Characteristic Patterns for LTL*

Antonin Kucera and Jan Strejcek

Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic
{tony,strejcek}0fi.muni.cz

Abstract. We give a new characterization of those languages that are definable
in fragments of LTL where the nesting depths of X and U modalities are bounded
by given constants. This brings further results about various LTL fragments. We
also propose a generic method for decomposing LTL formulae into an equivalent
disjunction of “semantically refined” LTL formulae, and indicate how this result
can be used to improve the functionality of existing LTL model-checkers.

1 Introduction

Linear temporal logic (LTL) [6] is a popular formalism for specifying properties of
(concurrent) programs. The syntax of LTL is given by the following abstract syntax
equation:

pu=tt[al | @iips | Xo | pr1Ups

Here a ranges over a countable set A = {a,b,c,...} of letters. We also use Fy to
abbreviate tt U ¢, and Gy to abbreviate -F—¢. The set of all letters which appear in a
given formula ¢ is denoted A(¢p).

The semantics of LTL is defined in terms of languages over infinite words. An al-
phabet is a finite set Y C A. An w-word over X is an infinite sequence o =
a(0)a(1)a(2) ... of letters from X. The set of all finite words over X' is denoted by
X*, and the set of all w-words by X*. The length of a given u € X* is denoted |u)|.
In the rest of this paper we use a, b, c, ... to range over X, u, v, ... to range over L™,
and «, 3, . . . to range over X, For every i € Ny we denote by «; the i*" suffix of a,
i.e., the word a(i)a(i + 1)

Let X' be an alphabet. The validity of a formula ¢ for o € X* is defined as follows:

a =ttt
akEa iff a=a(0)
a e iff alEep

aEpi ANps iff afEpi AalE @
a = Xp iff a1fFE¢
Oé}:gOlU(,DQ iff EIieNO:aZ-|:<,92/\V0§j<i:aj’:g01
For each alphabet X, a formula ¢ defines the w-language Lf ={aeX¥|af ¢}

* This work has been supported by GACR, grant No. 201/03/1161.

2 Antonin Kucera and Jan Strejcek

For every LTL formula ¢ and every modal operator M € {X, U} we define the
nesting depth of M in @, denoted M -depth(y), inductively as follows (Y ranges over
unary operators {—, X} and Z ranges over binary operators {A, U}).

M-depth(tt) = M-depth(a) = 0
M-depth(p)+1 if M =Y,

M-depth(Y ¢) = {M -depth(p) otherwise.
[max{M-depth(p1), M-depth(p2)} +1 if M = Z,
M-depth(p1 2 ¢2) = {max{M-depth(gol), M -depth(v2)} otherwise.

For all m,n € NgU{oo}, the symbol LTL(U™, X™) denotes the set of all LTL formulae
¢ such that U-depth(yv) < m and X-depth(yp) < n. To simplify our notation, we omit
the “oco” superscript, and if m or n equals 0, then we omit the symbol U™ or X" in
LTL(U™, X™), respectively. Hence, e.g., LTL(U3, X) is a shorthand for LTL(U?, X°°).

A lot of research effort has been invested into characterizing the expressive power
of LTL and its fragments. A concise survey covering basic results about LTL expres-
siveness can be found in [1]. A more recent survey [8] contains also results concerning
some of the LTL fragments. In this paper, we give a new characterization of w-languages
that are definable in LTL(U™, X") for given m,n € Ny.! Roughly speaking, for each
alphabet X and all m,n € Ny we design a finite set of (m, n)-patterns®, where each
(m, n)-pattern is a finite object representing an w-language over X' so that the following
conditions are satisfied:

— Each a € X¥ is represented by exactly one (m, n)-pattern (consequently, the sets
of w-words represented by different patterns are disjoint).

— w-words which are represented by the same (m, n)-pattern cannot be distinguished
by any formula of LTL(U™, X™).

— For each (m,n)-pattern p we can effectively construct a formula ¢ €
LTL(U™,X™) so that for each @ € X we have that o = ¢ if and only if « is
represented by the pattern p.

Thus, the semantics of each formula ¢ € LTL(U™, X™) is fully characterized by a finite
subset of (m, n)-patterns, and vice versa. Intuitively, (m, n)-patterns represent exactly
the information about w-words which determines the (in)validity of LTL(U™, X™) for-
mulae. The patterns are defined inductively on m, and the inductive step brings some
insight into what is actually gained (i.e., what new properties can be expressed) by
increasing the nesting depth of U by one.

Characteristic patterns can be used as a tool for proving further results about the
logic LTL and its fragments. In particular, they can be used to construct a short proof
of a (somewhat simplified) form of stutter invariance of LTL(U™, X™) languages in-
troduced in [3]. This, in turn, allows to construct simpler proofs for some of the re-
sults presented in [3] (like, e.g., the strictness of the LTL(U™, X), LTL(U, X™), and

! The expressiveness of these fragments has already been studied in [3]. In particular, it has been
proven that the classes of languages definable by two syntactically incomparable fragments of
this form are also incomparable.

% Let us note that (m, n)-patterns have nothing to do with the forbidden patterns of [8].

Characteristic Patterns for LTL 3

LTL(U™, X™) hierarchies). An interesting question (which is left open) is whether
one could use characteristic patterns to demonstrate the decidability of the problem
if a given w-regular language L is definable in LTL(U™, X) for a given m.

Another application area for characteristic patterns is LTL model-checking. We be-
lieve that this is actually one of the most interesting parts of our work, and therefore we
explain the idea in greater detail.

An instance of the LTL model-checking problem is a system and an LTL formula
(called “specification formula”) which defines desired properties of the system. The
question is whether all runs of the system satisfy the formula. This problem can dually
be reformulated as follows: for a given system and a given formula ¢ (representing
the negation of the desired property), decide whether the system has at least one run
satisfying . Characteristic patterns can be used to decompose a given LTL formula ¢
into an equivalent disjunction ¢ = 1 V ...V 1, of mutually exclusive formulae (i.e.,
we have ¢; = A\ i —1p; for each 7). Roughly speaking, each 1); corresponds to one of
the patterns which define the semantics of . Hence, the 1); formulae are not necessarily
smaller or simpler than ¢ from the syntactical point of view. The simplification is on
semantical level, because each v; “cuts off” a dedicated subset of runs that satisfy ¢.
Another advantage of this method is its scalability—the patterns can be constructed also
for those n and m that are larger than the nesting depths of X and U in . Thus, the
patterns can be repeatedly “refined”, which corresponds to decomposing the constructed
1p; formulae. Another way of refining the patterns is enlarging the alphabet .

The decomposition technique enables the following model-checking strategy: First
try to model-check (. If this does not work (because of, e.g., memory overflow), then
decompose ¢ into 1 V ...V 1, and try to model-check the 1, . . ., 1, formulae. This
can be done sequentially or even in parallel. If at least one subtask produces a positive
answer, we are done (there is a “bad” run). Similarly, if all subtasks produce a negative
answer, we are also done (there is no “bad” run). Otherwise, we go on and decompose
those 1); for which our model-checker did not manage to answer.

Obviously, the introduced strategy can only lead to better results than checking just
¢, and it is completely independent of the underlying model-checker. Moreover, some
new and relevant information is obtained even in those cases when this strategy does not
lead to a definite answer—we know that if there is a bad run, it must satisfy some of the
subformulae we did not manage to model-check. The level of practical usability of the
above discussed approach can only be measured by outcomes of practical experiments
which are beyond the scope of this (mainly theoretical) paper.> Here we concentrate on
providing basic results and identifying promising directions for applied research.

Let us note that similar decomposition techniques have been proposed in [5] and [9].
In [5], a specification formula of the form Gy is decomposed into a set of formulae
{G(x=v; = ¢) | v; is in the range of the variable z}. This decomposition technique
has been implemented in the SMV system together with methods aimed at reducing
the range of z. This approach has then been used for verification of specific types of
infinite-state systems (see [5] for more details). In [9], a given specification formula
 is model-checked as follows: First, a finite set of formulae 1, ..., 1, of the form
; = G(z#vg = x=wv;) is constructed such that the verified system satisfies 41 V

3 A practical implementation of the method is under preparation.

4 Antonin Kucera and Jan Strejcek

...V 1,. The formulae 1, . .., ¥, are either given directly by the user, or constructed
automatically using methods of static analysis. The verification problem for ¢ is then
decomposed into the problems of verifying the formulae v); = ¢. Using this approach,
the peak memory in model checking has been reduced by 13-25% in the three case
studies included in the paper.

It is worth mentioning that characteristic patterns could potentially be used also in
a different way: we could first extract all patterns that can be exhibited by the system,
and then check whether there is one for which ¢ holds. Unfortunately, the set of all
patterns exhibited by a given system seems to be computable only in restricted cases,
e.g., when the system has just a single path (see [4] for more information about model
checking of these systems and [2] for a pattern-based algorithm).

The paper is organized as follows. Section 2 provides a formal definition of (m, n)-
patterns together with basic theorems. Section 3 is devoted to detailed discussion of
the indicated decomposition technique. Conclusions and directions for future research
are given in Section 4. Other applications of characteristic patterns in the area of LTL
model checking as well as all proofs (which were omitted due to space constraints) can
be found in [2].

2 Characteristic patterns

To get some intuition about characteristic patterns, let us first consider the set of patterns
constructed for the alphabet X = {a,b,c}, m = 1, and n = 0 (as we shall see, the m
and n correspond to the nesting depths of U and X, respectively). Let & € X be an
w-word. A letter «(¢) is repeated if there is j < ¢ such that a(j) = a(i). The (1,0)-
pattern of «, denoted pat(1,0, «), is the finite word obtained from « by deleting all
repeated letters (for reasons of consistent notation, this word is written in parenthesis).
For example, if & = aabbbaabababecabecacab . . ., then pat(1,0,«) = (abe). So, the
set of all (1,0)-patterns over the alphabet {a,b, ¢}, denoted Pats(1,0,{a,b,c}), has
exactly 15 elements which are the following:

(abe), (acb), (bac), (bea), (cab), (cba), (ab), (ba), (ac), (ca), (be), (cb), (a), (b), (¢)

Thus, the set {a, b, c}* is divided into 15 disjoint subsets, where each set consists of
all w-words that have a given pattern. It remains to explain why these patterns are in-
teresting. The point is that LTL(U!, X%) formulae can actually express just the order
of non-repeated letters. For example, the formula a U b says that either the first non-
repeated letter is b, or the first non-repeated letter is a and the second one is b. So, this
formula holds for a given « € {a, b, ¢} iff pat(1, 0,) is equal to (b), (ba), (bc), (bac),
(bca), (ab), or (abc). We claim (and later also prove) that w-words of {a, b, c}* which
have the same (1, 0)-pattern cannot be distinguished by any LTL(U*, X°) formula. So,
each ¢ € LTL(UY, X%), where A(p) C {a, b, c}, is fully characterized by a subset of
Pats(1,0,{a,b, c}). Moreover, for each p € Pats(1,0,{a,b, c}) we can construct an
LTL(U!, X?%) formula ¢, such that for every a € {a,b,c}* we have that o = ¢, iff
pat(1,0,a) = p. For example, ©(qpe) = a A (aUb) A ((aVb)Uc).

To indicate how this can be generalized to larger m and n, we show how to extract
a (2, 0)-pattern from a given o € {a, b, c}*. We start by considering an infinite word

Characteristic Patterns for LTL 5

over the alphabet Pats(1,0, {a,b, c}) constructed as follows:
pat(1,0, ap) pat(1,0, 1) pat(1,0,) pat(1,0,as) ...

For example, for & = aabaca® we obtain the sequence (abe)(abe)(bac)(ac)(ca)(a)®.
The pattern pat(2, 0, «) is obtained from the above sequence by deleting repeated letters
(realize that now we consider the alphabet Pats(1,0, {a,b, c})). Hence, pat(2,0,a) =
((abc)(bac)(ac)(ca)(a)). Similarly as above, it holds that those w-words of {a, b, c}*
which have the same (2, 0)-pattern cannot be distinguished by any LTL(U?, X?) for-
mula. Moreover, for each p € Pats(2,0, {a,b,c}) we can construct an LTL(U?, X?)
formula ¢, such that for every a € {a, b, c}* we have that o = ¢, iff pat(2,0, a) = p.

Formally, we consider every finite sequence of (1,0)-patterns, where no (1,0)-
pattern is repeated, as a (2, 0)-pattern. This makes the inductive definition simpler, but
in this way we also introduce patterns that are not “satisfiable”. For example, there is
obviously no « € {a, b, c}* such that pat(2,0,a) = ((a)(ab)).

The last problem we have yet not addressed is how to deal with the X operator. First
note that the X operator can be pushed inside using the following rules (see, e.g., [1]):

Xtt=tt X-p=-Xg X(p1 Apa) =Xp1 AXpy X1 Upa) = X1 U Xepg

Note that this transformation does not change the nesting depth of X. Hence, we can
safely assume that the X operator occurs in LTL formulae only within subformulae
of the form XX...Xa. This is the reason why we can handle the X operator in the
following way: the set Pats(m,n,) is defined in the same way as Pats(m,0,).
The only difference is that we start with the alphabet X"+ instead of X.

Definition 1. Ler X be an alphabet. For all m,n € Ng we define the set Pats(m,n, X))
inductively as follows:
- Pats(0,n, X)) = {w € X* | |lw| = n+1}
- Pats(m+1,n, %) = {(p1...px) | k € N, p1,...,pr € Pats(m,n,X),
pi # pj fori # j}
The size of Pats(m,n, Y) and the size of its elements are estimated in our next lemma
(the proof follows directly from definitions).

Lemma 2. For every i € Ny, let us define the function fac;, : Ng — Ny inductively
as follows: facy(x) = x, fac; 1(x) = (fac;(x) + 1)\. The number of elements of
Pats(m,n, X) is bounded by fac,,(|X|""), and the size of each p € Pats(m,n, %)
is bounded by (n + 1) - Hialfaci(|2\n+1).

3

The bounds given in Lemma 2 are non-elementary in m. This indicates that all of our al-
gorithms are computationally unfeasible from the asymptotic complexity point of view.
However, LTL formulae that are used in practice typically have a small nesting depth
of U (usually not larger than 3 or 4), and do not contain any X operators. In this light,
the bounds of Lemma 2 can actually be interpreted as “good news”, because even a rel-
atively small formula ¢ can be decomposed into a disjunction of many formulae which
refine the meaning of ¢.

To all m,n € Ny and o € X we associate a unique pattern of Pats(m,n,X).
This definition is again inductive.

6 Antonin Kucera and Jan Strejcek

Definition 3. Let o« € X“. For all m,n € Ny we define the characteristic
(m,n)-pattern of «, denoted pat(m,n,«a), and (m,n)-pattern word of «, denoted
patword(m,n,), inductively as follows:
- pat(0,n,) = a(0) ... (n)
- patword(m,n,a) € Pats(m,n,X)* is defined by patword(m,n,a)(i) =
pat(m,n, ;)
- pat(m+1,n,«) is the finite word (written in parenthesis) obtained from
patword(m,n, «) by deleting all repeated letters

Words o, 3 € X% are (m,n)-equivalent, written o ~p,, B, iff pat(m,n,a) =
pat(m,n,).

Example 4. Let us consider a word oo = abbbacbac(ba)®. Then

pat(0,0,) =
patword(0,0,) = abbbacbac(ba) =«
pat(1, 0, a) = (abc)
patword (1,0,) = (abc)(bac)(bac)(bac)(ach)(cba)(bac)(ach)(cba)((ba)(ab))®
pat(2,0,a) = ((abe)(bac)(ach)(cba)(ba)(ab))
pat(0,1,) = ab
patword(0, 1,) = abbbbbba ac cb ba ac cb(ba ab)”
pat(1,1,0) = (abbbba acch) n

Theorem 5. Let X be an alphabet. For all m,n € Ny and every p € Pats(m,n, X))
there effectively exists a formula ¢, € LTL(U™, X™) such that for every a € X* we
have that o |= py, iff pat(m,n, o) = p.

Example 6. Let o« = abbabaaabb(ac)”. Then the formula ¢, where p =
pat(2,0,a) = ((abe)(bac)(ac)(ca)) is constructed (according to the proof of the pre-
vious theorem) as follows:
Oabey = GlaVbVe)ANan(aUb) A((aVb)Uc)
Obacy = G(OVave)AbA(DUa)A((bVa)Uc)
gp(ac =G(aVe)AaA (aUe)
G(cvVa)AeA(cUa)
()OP - G(w(abc) \ P(bac) \ P(ac) \ @(ca)) A P (abe) A ((p(abc) U (p(bac)) A
((Qa(abc) \ ‘P(bac)) U Qp(ac)) A ((Sp(ubc) \ P (bac) \ @(ac)) U Qo(ca)) u

Let us note that the size of ¢, for a given p € Pats(m,n, X) is exponential in the size
of p. However, if ¢, is represented by a circuit (DAG), then the size of the circuit is
only linear in the size of p.

Theorem 7. Let X be an alphabet and let m,n € Ny. For all o, B € X we have that
o and 3 cannot be distinguished by any LTL(U™, X™) formula if and only if & ~, ., 0.

In other words, Theorem 7 says that the information about « which is relevant
with respect to (in)validity of all LTL(U™,X") formulae is exactly represented
by pat(m,n,«). Thus, characteristic patterns provide a new characterization of
LTL(U™, X™) languages which can be used to prove further results about LTL. In par-
ticular, a simplified form of (m,n)-stutter invariance of LTL(U™, X™) languages (see
[3]) follows easily from the presented results on characteristic patterns:

Characteristic Patterns for LTL 7

Theorem 8. Ler m,n € Ny, u,v € X* and o € X¥. If v is (m, n)-redundant in uwva,
then wvor ~p, y, uck

Theorem 8 provides the crucial tool which was used in [3] to prove that, e.g., the
LTL(U™, X), LTL(U, X™), and LTL(U™, X™) hierarchies are strict, that the class of w-
languages which are definable both in LTL(U™*1, X™) and LTL(U™, X" *1) is strictly
larger than the class of languages definable in LTL(U™, X™), and so on. The proof of
Theorem 8 is shorter than the one given in [3].

3 Applications in model checking

In this section, we expand the remarks about formula decomposition and pattern re-
finement that were sketched in the introduction. We also discuss potential benefits and
drawbacks of these techniques, and provide examples illustrating the presented ideas.

Definition 9. Let p € Pats(m,n,X) be a pattern and ¢ € LTL(U™,X") be a for-
mula. We say that p satisfies o, written p |= o, iff for every w-word o € X we have
that if pat(m,n, @) = p, then « = @.

Note that Theorem 7 implies the following: if p }= ¢, then for every w-word « such that
pat(m,n,«) = p we have a £~ .

Theorem 10. Given an (m,n)-pattern p and an LTL(U™, X"™) formula o, the problem
whether p = ¢ can be decided in time O(|p| - |p|).

In the rest of this section we consider the variant of LTL where formulae are built
over atomic propositions (At) rather than over letters. The only change in the syntax is
that a ranges over At. The logic is interpreted over w-words over an alphabet X C 24,
where a |= a iff @ € @(0). The formula F¢ is to be understood just as an abbreviation
for tt U ¢, and Gy as an abbreviation for =F—.

Let ¢ € LTL(U™, X™) be the negation of a property we want to verify for a given
system. If our model-checker fails to verify whether the system has a run satisfying ¢ or
not (one typical reason is memory overflow), we can proceed by decomposing the for-
mula ¢ in the following way. First, we compute the set P = {p € Pats(m,n,244#)) |
p = ¢}. Then, each p € P is translated into an equivalent LTL formula.

Example 11. We illustrate the decomposition technique on a formula ¢ = FG—a which
is the negation of a typical liveness property GFa. The alphabet is X = 2{¢} =
{{a},0}. To simplify our notation, we use A and B to abbreviate {a} and (), respec-
tively. The elements of Pats(2,0, ({4, B}) are listed below (unsatisfiable patterns have
been eliminated). All patterns which satisfy ¢ are listed in the second line.

((4)), (BA)(A)), (AB)(BA)), (BA)(AB)), (AB)(BA)(A)), (BA)(AB)(A))
((B)), (AB)(B)), (BA)(AB)(B)), (AB)(BA)(B))

8 Antonin Kucera and Jan Strejcek

B B A B

(4, C) () (4,)

v —(O)———0 Y1: —0O Yo —>\O—>@

Fig. 1. Biichi automata corresponding to formulae ¢, ¢1, and ¥ of Example 11.

So, the formula ¢ is decomposed into a disjunction ¥; V 3 V 13 V 14 of formulae
corresponding to the patterns listed in the second line, respectively*:

P = G-a Y3 = ~a AF(a A F-a) AFG—a
o =aNalUG-a 1y =aAF(-aAFa)AFG-a |

Thus, the original question whether the system has a run satisfying ¢ is decomposed
into k questions of the same type. These can be solved using standard model-checkers.

We illustrate potential benefits of this method in the context of automata-theoretic
approach to model checking [7]. Here the formula ¢ is translated into a corresponding
Biichi automaton A,. Then, the model-checking algorithm computes another Biichi
automaton called product automaton, which accepts exactly those runs of the verified
system which are accepted by A, as well. The model-checking problem is thus reduced
to the problem whether the language accepted by the product automaton is empty or not.
The bottleneck of this approach is the size of the product automaton.

Example 12. Let us suppose that a given model-checking algorithm does not manage to
check the formula ¢ of Example 11. The subtasks given by the ¢/; formulae constructed
in Example 11 can be more tractable. Some of the reasons are given below.

— The size of the Biichi automaton for 1); can be smaller than the size of A,. In Ex-
ample 11, this is illustrated by formula v, (see Fig. 1). The corresponding product
automaton is then smaller as well.

— The size of the product automaton for ¢; can be smaller than the one for ¢, even if
the size of Ay, is larger than the size of A,. This can be illustrated by the formula
19 of Example 11; the automata for ¢ and 12 are almost the same (see Fig. 1), but
the product automaton for ¢ can be much smaller as indicated in Fig. 2. |

It is of course possible that some of the v; formulae in the constructed decomposition
remain intractable. Such a formula v; can further be decomposed by a technique called
refinement (since 1); corresponds to a unique pattern p; € Pats(m,n, X'), we also talk
about pattern refinement). We propose two basic ways how to refine the pattern p;. The
first possibility is to compute the set of (', n')-patterns, where m’ > m and n’ > n,
and identify all patterns satisfying the formula ;.

Example 13. The formula 5 of Example 11 corresponding to the (2,0)-
pattern ((BA)(AB)(B)) can be refined into two LTL(U3,X°) formulae given
by the (3,0)-patterns ((BA)(AB)(B))((AB)(BA)(B))((AB)(B))((B)) and

|

((BA)(AB)(B))((AB)(B))((B)))-

* For notation convenience, we simplified the formulae obtained by running the algorithm of
Theorem 5 into a more readable (but equivalent) form.

Characteristic Patterns for LTL 9

(©)

P P
A

o

O<—0<—0<—
O<—0<—0<—
S

Fig. 2. An example of a verified system (a) and product automata (b) and (c) corresponding to ¢
and 12 of Example 11, respectively.

The other refinement method is based on enlarging the alphabet before computing the
patterns. We simply add a new atomic proposition to the set of atomic propositions that
occur in . The choice of the new atomic proposition is of course important. By a “suit-
able” choice we mean a choice which leads to a convenient split of system’s runs into
more manageable units. An interesting problem (which is beyond the scope of this pa-
per) is whether suitable new propositions can be identified effectively.

Example 14. Let us consider the formula 15 of Example 11 corresponding to the
(2,0)-pattern ((AB)(B)). The original set of atomic propositions At(y) = {a}
generates the alphabet ' = {A, B}, where A = {a},B = 0. If we enrich the
set of atomic propositions with b, we get a new alphabet X = {C,D,E, F},
where C = {a,b},D = {a},E = {b},F = 0. Hence, the original let-
ters A, B correspond to the pairs of letters C,D and E,F, respectively. Thus,
the formula 1) is refined into LTL(U2,X?) formulae given by 64 (2,0)-patterns
(CE)(E)), (CDE)(DE)(E)), (CDE)(DCE)(CE)(E)), .. n

Some of the subtasks obtained by refining intractable subtasks can be tractable. Others
can be refined again and again. Observe that even if we solve only some of the subtasks,
we still obtain a new piece of relevant knowledge about the system—we know that if
the system has a “bad” run satisfying ¢, then the run satisfies one of the formulae
corresponding to the subtasks we did not manage to solve. Hence, we can (at least)
classify and repeatedly refine the set of “suspicious” runs.

We finish this section by listing the benefits and drawbacks of the presented method.

+ The subtasks are formulated as standard model-checking problems. Therefore, the
method can be combined with all existing algorithms and heuristics.

+ With the help of the method, we can potentially verify some systems which are
beyond the reach of existing model-checkers.

+ Even if it is not possible complete the verification task, we get partial information
about the structure of potential (undiscovered) bad runs. We also know which runs
of the system have been successfully verified.

+ The subtasks can be solved simultaneously in a distributed environment with a very
low communication overhead.

10

Antonin Kucera and Jan Strejcek

+ When we verify more formulae on the same system, the subtasks occurring in de-

compositions of both formulae are solved just once.

— Calculating the decomposition of a given formula can be expensive. On the other

hand, this is not critical for formulae with small number of atomic propositions and
small nesting depths of U and X.

— Runtime costs of the proposed algorithm are high. It can happen that all subtasks

4

remain intractable even after several refinement rounds and we get no new infor-
mation at all.

Conclusions and future work

The aim of this paper was to introduce the idea of characteristic patterns, develop basic
results about these patterns, and indicate how they can be used in LTL model-checking.
An obvious question is how the presented algorithms work in practice. This can only
be answered by performing a set of experiments. We plan to implement the presented
algorithms and report about their functionality in our future work.

Acknowledgement. We thank Michal Kunc for providing crucial hints which eventu-
ally led to the definition of characteristic patterns.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics, chapter 16, pages 995-1072. Elsevier, 1990.

A. Kucera and J. Strejcek. Characteristic patterns for LTL. Technical Report FIMU-RS-
2004-10, Faculty of Informatics, Masaryk University Brno, 2004.

A. Kucera and J. Strejcek. The stuttering principle revisited: On the expressiveness of nested
X and U operators in the logic LTL. In //th Annual Conference of the European Association
for Computer Science Logic (CSL’02), volume 2471 of LNCS, pages 276-291. Springer,
2002.

N. Markey and Ph. Schnoebelen. Model checking a path (preliminary report). In Proc.
14th Int. Conf. Concurrency Theory (CONCUR’03), volume 2761 of LNCS, pages 251-265.
Springer, 2003.

K. L. McMillan. Verification of infinite state systems by compositional model checking. In
Correct Hardware Design and Verification Methods (CHARME’99), volume 1703 of LNCS,
pages 219-237. Springer, 1999.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium
on the Foundations of Computer Science (FOCS’77), pages 46-57. IEEE Computer Society
Press, 1977.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proceedings of the First Annual IEEE Symposium on Logic in Computer Science
(LICS’86), pages 332-344. IEEE Computer Society Press, 1986.

Th. Wilke. Classifying discrete temporal properties. In Annual Symposium on Theoretical
Aspects of Computer Science (STACS’99), volume 1563 of LNCS, pages 32—46. Springer,
1999.

W. Zhang. Combining static analysis and case-based search space partitioning for reducing
peak memory in model checking. Journal of Computer Science and Technology, 18(6):762—
770, 2003.

