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Abstract. We survey recent results about subclasses of multi-counter games that
are either equipped with more than one counter or allow for stochastic control
states.

1 Introduction

Markov decision processes (MDPs) and stochastic games (SGs) are standard models
for systems that exhibit both stochastic and non-deterministic behaviour. The theory of
finite-state MDPs and SGs is well-developed and mature (see, e.g., [27, 23]). In recent
years, the scope of this study has been extended to certain classes of finitely repre-
sentable but infinite-state MDPs and SGs. Not surprisingly, these classes are usually
obtained as extensions of well-known classes of abstract computational devices, such
as pushdown automata [19–21, 18, 9, 8] or lossy channel systems [2, 1]. In this paper,
we survey recent results about MDPs and games over counter automata, which seem
to represent a particularly convenient trade-off between modelling power and computa-
tional tractability.

Intuitively, a multi-counter game with n counters is a directed finite-state graph
whose states are partitioned into three subsets of stochastic, Player �, and Player ^
states, and each transition is labeled by an update vector u ∈ Zn, where ui repre-
sents the i-th counter change caused by the transition. For every stochastic control state,
there is a fixed probability distribution over its outgoing transitions. A play of a multi-
counter game starts in some control state for some initial values of the counters. In a
current configuration pv (where p is a control state and v a vector of counter values),
the next transition is chosen either randomly or by Player �/^, depending on whether
p is stochastic or belongs to the respective player. The aim of Player � is to maximize
the expected value of a certain payoff function which assigns a real payoff to every run
of a play, while Player ^ aims at minimizing this expectation. Intuitively, the counters
represent various resources that are produced or consumed along a play, and the payoff

function specifies how well are these resources treated by a given run. For example,
we may be interested whether Player � can play safely, i.e., so that the resources are
never exhausted and remain positive in all of the visited configurations. In this case, the
associated payoff functions assigns to every run either 1 or 0, depending on whether or
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not the above safety condition holds. The expected payoff of a run then corresponds to
the probability of all runs satisfying the safety condition.

The modelling power of counter automata is further extended by allowing some
components in update vectors to take ω-values, which intuitively corresponds to “re-
source reloading”. The ω’s are allowed only in the outgoing transitions of non-
stochastic states. If ui = ω, then the responsible player chooses an arbitrarily large
non-negative integer which is added to the i-th counter when performing the transition.
In reality, the capacity of storage devices (such as tanks or batteries) is bounded, and
hence we may ask, for example, what is the least capacity sufficient for Player � to play
safely.

The general model of multi-counter games is hard to analyze, particularly due to the
interplay between stochastic control states and counters (note that one can easily sim-
ulate multi-dimensional partially controlled random walks using multi-counter MDPs).
Hence, the existing results concern only subclasses of multi-counter games. In this pa-
per, we survey recent results of two types:

– Results about subclasses of multi-counter games with more than one counter but
without stochastic control states.

– Results about subclasses of multi-counter games with stochastic states and only
one counter.

In particular, we do not attempt to survey results about (non-stochastic) energy games
and (closely related) mean payoff games (see, e.g., [14]), because these areas are quite
rich on their own and deserve a bit more space and attention than can be provided in the
framework of this paper.

2 Preliminaries

We use Z and N to denote the sets of integers and non-negative integers, respectively.
Further, Zω denotes the set Z ∪ {ω}, and we use u, v, . . . to range over Zn

ω, where n ≥ 1.
We assume familiarity with basic notions of probability theory (such as probability

space, random variable, the expected value of a random variable, etc.) In particular, we
call a probability distribution f over a discrete set A positive if f (a) > 0 for all a ∈ A,
and rational if f (a) is rational for every a ∈ A.

Definition 1 (Stochastic games). A stochastic game is a tuple G =

(S , (S©, S �, S^), { ,Prob), consisting of a finite or countably infinite set S of
states, partitioned into the set S© of stochastic states, and the sets S �, S^ of states
owned by Player � (Max) and Player ^ (Min), respectively. The edge relation
{ ⊆ S × S is total, i.e., for every r ∈ S there is s ∈ S such that r{ s. Finally, Prob
assigns to every s ∈ S© a positive probability distribution over its outgoing edges.

A finite path in G is a sequence w = s0s1 · · · sk of states such that si{ si+1 for all i
where 0 ≤ i < k. We write len(w) = k for the length of the path. A run is an infinite
sequence of states every finite prefix of which is a path. For a finite path w, we denote
by Run(w) the set of runs having w as a prefix. These generate the standard σ-algebra
on the set of runs.



Let G be a stochastic game. A strategy for Player � in G is a function σ assigning to
each finite path w ending in a state s ∈ S � a distribution on edges leaving the state s. A
strategyσ is pure if it always assigns 1 to some edge and 0 to the others, and memoryless
if σ(w) = σ(s) where s is the last state of w. A strategy π for Player ^ is defined
analogously. Fixing a pair (σ, π) of strategies for Player � and ^, respectively, and an
initial state s, we obtain in a standard way a probability measure Pσ,πs (·) on the subset of
runs starting in s.

For a stochastic game G, a payoff is a Borel measurable real-valued function f over
the runs in G. Player � is trying to maximize the expected value of f , while Player ^
is trying to minimize it. For given pair of strategies (σ, π) and a state s ∈ S , we use
Eσ,πs

[
f
]

to denote the expected value of f over Run(s), where Pσ,πs (·) is the underlying
probability measure. If f is bounded, then

sup
σ

inf
π
Eσ,πs

[
f
]

= inf
π

sup
σ
Eσ,πs

[
f
]

for every s ∈ S , and we say that (G, f ) is determined [26, 25]. If (G, f ) is determined,
then the above equality defines the value of s, denoted by Val( f , s).

For a given ε ≥ 0, a strategy σ∗ of Player � is ε-optimal in s, if

Eσ
∗,π

s
[
f
]
≥ Val( f , s) − ε

for every strategy π of Player ^. An ε-optimal strategy for Player ^ is defined analo-
gously. 0-optimal strategies are called optimal. Note that (G, f ) is determined iff both
players have ε-optimal strategies for every ε > 0.

An important subclass of payoff functions are ω-regular payoffs which assign to
each run either 1 or 0 depending on whether the run satisfies a certain ω-regular con-
dition R or not, respectively. Note that for every pair of strategies (σ, π), the expecta-
tion Eσ,πs

[
f
]

is then equal to the probability of all runs satisfying R. Simple examples
of ω-regular conditions are reachability and safety, satisfied by all runs that visit and
avoid visiting a given subset of target states, respectively.

Definition 2 (Multi-counter games). A multi-counter game with n ≥ 1 counters is a
tupleA = (Q, (Q©,Q�,Q^), δ, P) consisting of

– a finite non-empty set Q of control states, partitioned into stochastic and players’
states Q©, Q�, and Q^ as in the case of stochastic games;

– a set of transition rules δ ⊆ Q×Zn
ω×Q. For a given (q,u, r) ∈ δ, we call q the source,

r the target, and u the update vector of the rule. We require that for every q ∈ Q
there is at least one rule of the form (q,u, r) in δ, and for every rule (q,u, r) ∈ δ
where q is stochastic we have that u ∈ Zn (i.e., there are no ω’s in u when q is
stochastic);

– the probability assignment P that assigns to every q ∈ Q© a positive rational prob-
ability distribution over its outgoing rules.

By ||A|| B |Q|+ ||δ||+ ||P||we denote the encoding size ofA, where all rational constants
are encoded as fractions of binary numbers.

Every multi-counter gameA determines an infinite-state stochastic game where the
states are configurations of A, i.e., pairs of the form qv where q ∈ Q and v a vector



of counter values, and the edges are determined by applying the rules of A. Here, ev-
ery ω component in v is interpreted as an unbounded increase in the respective counter
value, i.e., the responsible player selects a non-negative integer which is added to the
current counter value. However, the precise definition of this infinite-state stochastic
game depends on whether or not the counters are allowed to take negative values, which
also influences the treatment of transitions that decrease (some) counters below zero.
This difference can be important as well as irrelevant, depending on the choice of a pay-
off function and a studied subclass of multi-counter games. We present both approaches.

N-semantics of multi-counter games. Let A = (Q, (Q©,Q�,Q^), δ, P) be a multi-
counter game with n ≥ 1 counters. We define a stochastic game GA,N where

– the states are elements of Q × Nn;
– the edges are defined as follows: for a given qv, we put qv→ r t for all r t ∈ Q × Nn

such that there is (q,u, r) ∈ δ satisfying the following:
• ti = vi + ui ≥ 0 for every 1 ≤ i ≤ n such that ui , ω,
• ti ≥ vi for every i such that ui = ω.

If there is no such r t, then the configuration qv has only one outgoing edge qv→ qv;
– the probability assignment Prob is derived from P as follows: for a given qv ∈

Q©×Nn, let β ⊆ δ be the set of all (q,u, r) ∈ δ that are enabled in qv, i.e., vi +ui ≥ 0
for every 1 ≤ i ≤ n. If β = ∅, then qv→ qv with probability one. Otherwise, let y
be the sum of the probabilities of all rules in β. For every (q,u, r) ∈ β, we put
qv→ r(v + u) with probability x/y, where x = P((q,u, r)).

Hence, if a transition rule requires decreasing some counter below zero in qv, then it is
disabled. This is similar to the standard semantics of Petri nets, where the places can
become empty but cannot hold negative values. Note that the probability distribution
over the outgoing rules of stochastic configurations is derived from P by conditioning
on enabled transition rules.

One can also extend multi-counter games with zero test, i.e., add special edges en-
abled only when a given counter holds zero. Although this model is obviously Turing
powerful for n ≥ 2, it can still be considered for one-counter games.

Z-semantics of multi-counter games. Let A = (Q, (Q©,Q�,Q^), δ, P) be a multi-
counter game with n ≥ 1 counters. We define a stochastic game GA,Z where

– the states are elements of Q × Zn;
– the edges are defined by qv→ r t iff there is a transition (q,u, r) ∈ δ such that
• ti = vi + ui for every 1 ≤ i ≤ n such that ui , ω,
• ti ≥ vi for every i such that ui = ω;

– the probability assignment Prob is derived naturally from P.

Note that for every configuration qv ∈ Q × Zn, there is always at least one transition
enabled in qv.

A special type of pure memoryless strategies that are applicable both in GA,N and
GA,Z are counterless strategies which depend only of the control state of the currently
visited configuration.



3 Existing results about multi-counter games

In this section we give an overview of the existing results about subclasses of non-
stochastic multi-counter games with more than one counter (Sections 3.1, 3.2, and 3.3)
and stochastic one-counter games (Sections 3.4, 3.5, and 3.6).

3.1 eVASS games

Games over extended vector addition systems with states (eVASS games) have been in-
troduced and studied in [11]. eVASS games are multi-counter games with N-semantics
such that

– there are no stochastic control states (i.e., Q© = ∅),
– the update vectors are elements of {−1, 0, 1, ω}n.

The main results of [11] concern eVASS games with zero reachability payoff functions,
which are considered in two variants:

– selective zero reachability, denoted by ZT , where T ⊆ Q. The function ZT assigns
to every run either 1 or 0, depending on whether or not the run visits a configuration
qv such that q ∈ T and vi = 0 for some 1 ≤ i ≤ n.

– non-selective zero reachability, denoted by Z, which is defined in the same way as
ZQ. That is, Z assigns 1 to those runs that decrease some counter to zero.

One can easily show that in eVASS games with ZT payoff function, both players have
pure memoryless strategies that are optimal in every configuration. Hence, the value
of every configuration is either 1 or 0. For selective zero reachability, the following is
observed:

Theorem 3. Let A be an eVASS game. The problem whether Val(ZT , qv) = 1 is un-
decidable, even if A has just two counters, no ω-components in update vectors, and
v = (0, 0). Further, the problem is highly undecidable (beyond the arithmetical hierar-
chy) even ifA has just three counters and v = (0, 0, 0).

Theorem 3 is obtained by straightforward reductions from the halting problem and the
recurrence problem for two-counter Minsky machines.

The properties of eVASS games with Z payoff functions are different. The set Val0 of
all configurations with value 0 is obviously upwards closed in the sense that if pv ∈ Val0,
then also p(v+u) ∈ Val0 for all u ∈ Nn. Hence, the set Val0 is fully described by a finite
set of its minimal elements, and the set Val1 of all configurations with value 1 is just a
complement of Val0. In [11], the following theorem is proven:

Theorem 4. LetA be an eVASS game with n ≥ 1 counters. The following holds:

– The set of minimal elements of Val0 is computable in (n−1)-exponential time1. In
particular, the problem whether the value of a given configuration is 0 (or 1) is
solvable in (n−1)-exponential time.

1 Here, 0-exponential time means polynomial time.



– The problem whether the value of a given configuration is 0 is EXPSPACE-hard,
even if Q� = ∅.

– Optimal strategies for both players are finitely and effectively representable.

An optimal strategy for Player � can be specified just by the moves in all of the
finitely many minimal configurations of Val0 (observe that in a non-minimal configura-
tion p(v+u) ∈ Val0 such that pv ∈ Val0 is minimal, Player � can safely make a move
p(v+u)→ q(v′+u) where pv→ qv′ is the move associated to pv. This also implies that
there is a finite and effectively computable constant c such that Player � can always re-
place everyωwith c when performing a transition whose update vector contains someω
components (obviously, Player ^ can always choose zero for every ω). A finite descrip-
tion of an optimal winning strategy for Player ^ is more complicated. We refer to [11]
for details.

It is worth noting that in the special case of two-counter eVASS games where update
vectors do not contain any ω components, the complexity of the problem whether pv ∈
Val0 (or whether pv ∈ Val1) can be improved from EXPTIME to P [13].

3.2 Consumption games

Consumption games, introduced in [10], are multi-counter games with Z-semantics
such that

– there are no stochastic control states (i.e., Q© = ∅),
– the update vectors are elements of (Z≤0

ω )n, where Z≤0
ω is the set of all non-positive

integers together with ω.

Hence, in consumption games, the counters can be only increased by performing tran-
sitions with ω components in update vectors. Intuitively, the counters model resources
of various types that can only consumed or “reloaded” to some finite amount.

The payoff functions studied for consumption games in [10] are zero safety and zero
safety with upper bound u, where u ∈ Nn (here n is the number of counters). Formally,
let

– S be a function which to every run assigns either 1 or 0 depending on whether or
not the run avoids visiting configurations of the form qv where vi ≤ 0 for some
1 ≤ i ≤ n;

– S u be a function which to every run assigns either 1 or 0 depending on whether or
not the run avoids visiting configurations of the form qv where vi ≤ 0 or vi > ui for
some 1 ≤ i ≤ n.

Hence, zero safety is dual to zero reachability discussed in Section 3.1. Again, the value
of every configuration is either 1 or 0. For every control state p, let

– safe(p) be the set of all v ∈ Nn such that Val(S , pv) = 1;
– cover(p) be the set of all v ∈ Nn such that Val(S v, pv) = 1.

Intuitively, safe(p) contains all v ∈ Nn such that Player � can play “safely” in pv, i.e.,
without ever running out of any resource. The set cover(p) contains all v ∈ Nn such that



Player � can play safely in pv without ever reloading any resource above the capacity
specified by v.

Obviously, both safe(p) and cover(p) are upwards-closed with respect to
component-wise ordering, and hence these sets are fully described by the corresponding
finite sets of minimal elements. In [10], the following is proven:

Theorem 5. LetA be a consumption game with n counters. Further, let ` be the maxi-
mal |vi| , ω, where v is an update vector used inA. Then

– the emptiness problems for safe(s) and cover(s) are co-NP-complete and solvable
in O(n! · |Q|n+1) time;

– the membership problem for safe(p) is PSPACE-hard, and the set of all minimal
elements of safe(p) is computable in time (n · ` · |Q|)O(n);

– the membership problem for cover(p) is PSPACE-hard, and the set of all minimal
elements of cover(p) is computable in time (n · ` · |Q|)O(n·n!).

Note that all of the problems considered in Theorem 5 are solvable in polynomial time
when n and ` are fixed.

For the special cases of one-player and decreasing consumption games, it is pos-
sible to design even more efficient algorithms (a consumption game is one-player if
Q^ = ∅, and decreasing if every counter is either reloaded or decreased along every
cycle in the graph ofA). We refer to [10] for details.

3.3 Multiweighted energy games

Multiweighted energy games [22], also known as generalized energy games [16], are
multi-counter games with Z-semantics such that

– there are no stochastic control states (i.e., Q© = ∅),
– the update vectors are elements of Zn.

Further, there is a special variant of this model called multiweighted energy games with
weak upper bound [22], where the counters are constrained by a given vector b ∈ Nn.
Whenever a counter i should exceed bi, it is immediately truncated to bi.

The payoff functions studied in [22] are closely related to zero safety and zero safety
with upper bound u that have been defined in Section 3.2. The only difference is that
Player � should avoid decreasing a counter strictly below zero. Formally, let

– S 0 be a function which to every run assigns either 1 or 0 depending on whether
or not the run avoids visiting configurations of the form qv where vi < 0 for some
1 ≤ i ≤ n;

– S u
0 be a function which to every run assigns either 1 or 0 depending on whether or

not the run avoids visiting configurations of the form qv where vi < 0 or vi > ui for
some 1 ≤ i ≤ n.

For the subclass of multiweighted energy games with only one counter, the following
results can be derived from [4]:

Theorem 6. LetA be a multiweighted energy game with one counter. Then



– the problem whether Val(S 0, p(0)) = 1 for a given p ∈ Q is in UP ∩ co-UP; if
Q^ = ∅, then the problem is in P;

– the problem whether Val(S u
0 , p(0)) = 1 for a given p ∈ Q is EXPTIME-complete;

if Q^ = ∅, then the problem is NP-hard and in PSPACE.

Further, for multiweighted energy games with one counter and weak upper bound, the
problem whether Val(S 0, p(0)) = 1 for a given p ∈ Q is in NP ∩ co-NP, and if Q^ = ∅,
then it is solvable in polynomial time [4].

By applying the results of [11] (see also Theorem 4), one can deduce the following:

Theorem 7. Let A be a multiweighted energy game with n counters. The problem
whether Val(S 0, p0) = 1 for a given p ∈ Q is EXPSPACE-hard and in n-EXPTIME.

Recall that update vectors in multiweighted energy games may contain arbitrar-
ily large integers encoded in binary, and hence the upper bound increases from
(n−1)-EXPTIME to n-EXPTIME in Theorem 7.

The main results about multiweighted energy games proven in [22] concern the S u
0

payoff function and can be summarized as follows:

Theorem 8. Let A be a multiweighted energy game with n counters. The problem
whether Val(S u

0 , p0) = 1 for given p ∈ Q and u ∈ Nn is EXPTIME-complete. If Q^ = ∅,
then the problem is PSPACE-complete.

In [22], it is also shown that Theorem 8 remains valid for multiweighted energy games
with weak upper bound and S 0 payoff function.

The complexity of initial credit problem for multiweighted energy games with S 0
payoff function is studied in greater detail in [16]. An instance of the initial credit prob-
lem is a control state p of a multiweighted energy game A with n counters, and the
question is whether there is some v ∈ Zn such that Val(S 0, pv) = 1. It follows from
the results of [11] that the initial credit problem is solvable in PSPACE for eVASS
games, and hence in EXPSPACE for multiweighted energy games (cf. the comments
after Theorem 7). In [16], the following is shown:

Theorem 9. The initial credit problem for multiweighted energy games is
co-NP-complete.

3.4 One-counter games and MDPs

A one-counter game is a multi-counter game A with Z-semantics where A has only
one counter and the counter updates range over {−1, 0, 1}. If we also have that Q^ = 0
(or Q� = ∅), thenA is a maximizing (or minimizing) one-counter MDP.

One-counter games and MDPs have so far been studied with the following payoff

functions: [7] with the following payoff functions:

– cover negatives, denoted by CN, which to every run assigns either 1 or 0 depending
on whether or not lim inf of all counter values visited along the run is equal to −∞;

– zero rechability, denoted by Z, which to every run assigns either 1 or 0 depending
on whether or not the run visits a configuration with zero counter;



– selective zero rechability, denoted by ZT , where T ⊆ Q. The function ZT assigns to
every run either 1 or 0 depending on whether or not the run visits a configuration
q(0) where q ∈ T and the counter value remains non-negative in all configurations
preceding this visit.

– termination time, denoted by T , which to every run assigns the number of transi-
tions performed before visiting a configuration with zero counter for the first time.
If a run does not visit a configuration with zero counter at all, then T returns∞.

Maximizing MDPs have been first studied in [7], where the following results are proven:

Theorem 10. LetA be a one-counter maximizing MDP.

– For every p ∈ Q and i ∈ Z, the value Val(CN, p(i)) is rational, independent of i,
and computable in polynomial time. Further, there is a counterless strategy σ con-
structible in polynomial time which is optimal in every configuration ofA.

– The problem whether Val(Z, p(i)) = 1 for a given configuration p(i) is in P. Further,
there is counterless strategy σ constructible in polynomial time which is optimal in
every configuration q( j) such that Val(Z, q( j)) = 1.

– The problem whether Player � has a strategy σ for a given configuration p(i) such
that Eσp(i)[ZT ] = 1 is PSPACE-hard and solvable in exponential time. Moreover, a
finite description of σ (if it exists) is computable in exponential time.

The last item of Theorem 10 requires some comment. First, Val(ZT , p(i)) = 1 does not
necessarily imply the existence of an optimal strategy in p(i) (as opposed to zero reach-
ability payoff considered in the second item of Theorem 10). In fact, the decidability
of the problem whether Val(ZT , p(i)) = 1 for a given p(i) is still open. The strategy σ
considered in the last item of Theorem 10 (if it exists) can be constructed so that it is ul-
timately periodic in the sense that for a sufficiently large counter value k, the behaviour
of σ in a configuration q(k) depends only on k mod c, where c is a constant depending
only onA whose value is at most exponential in ||A||.

The results about maximizing one-counter MDPs with zero reachability payoff have
been extended to one-counter games in [5] as follows:

Theorem 11. Let A be a one-counter game. The problem whether Val(Z, p(i)) = 1 for
a given configuration p(i) is in NP ∩ co-NP. For one-counter MDPs (both maximizing
and minimizing), the same problem is in P.

Improving the NP ∩ co-NP upper bound of Theorem 11 would require a breakthrough,
because the problem whether Val(Z, p(i)) = 1 (in one-counter games) is at least as
hard as Condon’s [17] quantitative reachability problem for finite-state simple stochas-
tic games. Furthermore, it is also shown in [5] that if Val(Z, p(i)) = 1, then Player � has
a counterless optimal strategy in p(i). Similarly, if Val(Z, p(i)) < 1, then Player ^ has
a simple strategy π∗ (using finite memory, linearly bounded in the number of control
states) that ensures Eσ,π

∗

p(i) [Z] < 1 − δ for some δ > 0, regardless of σ. Such strate-
gies for both players are shown computable in non-deterministic polynomial time for
one-counter games, and in deterministic polynomial time for (both maximizing and
minimizing) one-counter MDPs.

In general, Val(Z, p(i)) may be irrational, even if Q� = Q^ = ∅. Hence, the value
cannot be computed precisely in general, but it can be effectively approximated up to
an arbitrarily small additive error ε > 0, as the following result of [6] shows:



Theorem 12. There is an algorithm which inputs a one-counter game A, a configu-
ration p(i) of A, and a rational ε > 0, and outputs a rational number v such that
|Val(Z, p(i)) − v| ≤ ε, and (a finite description of) ε-optimal strategies for both play-
ers. The algorithm runs in non-deterministic exponential time; if A is a maximizing
one-counter MDP, then it runs in deterministic exponential time.

A similar result for maximizing one-counter MDPs with termination time payoff

was achieved in [12], together with a lower bound showing that approximating the
value in one-counter MDPs with termination time payoff is computationally difficult.
More precisely, the following holds:

Theorem 13. There is a deterministic exponential-time algorithm which inputs a max-
imizing one-counter MDP A, a configuration p(i) of A, and a rational ε > 0, and
outputs a rational number v such that |Val(T, p(i)) − v| ≤ ε, and (a finite description of)
an ε-optimal strategy for Player �.

Further, Val(T, p(1)) cannot be approximated up to the additive error 1/3 in poly-
nomial time unless P = NP.

The lower bound of Theorem 13 is proven in two phases, which are relatively inde-
pendent. First, it is shown that given a propositional formula ϕ, one can efficiently
compute a one-counter MDP A, a configuration p(K) of A, and a number N such
that Val(T, p(K)) is either N − 1 or N depending on whether ϕ is satisfiable or not,
respectively. Interestingly, an optimal strategy for Player � in the configurations of A
is not counterless but ultimately periodic (cf. the comments after Theorem 10). The
numbers K and N are exponential in ||ϕ||, which means that their encoding size is poly-
nomial. Here, the technique of encoding propositional assignments into counter values
presented in [24] is used, but some specific gadgets need to be invented to deal with
termination time payoff. The first part already implies that approximating Val(p(i)) is
computationally hard. In the second phase, it is shown that the same holds also for con-
figurations where the counter is initiated to 1. This is achieved by employing another
gadget which just increases the counter to an exponentially high value with a sufficiently
large probability.

The question whether the results of Theorem 13 can be extended to one-counter
games is open. It is also not clear whether Player � always has an ultimately periodic
optimal strategy in one-counter MDPs (and games) with termination time payoff.

3.5 Energy Markov Decision Processes

An energy MDP is a multi-counter game A with Z-semantics where A has only one
counter, Q^ = ∅, and the update vectors are elements of Zn. Energy MDPs have been
studied in [15] with a payoff function which combines zero safety and parity require-
ments. Assume that every control state is assigned a positive integer priority. We define
a payoff function ZP which assigns to every run either 1 or 0, depending on whether or
not the following two conditions are satisfied:

– the run avoids visiting a configuration with negative counter value;
– the minimum priority of a control state visited infinitely along the run is even.



The following theorem is proven in [15].

Theorem 14. Let A be an energy MDP and p ∈ Q. The problem whether there exists
k ∈ N and a strategy σ such that Eσp(k)[ZP] = 1 is in NP ∩ co-NP.

It is open whether this theorem can be extended to energy games (with stochastic states).

3.6 Solvency games

A solvency game, introduced in [3], is a multi-counter gameA with Z-semantics where
A has only one counter, Q� = {p}, Q© = {s1, . . . , sm}, the outgoing transitions of p
are precisely (p, 0, s j) for all 1 ≤ j ≤ m, and all outgoing transitions of every s j are
of the form (s j, d, p) where d ∈ Z. Hence, a solvency game can be seen as a simple
maximizing one-counter MDP except that counter updates are arbitrary integers.

Solvency games have been studied with survival payoff function, which is similar to
zero safety of Section 3.2. Formally, we define a function S which to every run assigns
either 1 or 0 depending on whether or not the run avoids visiting a configuration with a
non-positive (i.e., ≤ 0) counter value.

Due to the simplicity of solvency games, one may be tempted to conclude that for
a sufficiently large i, an optimal move in p(i) is to select s j(i) with a maximal expected
counter change given by ∑

(s j,d,p)∈δ

d · P((s j, d, p)) .

In [3], it is shown that this hypothesis is incorrect for general solvency games, and holds
only under a suitable technical condition. It is also shown how to compute an optimal
strategy for Player � if this technical condition holds.

The results about one-counter MDPs are of course applicable to solvency games.
Since counter updates in solvency games are arbitrary integers encoded in binary, a
straightforward translation of solvency games into one-counter MDPs is exponential
(cf. the comments after Theorem 7). In some cases, this translation can be avoided
and the results for one-counter MDPs carry over immediately to solvency games. In
particular, in [7] it is explicitly mentioned that the questions whether Val(S , p(i)) is >0,
=1, =0, or <1, where p(i) is a configuration of a solvency game, are all solvable in
polynomial time.

In the light of the previously presented results about one-counter MDPs and games,
a natural conjecture is that Player � has an ultimately periodic optimal strategy in sol-
vency games with survival payoff. This conjecture is open.

4 Conclusions

The results summarized in the previous section show that interesting subclasses of
multi-counter games admit efficient algorithmic analysis, at least if some of the crucial
parameters (such as the number of counters) are fixed. The existing works are scattered
over various variants of multi-counter games which makes them difficult to compare be-
cause of subtle differences in definitions. On the other hand, the area is rather dynamic
and offers a number of challenging open problems.
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