, whether the regularity is decidable for a
given class of processes and whether the equivalent finite-state process can be
effectively constructed.

This natural problem is generally undecidable (see [17]), but Mauw and Mul-
der showed in [14], that “regularity” is decidable in the class of BPA processes.



The quotes are important here because Mauw and Mulder used the word regu-
larity in a different sense.

A recent result of Esparza and Jančar [11] says that regularity is decidable
for labelled Petri nets. The algorithm is obtained by a combination of two semi-
decidability results and hence there are no complexity estimations.

In this paper we prove that regularity is decidable in classes of normed BPA
and normed BPP processes. Presented algorithms are polynomial (and practi-
cally usable). As normed BPP processes form a proper subclass of labelled Petri
nets, this part of our result can be seen as a refinement of [11].

Combining decision algorithms for normed BPA and normed BPP we can
even prove that regularity is decidable in quite a large subclass of normed PA
processes (PA processes have both sequential and parallel compositions and were
introduced in [2]). We denote this subclass sPA (“s” stands for simple). The class
sPA is strictly greater then the union of normed BPA and normed BPP processes.
Moreover, if the tested sPA process ∆ is regular then a process ∆′ with finitely
many states such that ∆ ∼ ∆′ can be effectively constructed.

An interesting related problem is decidability of various behavioural equiv-
alences and preorders for pairs of processes such that one process of this pair
has finitely many states. For example, Jančar and Moller proved in [12] that
bisimilarity is decidable for a pair of labelled Petri nets provided one net of this
pair is bounded (a net is bounded iff it has finitely many states). The same result
holds for trace equivalence and simulation equivalence.

The constructiveness of our decidability result for sPA allows us to conclude
that bisimilarity is decidable for pairs of processes, such that one process is sPA
and the other has finitely many states (decidabilility of bisimilarity for PA and
even for sPA processes are open questions).

2 Basic definitions

2.1 BPA and BPP processes

Let Act = {a, b, c, . . .} be a countably infinite set of atomic actions. Let Var =
{X, Y, Z, . . .} be a countably infinite set of variables such that Var ∩ Act = ∅.
The classes of recursive BPA and BPP expressions are defined by the following
abstract syntax equations:

EBPA ::= a | X | EBPA.EBPA | EBPA + EBPA

EBPP ::= a | X | aEBPP | EBPP‖EBPP | EBPP + EBPP

Here a ranges over Act and X ranges over Var . The symbol Act∗ denotes the
set of all finite strings over Act.

As usual, we restrict our attention to guarded expressions. A BPA or BPP
expression E is guarded if every variable occurence in E is within the scope of
an atomic action.

A guarded BPA (or BPP) process is defined by a finite family ∆ of recursive
process equations

∆ = {Xi
def
= Ei | 1 ≤ i ≤ n}



where Xi are distinct elements of Var and Ei are guarded BPA (or BPP) ex-
pressions, containing variables from {X1, . . . , Xn}. The set of variables which
appear in ∆ is denoted by Var(∆).

The variable X1 plays a special role (X1 is sometimes called the leading
variable—it is a root of a labelled transition system, defined by the process ∆

and following rules:
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(X
def

= E ∈ ∆)

The symbol ǫ denotes the empty expression with usual conventions: ǫ‖E = E,
E‖ǫ = E and ǫ.E = E. Nodes of the transition system generated by ∆ are
BPA (or BPP) expressions, which are often called states of ∆, or just “states”

when ∆ is understood from the context. We also define the relation
w
→* , where

w ∈ Act∗, as the reflexive and transitive closure of
a
→ (we often write E →∗ F

instead of E
w
→* F if w is irrelevant). Given two states E, F , we say that F is

reachable from E, if E →∗ F . States of ∆ which are reachable from X1 are said
to be reachable.

Remark 1. Processes are often identified with their leading variables. Further-
more, if we assume a fixed process ∆, we can view any process expression E

(not necessarily guarded) whose variables are defined in ∆ as a process too; we

simply add a new leading equation X
def

= E′ to ∆, where X is a variable from Var
such that X 6∈ Var(∆) and E′ is a process expression which is obtained from E

by substituting each variable in E with the right-hand side of its corresponding
defining equation in ∆ (E′ must be guarded now). All notions originally defined
for processes can be used for process expressions in this sense too.

Bisimulation The equivalence between process expressions (states) we are in-
terested in here is bisimilarity [16], defined as follows:

Definition 1. A binary relation R over process expressions is a bisimulation if
whenever (E, F ) ∈ R then for each a ∈ Act

– if E
a
→ E′, then F

a
→ F ′ for some F ′ such that (E′, F ′) ∈ R

– if F
a
→ F ′, then E

a
→ E′ for some E′ such that (E′, F ′) ∈ R

Processes ∆ and ∆′ are bisimilar, written ∆ ∼ ∆′, if their leading variables are
related by some bisimulation.

Normed processes Important subclasses of BPA and BPP processes can
be obtained by an extra restriction of normedness. A variable X ∈ Var(∆)

is normed if there is w ∈ Act∗ such that X
w
→ * ǫ. In that case we define

the norm of X , written |X |, to be the length of the shortest such w. Thus

|X | = min{Length(w) | X
w
→ * ǫ}. A process ∆ is normed if all variables of

Var(∆) are normed. The norm of ∆ is then defined to be the norm of X1.



Greibach normal form Any BPA or BPP process ∆ can be effectively pre-
sented in so-called 3-Greibach normal form (see [1] and [4]). Before the definition
we need to introduce the set Var(∆)∗ of all finite sequences of variables from
Var(∆), and the set Var(∆)⊗ of all finite multisets over Var(∆). Each multi-
set of Var(∆)⊗ denotes a BPP expression by combining its elements in parallel
using the ‘‖’ operator.

Definition 2. A BPA (resp. BPP) process ∆ is said to be in Greibach normal
form (GNF) if all its equations are of the form

X
def
=

n∑

j=1

ajαj

where n ∈ N , aj ∈ Act and αj ∈ Var(∆)∗ (resp. αj ∈ Var(∆)⊗). We also
require that for each X ∈ Var(∆) there is reachable state α of ∆ such that
X ∈ α. If Length(αj) ≤ 2 (resp. card(αj) ≤ 2) for each j, 1 ≤ j ≤ n, then ∆ is
said to be in 3-GNF.

From now on we assume that all BPA and BPP processes we are working with
are presented in GNF. This justifies also the assumption that all reachable states
of a BPA process ∆ are elements of Var(∆)∗ and all reachable states of a BPP
process ∆′ are elements of Var(∆′)⊗.

sPA processes To be able to define the class of sPA processes we first need
the notion of VPA expression. VPA expressions are defined as follows:

EVPA ::= X | EVPA‖EVPA | EVPA.EVPA

The set of variables, which apper in a VPA expression α is denoted Var(α).
The class of sPA processes is composed of VPA expresions whose variables are
normed BPA or normed BPP processes (see remark in Section 1). An sPA process
α generates a labelled trasition system using SOS rules mentioned above. The
root of this transition system is α.

sPA processes form a subclass of PA processes (defined in [2]). The main
restriction is the form of recursion which is allowed in sPA (the variables of
Var(α) can be defined recursively, but using only BPA or only BPP operators).
In spite of this restriction, sPA class is strictly greater then the union of normed
BPA and normed BPP processes. This is demonstrated by the following example:

Example 1. Let ∆1, ∆2 be normed BPA processes given by the following equa-
tions:

∆1: X
def

= aY + bZ ∆2: A
def

= cB + dC

Y
def

= a(Y.Y ) + bX + b B
def

= c(B.B) + dA + d

Z
def
= aX + b(Z.Z) + a C

def
= cA + d(C.C) + c

Then there is no normed BPA or BPP process bisimilar to the sPA process X‖A
(it can be proved using pumping lemmas for context-free languages and for BPP
languages—see [4]).



2.2 Regular processes

The main question considered in this paper is, whether the behaviour of a given
process is regular, i.e. whether it is bisimilar to a process with finitely many
states.

Definition 3. A process ∆ is regular if there is a process ∆′ with finitely many
states such that ∆ ∼ ∆′.

It is easy to show that a process is regular iff it can reach only finitely many states
up to bisimilarity. In [15] it is shown, that regular processes can be represented
in the following normal form:

Definition 4. A regular process ∆ is said to be in normal form if all its equa-
tions are of the form

Xi
def

=

ni∑

j=1

aijXij

where 1 ≤ i ≤ n, ni ∈ N , aij ∈ Act and Xij ∈ Var(∆).

Thus a process ∆ is regular iff there is a regular process ∆′ in normal form such
that ∆ ∼ ∆′.

3 Constructive regularity tests for normed BPA, normed

BPP and sPA processes

In this section we show that regularity is decidable for normed BPA, normed
BPP and sPA processes. Proofs are mostly omitted due to the lack of space and
can be found in [13].

Definition 5. Let ∆ be a normed BPA (resp. BPP) process. A variable X ∈
Var(∆) is growing if X →∗ X.α (resp. X →∗ X‖α) where α 6= ǫ.

Lemma 1. Let ∆ be a normed BPA (resp. BPP) process in 3-GNF. It is decid-
able, whether Var(∆) contains a growing variable.

Proof. We define the binary relation Grow on Var(∆) in the following way:

(X, Y ) ∈ Grow
def

⇐⇒ X →∗ Y.α (resp. X →∗ Y ‖α) where α 6= ǫ.

Clearly Var(∆) contains a growing variable iff there is X ∈ Var(∆) such that
(X, X) ∈ Grow . We show that the relation Grow can be effectively constructed.
We need two auxiliary binary relations on Var(∆):

 : X  Y
def

⇐⇒ there is a summand aα in the defining equation for
X in ∆ such that α = Y.Z (resp. α = Y ‖Z or
α = Z‖Y ) where Z ∈ Var(∆)

→֒: X →֒ Y
def

⇐⇒ there is a summand aα in the defining equation for
X in ∆ such that Y ∈ Var(α).



It is easy to prove that Grow = →֒∗ .  . →֒∗, where →֒∗ denotes the reflexive
and transitive closure of →֒. Moreover, the composition →֒∗ .  . →֒∗ can be
effectively constructed.

Let ∆ be a normed BPA or BPP process in GNF. Let n denote the number
of summands which are contained in defining equations of ∆. Relations  and
→֒ can be computed in n steps. As relations can be represented as boolean
matrices and closure as well as product of boolean matrices can be computed in
polynomial time, we can conclude that the relation Grow can be computed in
polynomial time.

Proposition 1. Let ∆ be a normed BPA or BPP process in 3-GNF. ∆ is regular
iff Var(∆) does not contain any growing variable.

Proof. It can be found in [13].

Proposition 2. Let ∆ be a normed BPA or BPP process. If ∆ is regular, then
a regular process ∆′ in normal form such that ∆ ∼ ∆′ can be effectively con-
structed.

Proof. It can be found in [13].

Propositions 1 and 2 together say that there are constructive regularity tests for
normed BPA and BPP processes.

It is interesting to compare this result with decidability issues of context-free
languages. For any normed BPA or BPP process ∆ we can define its associated
language over the alphabet Act in the following way:

Language(∆) = {w ∈ Act∗ | X1

w
→* ǫ}

The variable X1 is the leading variable of ∆. Normed BPA processes in 3-GNF
can be seen as context-free grammars in 3-GNF and hence the class of lan-
guages generated by normed BPA processes is exactly the class of context-free
languages. It is well-known that a CF language L is not regular iff each CF
grammar generating L contains a self-embedding nonterminal. Self-embedding
nonterminals are in some sense related to growing variables (see Definition 5).
Growing variables and self-embedding nonterminals can be effectively recognised.
However, an existence of a self-embedding nonterminal in a given CF grammar
G does not allow to conclude that L(G) is not regular. There can still be an
equivalent grammar which does not contain any self-embedding nonterminal.
Bisimulation equivalence is a finer relation—if a given normed BPA process ∆

contains a growing variable, then each bisimilar normed BPA process ∆′ has this
property. We could also speak about “regularity w.r.t. language equivalence” (a
process ∆ is regular w.r.t. language equivalence if there is a process ∆′ with
finitely many states such that Language(∆) = Language(∆′)). Hence regularity
(w.r.t. bisimulation equivalence) is decidable for normed BPA processes, while
regularity w.r.t. language equivalence is not.



Normed BPP processes generate a class of languages which is incomparable
with context-free languages but it forms a proper subclass of context-sensitive
languages.

Now we show that we can combine these two results and obtain a positive
decidability result also for sPA processes:

Proposition 3. Regularity is decidable for sPA processes in polynomial time.

Proof. (sketch) It suffices to prove that an sPA process α is regular iff all its
variables from Var(α) are regular (see remark in Section 1). The proof is easy
to complete by induction on the structure of α. The only subcase which is not
immediate is α = β1.β2. It can be proved using a cancelation lemma for normed
processes (see [3]).

Moreover, if the tested sPA process is regular then the regular process ∆′ in
normal form such that α ∼ ∆′ can be effectively constructed. It implies the
following proposition:

Proposition 4. Bisimilarity is decidable for pairs of processes such that one
process of this pair is sPA and the other is a regular process in normal form.

4 Conclusions, future work

If we compare the decidability results, obtained for classes of normed BPP and
normed BPA processes, we can observe that they are of a similar form. This is
not surprising if fact—the only difference between BPP and BPA algebras is the
form of binary composition they provide—the parallel composition in the case of
BPP and the sequential composition in the case of BPA. But these two operators
have similar algebraic properties and it reflects in many things—processes of
BPP and BPA can be represented in similar normal forms (GNF), there are
similar cancelation properties, the notion of self-bisimulation, introduced in [3],
can be defined in a uniform way (see [8]) and so on.

Presented regularity tests are of polynomial time complexity (all what has to
be done is the computation of the Grow relation). But if we want to construct a
bisimilar process with finitely many states in normal form, we are faced to the
problem of exponential state explosion—hence the space complexity is exponen-
tial because we need a special variable (and a special defining equation) for each
such state.

An open problem still remains the question of deciding regularity in the class
of PA processes and this is the area we would like to examine in the future.
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