
Efficient Analysis of VASS Termination Complexity
Antonín Kučera

Faculty of Informatics
Masaryk University

Czechia
kucera@fi.muni.cz

Jérôme Leroux
LaBRI
France

leroux@labri.fr

Dominik Velan
Faculty of Informatics
Masaryk University

Czechia
xvelan1@fi.muni.cz

Abstract
The termination complexity of a given VASS is a function
L assigning to every 𝑛 the length of the longest non-
terminating computation initiated in a configuration with all
counters bounded by 𝑛. We show that for every VASS with
demonic nondeterminism and every fixed 𝑘 , the problem
whether L ∈ G𝑘 , where G𝑘 is the 𝑘-th level in the Grzegor-
czyk hierarchy, is decidable in polynomial time. Furthermore,
we show that if L ∉ G𝑘 , then L grows at least as fast as the
generator 𝐹𝑘+1 of G𝑘+1. Hence, for every terminating VASS,
the growth of L can be reasonably characterized by the least
𝑘 such that L ∈ G𝑘 .

Furthermore, we consider VASS with both angelic and
demonic nondeterminism, i.e., VASS gameswhere the players
aim at lowering/raising the termination time. We prove that
for every fixed 𝑘 , the problem whether L ∈ G𝑘 for a given
VASS game is NP-complete. Furthermore, if L ∉ G𝑘 , then
L grows at least as fast as 𝐹𝑘+1.

CCS Concepts: • Theory of computation→ Abstract ma-
chines.
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1 Introduction
Vector addition systems with states (VASS) are a generic
computational model of discrete systems operating over
unbounded data domains. More precisely, a 𝑑-dimensional
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VASS is a directed graph with a finite set of vertices𝑄 (called
control states) where every edge is assigned an update vector
u ∈ Z𝑑 . A configuration is a pair 𝑝v where 𝑝 is the current
control state and v ∈ N𝑑 is the vector of current counter
values. Transitions between configurations are defined in
the natural way. When considering the encoding size ||A||
of a given VASS A, we assume that the update vectors are
written in binary.

One of the fundamental question studied in program analy-
sis is termination. For non-deterministic computational mod-
els, each choice is considered either angelic or demonic [5],
i.e., favoring either termination or non-termination, respec-
tively.
Although VASS are widely accepted as a natural model

for programs operating over integer variables, the principal
limits of effective VASS termination complexity analysis are
not yet fully understood. Assume that𝑄 is split into two sub-
sets of angelic and demonic control states. A computation
initiated in a configuration 𝑝v is then determined by two
players, 𝐴 (angel) and 𝐷 (daemon) who resolve nondeter-
minism in configurations with angelic and demonic control
states, aiming at minimizing and maximizing the length of
the computation, respectively. By applying standard results
about games with accumulated reward objectives (see, e.g.,
[4]), we obtain that for every initial configuration 𝑝v there
exists a unique termination value Tval(𝑝v) ∈ N∞ defined by
the equality

sup
𝜋

inf
𝜎

|Comp𝜎,𝜋 (𝑝v) | = inf
𝜎

sup
𝜋

|Comp𝜎,𝜋 (𝑝v) |

where 𝜎 and 𝜋 range over the strategies of the players𝐴 and
𝐷 , and |Comp𝜎,𝜋 (𝑝v) | is the length of the maximal computa-
tion obtained by applying the strategies 𝜎 and 𝜋 in 𝑝v. The
termination complexity is a function L : N→ N∞ assigning
to every 𝑛 ∈ N the maximal Tval(𝑝v), where 𝑝 ∈ 𝑄 and
v ≤ (𝑛, . . . , 𝑛).

The existing works on VASS termination complexity have
concentrated mainly on recognizing VASS with low asymp-
totic growth of L where all control states are demonic. More
concretely, the linearity of L, i.e., the question whether
L ∈ O(𝑛), is solvable in polynomial time for demonic VASS.
Furthermore, if L is not linear, then it is at least quadratic
[2]. If a given demonic VASS is positive-normal1, then there
1A VASS is positive normal if there is a quasi-ranking function such that
each component of its normal is positive (this condition can be verified in
polynomial time). We refer to [2] for details.
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exists 𝑘 ≤ 𝑑 computable in polynomial time (𝑑 is the dimen-
sion) such that L ∈ Θ(𝑛𝑘 ) [2]. The polynomiality of L, i.e.,
the question whether L ∈ O(𝑛𝑘 ) for some 𝑘 ∈ N, is also
decidable in polynomial time for demonic VASS [15]. In the
same paper, it is also shown that if L is not polynomial, then
it is at least exponential, i.e., L ∈ 2Ω (𝑛) . A recent result of
[19] shows that if the termination complexity of a given de-
monic VASS is polynomial, then there is 𝑘 ∈ N computable
in polynomial time such that L is Θ(𝑛𝑘 ). A polynomial-time
algorithm deciding the linearity of L for probabilistic VASS ,
i.e., VASS with demonic non-determinism and probabilistic
choice2, is given in [1].
Our contribution. In this work, we extend the scope of

efficient VASS termination analysis to general complexity
classes determined by the standard hierarchy of fast grow-
ing functions, and also to VASS with both demonic and an-
gelic non-determinism (i.e., VASS games). More precisely, we
prove the following.
(A) For all 𝐹 : N→ N and ℓ ∈ N, let 𝐹 (ℓ) (𝑥) denote the ℓ-th
iterate of 𝐹 , i.e., 𝐹 (· · · (𝐹 (𝑥) · · · ) composed ℓ times, where
𝐹 (0) (𝑥) = 𝑥 . Let 𝐹𝑘 (𝑛), where 𝑘 ≥ 1, be the hierarchy of
fast-growing functions3 defined by

• 𝐹1 (𝑛) = 2𝑛 + 1, 𝐹2 (𝑛) = 𝑛2, 𝐹3 (𝑛) = 2𝑛 ,
• 𝐹𝑘+1 (𝑛) = 𝐹 (𝑛)

𝑘
(𝑛) for 𝑘 ≥ 3 .

Hence, 𝐹4 is already non-elementary. For every 𝑘 ≥ 1, the
class of functions G𝑘 is defined by

G𝑘 = {𝑓 : N→ N | 𝑓 ≤ 𝐹
(𝜇)
𝑘

for some 𝜇 ∈ N} .
For every 𝑘 ≥ 4, the class G𝑘 exactly captures the growth of
functions in the class E𝑘 of the standard Grzegorczyk hierar-
chy [11] (each function of E𝑘 is bounded by some function
of G𝑘 for all sufficiently large arguments, and vice versa).
Hence, we also refer to G𝑘 as the Grzegorczyk hierarchy in
the rest of this paper. Note that G1, G2, and G3 contain all
linear, polynomial, and elementary functions, respectively.
Let A be a 𝑑-dimensional demonic VASS. We show that

for every 𝑘 ≥ 3, the problem whether L ∈ G𝑘 is solvable
in time polynomial in ||A||. We also show that if L ∉ G𝑘 ,
then L(𝑛) ≥ 𝐹𝑘+1 (⌊𝑛/𝑐⌋) for all 𝑛 ∈ N and some constant 𝑐
depending only on A, i.e., the growth of L indeed reaches4
the next level G𝑘+1. Due to this gap, the growth ofL for a ter-
minating5 A is reasonably characterized by the least 𝜆 ∈ N
such that L ∈ G𝜆 (it follows already from the results of [18]
2Actually, this result is obtained for a subclass of probabilistic VASS with
tree-like MEC decomposition.
3The standard definition of fast-growing hierarchy is simpler and sets
𝐹0 (𝑛) = 𝑛 + 1, 𝐹𝑘+1 (𝑛) = 𝐹

(𝑛)
𝑘

(𝑛) . However, the Grzegorczyk hierar-
chy is based on the functions 𝐸0 (𝑚,𝑛) = 𝑚 + 𝑛, 𝐸1 (𝑛) = 𝑛2 + 2, and
𝐸𝑘+1 (𝑛) = 𝐸

(𝑛)
𝑘

(2) . Since we wish to keep a precise correspondence with
the Grzegorczyk hierarchy for 𝑘 ≥ 4, we prefer the presented variant of the
𝐹𝑘 functions.
4Note that according to our result, it cannot happen that L ∉ G𝑘 and
L ≤ 𝐹

(𝑔 (𝑛) )
𝑘

(𝑛) for some sublinear function 𝑔 (𝑛) such as
√
𝑛 or log(𝑛) .

5A VASS A is terminating if L(𝑛) < ∞ for all 𝑛 ∈ N.

that 𝜆 ≤ 𝑑 + 1). There are known examples of 𝑑-dimensional
VASS such that L grows at least as fast as 𝐹𝑑 [16]. Given
the enormous size of the state space of such VASS, it is per-
haps surprising that the property L ∈ G𝑘 admits an efficient
structural characterization.

Actually, our algorithm does a bit more than just deciding
whether or not L ∈ G𝑘 . For a given VASS A, we say that a
given transition (or a counter) of A is beyond 𝐹 𝑗 if there is a
constant 𝑐 depending only onA such that for all sufficiently
large 𝑛 ∈ N there is a computation initiated in a configura-
tion 𝑝v where v ≤ (𝑛, . . . , 𝑛) along which the transition is
executed at least 𝐹 𝑗 (⌊𝑛/𝑐⌋) times (or the counter is pumped
to at least 𝐹 𝑗 (⌊𝑛/𝑐⌋), respectively). The very core of our al-
gorithm is a novel procedure with input (𝑘,A) and output
(𝑇, 𝐼 ), where

• A is a strongly connected VASS, 𝑘 ≥ 3 is an index,
• 𝑇 and 𝐼 are the sets of all transitions and counters
beyond 𝐹𝑘 .

For 𝑘 = 3, the procedure invokes the algorithm of [15]. For
𝑘 > 3, the procedure starts by computing the sets 𝑇 ′ and 𝐼 ′
of all transitions and counters beyond 𝐹𝑘−1 recursively, and
proceeds by eliminating more andmore transitions and coun-
ters in 𝑇 ′ and 𝐼 ′ that are bounded by 𝐹 (𝜇)

𝑘−1 for some fixed
𝜇 ∈ N. This goes on until a fixed point 𝑇, 𝐼 is found. In the
elimination phase, recursive calls are applied also to certain
sub-VASS of A.
Using the above procedure, we not only determine the

existence of a transition beyond 𝐹𝑘 (this is equivalent to
L ∉ G𝑘−1), but also identify all transitions and counters
beyond 𝐹𝑘 . Furthermore, for all transitions and counters that
are not beyond 𝐹𝑘 we obtain the largest index ℓ such that the
transition/counter is beyond 𝐹ℓ . In particular, for 𝑘 = 𝑑 + 1,
our algorithm outputs the corresponding ℓ for all counters
and transitions ofA, i.e., we get a precise classification of the
“Grzegorczyk complexity” for every counter and transition
of a strongly connected demonic VASS A.
The running time of the procedure is polynomial in ||A||

for every fixed 𝑘 . Our current upper bound on the degree
of the corresponding polynomial increases with 𝑘 . When
setting 𝑘 = 𝑑 + 1, the bound becomes exponential in 𝑑 (for
a fixed VASS dimension, it stays polynomial). The problem
is that our procedure performs recursive calls not only for
smaller indexes but also for smaller VASS. It is still possible
that the number of recursive calls with distinct inputs is actu-
ally polynomial in 𝑑 , and our algorithm becomes polynomial
in 𝑑 just by employing dynamic programming. This question
seems to require additional insights and it is left for future
work.

(B) Let A be a general VASS with both angelic and demonic
non-determinism (i.e., A is a VASS game). We show that
for every fixed 𝑘 ≥ 1, the problem whether L ∈ G𝑘 is
NP-complete. Furthermore, ifL ∉ G𝑘 , thenL is beyond 𝐹𝑘+1.
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Thus, we extend the dichotomy of termination complexity
for demonic VASS established in (A) to VASS games.
The membership to NP is obtained by proving that

LA ∈ G𝑘 iff there exists a counterless6 strategy 𝜂 of player𝐴
inA such that LA𝜂 ∈ G𝑘 . Here,A𝜂 is the VASS obtained by
“applying” 𝜂 to A, i.e., for every angelic control state 𝑝 , the
only out-going transition of 𝑝 inA𝜂 is the transition selected
by 𝜂 in 𝑝 . Since A𝜂 can be seen as demonic VASS (player 𝐴
has no real choice inA𝜂 ), the problem whether LA𝜂 ∈ G𝑘 is
decidable in polynomial time by applying the results of (A).
The NP-hardness follows easily from the results of [8].

Related work. Deciding if a demonic VASS has a finite
termination value is exactly the same problem as deciding
the classical termination problem for VASS. Let us recall that
for every 𝑘 ∈ N, there exists a demonic VASS of size O(𝑘)
with termination complexity beyond 𝐹𝑘 [16]. Nevertheless,
the problem of deciding the termination problem for an ini-
tialized VASS is exponential space complete [17]. A variant
of that problem, called the structural termination problem,
consists of deciding if a VASS is terminating from any initial
configuration. This problem is equivalent to decide if the
termination complexity is always finite. This property can be
decided in polynomial time thanks to the Kosaraju-Sullivan
algorithm [14] that decides in polynomial time the presence
of cycles in a VASS with non-negative weights.

The model of VASS games with termination objectives has
been studied in [3, 12, 13]. Here, themain question is whether
player 𝐷 has a strategy preventing player 𝐴 from reaching
a terminal configuration from a given initial configuration.
The existence and structure of winning strategies in a closely
related model of multi-dimensional energy games (with or
without a fixed initial credit in the counters and for various
objectives) has been considered in, e.g., [6, 7, 9, 10]). However,
the problem of asymptotic termination complexity for VASS
games has not yet been addressed in previous works.

2 Preliminaries
We use Z and N to denote the sets of integers and non-
negative integers, respectively. Further, we useN∞ to denote
the setN∪{∞} where∞ is treated according to the standard
conventions. For a given rational 𝑟 , we use ⌊𝑟⌋ to denote the
lower integer part of 𝑟 .
We use bold letters such as v, u, . . . to denote the vectors

of Z𝑑 where 𝑑 ≥ 1. For every 𝑛 ∈ Z, the vector (𝑛, . . . , 𝑛) is
denoted by ®𝑛. The 𝑖-th component of v is denoted by v(𝑖),
and we use v− to denote the set of all 𝑖 ∈ {1, . . . , 𝑑} such that
v(𝑖) < 0. A vector v is non-negative if v− = ∅.

Let 𝑓 , 𝑔 : N→ N∞. We write 𝑓 ≤ 𝑔 if 𝑓 (𝑛) ≤ 𝑔(𝑛) for all
𝑛 ∈ N. We say that 𝑓 is beyond 𝑔 if there exist 𝑐 ≥ 1 and
𝑛0 ∈ N such that 𝑓 (𝑛) ≥ 𝑔(⌊𝑛/𝑐⌋) for all 𝑛 ≥ 𝑛0.

6A strategy is counterless if it depends just on the currently visited control
state.

2.1 Vector Addition Systems with States (VASS)
A VASS is a finite state directed graph with transitions la-
belled by vectors of counter changes.

Definition 2.1. Let 𝑑 ≥ 1. A 𝑑-dimensional vector addition
system with states (VASS) is a pair A = (𝑄, Tran), where
𝑄 ≠ ∅ is a finite set of states and Tran ⊆ 𝑄 × Z𝑑 × 𝑄 is a
finite set of transitions such that for every 𝑞 ∈ 𝑄 there exists
𝑝 ∈ 𝑄 and u ∈ Z𝑑 such that (𝑞, u, 𝑝) ∈ Tran.

We assume that𝑄 is split into two disjoint subsets𝑄𝐴 and
𝑄𝐷 of angelic and demonic states controlled by the players 𝐴
and 𝐷 , respectively. A VASS is demonic if 𝑄𝐴 = ∅. We say
thatA is strongly connected if the underlying directed graph
of A is strongly connected.

A configuration ofA is a pair 𝑝v ∈ 𝑄 ×N𝑑 . A computation
of A is a sequence of configurations 𝛼 = 𝑝1v1, 𝑝2v2, . . . of
length 𝑚 ∈ N∞ such that for every 1 ≤ 𝑖 < 𝑚 there is a
transition (𝑝𝑖 , u𝑖 , 𝑝𝑖+1) satisfying v𝑖+1 = v𝑖 + u𝑖 .
A finite path in A of length 𝑚 is a finite sequence 𝜚 =

𝑝1, u1, 𝑝2, u2, . . . , 𝑝𝑚 such that (𝑝𝑖 , u𝑖 , 𝑝𝑖+1) ∈ 𝑇𝑟𝑎𝑛 for all
1 ≤ 𝑖 < 𝑚. We use Δ(𝜚 ) to denote the effect of 𝜚 , defined
as

∑𝑚
𝑖=1 u𝑖 . Hence, Δ(𝜚 )− is the set of all counters strictly

decreased by 𝜚 . A finite path is a cycle if 𝑝𝑚 = 𝑝1. An infinite
path in A is an infinite sequence 𝛼 = 𝑝1, u1, 𝑝2, u2, . . . such
that every finite prefix 𝑝1, u1, . . . , 𝑝𝑚 of 𝛼 is a finite path inA.
Note that every computation determines the associated path
in A in the natural way.

2.2 VASS Termination Complexity
A strategy for player 𝐴 (or player 𝐷) in A is a function 𝜂
assigning to every finite computation 𝑝1v1, . . . , 𝑝𝑚v𝑚 where
𝑝𝑚 ∈ 𝑄𝐴 (or 𝑝𝑚 ∈ 𝑄𝐷 ) a transition (𝑝𝑚, u, 𝑞).

Every pair of strategies (𝜎, 𝜋) for players 𝐴 and 𝐷 and ev-
ery initial configuration 𝑝v determine the unique maximal7

computation Comp𝜎,𝜋 (𝑝v) initiated in 𝑝v in the natural way.
We use |Comp𝜎,𝜋 (𝑝v) | to denote the length of Comp𝜎,𝜋 (𝑝v).

For every initial configuration 𝑝v, the players𝐴 and𝐷 aim
at minimizing and maximizing the length of a computation
initiated in 𝑝v, respectively. By applying standard arguments
(see, e.g., [4]), we obtain

sup
𝜋

inf
𝜎

|Comp𝜎,𝜋 (𝑝v) | = inf
𝜎

sup
𝜋

|Comp𝜎,𝜋 (𝑝v) |

where 𝜎 and 𝜋 range over all strategies for players 𝐴 and 𝐷
in A, respectively. Hence, there exists a unique termina-
tion value of 𝑝v, denoted by Tval(𝑝v), defined by the above
equality. Furthermore, both players have optimal positional8

7A computation is maximal if it cannot be prolonged consistently with𝜎 and
𝜋 . That is, Comp𝜎,𝜋 (𝑝v) is either infinite or ends in a configuration where
the responsible player selects a transition making some of the counters
negative.
8A strategy is positional if it depends only on the currently visited
configuration.
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strategies 𝜎∗ and 𝜋∗ achieving the outcome Tval(𝑝v) or bet-
ter in every configuration 𝑝v against every strategy of the
opponent.
The termination complexity of A is a function

L : N→ N∞ defined as follows:
L(𝑛) = max{Tval(𝑝v) | 𝑝 ∈ 𝑄, v ≤ ®𝑛} .

In situations when the underlying VASS A is not clearly
determined by the context, we use a lower index A (writing,
e.g., LA , TvalA (𝑝v), etc.)

3 Results about Demonic VASS
Let A = (𝑄, Tran) be a 𝑑-dimensional demonic VASS. For
every transition 𝑡 ∈ Tran and every counter 𝑖 ∈ {1, . . . , 𝑑},
we define the transition complexity T𝑡 : N → N∞ and the
counter complexity C𝑖 : N→ N∞ as follows:
T𝑡 (𝑛) = sup

𝜋

sup
𝑝∈𝑄

{#𝑡 (Comp𝜋 (𝑝 ®𝑛))}

C𝑖 (𝑛) = sup
𝜋

sup
𝑝∈𝑄

sup {v(𝑖) | 𝑞v occurs in Comp𝜋 (𝑝 ®𝑛)}

Here, #𝑡 is a function assigning to every computation of A
the (possibly infinite) number of occurrences of the transition
𝑡 in the corresponding path in A.

For every Ω ⊆ {1, . . . , 𝑑}, we define the VASS A[Ω] ob-
tained from A by ignoring the counters in Ω. That is, every
transition (𝑝, v, 𝑞) is changed so that v𝑖 = 0 for all 𝑖 ∈ Ω.

Recall the hierarchy of fast-growing functions 𝐹𝑘 and the
Grzegorczyk hierarchy G𝑘 given in Section 1. We say that
a given 𝑓 : N → N is below 𝐹

(𝜇)
𝑘

, where 𝑘, 𝜇 are positive
integers, if there exists 𝑔 ∈ G𝑘−1 such that 𝑓 ≤ 𝐹

(𝜇−1)
𝑘

◦ 𝑔.
We give a polynomial-time algorithm computing the sets

of all counters/transitions whose complexity is beyond 𝐹𝑘
for a given 𝑘 ≥ 3. At the same time, we also show that if the
complexity of a given counter/transition is not beyond 𝐹𝑘 ,
then it belongs to G𝑘−1.
We start by observing that for every 𝑘 ≥ 3, the set of all

transitions 𝑡 such that T𝑡 is beyond 𝐹𝑘 is easily determined
by the set of all counters 𝑖 such that C𝑖 is beyond 𝐹𝑘 . The
next lemma is actually formulated in a more precise way,
which becomes useful when proving the correctness of our
algorithm.

Lemma 3.1. Let 𝑘 ≥ 3, and let 𝐼 be the set of all 𝑖 ∈ {1, . . . , 𝑑}
such that C𝑖 is beyond 𝐹 (𝜇)

𝑘
in A for some positive 𝜇 ∈ N.

Suppose that for every counter 𝑖 ∉ 𝐼 we have that C𝑖 is below
𝐹
(𝜇)
𝑘

in A. Then

𝑇 = {𝑡 ∈ Tran | ∃ cycle 𝛾 such that 𝑡 ∈ 𝛾 and Δ(𝛾)− ⊆ 𝐼 }

is the set of all transitions with complexity beyond 𝐹 (𝜇)
𝑘

in A.

If 𝑡 ∉ 𝑇 , then T𝑡 is below 𝐹
(𝜇)
𝑘

in A.

Proof. First we show that the complexity of every 𝑡 ∈ 𝑇 is
beyond 𝐹 (𝜇)

𝑘
in A. Here we use the following claim, which

is also used later.

Claim 1. Let B be a strongly connected VASS of dimension 𝑑 ,
and let 𝐼 be the set of all counters beyond 𝐹 (𝜇)

𝑘
for some𝑘, 𝜇 ∈ N.

Then there exists constant 𝑐 ∈ N and a control state 𝑝 such
that for all sufficiently large 𝑛 there is a computation initiated
in 𝑝 ®𝑛 visiting a configuration 𝑞v such that v(𝑖) ≥ 𝐹

(𝜇)
𝑘

(⌊𝑛/𝑐⌋)
for all 𝑖 ∈ 𝐼 , and v(𝑖) ≥ ⌊𝑛/𝑐⌋ for all counters 𝑖 not in 𝐼 .

Proof of the claim. Let us fix some control state 𝑝 of A. As-
sume 𝐼 = {𝑖1, . . . , 𝑖𝑤}. For every 𝑗 ∈ {1, . . . ,𝑤} and all suffi-
ciently large 𝑛, there exists a computation 𝛽 𝑗 initiated in a
configuration 𝑞 𝑗 ®𝑚, where𝑚 = ⌊𝑛/(𝑤+1)⌋, reaching a con-
figuration where the 𝑖 𝑗 -th counter is at least 𝐹 (𝜇)

𝑘
(⌊𝑚/𝑐⌋)

for some constant 𝑐 ≥ 1 independent of 𝑚. Let 𝛾 𝑗 be the
corresponding path in A. Consider a path 𝜚 obtained by
concatenating

𝜏1, 𝛾1, 𝜏2, 𝛾2, . . . , 𝜏𝑤, 𝛾𝑤

where 𝜏1 is a path from 𝑝 to the initial state of 𝛾1, and 𝜏 𝑗+1
is a path from the last state of 𝛾 𝑗 to the first state of 𝛾 𝑗+1.
Furthermore, the length of every 𝜏 𝑗 is at most |𝑄 |.
Note that by executing 𝜚 from the initial configuration

𝑝 ®𝑛, we reach a configuration where all counters of 𝐼 are
pumped to 𝐹 (𝜇)

𝑘
(⌊𝑚/𝑐⌋)−𝑏 ≥ 𝐹

(𝜇)
𝑘

(⌊𝑛/𝑐 ′⌋) for some constant
𝑐 ′ independent of 𝑛, and the counters not in 𝐼 stay above
⌊𝑛/(𝑤+1)⌋ − 𝑏, where 𝑏 = |𝑄 | ·𝑤 · 𝜅 and 𝜅 is the maximal
decrease of a counter by a transition of A. Since𝑤 ≤ 𝑑 , the
claim follows. □

Let 𝑡 ∈ 𝑇 , and let 𝛾 be a cycle containing 𝑡 such that
Δ(𝛾)− ⊆ 𝐼 . Using Claim 1, we immediately obtain that for all
sufficiently large 𝑛, there exists a computation initiated in
𝑝 ®𝑛 along which the cycle 𝛾 is executed at least ⌊𝑛/𝑐 ′⌋ times,
where 𝑐 ′ is a suitable constant.

Now let 𝑡 ∉ 𝑇 . Let 𝑉𝑛 be the set of all v such that v(𝑖) = 0
for all 𝑖 ∈ 𝐼 , and there exists a computation initiated in𝑞®𝑛 (for
some 𝑞) visiting a configuration 𝑟u such that u(𝑖) = v(𝑖) for
every 𝑖 ∉ 𝐼 . SinceC𝑖 is below 𝐹 (𝜇)

𝑘
for every 𝑖 ∉ 𝐼 , the size of𝑉𝑛

is also below 𝐹
(𝜇)
𝑘

. That is, there is𝑔 ∈ G𝑘−1 such that the size
of𝑉𝑛 is bounded by 𝐹 (𝜇−1)

𝑘
(𝑔(𝑛)) for all 𝑛 ∈ N. Now suppose

there exists 𝑛 ∈ N and a computation initiated in 𝑞®𝑛 along
which the transition 𝑡 is executed at least 𝐹 (𝜇−1)

𝑘
(𝑔(𝑛)) + 1

times. That is, the computation visits configurations

𝑝v1, 𝑝v2, . . . , 𝑝v𝑚

each of which executes 𝑡 as the next transition and 𝑚 ≥
𝐹
(𝜇−1)
𝑘

(𝑔(𝑛)) + 1. Since the size of 𝑉𝑛 is bounded by
𝐹
(𝜇−1)
𝑘

(𝑔(𝑛)), there are 1 ≤ 𝑘 < 𝑘 ′ ≤ 𝑚 such that
v𝑘 (𝑖) = v𝑘′ (𝑖) for all counters 𝑖 ∉ 𝐼 . Furthermore, the sub-
computation from 𝑝v𝑘 to 𝑝v𝑘′ determines a cycle 𝛾 on 𝑝
starting with 𝑡 such that Δ(𝛾) (𝑖) = 0 for every counter 𝑖 ∉ 𝐼 .
Hence, Δ(𝛾)− ⊆ 𝐼 , which is a contradiction. □
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1 procedure LargeCounters (𝑘,A)
2 input : 𝑘 ≥ 3, a strongly connected VASS A = (𝑄, Tran)
3 output : the set 𝐼 of all counters 𝑖 such that C𝑖 is beyond 𝐹𝑘 in A
4

5 i f k == 3 :
6 return IterationSchemeAlgorithm (A)
7 I = {1, . . . , 𝑑}
8 repeat
9 𝑇 = {𝑡 ∈ Tran | ∃ cycle 𝛾 such that 𝑡 ∈ 𝛾 and Δ(𝛾)− ⊆ 𝐼 }
10 Ω = ∅
11 repeat
12 Aux = ∅
13 for a l l B determined by A𝑇

14 Aux = Aux ∪ LargeCounters (𝑘 − 1,B[Ω])
15 Ω = Ω ∪ Aux
16 unt i l Ω i s unchanged
17 I = Ω

18 unt i l I i s unchanged
19 return I

Figure 1. A recursive procedure for computing all counters
beyond 𝐹𝑘 in A.

According to Lemma 3.1, for every 𝑘 ≥ 3, the set of all
transitions 𝑡 such that T𝑡 is beyond 𝐹𝑘 is precisely the set

{𝑡 ∈ Tran | ∃ cycle 𝛾 such that 𝑡 ∈ 𝛾 and Δ(𝛾)− ⊆ 𝐼 }

where 𝐼 is the set of all counters 𝑖 such that C𝑖 is beyond 𝐹𝑘 .
Hence, it suffices to compute the set 𝐼 . This is achieved by
the recursive procedure LargeCounters shown in Fig. 1. The
procedure inputs an index 𝑘 ≥ 3 and a strongly connected
𝑑-dimensional VASS A, and outputs the set 𝐼 of all counters
whose complexity is beyond 𝐹𝑘 in A.

The correctness of the procedure LargeCounters is proven
by the induction on 𝑘 ≥ 3. In induction step, we need an
assumption about the structure of computations of A that
“pump” the counters with complexity beyond 𝐹𝑘−1 to large
values. This assumption is formulated in the next definition
(in our inductive proof, we show the assumption is valid for
all 𝑘 ≥ 3).

Definition 3.2. Let A be a 𝑑-dimensional strongly con-
nected VASS, 𝑘 ≥ 3, and 𝐼 the set of all counters with com-
plexity beyond 𝐹𝑘 . We say that A is well-behaving for 𝑘 if
there exist positive constants 𝑐, 𝜅, 𝛼 ∈ N and a control state
𝑝 such that for all sufficiently large 𝑛, there is a finite com-
putation 𝛽𝑛 = 𝑝 ®𝑛, . . . , 𝑝v of length at most 𝐹𝑘 (𝛼 · 𝑛) where
v(𝑖) ≥ 𝐹𝑘 (⌊𝑛/𝑐⌋) for all 𝑖 ∈ 𝐼 , and the associated path 𝜚𝑛 in
A is a cycle with a special structure shown in Fig. 2 satisfying
the following conditions:

• The length of the “inner cycle” obtained by concate-
nating 𝜏1, . . . , 𝜏𝑘 is Θ(𝑛).

𝜏1 𝜏2

𝜏3

𝜏4

𝜏5𝜏6

𝜏𝑘

𝛾1

𝛾2

𝛾3

𝛾4

𝛾5

𝛾6

𝛾7

𝛾𝑘

Figure 2. The structure of the cycle 𝜚𝑛 associated to 𝛽𝑛 .

• For every “outer” cycle 𝛾 𝑗 = 𝑞1, u1, 𝑞2, u2, . . . , 𝑞𝑚 , the
following two conditions are satisfied:
– For every counter 𝑖 ∉ 𝐼 , we have that Δ(𝛾 𝑗 ) (𝑖) = 0.
– For every counter 𝑖 ∉ 𝐼 and every𝑚′ ≤ 𝑚, we have
that Δ(𝑞1, u1, . . . , 𝑞𝑚′) (𝑖) ≥ −𝜅 . That is, the interme-
diate decrease of every counter 𝑖 ∉ 𝐼 is bounded by
𝜅 along 𝛾 𝑗 .

Let A be a strongly connected 𝑑-dimensional VASS.
For 𝑘 = 3, the procedure LargeCounters invokes the
IterationSchemeAlgorithm of [15], returning the set 𝐼 of all
counters 𝑖 such that C𝑖 is beyond 𝐹3. The complexity of every
counter 𝑖 ∉ 𝐼 is polynomial, i.e., C𝑖 ∈ G2. So, the procedure
is correct for 𝑘 = 3. On top of that, everyA is well-behaving
for 𝑘 = 3.
Now we show that the procedure is correct for a given

𝑘 ≥ 4, assuming the following:
(A1) LargeCounters is correct for 𝑘 − 1 and an arbi-

trary strongly connected VASS on input. Furthermore,
LargeCounters terminates in time polynomial in the
size of the VASS.

(A2) Every strongly connected VASS is well-behaving for
𝑘 − 1.

(A3) If the complexity of a given counter in a given strongly
connected VASS is not beyond 𝐹𝑘−1, then it is in G𝑘−2.

For every 𝜇 ∈ N, let 𝐼 ⟨𝜇⟩ be the set of all 𝑖 ∈ {1, . . . , 𝑑}
such that C𝑖 is beyond 𝐹 (𝜇)

𝑘−1 in A. Let us introduce the set
𝑇 ⟨𝜇⟩ = {𝑡 ∈ Tran | ∃ cycle 𝛾 s.t. 𝑡 ∈ 𝛾 and Δ(𝛾)− ⊆ 𝐼 ⟨𝜇⟩}

Remark 1. Note that if we further assume that C𝑖 is below
𝐹
(𝜇)
𝑘−1 for every 𝑖 ∉ 𝐼 ⟨𝜇⟩, then we can apply Lemma 3.1 and
conclude that 𝑇 ⟨𝜇⟩ is the set of all transitions with com-
plexity beyond 𝐹 (𝜇)

𝑘−1, and the complexity of all transitions
𝑡 ∉ 𝑇 ⟨𝜇⟩ is below 𝐹

(𝜇)
𝑘−1. We use this argument in the proof of

Lemma 3.3.
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𝑡1

𝜚1

𝑡2

𝜚2

𝑡3

𝜚3

𝑡4

𝜚4𝑡5

𝜚5

𝑡6

𝜚6

𝑡7

𝜚7

Figure 3. The structure of a compensating cycle

Observe that, by definition of 𝑇 ⟨𝜇⟩, the VASS A𝑇 ⟨𝜇 ⟩ ob-
tained from A by restricting transitions to 𝑇 ⟨𝜇⟩ is a disjoint
union of strongly connected components B𝜇

1 , . . . ,B
𝜇
𝑚𝜇

, each
of which can be seen as a strongly connected 𝑑-dimensional
VASS. Of course, 𝐼 ⟨𝜇⟩, 𝑇 ⟨𝜇⟩, and B𝜇

1 , . . . ,B
𝜇
𝑚𝜇

depend also
on 𝑘 , but this parameter has been fixed for now, so there is
no risk of confusion.

Lemma 3.3. For all 𝜇 ∈ N, consider the sets 𝑆𝜇+1
𝑗

defined
inductively for all 𝑗 ≥ 1 as follows:

• For every 𝑗 ≥ 1, the set 𝑆𝜇+1
𝑗

consists of all counters with

complexity beyond 𝐹𝑘−1 in B[𝑆𝜇+1
1 ∪ · · · ∪𝑆𝜇+1

𝑗−1 ] for some
B ∈ {B𝜇

1 , . . . ,B
𝜇
𝑚𝜇

} (here the empty union denotes ∅).
Then, the complexity of every counter in

⋃∞
𝑗=1 𝑆

𝜇+1
𝑗

is beyond

𝐹
(𝜇+1)
𝑘−1 in A, and the complexity of all other counters is below

𝐹
(𝜇+1)
𝑘−1 in A.

Proof. We prove the lemma by induction on 𝜇. In the
base case when 𝜇 = 0, we have that 𝑇 ⟨0⟩ = Tran, i.e.,
{B0

1 , . . . ,B0
𝑚0 } = {A}. Hence, 𝑆1

1 is the set of all counters
with complexity beyond 𝐹𝑘−1 in A[∅] = A, i.e., 𝑆1

1 = 𝐼 ⟨1⟩.
This means that 𝑆1

2 = ∅, because for every counter 𝑖 we have
that if C𝑖 is beyond 𝐹𝑘−1 in A[𝐼 ⟨1⟩], then C𝑖 is beyond 𝐹𝑘−1
also in A9. Furthermore, we obtain that the complexity of
every counter 𝑖 ∉ 𝐼 ⟨1⟩ =

⋃∞
𝑗=1 𝑆

1
𝑗 is below 𝐹𝑘−1 in A by

assumption (A3).
Now let 𝜇 ≥ 1. By induction on 𝑗 ≥ 1, we prove that all

counters of 𝑆𝜇+1
1 ∪ · · · ∪ 𝑆𝜇+1

𝑗−1 are beyond 𝐹 (𝜇+1)
𝑘−1 in A.

For 𝑗 = 1, the union is empty and the claim follows trivially.
Now let 𝑗 ≥ 2, and let 𝑆 = 𝑆

𝜇+1
1 ∪ · · · ∪ 𝑆𝜇+1

𝑗−2 . By induction
9If C𝑖 is beyond 𝐹𝑘−1 in A[𝐼 ⟨1⟩], we can construct a computation “pump-
ing” the counter 𝑖 beyond 𝐹𝑘−1 in A by first increasing all counters of 𝐼 ⟨1⟩
beyond 𝐹𝑘−1 and then following the computation of A[𝐼 ⟨1⟩].

hypothesis, the complexity of all counters of 𝑆 is beyond
𝐹
(𝜇+1)
𝑘−1 in A. Let us fix a counter 𝑖 ∈ 𝑆𝜇+1

𝑗−1 . By definition of
𝑆
𝜇+1
𝑗−1 , there existsB𝜇 ∈ {B𝜇

1 , . . . ,B
𝜇
𝑚𝜇

} such that C𝑖 is beyond
𝐹𝑘−1 in B𝜇 [𝑆]. We need to show that C𝑖 is beyond 𝐹 (𝜇+1)

𝑘−1 in
A.
Since 𝑇 ⟨𝜇⟩ ⊆ 𝑇 ⟨𝜇−1⟩, there exists a component B𝜇−1

of A𝑇 ⟨𝜇−1⟩ such that B𝜇 ⊆ B𝜇−1, i.e., B𝜇 is a sub-VASS
of B𝜇−1. By assumption (A2), B𝜇 [𝑆] is well-behaving for
𝑘 − 1. Hence, there exist positive constants 𝑐, 𝜅, 𝛼 ∈ N and
a control state 𝑝 of B𝜇 such that for all sufficiently large 𝑛,
there is a finite computation 𝛽𝑛 = 𝑝 ®𝑛, . . . , 𝑝v of length at
most 𝐹𝑘−1 (𝛼 · 𝑛) where v(𝑖) ≥ 𝐹𝑘−1 (⌊𝑛/𝑐⌋) for all counters 𝑖
with complexity beyond 𝐹𝑘−1 in B𝜇 [𝑆], and the associated
cycle 𝜚𝑛 in B𝜇 [𝑆] satisfies the conditions of Definition 3.2
(see Fig. 2). In particular,

• the length of the “inner cycle” obtained by concatenat-
ing 𝜏1, . . . , 𝜏𝑘 is Θ(𝑛);

• for every “outer” cycle 𝛾 𝑗 and every counter 𝑖 with
complexity not beyond 𝐹𝑘−1 (i.e., below 𝐹𝑘−1 by as-
sumption (A3)), we have that Δ(𝛾 𝑗 ) (𝑖) = 0, and the
intermediate decrease of 𝑖 is bounded by 𝜅 along 𝛾 𝑗 .

Let 𝐽 be the set of all counters whose complexity is beyond
𝐹𝑘−1 in B𝜇 [𝑆]. Observe the following:
(1) The complexity of all counters in 𝐽 is beyond 𝐹𝑘−1

also in B𝜇−1 [𝑆], because B𝜇 is a sub-VASS of B𝜇−1. By
induction hypothesis, this implies that the complexity
of all counters in 𝐽 is beyond 𝐹 (𝜇)

𝑘−1 in A. Hence, 𝐽 ⊆
𝐼 ⟨𝜇⟩.

(2) Since 𝐽 ⊆ 𝐼 ⟨𝜇⟩, the effect of all “outer” cycles 𝛾 𝑗 on
all counters in 𝐼 ⟨𝜇⟩ ∖ 𝐽 is zero, and the intermediate
decrease of all these counters stays bounded by𝜅 along
𝛾 𝑗 . The effect of the “inner” cycle on the counters of
𝐽 ⊆ 𝐼 ⟨𝜇⟩ may be negative.

(3) The effect of the “inner” cycle may be negative also on
the counters not included in 𝐼 ⟨𝜇⟩.

We show how to modify the “inner” cycle so that the total
effect of the modified inner cycle on all counters not included
in 𝐼 ⟨𝜇⟩ is non-negative, and the intermediate decrease of
these counters along the modified inner cycle is bounded by
some constant. Recall that all transitions of B𝜇 are included
in𝑇 ⟨𝜇⟩, and for every 𝑡 ∈ 𝑇 ⟨𝜇⟩ there exists a cycle of the form
𝑡, 𝜚𝑡 initiated by the transition 𝑡 such that Δ(𝑡, 𝜚𝑡 )− ⊆ 𝐼 ⟨𝜇⟩.

The “inner cycle” is modified in the followingway.We pick
an initial state and follow the inner cycle until we encounter
the first simple cycle 𝜉 = 𝑡1, . . . , 𝑡𝑘 . If Δ(𝜉) is non-negative
in the counters not included in 𝐽 ∪ 𝑆 , then all transitions 𝜉
are declared as “processed”. Otherwise, we construct a “com-
pensating” cycle by concatenating 𝜚𝑡𝑘 , . . . , 𝜚𝑡1 and insert this
cycle right after 𝜉 (see Fig. 3). Transitions of this compensat-
ing cycle are also declared as ”processed”. Then, we restart
the procedure, but we skip all “processed” transitions when
searching for a simple cycle from the initial state. Thus, we
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produce a modified inner cycle whose length is still Θ(𝑛)
and the above properties are satisfied.
Now we show that if C𝑖 is beyond 𝐹𝑘−1 in B𝜇 [𝑆], then

C𝑖 is beyond 𝐹 (𝜇+1)
𝑘−1 in A. To see this, for every (sufficiently

large) 𝑛 ∈ N, consider a computation which first pumps all
counters of 𝑆 beyond 𝐹 (𝜇+1)

𝑘−1 (⌊𝑛/𝑐⌋) and all counters of 𝐼 ⟨𝜇⟩
beyond 𝐹 (𝜇)

𝑘−1 (⌊𝑛/𝑐⌋) simultaneously, keeping the other coun-
ters above ⌊𝑛/𝑐⌋. Here, 𝑐 is a suitable constant, see Claim 1.
Then, the computation continues by executing the compu-
tation 𝛽𝑚 where𝑚 = 𝐹

(𝜇)
𝑘−1 (⌊𝑛/𝑐

′⌋) and the “inner cycle” is
modified in the way described above (the counter updates
of every transition in 𝛽𝑚 are the ones of A, not the ones of
B𝜇 [𝑆]). The constant 𝑐 ′ is chosen so that all counters stay
positive when executing 𝛽𝑚 (such a 𝑐 ′ certainly exists due
the properties of Definition 3.2). Thus, all counters of 𝐽 are
pumped to a value beyond 𝐹 (𝑚+1)

𝑘−1 in A.
Let 𝑆 =

⋃∞
𝑗=1 𝑆

𝜇+1
𝑗

. Clearly, the complexity of every
counter outside 𝑆 is not above 𝐹𝑘−1 in every B𝜇 [𝑆], where
B𝜇 ∈ {B𝜇

1 , . . . ,B
𝜇
𝑚} (otherwise, the counter would be in-

cluded in 𝑆). Hence, the complexity of each such counter
is below 𝐹𝑘−1 in every B𝜇 [𝑆] by Assumption (A3). Hence,
the complexity is bounded by a function of the form 𝐹

(𝑏)
𝑘−2

for some 𝑏 ∈ N. Since there are only finitely many B𝜇 and
finitely many counters outside 𝑆 , we can choose the same 𝑏
for all B𝜇 and all counters outside 𝑆 .

Recall that the complexity of all transitions not in 𝑇 ⟨𝜇⟩ is
below 𝐹

(𝜇)
𝑘−1 in A. Hence, for every 𝑛 and every computation

of A initiated in a configuration 𝑞®𝑛, the computation may
execute at most 𝐹 (𝜇−1)

𝑘−1 (𝐹𝑎
𝑘−2 (𝑛)) transitions not included in

𝑇 ⟨𝜇⟩, where𝑎 ∈ N is some constant. Thismeans that the com-
putation can be split in continuous sub-computations each of
which is either outside or inside some VASS of {B𝜇

1 , . . . ,B
𝜇
𝑚}.

The structure is shown in Fig. 4, where the sub-computations
inside some VASS of {B𝜇

1 , . . . ,B
𝜇
𝑚} are depicted as loops, and

the sub-computations outside {B𝜇

1 , . . . ,B
𝜇
𝑚} as connecting

paths among these loops. Our aim is to show that the value
of all counters outside 𝑆 is bounded by 𝑓 (𝑛) along this com-
putation, where 𝑓 : N→ N is a function below 𝐹

(𝜇+1)
𝑘−1 .

In the worst case, a sub-computation of some B𝜇

𝑗
is in-

voked after every execution of a transition not in 𝑇 ⟨𝜇⟩. The
sub-computation in B𝜇

𝑗
can be performed also in B𝜇

𝑗
[𝑆]

by following the same sequence of transitions, which im-
plies that the increase of all counters outside 𝑆 in this
sub-computation is bounded by 𝐹 (𝑏)

𝑘−2 (see above). Hence, the
total increase in every counter outside 𝑆 along the whole
computation is bounded by

𝐹
(𝑏)
𝑘−2 ◦ · · · ◦ 𝐹

(𝑏)
𝑘−2︸               ︷︷               ︸

𝐹
(𝜇)
𝑘−1 (𝐹

(𝑎)
𝑘−2 (𝑛))

= 𝐹𝑘−1 (𝑏 · 𝐹
(𝜇−1)
𝑘−1 (𝐹 (𝑎)

𝑘−2 (𝑛))) ≤ 𝐹
(𝜇)
𝑘−1 (𝐹

(𝑒)
𝑘−2 (𝑛))

where 𝑒 ∈ N is a suitable constant. Thus, we obtain that the
complexity of all counters outside 𝑆 is below 𝐹

(𝜇+1)
𝑘−1 inA. □

B𝜇

𝑗1
B𝜇

𝑗2
B𝜇

𝑗3
. . . B𝜇

𝑗𝑚𝜏1 𝜏2 𝜏3 𝜏𝑔 (𝑛)−1

Figure 4. The structure of a computation in A.

Let 𝜇 ∈ N. Consider again the sets 𝑆𝜇+1
𝑗

defined in
Lemma 3.3, and observe that if 𝑆𝜇+1

𝑗
= ∅, then 𝑆𝜇+1

𝑗 ′ = ∅
for all 𝑗 ′ ≥ 𝑗 . Furthermore, there exists 𝑗 ≤ 𝑑 such that
𝑆
𝜇+1
𝑗

= ∅. The inner loop of the procedure LargeCounters at
lines 11–16 computes the set

⋃∞
𝑗=1 𝑆

𝜇+1
𝑗

in polynomial time
and stores this set into the variable Ω (observe that the con-
tent of Aux at line 15 after 𝑗 iterations of the inner loop is
precisely 𝑆𝜇+1

𝑗
, assuming that the variable 𝑇 has been previ-

ously assigned the set 𝑇 ⟨𝜇⟩ at line 9).
Now, let us consider the counters contained in the vari-

able 𝐼 after completing the outer loop at lines 8–18. A direct
consequence of Lemma 4 is that all counters not contained in
𝐼 are below 𝐹𝑘 inA. Also observe that for each such counter 𝑖 ,
we obtain the largest 𝜇 such that C𝑖 is beyond 𝐹 (𝜇)

𝑘−1, and the
same holds for transitions whose complexity is below 𝐹𝑘
in A.

It remains to show that C𝑖 is beyond 𝐹𝑘 for every 𝑖 ∈ 𝐼 , and
A is well-behaving for 𝑘 . This is proven in the next lemma.

Lemma 3.4. Let 𝜇 ∈ N be the least index such that 𝐼 ⟨𝜇⟩ =

𝐼 ⟨𝜇+1⟩. Then𝐶𝑖 is beyond 𝐹𝑘 in A for every 𝑖 ∈ 𝐼 ⟨𝜇⟩. Further-
more, A is well-behaving for 𝑘 .

Proof. Since 𝐼 ⟨𝜇⟩ = 𝐼 ⟨𝜇+1⟩, the set 𝐼 ⟨𝜇⟩ can be split into
pairwise disjoint subsets

𝐼 ⟨𝜇⟩ = 𝑆1 ⊎ · · · ⊎ 𝑆ℓ
so that for every counter 𝑖 ∈ 𝑆 𝑗 , where 1 ≤ 𝑗 ≤ ℓ , there
exists B ∈ {B𝜇

1 , . . . ,B
𝜇
𝑚𝜇

} such that C𝑖 is beyond 𝐹𝑘−1 in
B[𝑆1 ∪ · · · ∪ 𝑆 𝑗−1] (see Lemma 3.3). Hence, for every 𝑗 ∈
{1, . . . , ℓ}, there exists a sequence

𝜆 𝑗 = B𝜇

1 [𝑆1∪ · · · ∪𝑆 𝑗−1], . . . ,B𝜇

|𝑆 𝑗 | [𝑆1∪ · · · ∪𝑆 𝑗−1]

such that for every counter 𝑖 ∈ 𝑆 𝑗 there is a B[𝑆1∪ · · · ∪𝑆 𝑗−1]
in 𝜆 𝑗 where 𝐶𝑖 is beyond 𝐹𝑘−1 in B[𝑆1 ∪ · · · ∪ 𝑆 𝑗−1]. Let

𝜆 = B𝜇

1 [𝐾1], . . . ,B𝜇

|𝐼 ⟨𝜇 ⟩ | [𝐾 |𝐼 ⟨𝜇 ⟩ |]

be the sequence obtained by concatenating the sequences
𝜆1, . . . , 𝜆ℓ . Recall that for every B𝜇

𝑥 [𝐾𝑥 ] in the sequence 𝜆
there exist positive constants 𝑐, 𝜅, 𝛼 ∈ N and a control state
𝑝 such that for all sufficiently large 𝑛, there is a finite com-
putation 𝛽𝑛 initiated in 𝑝 ®𝑛 satisfying the conditions of Defi-
nition 3.2. Furthermore, the computation 𝛽𝑛 can be modified
by inserting the “compensating cycles” in the way described
in the proof of Lemma 3.3. The modified 𝛽𝑛 does not de-
crease the counters not contained 𝐼 ⟨𝜇⟩, and the intermediate
decrease in these counters is bounded by a fixed constant
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𝜂𝑛1

𝜂𝑛2

𝜂𝑛3

𝜂𝑛4

𝜂𝑛5

𝜂𝑛6

𝜂𝑛7

𝜂𝑛|𝐼 ⟨𝜇⟩|

Figure 5. The arrangement of 𝜂𝑛𝑗𝑥 cycles.

independent of 𝑛. Let 𝜂𝑛𝑥 be the path in A associated to the
modified 𝛽𝑛 . Since A is strongly connected, we can arrange
all 𝜂𝑛𝑥 in the way shown in Fig. 5 and connect them by short
paths whose length is bounded by a the number of control
states of A. For all sufficiently large 𝑛, the computation as-
sociated to this path increases all counters in 𝐼 ⟨𝜇⟩ beyond
𝐹𝑘−1, and the other counters are (possibly) decreased only
by transitions of the short connecting paths, i.e., just by
a constant. Hence, we can perform Ω(𝑛) such paths from
a configuration 𝑞(®𝑛). The first path increases the counters
of 𝐼 ⟨𝜇⟩ beyond 𝐹𝑘−1, the next path beyond 𝐹 (2)

𝑘−1, etc., and
after performing the last path, the counters of 𝐼 ⟨𝜇⟩ are in-
creased beyond 𝐹 ( ⌊𝑛/𝑐′⌋)

𝑘−1 for some constant 𝑐 ′. This means
that the complexity of all counters of 𝐼 ⟨𝜇⟩ is beyond 𝐹𝑘 . Fur-
thermore, the path of Fig. 5 satisfies the requirements of
Definition 3.2. □

This completes the correctness proof for the procedure
LargeCounters. The main repeat-until loop at lines 8–16 is a
simple greatest fixed-point computation terminating after
at most 𝑑 iterations. The set 𝑇 at line 9 can be computed
in polynomial time using the algorithm of [14]. The inner
repeat-until loop at lines 11–14 also requires at most 𝑑 iter-
ations, and the total number of all B’s determined by A𝑇

(see line 12) is bounded by |𝑄 |. Since the total number of
recursive calls to LargeCounters invoked by one iteration
of the main repeat-until loop at lines 8–16 is bounded by
𝑑2 · |𝑄 |, the total number of recursive calls invoked by the
procedure is bounded by (𝑑2 · |𝑄 |)𝑘 for every 𝑘 . Hence, the
complexity of LargeCounters is polynomial for every fixed
𝑘 ∈ N.

It follows already from the results of [18] that the termi-
nation complexity of a terminating 𝑑-dimensional VASS is
in G𝑑+1. Hence, the least index 𝑘 ′ such that L ∈ G𝑘′ is com-
putable by running our algorithm for 𝑘 = 𝑑 + 1. This yields

complexity exponential in 𝑑 , but polynomial for every fixed
dimension.

Finally, we observe that the result about termination com-
plexity obtained for strongly connected demonic VASS can
be easily extended to arbitrary (not necessarily strongly con-
nected) demonic VASS.

Lemma 3.5. Let A be a 𝑑-dimensional demonic VASS and
𝑘 ≥ 3. We have that LA ∈ G𝑘 iff LB ∈ G𝑘 for every SCC B
of A.

Proof. The “⇒” direction is trivial. For the “⇐” direction,
we assume that in every SCC B of A, every counter can be
increased from ®𝑛 to at most 𝐹 (𝜇B )

𝑘
(𝑛) for some 𝜇B ∈ N. Let

𝜇 = maxB 𝜇B . Now consider some fixed computation initi-
ated in a configuration 𝑞®𝑛, and let B1, . . . ,B𝑚 be sequence
of all SCCs visited by this computation in this given order
(note that𝑚 ≤ |𝑄 |). For simplicity, we disregard the effects
of all transitions outside of these SCCs (their total number is
bounded by |𝑄 | − 1, which is a constant independent of 𝑛).

By induction on 𝑟 , we prove that the largest counter value
reachable in B𝑟 is at most 𝐹 (𝜇 ·𝑟 )

𝑘
(𝑛) for every 1 ≤ 𝑟 ≤ 𝑚. For

B1 this is trivial. If the claim holds for 𝑟−1 then the value of all
counters is at most 𝐹 (𝜇 · (𝑟−1))

𝑘
(𝑛) when leaving B𝑟−1, and we

may take this value as an overapproximate of the initial value
of all counters when entering B𝑟 . Then the largest reachable
value for any counter is 𝐹 (𝜇)

𝑘
(𝐹 (𝜇 · (𝑟−1))

𝑘
(𝑛)) = 𝐹 (𝜇 ·𝑟 )

𝑘
(𝑛).

Since all counter values along our fixed computation are
bounded by 𝐹 (𝜇 · |𝑄 |)

𝑘
(𝑛), the total number of configurations

visited along the computation is atmost |𝑄 |·𝐹 (𝜇 · |𝑄 |)
𝑘

(𝑛). Since
no configuration can be visited twice (otherwise LB ∈ G𝑘

does not hold), we are done. □

The “precise” complexity of a given transition in non-
strongly connected demonic VASS cannot be trivially de-
duced by analyzing the transition/counter complexities in
the SCCs of A. For example, if T𝑡 ∈ G5 in some SCC B of A
and just some counters can be pumped beyond 𝐹6 in some
previous SCC B ′ of A, this may but does not have to be
sufficient for pushing the complexity of 𝑡 beyond 𝐹6 in A.

In the next theorem, we summarize the results proven in
this section.

Theorem 3.6. Let 𝑘 ≥ 3. Then the problem whether L is
beyond 𝐹𝑘 for a given demonic VASS is in P. Furthermore, if L
is not beyond 𝐹𝑘 , then L ∈ G𝑘−1.

If A is strongly connected, we have the following additional
results:

• For a given counter 𝑖 , the problem whether C𝑖 is beyond
𝐹𝑘 is in P. If C𝑖 is not beyond 𝐹𝑘 , then C𝑖 ∈ G𝑘−1, and
the least 𝑘 ′ ≤ 𝑘 − 1 such that C𝑖 ∈ G𝑘′ is computable in
polynomial time. Furthermore, there exists the largest
𝜇 ∈ N computable in polynomial time such that C𝑖 is
beyond 𝐹 (𝜇)

𝑘′ .
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• For a given transition 𝑡 , the problemwhetherT𝑡 is beyond
𝐹𝑘 is in P. If T𝑡 is not beyond 𝐹𝑘 , then T𝑡 ∈ G𝑘−1, and
the least 𝑘 ′ ≤ 𝑘 − 1 such that T𝑡 ∈ G𝑘′ is computable in
polynomial time. Furthermore, there exists the largest
𝜇 ∈ N computable in polynomial time such that T𝑡 is
beyond 𝐹 (𝜇)

𝑘′ .

4 Results about VASS Games
In this section, we prove that for every 𝑘 ≥ 1, the problem
whetherLA ∈ G𝑘 for a given VASS gameA isNP-complete.
Furthermore, we show that if LA ∉ G𝑘 , then LA is beyond
𝐹𝑘+1. Hence, the dichotomy of termination complexity es-
tablished previously for demonic VASS holds even for VASS
games.

We start by introducing some notions. Let A = (𝑄, Tran)
be a VASS game. For every 𝑞 ∈ 𝑄 , let Tval𝑞A : N→ N∞ be a
function defined by

Tval𝑞A (𝑛) = TvalA (𝑞®𝑛).
Furthermore, a strategy 𝜂 for player𝐴 inA is counterless if it
depends only on the currently visited control state. Formally,
a counterless strategy is a function 𝜂 : 𝑄𝐴 → Tran such
that 𝜂 (𝑝) is an out-going transition of 𝑝 for every 𝑝 ∈ 𝑄𝐴.
We use A𝜂 to denote the VASS obtained by “applying” 𝜂 to
A, i.e., restricting the set of out-going transitions in every
𝑝 ∈ 𝑄𝐴 to 𝜂 (𝑝). Note thatA𝜂 can be seen as a demonic VASS
because player 𝐴 has no real choice in A𝜂 .
Our first lemma classifies the growth of Tval𝑞A (𝑛) in de-

monic VASS.

Lemma 4.1. Let 𝑘 ≥ 1, and let A be a demonic VASS. For
every control state 𝑞 of A, the function Tval𝑞A (𝑛) is either in
G𝑘 or beyond 𝐹𝑘+1.

Proof. For every SCC B of A and all control states 𝑞, 𝑟 of B
we have that Tval𝑞B (𝑛) and Tval𝑟B (𝑛) are simultaneously ei-
ther in G𝑘 or beyond 𝐹𝑘+1. The rest of the argument is the
same as in the proof of Lemma 3.5. Note that Lemma 3.5
holds also for 𝑘 = 1, 2 (recall that if the termination complex-
ity of a given demonic VASS is not linear/polynomial, then
it is at least quadratic/exponential, respectively [2, 15]). □

Now we prove the following:

Theorem 4.2. Let 𝑘 ≥ 1, and let A be a VASS game. For
every control state 𝑞 of A, the function Tval𝑞A (𝑛) is either
in G𝑘 or beyond 𝐹𝑘+1. Furthermore, there exists a counterless
strategy 𝜂 for player 𝐴 in A such that for every control state
𝑞 we have that Tval𝑞A (𝑛) ∈ G𝑘 iff Tval𝑞A𝜂 (𝑛) ∈ G𝑘 .

Proof. We proceed by induction on the number of angelic
control states with at least two outgoing transitions.

If every angelic control state has only one outgoing tran-
sition, then player 𝐴 has only one trivial strategy 𝜂, which
is counterless. The result follows by applying Lemma 4.1 to
A𝜂 = A.

Now assume there exists 𝑞 ∈ 𝑄𝐴 with a set of outgoing
transitions Tran𝑞 = {𝑢1, . . . , 𝑢𝑐 } such that 𝑐 ≥ 2. For every
𝑖 ∈ {1, . . . , 𝑐}, consider a VASS A𝑖 obtained from A by re-
stricting the set Tran𝑞 to {𝑢𝑖 }. Furthermore, letA𝑞 be a VASS
obtained from A by putting Tran𝑞 = {(𝑞,−®𝜅, 𝑞)} where 𝜅 is
the maximal absolute value of integer occurring in the transi-
tion update vectors ofA. Note that the induction hypothesis
is applicable to all of the constructed A𝑞,A1, . . . ,A𝑐 . Fur-
thermore, we have the following:

Claim 2. For all 𝑝 ∈ 𝑄 , 𝑖 ∈ {1, . . . , 𝑐}, and 𝑛 ∈ N,
(A) if Tval𝑝A𝑞

(𝑛) is beyond 𝐹𝑘+1, then Tval
𝑝

A (𝑛) is beyond 𝐹𝑘+1;

(B) Tval𝑝A𝑖
(𝑛) ≤ Tval𝑝A𝑞

(𝑛) + Tval𝑞A𝑖
(𝜅 ·Tval𝑝A𝑞

(𝑛) + 𝑛).

Proof of the claim. For a given pair of strategies (𝜎, 𝜋) and
an initial configuration 𝑟u, we use 𝑞-Comp𝜎,𝜋 (𝑟u) to denote
the maximal computation determined by (𝜎, 𝜋) initiated in
𝑟u such that the state 𝑞 is either not visited along the com-
putation or 𝑞 appears only in the last configuration of the
computation.

We prove (A) by showing that, for every 𝑛 ∈ N,
Tval𝑝A (𝑛) ≥ 1

2 (Tval
𝑝

A𝑞
(𝑛) − 𝑛

𝜅
) .

Let 𝜋∗ be an optimal positional strategy for player 𝐷 in
A𝑞 (see Section 2). Note that 𝜋∗ is applicable also to A,
and Tval𝑝A (𝑛) ≥ inf𝜎 |Comp𝜎,𝜋

∗

A (𝑝 ®𝑛) |. Let 𝜎 be a strategy
of player 𝐴 in A. Consider the corresponding strategy �̂�
of player 𝐴 in A𝑞 behaving in the same way as 𝜎 until a
configuration of the form 𝑞u is visited; from this point on, �̂�
selects the only available transition (𝑞,−®𝜅, 𝑞). Clearly,

Tval𝑝A (𝑛) ≥ |Comp𝜎,𝜋
∗

A (𝑝 ®𝑛) |
≥ |𝑞-Comp𝜎,𝜋

∗

A (𝑝 ®𝑛) |
= |𝑞-Comp�̂�,𝜋

∗

A𝑞
(𝑝 ®𝑛) | .

Furthermore, |Comp�̂�,𝜋
∗

A𝑞
(𝑝 ®𝑛) | is bounded from above by

|𝑞-Comp�̂�,𝜋
∗

A𝑞
(𝑝 ®𝑛) | + (𝜅 · |𝑞-Comp�̂�,𝜋

∗

A𝑞
(𝑝 ®𝑛) | + 𝑛)/𝜅

Note that the second summand bounds the number of exe-
cutions of (𝑞,−®𝜅, 𝑞). Thus, we obtain

|𝑞-Comp�̂�,𝜋
∗

A𝑞
(𝑝 ®𝑛) | ≥ 1

2 ( |Comp�̂�,𝜋
∗

A𝑞
(𝑝 ®𝑛) | − 𝑛

𝜅
) ,

and finally

Tval𝑝A (𝑛) ≥ 1
2 ( |Comp�̂�,𝜋

∗

A𝑞
(𝑝 ®𝑛) | − 𝑛

𝜅
) ≥ 1

2 (Tval
𝑝

A𝑞
(𝑛) − 𝑛

𝜅
) .

In the last inequality, we use the optimality of 𝜋∗.
(B) Let 𝜋∗ be an optimal positional strategy for player 𝐷

in A𝑖 (note that 𝜋∗ is applicable also to A𝑞), and let 𝜎∗
be an optimal strategy for player 𝐴 in A𝑞 . Furthermore,
let �̂�∗ be a strategy for player 𝐴 in A𝑖 behaving like 𝜎∗
until a configuration of the form 𝑞u is visited, and then
switching to an optimal strategy for player 𝐴 in A𝑖 . Since
𝜋∗ is optimal, for every 𝑛 ∈ N we have that Tval𝑝A𝑖

(𝑛) ≤
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|Comp�̂�
∗,𝜋∗

A𝑖
(𝑝 ®𝑛) |, and the computation Comp�̂�

∗,𝜋∗

A𝑖
(𝑝 ®𝑛) can be

split into a prefix 𝑞-Comp�̂�
∗,𝜋∗

A𝑖
(𝑝 ®𝑛) followed by a (possibly

empty) suffix initiated in a configuration of the form 𝑞u.
Clearly,

|𝑞-Comp�̂�
∗,𝜋∗

A𝑖
(𝑝 ®𝑛) | = |𝑞-Comp𝜎

∗,𝜋∗

A𝑞
(𝑝 ®𝑛) |

≤ |Comp𝜎
∗,𝜋∗

A𝑞
(𝑝 ®𝑛) |

≤ Tval𝑝A𝑞
(𝑛) (𝜎∗ is optimal)

The length of the suffix initiated in 𝑞u is bounded by
Tval𝑞A𝑖

(𝜅 ·Tval𝑝A𝑞
(𝑛) + 𝑛), because every component of u is

bounded by 𝜅 ·Tval𝑝A𝑞
(𝑛) +𝑛 and the strategy �̂�∗ switches to

an optimal strategy for player 𝐴 in A𝑖 after visiting 𝑞u. □

Now we continue with the main proof. We distinguish
two possibilities.
Case (1) Tval𝑞A𝑖

(𝑛) ∈ G𝑘 for some 𝑖 ∈ {1, . . . , 𝑐}. We show
that, for every 𝑝 ∈ 𝑄 ,

(a) if Tval𝑝A𝑖
(𝑛) ∈ G𝑘 , then Tval𝑝A (𝑛) ∈ G𝑘 ;

(b) if Tval𝑝A𝑖
(𝑛) is beyond 𝐹𝑘+1, then Tval𝑝A (𝑛) is beyond

𝐹𝑘+1.
Note that (a) and (b) imply the first part of our theorem by
applying induction hypothesis to A𝑖 , and the counterless
strategy 𝜂 for player 𝐴 in A can be constructed simply by
putting𝜂 = 𝜂𝑖 (note that𝜂 (𝑞) = 𝑢𝑖 ). So, it remains to prove (a)
and (b).
(a) Assume Tval𝑝A𝑖

(𝑛) ∈ G𝑘 . By induction hypothesis,
there exists a counterless strategy 𝜂𝑖 for player 𝐴 in A𝑖 such
that Tval𝑝

A𝜂𝑖
𝑖

(𝑛) ∈ G𝑘 . The strategy 𝜂𝑖 is applicable also to
A. Since A𝜂𝑖 = A𝜂𝑖

𝑖
, we are done.

(b) Assume Tval𝑝A𝑖
(𝑛) is beyond 𝐹𝑘+1. By induction hy-

pothesis, we have that either Tval𝑝A𝑞
(𝑛) ∈ G𝑘 or Tval𝑝A𝑞

(𝑛)
is beyond 𝐹𝑘+1. The first possibility implies Tval𝑝A𝑖

(𝑛) ∈
G𝑘 by using Claim 2(B), which is a contradiction. Hence,
Tval𝑝A𝑞

(𝑛) is beyond 𝐹𝑘+1, and by applying Claim 2(A) we
obtain that Tval𝑝A (𝑛) is beyond 𝐹𝑘+1.
Case (2) Tval𝑞A𝑖

(𝑛) is beyond 𝐹𝑘+1 for all 𝑖 ∈ {1, . . . , 𝑐}. We
show that, for every 𝑝 ∈ 𝑄 ,

(c) if Tval𝑝A𝑖
(𝑛) ∈ G𝑘 for some 𝑖 ∈ {1, . . . , 𝑐}, then

Tval𝑝A 𝑗
(𝑛) ∈ G𝑘 for every 𝑗 ∈ {1, . . . , 𝑐}.

(d) if Tval𝑝A𝑖
(𝑛) is beyond 𝐹𝑘+1 for all 𝑖 ∈ {1, . . . , 𝑐}, then

Tval𝑝A (𝑛) is beyond 𝐹𝑘+1.
Note that (c) and (d) imply the first part of our theorem, and
the required counterless strategy 𝜂 for player 𝐴 in A can be
constructed by putting𝜂 = 𝜂 𝑗 (for an arbitrary 𝑗 ∈ {1, . . . , 𝑐}).
Now we prove (c) and (d).
(c) Suppose Tval𝑝A𝑖

(𝑛) ∈ G𝑘 for some 𝑖 ∈ {1, . . . , 𝑐}, and
consider a counterless strategy 𝜂𝑖 for player 𝐴 in A𝑖 ob-
tained by applying the induction hypothesis toA𝑖 (note that

Tval𝑝
A𝜂𝑖

𝑖

(𝑛) ∈ G𝑘 ). We show that the state 𝑞 is not reachable
from the state 𝑝 in the underlying graph of A𝜂𝑖

𝑖
. Suppose

the converse. For every initial configuration 𝑝 ®𝑛, consider the
strategy 𝜋𝑛 of player 𝐷 defined as follows: For all 𝑛 < 𝜅 · |𝑄 |,
the strategy 𝜋𝑛 is defined arbitrarily. For every 𝑛 ≥ 𝜅 · |𝑄 |,
player 𝐷 first follows the shortest path from 𝑝 to 𝑞 in the un-
derlying graph of A𝜂𝑖

𝑖
. Thus, he reaches a configuration 𝑞u

where every component of u is at least 𝑛 − 𝜅 · |𝑄 |. Then,
player 𝐷 switches to his optimal strategy in 𝑞u. Clearly,
|Comp𝜂𝑖 ,𝜋𝑛 (𝑝 ®𝑛) |, when interpreted as a function of 𝑛, is be-
yond 𝐹𝑘+1, hence Tval𝑝A𝜂𝑖

𝑖

(𝑛) is beyond 𝐹𝑘+1, and we have a
contradiction.
For an arbitrary 𝑗 ∈ {1, . . . , 𝑐}, consider a counterless

strategy 𝜂 𝑗 for player 𝐴 in A 𝑗 obtained from 𝜂𝑖 by redefin-
ing 𝜂 𝑗 (𝑞) to 𝑢 𝑗 . For every initial configuration of the form
𝑝 ®𝑛, there is no difference between using the strategies 𝜂𝑖
and 𝜂 𝑗 in A𝑖 and A 𝑗 , respectively, because the only state 𝑞
where these strategies differ is never reached. Consequently,
Tval𝑝A 𝑗

(𝑛) ∈ G𝑘 , which proves (c).
(d) Now assume Tval𝑝A𝑖

(𝑛) is beyond 𝐹𝑘+1 for all 𝑖 ∈
{1, . . . , 𝑐}. We say that a cycle 𝑞,𝑢, . . . , 𝑞 in A is 𝑖-offending
if 𝑢 ≠ 𝑢𝑖 and all control states in the cycle except for the first
and the last one are different from 𝑞.
For every 𝑖 ∈ {1, . . . , 𝑐}, let 𝜋∗

𝑖 be an optimal positional
strategy of player 𝐷 in A𝑖 (see Section 2.2). Consider the
strategy 𝜋 for player 𝐷 in A defined as follows: for a given
finite computation 𝑝1v1, . . . , 𝑝𝑚v𝑚 where 𝑝𝑚 ∈ 𝑄𝐷 , let
𝑝1, 𝑡1, . . . , 𝑝𝑚 be the corresponding path in A, and let 𝑧 < 𝑚

be the maximal index such that 𝑝𝑧 = 𝑞. If there is no such 𝑧,
we put 𝑗 = 1. Otherwise, 𝑡𝑧 ∈ {𝑢1, . . . , 𝑢𝑐 }, and 𝑗 is the unique
index such that 𝑡𝑧 = 𝑢 𝑗 . Let 𝜚 be the finite path obtained from
𝑝1, 𝑡1, . . . , 𝑝𝑚 by deleting all 𝑗-offending cycles. Note that the
first/last state of 𝜚 is 𝑝1/𝑝𝑚 , and 𝜚 is a path in A 𝑗 . Consider
the configuration 𝑝1 (v1/𝑐) where v1/𝑐 is the vector with
𝑖-th component equal to ⌊v1 (𝑖)/𝑐⌋. If 𝜚 is executable from
𝑝1 (v1/𝑐) in A 𝑗 and determines a computation 𝛼 , we put
𝜋 (𝑝1v1, . . . , 𝑝𝑚v𝑚) = 𝜋∗

𝑗 (𝛼). Otherwise, 𝜋 (𝑝1v1, . . . , 𝑝v𝑚) is
defined arbitrarily. We show the following:
Claim3. Let𝜎 be a strategy of player𝐴 inA. For every𝑛 ∈ N,
there are strategies 𝜎1, . . . , 𝜎𝑐 for player 𝐴 in A1, . . . ,A𝑐 , re-
spectively, such that

|Comp𝜎,𝜋A (𝑝 ®𝑛) | ≥ min
𝑖∈{1,...,𝑐 }

{
|Comp𝜎𝑖 ,𝜋

∗
𝑖

A𝑖
(𝑝 (®𝑛/𝑐)) |

}
.

Proof of the claim. Let Comp𝜎,𝜋 (𝑝 ®𝑛) = 𝑝1v1, . . . , 𝑝𝑚v𝑚 , and
let 𝑝1, 𝑡1, . . . , 𝑝𝑚 be the corresponding path in A. Our aim is
to show that 𝑝1, 𝑡1, . . . , 𝑝𝑚 contains a “scattered subsequence”
corresponding to a maximal computation in some A𝑖 initi-
ated in 𝑝 (®𝑛/𝑐) induced by the optimal strategy 𝜋∗

𝑖 of player𝐷
and some strategy 𝜎𝑖 of player 𝐴.
We say that a configuration 𝑟 ®𝑣 is terminal if for

every/some outgoing transition (𝑟, u, 𝑠) of 𝑟 , the vector v+u
is negative in some component, depending on whether 𝑟
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is demonic/angelic, respectively. For every 𝑖 ∈ {1, . . . , 𝑐},
consider the path obtained from 𝑝1, 𝑡1, . . . , 𝑝𝑚 by deleting all
𝑖-offending cycles. If the last occurrence of 𝑞 in this path is
followed by a transition different from 𝑢𝑖 , then the whole
suffix starting with this transition is also deleted. The result-
ing path is denoted by 𝛼𝑖 . Observe that 𝛼𝑖 is a path in A𝑖

initiated in 𝑝1. If some prefix of 𝛼𝑖 determines a computation
inA𝑖 initiated in 𝑝1 (®𝑛/𝑐) ending in a terminal configuration,
then this computation is maximal w.r.t. the optimal strategy
𝜋∗
𝑖 of player 𝐷 and some strategy 𝜎𝑖 of player 𝐴 (see the

definition of 𝜋 above). Hence,

|Comp𝜎,𝜋A (𝑝 ®𝑛) | = 𝑚 ≥ |Comp𝜎𝑖 ,𝜋
∗
𝑖

A𝑖
(𝑝 (®𝑛/𝑐)) |

and we are done. We complete our proof by showing that
if every 𝛼𝑖 determines a computation initiated in 𝑝1 (®𝑛/𝑐)
ending in a non-terminal configuration, then the considered
computation 𝑝1v1, . . . , 𝑝𝑚v𝑚 can be prolonged consistently
with 𝜎 and 𝜋 , which contradicts its maximality.

For all 𝑖 ∈ {1, . . . , 𝑐} and 𝑗 ≤ 𝑚, let v𝑖𝑗 be a vector defined
inductively as follows:

• v𝑖1 = ®𝑛/𝑐;
• if the transition 𝑡 𝑗 of the path 𝑝1, 𝑡1, . . . , 𝑝𝑚 has been
deleted when constructing the path 𝛼𝑖 (i.e., 𝑡 𝑗 ap-
pears in some 𝑖-offending cycle or a deleted suffix),
then v𝑖𝑗+1 = v𝑖𝑗 ; otherwise, v𝑖𝑗+1 = v𝑖𝑗 + u, where
𝑡 𝑗 = (𝑝 𝑗 , u, 𝑝 𝑗+1).

Intuitively, v𝑖1, . . . , v𝑖𝑚 is the sequence of vectors determined
by executing 𝛼𝑖 in 𝑝1 (®𝑛/𝑐), but the same vector is repeated
for the subsequences that have been deleted when construct-
ing 𝛼𝑖 . Hence, all v𝑖1, . . . , v𝑖𝑚 are non-negative, and for all
𝑗 ≤ 𝑚 we have that v𝑗 ≥ v1

𝑗 + · · · + v𝑐𝑗 . We distinguish two
possibilities:

• 𝑝𝑚 ≠ 𝑞. Let 𝑖 ∈ {1, · · · , 𝑐} be an index such that𝛼𝑖 ends
in 𝑝𝑚 . Since v𝑚 ≥ v𝑖𝑚 and 𝑝𝑚v𝑖𝑚 is non-terminal inA𝑖 ,
we obtain that 𝑝𝑚v𝑚 is non-terminal in A (note that
the state 𝑝𝑚 has the same set of out-going transitions
in A and A𝑖 ).

• 𝑝𝑚 = 𝑞. Then 𝛼𝑖 ends in 𝑞 for all 𝑖 ∈ {1, · · · , 𝑐}. Since
𝑞v𝑖𝑚 is non-terminal in A𝑖 and v𝑚 ≥ v𝑖𝑚 for every
𝑖 ∈ {1, · · · , 𝑐}, the configuration 𝑞v𝑚 is non-terminal
in A. □

Using Claim 3, we can finish a proof of (d) as follows:

Tval𝑝A (𝑛) = TvalA (𝑝 ®𝑛)
≥ inf

𝜎
|Comp𝜎,𝜋A (𝑝 ®𝑛) | (for 𝜋 defined above)

≥ min
𝑖∈{1,...,𝑐 }

{
|Comp𝜎𝑖 ,𝜋

∗
𝑖

A𝑖
(𝑝 (®𝑛/𝑐)) |

}
(by Claim 3)

≥ min
𝑖∈{1,...,𝑐 }

{
Tval𝑝A𝑖

(⌊𝑛/𝑐⌋)
}

(𝜋∗
𝑖 is optimal)

Since Tval𝑝A𝑖
(𝑛) is beyond 𝐹𝑘+1 for every 𝑖 ∈ {1, . . . , 𝑐}, we

obtain that Tval𝑝A (𝑛) is also beyond 𝐹𝑘+1. □

Theorem 4.3. Let 𝑘 ≥ 1. The problem whether LA ∈ G𝑘

for a given VASS game A is NP-complete. Furthermore, if
LA ∉ G𝑘 , then LA is beyond 𝐹𝑘+1.

Proof. Due to Theorem 4.2, we know that LA is either in G𝑘

or beyond 𝐹𝑘+1. Furthermore, LA ∈ G𝑘 iff there is a counter-
less strategy 𝜂 of player 𝐴 such that LA𝜂 ∈ G𝑘 . Hence, we
can decide whether LA ∈ G𝑘 by guessing 𝜂, constructing
A𝜂 , and deciding whether LA𝜂 ∈ G𝑘 , which proves the
membership to NP. The NP-hardness follows immediately
from the construction used [8] to prove coNP-hardness of
the unknown initial credit problem for multi-weighted two-
player game structures10. For a given 3SAT propositional
formula 𝜑 in CNF, a VASS game A𝜑 is constructed in [8]
such that

• if 𝜑 is satisfiable, then player 𝐴 has a (counterless)
strategy achieving termination in O(𝑛) transitions for
every configuration 𝑝v such that v ≤ ®𝑛, i.e., LA𝜑

∈
O(𝑛) ⊆ G𝑘 ;

• if 𝜑 is not satisfiable, then for every counterless strat-
egy 𝜂 of player 𝐴, the VASS A𝜂

𝜑 is non-terminating,
which implies LA𝜑

∉ G𝑘 . □

A natural question is whether Theorem 4.2 can be ex-
tended to other complexity classes such as O(𝑛𝑘 ). Recall
that the problem whether LA ∈ O(𝑛𝑘 ) for a given demonic
VASSA is decidable in polynomial time, and if LA ∉ O(𝑛𝑘 ),
thenLA ∈ Ω(𝑛𝑘+1) [19]. However, our proof of Theorem 4.2
requires G𝑘 being closed under function composition, which
does not hold for O(𝑛𝑘 ) and 𝑘 ≥ 2. Still, one may conjecture
that the termination complexity of a given VASS game A
is O(𝑛𝑘 ) iff there is a finite-memory strategy 𝜂 for player 𝐴
depending only on some bounded information about the se-
quence of visited control states such that LA ∈ O(𝑛𝑘 ) iff
LA𝜂 ∈ O(𝑛𝑘 ), where A𝜂 is obtained from A by encoding
the finite information used by 𝜂 into the state space of A.
If the size of the memory used by 𝜂 was polynomial in the
size of A, the problem whether LA ∈ O(𝑛𝑘 ) would be in
NP. The next proposition shows that no such 𝜂 exists unless
NP = PSPACE.

Proposition 4.4. The problem whether LA ∈ O(𝑛2) for a
given VASS game A is PSPACE-hard, even if counter updates
are encoded in unary.

Proof. We reduce the PSPACE-complete QBF problem. An
instance of QBF is a quantified Boolean formula of the form
𝜑 ≡ ∀𝑥1∃𝑥2 . . . ∃𝑥𝑛 𝐶1∧· · ·∧𝐶𝑚 over the variables 𝑥1, . . . , 𝑥𝑛
where 𝑛 is even and every 𝐶𝑖 is a clause (i.e., a disjunction
of literals of the form 𝑥𝑖 or 𝑥𝑖 ). The question is whether 𝜑
is valid. We show how to construct a VASS A whose size is
polynomial in ||𝜑 || such that

• if 𝜑 is not valid, then LA ∈ O(𝑛2);
• if 𝜑 is valid, then LA ∈ Ω(𝑛3).

10We thank Krishnendu Chatterjee for pointing out this argument.
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𝑝1

⟨𝑏 [𝑥1 ], 𝑐 [𝑥1 ] ⟩

⟨𝑏 [𝑥1 ], 𝑐 [𝑥1 ] ⟩

𝑝2

⟨𝑏 [𝑥2 ], 𝑐 [𝑥2 ] ⟩

⟨𝑏 [𝑥2 ], 𝑐 [𝑥2 ] ⟩

𝑝𝑛

⟨𝑏 [𝑥𝑛 ], 𝑐 [𝑥𝑛 ] ⟩

⟨𝑏 [𝑥𝑛 ], 𝑐 [𝑥𝑛 ] ⟩

𝑝3 𝑞

𝐶1

𝐶𝑚

𝐶𝑖

⟨𝑐 [ℓ1 ], 𝑒 ⟩

⟨𝑐 [ℓ𝑘 ], 𝑒 ⟩

𝐶𝑖 ≡ ℓ1 ∨ · · · ∨ ℓ𝑘

+𝑎1,−𝑎2, +𝑧 −𝑎1, +𝑎2, +𝑧

−𝑦

−𝑦

The gadget ⟨𝑦, 𝑧 ⟩ for counters 𝑦 and 𝑧.

Figure 6. The problem whether LA ∈ O(𝑛2) for a given VASS game A is PSPACE-hard.

For every literal ℓ ∈ {𝑥𝑖 , 𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, the VASS A has
two counters 𝑏 [ℓ] and 𝑐 [ℓ]. Furthermore, there are auxiliary
counters 𝑎1, 𝑎2, and 𝑒 . The structure of A is shown in Fig. 6.
All transitions outside the gadgets ⟨𝑦, 𝑧⟩ keep all counters
unchanged. In the gadget ⟨𝑦, 𝑧⟩, each transition increments
or decrements only the counters 𝑎1, 𝑎2, 𝑦, and 𝑧 in the way
shown in Fig. 6, the other counters are unchanged. Intuitively,
the purpose of ⟨𝑦, 𝑧⟩ is to “pump” the counter 𝑧 to a higher
value constrained by 𝑦. The values of 𝑎1 and 𝑎2 stay linear,
so if the size of 𝑦 is linear/quadratic, the counter 𝑧 can be
made quadratic/cubic by the gadget.
Assume the initial configuration 𝑝1®𝑛 (one can easily

check that this configuration has the highest termination
value among all configurations of the form 𝑞®𝑛). Initially,
the players guess an assignment by entering either the
gadget ⟨𝑏 [𝑥𝑖 ], 𝑐 [𝑥𝑖 ]⟩ or the gadget ⟨𝑏 [𝑥𝑖 ], 𝑐 [𝑥𝑖 ]⟩ for each
𝑖 ∈ {1, . . . , 𝑛}. Thus, the assignment is represented by the
counters 𝑐 [ℓ] pumped to a quadratic value by player 𝐷 . Af-
ter that, player 𝐴 chooses a clause in the control state 𝑞 (he
wishes to choose a clause not satisfied by the previously
guessed assignment). Then, player 𝐷 selects a literal ℓ in
the chosen clause. If the literal ℓ is set to true by the chosen
assignment, the associated 𝑐 [ℓ] counter has been pumped
to a quadratic value. This means that player 𝐷 can use the
⟨𝑐 [ℓ], 𝑒⟩ gadget to pump the counter 𝑒 even to a cubic value.
If 𝜑 is not valid, player 𝐴 can always choose a clause where
all literals ℓ are invalid and the associated counters 𝑐 [ℓ] are
linear. This means that player𝐷 can only achieve a quadratic
increase of counters in a quadratic number of steps. If 𝜑 is
valid, then player 𝐷 can make each clause valid and always
choose a literal ℓ such that 𝑐 [ℓ] has been pumped to a qua-
dratic value. Hence, he can make the counter 𝑒 cubic in a
cubic number of transitions. □

5 Conclusions
We have shown that the problem whether the termination
complexity of a given VASS belongs to a given level in the

Grzegorczyk hierarchy is solvable in polynomial time, and
the same problem is NP-complete for VASS games.

There are several possible directions for future work. First,
the decidability/complexity of the problem whether L(A) ∈
O(𝑛𝑘 ) for a given VASS game and a given 𝑘 ≥ 2 remains
open. Our PSPACE-hardness result indicates that additional
insights are needed to resolve this question. Another open
problem is the precise complexity of determining the least
𝑘 such that L(A) ∈ G𝑘 for a given demonic VASS A (or a
given VASS game A). As we already indicated in Section 1,
it is still possible that the procedure LargeCounters needs to
initiate only polynomially many recursive calls with distinct
parameters, which would imply the computability of the 𝑘
in polynomial time for demonic VASS.
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