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Abstract—We study the pattern frequency vector for runs
in probabilistic Vector Addition Systems with States (pVASS).
Intuitively, each configuration of a given pVASS is assigned one
of finitely many patterns, and every run can thus be seen as an
infinite sequence of these patterns. The pattern frequency vector
assigns to each run the limit of pattern frequencies computed
for longer and longer prefixes of the run. If the limit does
not exist, then the vector is undefined. We show that for one-
counter pVASS, the pattern frequency vector is defined and takes
one of finitely many values for almost all runs. Further, these
values and their associated probabilities can be approximated
up to an arbitrarily small relative error in polynomial time. For
stable two-counter pVASS, we show the same result, but we do
not provide any upper complexity bound. As a byproduct of
our study, we discover counterexamples falsifying some classical
results about stochastic Petri nets published in the 80s.

I. INTRODUCTION

Stochastic extensions of Petri nets are intensively used in
performance and dependability analysis as well as reliability
engineering and bio-informatics. They have been developed
in the early eighties [12], [2], and their token-game semantics
yields a denumerable Markov chain. The analysis of stochastic
Petri nets (SPNs) has primarily focused on long-run average
behaviour. Whereas for safe nets long-run averages always
exist and can be efficiently computed, the setting of infinite-
state nets is much more challenging. This is a practically very
relevant problem as, e.g., classical open queueing networks
and biological processes typically yield nets with unbounded
state space. The aim of this paper is to study the long-
run average behaviour for infinite-state nets. We do so by
considering probabilistic Vector Addition Systems with States
(pVASS, for short), finite-state weighted automata equipped
with a finite number of non-negative counters. A pVASS
evolves by taking weighted rules along which any counter can
be either incremented or decremented by one (or zero). The
probability of performing a given enabled rule is given by
its weight divided by the total weight of all enabled rules.
This model is equivalent to discrete-time SPNs: a counter
vector corresponds to the occupancy of the unbounded places
in the net, and the bounded places are either encoded in the
counters or in the control states. Producing a token yields an
increment, whereas token consumption yields a decrement.

Discrete-time SPNs describe the probabilistic branching of
the continuous-time Markov chains determined by SPNs, and
many properties of continuous-time SPNs can be derived
directly from the properties of their underlying discrete-time
SPNs. In fact, discrete-time SPNs are a model of interest in
itself, see e.g., [10].

Our study concentrates on long-run average pattern frequen-
cies for pVASS. A configuration of a given pVASS A is a pair
pvvv, where p is the current control state and vvv ∈ Nd is the vector
of current counter values. The pattern associated to pvvv is a pair
pα, where α ∈ {0, ∗}d, and αi is either 0 or ∗, depending
on whether vvvi is zero or positive (for example, the pattern
associated to p(12, 0) is p(∗, 0)). Every run in A is an infinite
sequence of configurations which determines a unique infinite
sequence of the associated patterns. For every finite prefix
of a run w, we can compute the frequency of each pattern
in the prefix, and define the pattern frequency vector for w,
denoted by FA(w), as the limit of the sequence of frequencies
computed for longer and longer prefixes of w. If the limit does
not exist, we put FA(w) = ⊥ and say that FA is not well
defined for w. Intuitively, a pattern represents the information
sufficient to determine the set of enabled rules (recall that
each rule can consume at most one token from each counter).
Hence, if we know FA(w), we can also determine the limit
frequency of rules fired along w. However, we can also encode
various predicates in the finite control of A and determine the
frequency of (or time proportion spent in) configurations in w
satisfying the predicate. For example, we might wonder what
is the proportion of time spent in configurations where the
second counter is even, which can be encoded in the above
indicated way.

The very basic questions about the pattern frequency vector
include the following:

• Do we have P(FA= ⊥) = 0, i.e., is FA well defined for
almost all runs?

• Is FA (seen as a random variable) discrete? If so, how
many values can FA take with positive probability?

• Can we somehow compute or approximate possible val-
ues of FA and the probabilities of all runs that take these
values?



These fundamental questions are rather difficult for general
pVASS. In this paper, we concentrate on the subcase of pVASS
with one or two counters, and we also observe that with three
or more counters, there are some new unexpected phenomena
that make the analysis even more challenging. Still, our
results can be seen as a basis for designing algorithms that
analyze the long-run average behaviour in certain subclasses
of pVASS with arbitrarily many counters (see below). The
main “algorithmic results” of our paper can be summarized as
follows:

1. For a one-counter pVASS with n control states, we show
that FA is well defined and takes at most max{2, 2n−1}
different values for almost all runs. These values and the as-
sociated probabilities may be irrational, but can be effectively
approximated up to an arbitrarily small relative error ε > 0 in
polynomial time.

2. For two-counter pVASS that are stable, we show that FA
is well defined and takes only finitely many values for almost
all runs. Further, these values and the associated probabilities
can be effectively approximated up to an arbitrarily small
absolute/relative error ε > 0.

Intuitively, a two-counter pVASS A is unstable if the
changes of the counters are well-balanced so that certain
infinite-state Markov chains used to analyze the behaviour of
A may become null-recurrent. Except for some degenerated
cases, this null-recurrence is not preserved under small per-
turbations in transition probabilities. Hence, we can assume
that pVASS models constructed by estimating some real-life
probabilities are stable. Further, the analysis of null-recurrent
Markov chains requires different methods and represents an
almost independent task. Therefore, we decided to disregard
unstable two-counter pVASS in this paper. Let us note that the
problem whether a given two-counter pVASS A is (un)stable
is decidable in exponential time.

The above results for one-counter and stable two-counter
pVASS are obtained by showing the following:

(a) There are finitely many sets of configurations called
regions, such that almost every run eventually stays in some
region, and almost all runs that stay in the same region share
the same well-defined value of the pattern frequency vector.

(b) For every region R, the associated pattern frequency
vector and the probability of reaching R can be com-
puted/approximated effectively. For one-counter pVASS, we
first identify families of regions (called zones) that share the
same pattern frequency vector, and then consider these zones
rather then individual regions.

For one-counter pVASS, we show that the total num-
ber of all regions (and hence also zones) cannot exceed
max{2, 2n−1}, where n is the number of control states. To
compute/approximate the pattern frequency vector of a given
zone Z and the probability of staying in Z, the tail bounds of
[4] and the polynomial-time algorithm of [14] provide all the
tools we need.

For two-counter pVASS, we do not give an explicit bound
on the number of regions, but we show that all regions

are effectively semilinear (i.e., for each region there is a
computable Presburger formula which represents the region).
Here we repeatedly use the result of [11] which says that
the reachability relation of a two-counter VASS is effectively
semilinear. Technically, we show that every run eventually
reaches a configuration where one or both counters become
bounded or irrelevant (and we apply the results for one-counter
pVASS), or a configuration of a special set C for which we
show the existence and effective constructibility of a finite
eager attractor1. This is perhaps the most advanced part of
our paper, where we need to establish new exponential tail
bounds for certain random variables using an appropriately
defined martingale. We believe that these tail bounds and the
associated martingale are of broader interest, because they
provide generic and powerful tools for quantitative analysis
of two-counter pVASS. Hence, every run which visits C also
visits its finite eager attractor, and the regions where the runs
initiated in C eventually stay correspond to bottom strongly
connected components of this attractor. For each of these
bottom strongly connected components, we approximate the
pattern frequency vector by employing the abstract algorithm
of [1].

The overall complexity of our algorithm for stable two-
counter pVASS could be estimated by developing lower/upper
bounds on the parameters that are used in the lemmata of
Section IV. Many of these parameters are “structural” (e.g., we
consider the minimal length of a path from some configuration
to some set of configurations). Here we miss a refinement
of the results published in [11] which would provide explicit
upper bounds. Another difficulty is that we do not have any
lower bound on |τR| in the case when τR 6= 0, where τR is
the mean payoff defined in Section IV. Still, we conjecture
that these “structural bounds” and hence also the complexity
of our algorithm are not too high (perhaps, singly exponential
in the size of A and in |τR|), but we leave this problem for
future work.

The results summarized in (a) and (b) give a reasonably
deep understanding of the long-run behaviour of a given one-
counter or a stable two-counter pVASS, which can be used to
develop algorithms for other interesting problems. For exam-
ple, we can decide the existence of a finite attractor for the set
of configuration reachable from a given initial configuration,
we can provide a sufficient condition which guarantees that
all pattern frequency vectors taken with positive probability
are rational, etc. An obvious question is whether these results
can be extended to pVASS with three or more counters. The
answer is twofold.

I. The algorithm for stable two-dimensional pVASS pre-
sented in Section IV in fact “reduces” the analysis of a given
two-counter pVASS A to the analysis of several one-counter
pVASS and the analysis of some “special” configurations of A.
It seems that this approach can be generalized to a recursive

1A finite eager attractor [1] for a set of configurations C is a finite set of
configurations A ⊆ C such that the probability of reaching A from every
configuration of C ∪post∗(A) is equal to 1, and the probability of revisiting
A in more than ` steps after leaving A decays (sub)exponentially in `.
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procedure which takes a pVASS A with n counters, isolates
certain subsets of runs whose properties can be deduced by
analyzing pVASS with smaller number of counters, and checks
that the remaining runs are sufficiently simple so that they can
be analyzed directly. Thus, we would obtain a procedure for
analyzing a subset of pVASS with n counters.

II. In Section V we give an example of a three-counter
pVASS A with strongly connected state-space whose long-run
behaviour is undefined for almost all runs (i.e., FA takes the ⊥
value), and this property is not sensitive to small perturbations
in transition probabilities. Since we do not provide a rigorous
mathematical analysis of A in this paper, the above claims
are formally just conjectures confirmed only by Monte Carlo
simulations. Assuming that these conjectures are valid, the
method used for two-counter pVASS is not sufficient for the
analysis of general three-counter pVASS, i.e., there are new
phenomena which cannot be identified by the methods used
for two-counter pVASS.

Related work. The problem of studying pattern frequency
vector is directly related to the study of ergodicity properties
in stochastic Petri nets, particularly to the study of the so-
called firing process. A classical paper in this area [8] has
been written by Florin & Natkin in the 80s. In the paper,
it is claimed that if the state-space of a given stochastic
Petri net (with arbitrarily many unbounded places) is strongly
connected, then the firing process in ergodic. In the setting
of (discrete-time) probabilistic Petri nets, this implies that for
almost all runs, the limit frequency of transitions performed
along a run is defined and takes the same value. A simple
counterexample to this claim is shown in Fig. 1. The net
N has two unbounded places and strongly connected state-
space, but the limit frequency of transitions takes two values
with positive probability (each with probability 1/2). Note
that N can be translated into an equivalent pVASS A with
two counters which is also shown in Fig. 1. Intuitively, if
both places/counters are positive, then both of them have a
tendency to decrease, i.e., the trend tS of the only BSCC S of
CA is negative in both components (see Section II). However,
if we reach a configuration where the first place/counter is
zero and the second place/counter is sufficiently large, then the
second place/counter starts to increase, i.e., it never becomes
zero again with some positive probability (i.e., the the mean
payoff τR2 is positive, where R2 is the only type II region
of the one-counter pVASS A2, see Section IV). The first
place/counter stays zero for most of the time, because when
it becomes positive, it is immediately emptied with a very
large probability. This means that the frequency of firing t2
will be much higher than the frequency of firing t1. When
we reach a configuration where the first place/counter is
large and the second place/counter is zero, the situation is
symmetric, i.e., the frequency of firing t1 becomes much
higher than the frequency of firing t2. Further, almost every
run eventually behaves according to one of the two scenarios,
and therefore there are two limit frequencies of transitions,
each of which is taken with probability 1/2. This possibility
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Fig. 1: A discrete-time SPN N and an equivalent pVASS A.

of reversing the “global” trend of the counters after hitting
zero in some counter was not considered in [8]. Further, as
we already mentioned, we conjecture the existence of a three-
counter pVASS A with strongly connected state-space (the
one of Section V) where the limit frequency of transitions
is undefined for almost all runs. So, we must unfortunately
conclude that the results of [8] are invalid for fundamental
reasons. On the other hand, the results achieved for one-
counter pVASS are consistent with another paper by Florin
& Natkin [7] devoted to stochastic Petri nets with only one
unbounded place and strongly connected state-space, where
the firing process is indeed ergodic (in our terms, the pattern
frequency vector takes only one value with probability 1).

II. PRELIMINARIES

We use Z, N, N+, Q, and R to denote the set of all integers,
non-negative integers, positive integers, rational numbers, and
real numbers, respectively. The absolute value of a given
x ∈ R is denoted by |x|. Let δ > 0, x ∈ Q, and y ∈ R.
We say that x approximates y up to a relative error δ, if
either y 6= 0 and |x− y|/|y| ≤ δ, or x = y = 0. Further,
we say that x approximates y up to an absolute error δ
if |x− y| ≤ δ. We assume that rational numbers (including
integers) are represented as fractions of binary numbers, and
we use ||x|| to denote the size (length) of this representation.

Let V = (V, → ), where V is a non-empty set of vertices
and → ⊆ V × V a total relation (i.e., for every v ∈ V there
is some u ∈ V such that v→u). The reflexive and transitive
closure of → is denoted by → ∗, and the reflexive, symmetric
and transitive closure of → is denoted by ↔∗. We say that
V is weakly connected if s ↔∗ t for all s, t ∈ V . A finite
path in V of length k ≥ 0 is a finite sequence of vertices
v0, . . . , vk, where vi→ vi+1 for all 0 ≤ i < k. The length
of a finite path w is denoted by length(w). A run in V is
an infinite sequence w of vertices such that every finite prefix
of w is a finite path in V . The individual vertices of w are
denoted by w(0), w(1), . . . The sets of all finite paths and all
runs in V that start with a given finite path w are denoted by
FPathV(w) and RunV(w) (or just by FPath(w) and Run(w)
if V is understood), respectively. For a given set S ⊆ V , we
use pre∗(S) and post∗(S) to denote the set of all v ∈ V such
that v→ ∗s and s→ ∗v for some s ∈ S, respectively. Further,
we say that a run w stays in S if there is a k ∈ N such that for
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all ` ≥ k we have that w(`) ∈ S. The set of all runs initiated
in s that stay in S is denoted by Run(s, S).

A strongly connected component (SCC) of V is a maximal
subset C ⊆ V such that for all v, u ∈ C we have that v→ ∗u.
A SCC C of V is a bottom SCC (BSCC) of V if for all v ∈ C
and u ∈ V such that v→u we have that u ∈ C.

We assume familiarity with basic notions of probability the-
ory, e.g., probability space, random variable, or the expected
value. Given events E,F , we say that E holds for almost all
elements of F if P(E∩F ) = P(F ) (in particular, if P(F ) = 0,
then any event holds for almost all elements of F ). As usual,
a probability distribution over a finite or countably infinite set
A is a function f : A→ [0, 1] such that

∑
a∈A f(a) = 1. We

call f positive if f(a) > 0 for every a ∈ A, and rational if
f(a) ∈ Q for every a ∈ A.

Definition 1. A Markov chain is a triple M = (S, → ,Prob)
where S is a finite or countably infinite set of vertices,
→ ⊆ S × S is a total transition relation, and Prob is a
function that assigns to each state s ∈ S a positive probability
distribution over the outgoing transitions of s. As usual, we
write s x→ t when s→ t and x is the probability of s→ t.

To every s ∈ S we associate the standard probability space
(RunM(s),F ,P) of runs starting at s, where F is the σ-field
generated by all basic cylinders RunM(w), where w is a
finite path starting at s, and P : F → [0, 1] is the unique
probability measure such that P(RunM(w)) =

∏length(w)
i=1 xi

where w(i−1)
xi→w(i) for every 1 ≤ i ≤ length(w). If

length(w) = 0, we put P(RunM(w)) = 1.
If M = (S, → ,Prob) is a strongly connected finite-state

Markov chain, we use µS to denote the unique invariant
distribution of M. Recall that by the strong ergodic theorem,
(see, e.g., [13], the limit frequency of visits to the states of S
is defined for almost all w ∈ Run(s) (where s ∈ S is some
initial state) and it is equal to µS .

Definition 2. A probabilistic vector addition system with states
(pVASS) of dimension d ≥ 1 is a triple A = (Q, γ,W ), where
Q is a finite set of control states, γ ⊆ Q× {−1, 0, 1}d ×Q is
a set of rules, and W : γ → N+ is a weight assignment.

In the following, we often write p
κ→ q to denote that

(p, κ, q) ∈ γ, and p
κ,`−→ q to denote that (p, κ, q) ∈ γ and

W ((p, κ, q)) = `. The encoding size of A is denoted by ||A||,
where the weights are encoded in binary.

Assumption 1. From now on (in the whole paper), we assume
that (Q, → ), where p→ q iff p κ→ q for some q, is weakly
connected. Further, we also assume that for every pair of
control states p, q there is at most one rule of the form p

κ→ q.

The first condition of Assumption 1 is obviously safe (if
(Q, → ) is not weakly connected, then A is a “disjoint union”
of several independent pVASS, and we can apply our results
to each of them separately). The second condition is also safe
because every pVASSA can be easily transformed into another
pVASS A′ satisfying this condition in the following way: for
each control state s of A and each rule of the form r

κ→ s

we add a fresh control state s[r, κ] to A′. Further, for every
s
κ,`−→ t in A we add s[r, κ′] κ,`−→ t[s, κ] to A′ (for all states of

the form s[r, κ′] in A′). In other words, A′ is the same as A,
but it also “remembers” the rule that was used to enter a given
control state.

A configuration of A is an element of conf (A) = Q× Nd,
written as pvvv. A rule p

κ→ q is enabled in a configuration
pvvv if vvvi > 0 for all 1 ≤ i ≤ d with κi = −1. To A we
associate an infinite-state Markov chain MA whose vertices
are the configurations of A, and the outgoing transitions of a
configuration pvvv are determined as follows:
• If no rule of γ is enabled in pvvv, then pvvv 1→ pvvv is the only

outgoing transition of pvvv;
• otherwise, for every rule p κ,`−→ q enabled in pvvv there is a

transition pvvv `/T−→ q(vvv+κ) where T is the total weight of
all rules enabled in pvvv, and there are no other outgoing
transitions of pvvv.

In this paper, we also consider the underlying finite-state
Markov chain of A, denoted by CA, whose vertices are the
control states of A, and p

x→ q in CA iff p κ,`−→ q in A and
x = `/Tp > 0, where Tp is the sum of the weights of all
outgoing rules of p in A. Note that every BSCC S of CA can
be seen as a strongly connected finite-state Markov chain, and
we use µS to denote the invariant distribution on the states
of S. To each s ∈ S we associate the vector

change(s) =
∑

(s,κ,t)∈γ

κ · W ((s, κ, t))

Ts

of expected changes in counter values at s. Further, we
define the trend of S, denoted by tS , as the vector
tS =

∑
s∈S µS(s) · change(s).

A pattern of A is a pair qα ∈ Q×{0, ∗}d, and the set of all
patterns of A is denoted by PatA. A configuration pvvv matches
a pattern qα ∈ PatA if p = q and for every i ∈ {1, . . . , d} we
have that vvvi = 0 or vvvi > 0, depending on whether αi = 0 or
αi = ∗, respectively. Intuitively, a pattern represents exactly
the information which determines the set of enabled rules. For
all w ∈ RunMA(pvvv), we define the pattern frequency vector
FA(w) : PatA → R as follows:

FA(w)(qα) = lim
k→∞

#qα(w(0), . . . , w(k))

k + 1

where #qα(w(0), . . . , w(k)) denotes the total number of all
indexes i such that 0 ≤ i ≤ k and w(i) matches the pattern
qα. If the above limit does not exist for some qα ∈ PatA,
we put FA(w) = ⊥. We say that FA is well defined for w if
FA(w) 6= ⊥. Note that if FA is well defined for w, then the
sum of all components of FA(w) is equal to 1.

Let R ⊆ Run(pvvv) be a measurable subset of runs, and
let ε > 0. We say that a sequence (H1, P1), . . . , (Hn, Pn),
where Hi : PatA → Q and Pi ∈ Q, approximates the pattern
frequencies of R up to the absolute/relative error ε, if there
are pairwise disjoint measurable subsets R1, . . . , Rn of R and
vectors F1, . . . , Fn, where Fi : PatA → R, such that
•
∑n
i=1 P(Ri) = P(R);
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• FA(w) = Fi for almost all w ∈ Ri;
• Hi(qα) approximates Fi(qα) up to the absolute/relative

error ε for every qα ∈ PatA;
• Pi approximates P(Ri) up to the absolute/relative error ε.

Note that if (H1, P1), . . . , (Hn, Pn) approximates the pattern
frequencies of R up to some absolute/relative error, then the
pattern frequency vector is well defined for almost all w ∈ R
and takes only finitely many values with positive probability.
Also note that neither F1, . . . , Fn nor H1, . . . ,Hn are required
to be pairwise different. Hence, it may happen that there exist
i 6= j such that Hi 6= Hj and Fi = Fj (or Hi = Hj and
Fi 6= Fj).

III. RESULTS FOR ONE-COUNTER PVASS
In this section we concentrate on analyzing the pattern

frequency vector for one-dimensional pVASS. We show that
FA is well defined and takes at most |Q| + b distinct values
for almost all runs, where |Q| is the number of control states
of A, and b is the number of BSCCs of CA. Moreover, these
values as well as the associated probabilities can be efficiently
approximated up to an arbitrarily small positive relative error.
More precisely, our aim is to prove the following:

Theorem 1. Let A = (Q, γ,W ) be a one-dimensional pVASS,
and let b be the number of BSCCs of CA. Then there is
n ≤ |Q|+b computable in time polynomial in ||A|| such that for
every ε > 0, there are H1, . . . ,Hn : PatA → Q computable
in time polynomial in ||A|| and ||ε||, such that for every initial
configuration p(k) ∈ conf (A) there are P1, . . . , Pn ∈ Q
computable in time polynomial in ||A||, ||ε||, and k, such that
the sequence (P1, H1), . . . , (Pn, Hn) approximates the pattern
frequencies of Run(p(k)) up to the relative error ε.

Let us note that the “real” pattern frequency vectors Fi as well
as the probabilities P(FA=Fi) may take irrational values, and
they cannot be computed precisely in general.

Remark 1. The |Q|+b upper bound on n given in Theorem 1
is tight. To see this, realize that if |Q| = 1, then b = 1 and
the trivial pVASS with the only rule p

0−→ p witnesses that
the pattern frequency vector may take two different values.
If |Q| ≥ 2, we have that b ≤ |Q| − 1. Consider a pVASS
where Q = {p, q1, . . . , qk} and γ contains the rules p −1−→ p,
p
−1−→ qi, and qi

0−→ qi for all 1 ≤ i ≤ k, where all of these
rules have the same weight equal to 1. For p(2) as the initial
configuration, the vector FA takes 2k+1 = 2|Q|−1 pairwise
different values with positive probability.

For the rest of this section, we fix a one-dimensional pVASS
A = (Q, γ,W ). We start by identifying certain (possibly
empty) subsets of configurations called regions that satisfy the
following properties:
• there are at most |Q|+ b non-empty regions;
• almost every run eventually stays in precisely one region;
• almost all runs that stay in a given region have the same

well defined pattern frequency vector.
In principle, we might proceed by considering each region R
separately and computing/approximating the associated pattern

frequency vector and the probability of all runs that stay in R.
However, this would lead to unnecessary technical complica-
tions. Instead, we identify situations when multiple regions
share the same pattern frequency vector, consider unions of
such regions (called zones), and then compute/approximate the
pattern frequency vector and the probability of staying in Z
for each zone Z. Thus, we obtain Theorem 1.

Technically, we distinguish among four types of regions
determined either by a control state of A or a BSCC of CA.
• Let p ∈ Q. A type I region determined by p is either the

set post∗(p(0)) or the empty set, depending on whether
post∗(p(0)) is a finite set satisfying post∗(p(0)) ⊆
pre∗(p(0)) or not, respectively.

• Let p ∈ S, where S is a BSCC of CA. A type II region
determined by p is either the set post∗(p(0)) or the empty
set, depending on whether post∗(p(0)) is an infinite set
satisfying post∗(p(0)) ⊆ pre∗(p(0)) or not, respectively.

• Let S be a BSCC of CA. A type III region determined
by S consists of all p(k) ∈ S × N+ that cannot reach a
configuration with zero counter.

• Let S be a BSCC of CA, and let RI(S) and RII(S) be
the unions of all type I and all type II regions determined
by the control states of S, respectively. Further, let D(S)
be the set(
S×N ∩ pre∗(RI(S))

)
r
(
RI(S) ∪ pre∗(RII(S))

)
A type IV region determined by S is either the set D(S)
or the empty set, depending on whether D(S) is infinite
or finite, respectively.

Note that if R1, R2 are regions of A such that R1 ∩R2 6= ∅,
then R1 = R2. Also observe that regions of type I, II, and III
are closed under post∗, and each such region can thus be seen
as a Markov chain. Finally, note that every configuration of a
type IV region can reach a configuration of a type I region,
and the size of every type I region is bounded by |Q|2 (if
R = post∗(p(0)) is a type I region and p(0)→ ∗q(j), then
j < |Q|, because otherwise the counter could be pumped to
an arbitrarily large value; hence, |R| ≤ |Q|2).

Let us note that all regions are regular in the following
sense: We say that a set C ⊆ conf (A) of configurations
is regular if there is a non-deterministic finite automaton A
over the alphabet {a} such that the set of control states of A
subsumes Q and for every configuration p(k) ∈ conf (A) we
have that p(k) ∈ C iff the word ak is accepted by A with
p as the initial state. If follows, e.g., from the results of [6]
that if C ⊆ conf (A) is regular, then post∗(C) and pre∗(C)
are also regular and the associated NFA are computable in
time polynomial in ||A||, where A is the NFA representing C.
Hence, all regions are effectively regular which becomes
important in Section IV.

Let S be a SCC of CA. If S is not a BSCC of CA, then
the control states of S may determine at most |S| non-empty
regions (of type I). If S is a BSCC of CA, then the control
states of S may determine at most |S| non-empty regions of
type I or II, and at most one additional non-empty region
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which is either of type III or of type IV (clearly, it cannot
happen that the type III and type IV regions determined by S
are both non-empty). Hence, the total number of non-empty
regions cannot exceed |Q|+b, where b is the number of BSCCs
of CA (here we also use the assumption that CA is weakly
connected).

Now we prove that every configuration can reach some
region in a bounded number of steps. This fact is partic-
ularly important for the analysis of two-counter pVASS in
Section IV.

Lemma 1. Every configuration of A can reach a configuration
of some region in at most 11|Q|4 transitions.

By Lemma 1, the probability of reaching (some) region from
an arbitrary initial configuration is at least x11|Q|

4

min , where xmin

is the least positive transition probability ofMA. This implies
that almost every w ∈ Run(p(k)) visits some region R. If R
is of type I, II, or III, then w inevitably stays in R because
these regions are closed under post∗. If R is a type IV region,
then w either stays in R, or later visits a configuration of a
type I region where it stays. Thus, we obtain the following:

Lemma 2. Let p(k) be a configuration of A. Then almost
every run initiated in p(k) eventually stays in precisely one
region.

As we already mentioned, computing the pattern frequency
vector and the probability of staying in R for each region R
separately is technically complicated. Therefore, we also in-
troduce zones, which are unions of regions that are guaranteed
to share the same pattern frequency vector. Formally, a zone
of A is a set Z ⊆ conf (A) satisfying one of the following
conditions (recall that tS denotes the trend of a BSCC S):
• Z = R, where R is a region of type I.
• Z = R, where R is a type III region determined by a

BSCC S of CA such that tS ≤ 0.
• Z = R, where R is a type II region determined by p ∈ S

where S is a BSCC of CA satisfying tS < 0.
• Z = RII(S), where S is a BSCC of CA such that tS = 0

and RII(S) is the union of all type II regions determined
by the control states of S.

• Z = RII(S) ∪ RIII(S) ∪ RIV (S), where S is a BSCC
of CA such that tS > 0, RII(S) is the union of all
type II regions determined by the control states of S, and
RIII(S) and RIV (S) are the type III and the type IV
regions determined by S, respectively.

The next two lemmata are nontrivial and represent the techni-
cal core of this section (proofs can be found in [5]). They
crucially depend on the results presented recently in [4]
and [14]. In the proof of Lemma 3, we also characterize
situations when some elements of pattern frequency vectors
take irrational values.

Lemma 3. Let p(k) be a configuration of A and Z a
zone of A. Then FA is well defined for almost all w ∈
Run(p(k), Z), and there exists F : PatA → R such that
FA(w) = F for almost all w ∈ Run(p(k), Z). Further, for

every rational ε > 0, there is a vector H : PatA → Q
computable in time polynomial in ||A|| and ||ε|| such that
H(qα) approximates F (qα) up to the relative error ε for every
qα ∈ PatA.

Lemma 4. Let p(k) be a configuration of A. Then almost
every run initiated in p(k) eventually stays in precisely one
zone of A. Further, for every zone Z and every rational ε > 0,
there is a P ∈ Q computable in time polynomial in ||A||, ||ε||,
and k such that P approximates P(Run(p(k), Z)) up to the
relative error ε.

IV. RESULTS FOR TWO-COUNTER PVASS
In this section we analyze the long-run average behavior

of two-counter pVASS. We show that if a given two-counter
pVASS is stable (see Definition 5 below), then the pattern
frequency vector is well defined takes one of finitely many
values for almost all runs. Further, these values and the
associated probabilities can be effectively approximated up to
an arbitrarily small positive absolute/relative error.

Let A be a two-counter pVASS. When we say that some
object (e.g., a number or a vector) is computable for every
σ ∈ Σ, where Σ is some set of parameters, we mean that there
exists an algorithm which inputs the encodings ofA and σ, and
outputs the object. Typically, the parameter σ is some rational
ε > 0, of a pair (ε, pvvv) where pvvv is a configuration. The
parameter can also be void, which means that the algorithm
inputs just the encoding of A.

A semilinear constraint ϕ is a function ϕ : Q → Φ,
where Φ is the set of all formulae of Presburger arithmetic
with two free variables x, y. Each ϕ determines a semilinear
set [[ϕ]] ⊆ conf (A) consisting of all p(v1, v2) such that
ϕ(p)[x/v1, y/v2] is a valid formula. Since the reachability
relation → ∗ of A is effectively semilinear [11] and semilinear
sets are closed under complement and union, all of the sets
of configurations we work with (such as C[R1, R2] defined
below) are effectively semilinear, i.e., the associated semilin-
ear constraint is computable. In particular, the membership
problem for these sets is decidable.

Given pvvv ∈ conf (A) and D ⊆ conf (A), we use
Run(pvvv →∗ D) to denote the set of all w ∈ Run(pvvv) that
visit a configuration of D, and Run(pvvv 6→∗ D) to denote the
set Run(pvvv) r Run(pvvv →∗ D). Note that if D = ∅, then
Run(pvvv 6→∗ D) = Run(pvvv).

Intuitively, our aim is to prove that the set C = conf (A)
is “good” in the sense that there is a computable n ∈ N
such that for every rational ε > 0, there exists a computable
sequence of rational vectors H1, . . . ,Hn such that for every
pvvv ∈ C, there are computable rational P1, . . . , Pn such that
the sequence (P1, H1), . . . , (Pn, Hn) that approximates the
pattern frequencies of Run(pvvv) up to the absolute/relative
error ε. This is achieved by first showing that certain simple
subsets of configurations are good, and then (repeatedly)
demonstrating that more complicated subsets are also good
because they can be “reduced” to simpler subsets that are
already known to be good. Thus, we eventually prove that
the whole set conf (A) is good.
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For our purposes, it is convenient to parameterize the notion
of a “good” subset C by another subset of “dangerous”
configurations D so that the above conditions are required
to hold only for those runs that do not visit D. Further, we
require that every configuration of C can avoid visiting D with
some positive probability which is bounded away from zero.

Definition 3. Let A = (Q, γ,W ) be a pVASS of dimen-
sion two, and let C,D ⊆ conf (A). We say that C is good
for D if the following conditions are satisfied:
• There is δ > 0 such that P(Run(pvvv →∗ D)) ≤ 1− δ for

every pvvv ∈ C.
• There is a computable n ∈ N such that for every
ε > 0, there are computable H1, . . . ,Hn : PatA → Q
such that for every pvvv ∈ C there are
computable Ppvvv,1, . . . , Ppvvv,n ∈ Q such that
(Ppvvv,1, H1), . . . , (Ppvvv,n, Hn) approximate the pattern
frequencies of Run(pvvv 6→∗ D) up to the absolute
error ε.

Note that in Definition 3, we require that
(Ppvvv,1, H1), . . . , (Ppvvv,n, Hn) approximate the pattern
frequencies of Run(pvvv 6→∗ D) up to the absolute error ε. As
we shall see, we can always compute a lower bound for each
positive Ppvvv,i and Hi, which implies that if Ppvvv,i and Hi can
be effectively approximated up to an arbitrarily small absolute
error ε > 0, they can also be effectively approximated up to
an arbitrarily small relative error ε > 0.

The next definition and lemma explain what we mean by
reducing the analysis of runs initiated in configurations of C
to the analysis of runs initiated in “simpler” configurations of
C1, . . . , Ck.

Definition 4. Let A be a pVASS of dimension two, C ⊆
conf (A), and E = {C1, . . . , Ck} a set of pairwise disjoint
subsets of conf (A). We say that C is reducible to E if, for
every ε > 0, there are computable semilinear constraints
ϕ1, . . . , ϕk such that
• [[ϕi]] ⊆ Ci for every 1 ≤ i ≤ k;
• for all 1 ≤ i ≤ k and pvvv ∈ [[ϕi]], we have that
P(Run(pvvv →∗ Di)) ≤ ε, where Di =

⋃
j 6=i Cj .

• for every pvvv ∈ C and every δ > 0, there is a computable
` ∈ N such that the probability of reaching a configura-
tion of [[ϕ1]] ∪ · · · ∪ [[ϕk]] in at most ` transitions is at
least 1− δ.

Lemma 5. If C is reducible to E = {C1, . . . , Ck} and every
Ci is good for Di =

⋃
j 6=i Cj , then C is good for ∅.

Proof: For every 1 ≤ i ≤ k, let ni be the computable
constant for Ci which exists by Definition 3. The constant n
for C is defined as n =

∑k
i=1 ni. Now let us fix some ε > 0.

Since C is reducible to {C1, . . . , Ck}, there are computable
constraints ϕ1, . . . , ϕk such that, for every 1 ≤ i ≤ k,
we have that [[ϕi]] ⊆ Ci and P(Run(pivvvi →∗ Di)) ≤ ε/4
for every pivvvi ∈ [[ϕi]]. Further, there are computable
Hi,1, . . . ,Hi,ni

: PatA → Q such that for every pivvvi ∈ [[ϕi]],
there are computable Ppivvvi,1, . . . , Ppivvvi,ni ∈ Q such that

(Ppivvvi,1, Hi,1), . . . , (Ppivvvi,ni
, Hi,ni

) approximate the pattern
frequencies of Run(pivvvi 6→∗ Di) up to the absolute error ε/4.
Now let pvvv ∈ C. Then there is a computable ` ∈ N such that
the probability of reaching a configuration of [[ϕ1]]∪· · ·∪ [[ϕk]]
in at most ` transitions is at least 1 − ε/4. Hence, we
can effectively construct a finite tree T rooted by pvvv which
represents the (unfolding of) the part of MA reachable from
pvvv. A branch in this tree is terminated when a configuration of
[[ϕ1]]∪ · · · ∪ [[ϕk]] is visited, or when the length of the branch
reaches `. For every 1 ≤ i ≤ k, let Li be the set of all leafs α
of T labeled by configurations of [[ϕi]]. We use Pα to denote
the (rational and computable) probability of reaching α from
the root of T , and label(α) to denote the configuration which
is the label of α. For every 1 ≤ i ≤ k and every 1 ≤ j ≤ ni,
we put Ppvvv,i,j =

∑
α∈Li

Pα · Plabel(α),j . It is straightforward
to verify that the sequence

(Ppvvv,1,1, H1,1), . . . , (Ppvvv,1,n1
, H1,n1

),

(Ppvvv,2,1, H2,1), . . . , (Ppvvv,1,n1
, H2,n2

),

...
(Ppvvv,k,1, Hk,1), . . . , (Ppvvv,k,nk

, Hk,nk
)

approximates the pattern frequencies of Run(pvvv) up to the
absolute error ε. In particular, realize that almost every
w ∈ Run(pvvv) eventually “decides” for some Ci, i.e., there
is m ∈ N such that w(m) ∈ Ci and for all m′ > m we
have w(m′) 6∈ Di (this is where we use the first condition
of Definition 3). Hence, the pattern frequency vector is well
defined and approximated up to the absolute error ε/4 by some
of the above Hi,j for almost all w ∈ Run(pvvv).

For the rest of this section, we fix a two-counter pVASS
A = (Q, γ,W ) (recall that A satisfies Assumption 1). For
i ∈ {1, 2}, we define a one-counter pVASS Ai = (Q, γi,Wi)
and a labeling Li : γi → {−1, 0, 1} as follows: s κ(i),`−→ t in Ai
and Li((s, κ(i), t)) = κ(3−i) iff s κ,`−→ t in A. Note that Ai is
obtained by “preserving” the i-th counter; the change of the
other counter is encoded in Li. Also observe that CA, CA1 ,
and CA2

are the same Markov chains.
The results of Section III are applicable to A1 and A2.

Let R be a type II or a type IV region of Ai. We claim
that there is a unique τR ∈ R such that for almost all runs
w ∈ Run(p(k), R), where p(k) ∈ R, we have that the limit

lim
n→∞

∑n−1
j=0 Li(rule(w, j))

n

exists and it is equal to τR (here, rule(w, j)) is the unique
rule of γi which determines the transition w(j)→w(j+1);
cf. Assumption 1). In other words, τR is the unique mean
payoff determined by the labeling Li associated to R. To see
this, consider the trend tS of the associated BSCC S of CA.
If R is a type IV region, then τR = tS(3−i) for almost all
w ∈ Run(p(k), R) (in particular, note that if tS(i) ≤ 0 then
P(Run(p(k), R)) = 0; see Section III). If tS(i) ≥ 0 and R
is a type II region, then τR = tS(3−i), because the frequency
of visits to configurations with zero counter is zero for almost
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all w ∈ Run(p(k)), where p(k) ∈ R (see [4]). Finally, if
tS(i) < 0 and R is a type II region, then R is ergodic because
the mean recurrence time in every configuration of R is finite
[4], and hence τR takes the same value for almost all w ∈
Run(p(k), R), where p(k) ∈ R.

Although the value of τR may be irrational when R is
of type II and tS(i) < 0, there exists a formula Φ(x) of
Tarski algebra with a fixed alternation depth of quantifiers
computable in polynomial time such that Φ[x/c] is valid iff
c = τR. Hence, the problem whether τR is zero (or positive, or
negative) is decidable in exponential time [9]; and if τR < 0
(or τR > 0), there is a computable x ∈ Q such that x < 0 (or
x > 0) and |x| ≤ |τR|.

Definition 5. Let A = (Q, γ,W ) be a pVASS of dimen-
sion two. We say that A is stable if the following conditions
are satisfied:
• Let S be a BSCC of CA such that the type IV region

determined by S is non-empty in A1 or A2, or there is
p ∈ S such that the type II region determined by p(0)
is non-empty in A1 or A2. Then the trend tS is non-zero
in both components.

• Let R by a type II region in Ai such that tS(i) < 0, where
S is the BSCC of CA associated to R. Then τR 6= 0.

Note that the problem whether a given two-counter pVASS A
is stable is decidable in exponential time. Our aim is to prove
the following theorem:

Theorem 2. Let A = (Q, γ,W ) be a stable pVASS of
dimension two. Then the set conf (A) is good for ∅.

For the rest of this section, we fix a pVASS A of dimension
two a present a sequence of observations that imply Theo-
rem 2. Note that A is not necessarily stable, i.e., the presented
observations are valid for general two-dimensional pVASS.
The stability condition is used to rule out some problematic
subcases that are not covered by these observations.

In our constructions, we need to consider the following
subsets of configurations:
• C[R1, R2], where R1 ∈ Reg(A1) and R2 ∈ Reg(A2), is

the set of all p(m1,m1) ∈ conf (A) such that p(m1) ∈
R1 and p(m2) ∈ R2;

• B[b], where b ∈ N, consists of all pvvv ∈ conf (A) such
that for every quuu ∈ post∗(pvvv) we have that uuu(1) ≤ b or
uuu(2) ≤ b;

• CS [c1∼b1 ∧ c2≈b2], where S ⊆ Q, b1, b2 ∈ N, and ∼,≈
are numerical comparisons (such as = or ≤) consists of
all p(m1,m2) ∈ conf (A) such that p ∈ S, m1 ∼ b1, and
m2 ≈ b2. Trivial constraints of the form ci ≥ 0 can be
omitted. For example, CQ[c1 = 0 ∧ c2 ≥ 6] is the set of
all q(0,m) ∈ conf (A) where m ≥ 6, and CS [c1 ≤ 2]
is the set of all q(n,m) ∈ conf (A) where q ∈ S and
n ≤ 2.

• ZS , where S ⊆ Q, consists of all p(m1,m2) such that
p ∈ S and some counter is zero (i.e., m1 = 0 or m2 = 0).

• ES [b1, b2], where S ⊆ Q and b1, b2 ∈ N, consists of
all p(m1,m2) such that p ∈ S, some counter is zero,

and every q(n1, n2) ∈ post∗(p(m1,m2)) satisfies the
following:

– if n1 = 0, then n2 ≤ b2;
– if n2 = 0, then n1 ≤ b1.

Note that all of these sets are semilinear and the associated
semilinear constraints are computable.

A direct consequence of Lemma 1 is the following:

Lemma 6. Let b = 11|Q|4, and let E be a set consisting of
B[b] and all C[R1, R2] where R1 ∈ Reg(A1), R2 ∈ Reg(A2).
Then conf (A) is reducible to E .

To prove Lemma 6, it suffices to realize that there is a
computable k ∈ N such that every pvvv ∈ conf (A) can
reach a configuration of some C[R1, R2] or B[b] in at most
k transitions.

Hence, it suffices to prove that B[b] and all C[R1, R2] are
good for ∅. All cases except for those where R1 and R2 are
of type II or type IV follow almost immediately. To handle
the remaining cases, we need to develop new tools, which we
present now. We start by introducing some notation.

Given a finite path or a run w in MA and ` ∈ N, where
` ≤ length(w), we denote by x

(`)
1 (w), x(`)2 (w), and p(`)(w)

the value of the first counter, the value of the second counter,
and the control state of the configuration w(`), respectively.
Further, T (w) denotes either the least ` such that x(`)1 (w) = 0,
or ∞ if there is no such `. For every i ∈ N, [pvvv →∗ quuu, i]
denotes the probability of all w ∈ Run(pvvv) such that
T (w) ≥ i, w(i) = quuu, and w(j) 6= quuu for all 0 ≤ j < i. By
[pvvv →∗ quuu] =

∑∞
i=0[pvvv →∗ quuu, i] we denote the probability

of reaching quuu from pvvv before time T . We also put

[pvvv →∗ q(0, ∗), i] =

∞∑
k=0

[pvvv →∗ q(0, k), i]

and

[pvvv →∗ q(0, ∗)] =

∞∑
k=0

[pvvv →∗ q(0, k)] .

For a measurable function X over the runs of MA, we use
Epvvv[X] to denote the expected value of X over Run(pvvv).

The following theorems are at the very core of our analysis,
and represent new non-trivial quantitative bounds obtained by
designing and analyzing a suitable martingale. Proofs can be
found in [5].

Theorem 3. Let S be a BSCC of CA such that tS(2) < 0,
and let R be a type II region of A2 determined by some state
of S. Then there are rational a1, b1 > 0 and 0 < z1 < 1
computable in polynomial space such that the following holds
for all p(0) ∈ R, n ∈ N, and i ∈ N+:

Pp(n,0)(T <∞∧ x(T )
2 ≥ i) ≤ a1 · zb1·i1 .

Moreover, if Pp(n,0)(T <∞) = 1, then

Ep(n,0)
[
x
(T )
2

]
≤ a1 · zb11

1− zb11
.

In particular, none of the bounds depends on n.
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Theorem 4. Let S be a BSCC of CA such that tS(2) < 0,
and let R be a type II region determined by some state of
S such that τR > 0. Then there are rational a2, b2 > 0 and
0 < z2 < 1 computable in polynomial space such that for all
configurations p(n, 0), where p(0) ∈ R, and all q ∈ Q, the
following holds:

[p(n, 0)→∗ q(0, ∗)] ≤ n · a2 · zn·b22

Theorem 5. Let R be a type II region of A2 such that τR < 0.
Then there are rational a3, b3, d3 > 0 and 0 < z3 < 1 com-
putable in polynomial space such that for all configurations
p(n, 0), where p(0) ∈ R, and all q ∈ Q, the following holds
for all i ≥ H·n

−τR , where H is computable in polynomial space:

[p(n, 0)→∗ q(0, ∗), i] ≤ i · a3 · z
√
n·τR·b3+i·d3

3 .

The above theorems are use to prove that certain configu-
rations are eagerly attracted by certain sets of configurations
in the following sense:

Definition 6. Let C,D ⊆ conf (A). We say that pvvv ∈ C is
eagerly attracted by D if P(Run(pvvv→ ∗D)) = 1 and there are
computable constants a, z ∈ Q, ` ∈ N, and k ∈ N+ (possibly
dependent on pvvv), where a > 0 and 0 < z < 1, such that for
every `′ ≥ `, the probability of visiting D from pvvv in at most
`′ transitions is at least 1−a ·z

k√
`′ . Further, we say that C is

eagerly attracted by D if all configurations of C are eagerly
attracted by D, and D is a finite eager attractor if D is finite
and post∗(D) is eagerly attracted by D.

Markov chains with finite eager attractors were studied
in [1]. The only subtle difference is that in [1], the probability
of revisiting the attractor in at most ` transitions is at least
1 − z`. However, all arguments of [1] are valid also for the
sub-exponential bound 1−a·z

k√
`′ adopted in Definition 6 (note

that some quantitative bounds given in [1], such as the bound
on K in Lemma 5.1 of [1], need to be slightly adjusted to
accommodate the sub-exponential bound). In [1], it was shown
that various limit properties of Markov chains with finite eager
attractors can be effectively approximated up to an arbitrarily
small absolute error ε > 0. A direct consequence of these
results is the following:

Proposition 1. Let D ⊆ conf (A) be a finite eager attractor.
Then D is good for ∅.

Let us also formulate one simple consequence of Theorem 4.

Corollary 1. For every BSCC S of CA we have the following:
• If tS is negative in some component, then every configu-

ration pvvv where p ∈ S is eagerly attracted by ZS .
• If both components of tS are positive, then for every
ε > 0 there is a computable bε such that for every
configuration pvvv where p ∈ S and vvv ≥ (bε, bε) we have
that P(Run(pvvv→ ∗ZS)) < ε.

The following theorem follows from the results about one-
counter pVASS presented in [4].

Theorem 6. For every BSCC S of CA we have the following:

• If tS is negative in some component, then every configu-
ration pvvv where p ∈ S is eagerly attracted by ZS .

• If both components of tS are positive, then for every
ε > 0 there is a computable bε such that for every
configuration pvvv where p ∈ S and vvv ≥ (bε, bε) we have
that P(Run(pvvv→ ∗ZS)) ≤ ε.

In the next lemmata, we reduce the study of pattern frequencies
for certain runs inMA to the study of pattern frequencies for
runs in one-counter pVASS (i.e., to the results of Section III).
This is possible because in each of these cases, one of
the counters is either bounded or irrelevant. Proofs of the
following lemmata are straightforward.

Lemma 7. For every b ∈ N, the set B[b] is good for ∅.

Lemma 8. The set C[R1, R2], where R1 or R2 is a type I or
a type III region, is good for ∅.

So, it remains to consider sets of the form C[R1, R2], where
the regions R1, R2 are of type II or type IV. We start with
the simple case when the trend tS of the associated BSCC is
positive in both components.

Lemma 9. Let C[R1, R2] be a set such that R1, R2 are
regions of type II or type IV, and the trend tS of the associated
BSCC S of CA is positive in both components. Then C[R1, R2]
is good for ∅.

Proof: Let b ∈ N be a bound such that for every pvvv ∈
conf (A) where p ∈ S and vvv ≥ (b, b) we have that there
exists a “pumpable path” of the form pvvv→ ∗p(vvv+uuu) where uuu
is positive in both components. Note that such a b exists and
it is computable (in fact, one can give an explicit upper bound
on b in the size of S; see, e.g., [3]).

By Lemma 7, B[b] is good for ∅. We show that
CS [c1 ≥ b ∧ c2 ≥ b] is good for B[b]. By our choice of b and
Theorem 6, there is δ > 0 such that P(Run(pvvv 6→∗ B[b])) ≥ δ
for every pvvv ∈ CS [c1 ≥ b ∧ c2 ≥ b]. Further, almost all runs of
Run(pvvv 6→∗ B[b]) have the same pattern frequency vector FS
where FS(q(∗, ∗)) = µS(q) for all q ∈ S, and FS(α) = 0 for
the other patterns.

Now we prove that C[R1, R2] is reducible to
{B[b], CS [c1 ≥ b ∧ c2 ≥ b]}. By Theorem 6, we obtain
that for every ε > 0 there is a computable bε such that
for every configuration of quuu where uuu ≥ (bε, bε) we
have that P(Run(quuu→ ∗ZS)) ≤ ε. Let ϕ be a semilinear
constraint where ϕ(s) = x≥b+bε ∧ y≥b+bε for all
s ∈ S, and ϕ(s) = false for all s ∈ Q r S. Then
[[ϕ]] ⊆ CS [c1 ≥ b ∧ c2 ≥ b] and for every quuu ∈ [[ϕ]] we
have that P(Run(quuu→ ∗B[b])) ≤ ε. Further, there exists
a computable k ∈ N such that every configuration of
C[R1, R2] can reach a configuration of B[b] ∪ [[ϕ]] in at most
k transitions. This implies that for every δ > 0, there is a
computable ` ∈ N such that every configuration of C[R1, R2]
reaches a configuration of B[b] ∪ [[ϕ]] in at most ` steps with
probability at least 1− δ.
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To prove Theorem 2, it suffices to show that the following
sets of configurations are good for ∅, where we disregard the
subcases ruled out by the stability condition. In particular, due
to Lemma 9 we can safely assume that some component of
tS is negative.
(a) C[R1, R2], where both R1 and R2 are of type II.
(b) C[R1, R2], where R1 is of type IV and R2 is of type II,

or R1 is of type II and R2 is of type IV.
(c) C[R1, R2], where both R1 and R2 are of type IV.

The most interesting (and technically demanding) is the
following subcase of Case (a). Here we only sketch the main
ideas, a full proof can be found in [5].

Lemma 10. Let C[R1, R2] be a set of configurations where
R1 and R2 are of type II, tS(2) < 0, τR1

< 0, and τR2
< 0.

Then C[R1, R2] is good for ∅.

Proof Sketch: Let C be the set of all configurations of the
form q(0,m) ∈ C[R1, R2] satisfying m ≤ (a1 ·zb11 )/(1−zb11 ),
where a1, b1, z1 are the computable constants of Theorem 3.
We prove that C[R1, R2] is eagerly attracted by C. This
immediately implies that C is a finite eager attractor, hence C
is good for ∅ by Proposition 1. We also immediately obtain that
C[R1, R2] is reducible to {C}, which means that C[R1, R2]
is good for ∅ by Lemma 5.

Let pvvv ∈ C[R1, R2]. Since tS(2) < 0 and τR1
< 1, almost

every run w ∈ Run(pvvv) eventually visits a configuration of
CS [c2 = 0], and, from that moment on, visits configurations
of both CS [c2 = 0] and CS [c1 = 0] infinitely often.

Denote by Θ0(w) the least ` such that w(`) ∈ CS [c2 = 0].
Given k ≥ 1, denote by Θk(w) the least ` ≥ Θk−1(w) such
that the following holds:
• If k is odd, then w(`) ∈ CS [c1 = 0].
• If k is even, then w(`) ∈ CS [c2 = 0].

We use Theorems 6, 3, and 5 to show that there are computable
constants â > 0 and 0 < ẑ < 1 such that for all k ≥ 0 and all
` ∈ N we have that

Ppvvv(Θk −Θk−1 ≥ `) ≤ â · (ẑ)
√
`

Here Θ−1 = 0. Observe that Θ0 is the sum of the number
of transitions needed to visit ZS for the first time (the first
phase) and the number of transitions need to reach CS [c2 = 0]
subsequently (the second phase). Due to Theorem 6, the
probability that the first phase takes more than ` transitions is
bounded by a · z` for some computable a > 0 and 0 < z < 1.
Note that the length of the second phase depends on the value
of c2 after the first phase. However, the probability that this
value will be larger than ` can be bounded by a · z` as well.
Finally, assuming that the first phase ends in a configuration
q(0,m), Theorem 5 gives a bound a′ · (z′)

√
`−m on the

probability of reaching CS [c2 = 0] in at least ` transitions. By
combining these bounds appropriately, we obtain the above
bound on Θ0.

Now let us consider Θk −Θk−1 for k > 0. Let us assume
that k is even (the other case follows similarly). The only
difference from the previous consideration (for Θ0) is that

now the first phase consists of the part of the run up to the
Θk−1-th configuration, and the second phase from there up
to the Θk-th configuration. Using Theorem 3 and induction
hypothesis, we derive a bound a · z` on the probability that
the height of the second counter in the Θk−1-th configuration
will be at least `. Then, as above, we combine this bound with
the bound on the probability of reaching CS [c2 = 0] in ` steps
from a fixed configuration of CS [c1 = 0].

In order to finish the proof, we observe that the probability
of reaching a configuration of C between the Θk−1-th and
Θk-th configuration is bounded away from zero by a com-
putable constant. This follows immediately from Theorem 3
which basically bounds the expected value of c2 in the Θk-
th configuration. Denoting by Rounds(w) the least number
k such that w(Θk(w)) ∈ C, we may easily show that
Ppvvv(Rounds ≥ `) ≤ c̄` for a computable constant 0 ≤ c̄ < 1.

Finally, we combine the bound on the number of rounds
(i.e., the bound on Ppvvv(Rounds ≥ `)) with the bound on the
length of each round (i.e., the bound on Ppvvv(Θk−Θk−1 ≥ `)),
and thus obtain the desired bound on the number of steps to
visit C.

For the other cases (incl. Cases (b) and (c)), we show that
the set of configurations C we aim to analyze is eagerly
attracted by computable semilinear sets of configurations
C1, . . . , Ck, where each Ci is either good for ∅ or good
for

⋃
i 6=j Cj . In all these cases, it is easy to see that the

configurations of C reach a configuration of
⋃k
i=1 Ci with

probability one, and the argument that C is eagerly attracted⋃k
i=1 Ci is a simplified version of the proof of Lemma 10

(in some cases, the proof is substantially simpler than the one
of Lemma 10). Therefore, in these cases we just list the sets
C1, . . . , Ck and add some intuitive comments which explain
possible behaviour of the runs initiated in configurations of C.

When defining the aforementioned sets C1, . . . , Ck, we
use the following computable constants BII , BIV , DII ∈ N,
which are numbers (not necessarily the least ones) satisfying
the following conditions:

• if p(0) ∈ R, where R is a type IV region of Ai for some
i ∈ {1, 2}, then p(0) can reach a configuration a type I
region in at most BIV transitions.

• if p(0) ∈ R, where R is a type II region of Ai such that
tS(i) < 0 and τR > 0, then there is a finite path w from
p(0) to p(0) of length smaller than BII such that the total
Li-reward of all transitions executed in w is positive.

• for every pvvv ∈ conf (A) and every i ∈ {1, 2}, if vvv(i) = 0,
vvv(3−i) ≥ DII , and p(0) ∈ R for some type II region
of Ai such that either tS(i) > 0 and tS(3−i) < 0, or
tS(i) < 0 and τR < 0, then there exists quuu ∈ post∗(pvvv)
such that uuu(i) ≥ max{BII , BIV } and uuu(3−i) = 0.

The existence and computability of BII , BIV , and DII

follows from simple observations about the transition structure
of MA (these constants are in fact small and their size can
be explicitly bounded in ||A||).

Lemma 11. For all m,n ∈ N and a BSCC S of CA such that

10



tS is negative in some component, the set Es[m,n] is good
for ∅.

Proof: From the definition of ES [m,n] and Theorem 6,
we immediately obtain that ES [m,n] is a finite eager attractor
(even if ES [m,n] = ∅). Hence, the claim follows from
Proposition 1.

Now we consider the remaining subcases of Case (a).

Lemma 12. Let C[R1, R2] be a set of configurations where
R1 and R2 are of type II, tS(2) < 0, tS(1) > 0, and τR2

> 0.
Then C[R1, R2] is good for ∅.

Proof: Let E = {E[BII , DII ], CS [c2=0 ∧ c1≥BII ]}.
Observe that E[BII , DII ] is good for ∅ by Lemma 11. We
show that CS [c2=0 ∧ c1≥BII ] is good for E[BII , DII ] and
that C[R1, R2] reducible to E . Hence, C[R1, R2] is good for ∅
by Lemma 5.

To see that CS [c2=0 ∧ c1≥BII ] is good for E[BII , DII ],
realize that for every pvvv ∈ CS [c2=0 ∧ c1≥BII ] we have
that almost all runs of Run(pvvv) that do not visit a con-
figuration of E[BII , DII ] eventually behave as if the first
counter did not exist, which means that the long-run be-
haviour of almost all of these runs is the same as the
behavior of the runs of A2 initiated in p(0) (here we also
use the defining property of DII ). Further, it follows from
the definition of BII and Theorem 4 that there exists a
δ > 0 such that P(Run(pvvv 6→∗ E[BII , DII ])) > δ for every
pvvv ∈ CS [c2=0 ∧ c1≥BII ].

By Theorem 4, for every ε > 0 there exists a computable
semilinear constraint ϕ such that [[ϕ]] ⊆ CS [c2=0 ∧ c1≥BII ]
and for every quuu ∈ [[ϕ]] we have that the probability of visiting
C[c1=BII ] (and hence also E[BII , DII ]) is bounded by ε.

Now let pvvv ∈ C[R1, R2] and δ > 0. We need to show
that there is a computable ` ∈ N such that the probability
of reaching a configuration of E[BII , DII ] ∪ [[ϕ]] in at most
` transitions is at least 1 − δ. Since tS(2) < 0, every pvvv ∈
C[R1, R2] is eagerly attracted by ZS . Similarly as in the proof
of Lemma 10, we show that almost every run visits CS [c2=0]
infinitely many times, and that the probability that the length
between two consecutive visits to CS [c2=0] exceeds ` decays
sub-exponentially in `. Further, the probability of vising a
configuration of E[BII , DII ] ∪ [[ϕ]] from a configuration of
CS [c2=0] is bounded away from zero by a fixed constant.
Hence, we can argue as in the proof of Lemma 10.

Lemma 13. Let C[R1, R2] be a set of configurations where
R1 and R2 are of type II, tS(2) < 0, tS(1) < 0, τR1

> 0,
and τR2

> 0. Then C[R1, R2] is good for ∅.

Proof: Let E be the set consiting of E[BII , BII ],
CS [c2=0 ∧ c1≥BII ], and CS [c1=0 ∧ c2≥BII ]. Clearly, each
C ∈ E is either good for ∅ or good for the union of
all sets in E r {C} (see Lemma 11 and the proof of
Lemma 12). For every ε > 0, there are computable semilin-
ear constraint ϕ1, ϕ2 such that [[ϕ1]] ⊆ CS [c2=0 ∧ c1≥BII ],
[[ϕ2]] ⊆ CS [c1=0 ∧ c2≥BII ] satisfying the requirements of
Definition 4. Note that there is a k ∈ N such that for every

configuration of ZS there is a finite path of length at most k
to a configuration of E[BII , BII ] ∪ [[ϕ1]] ∪ [[ϕ2]]. The rest of
the argument is even simpler than in Lemma 12.

Lemma 14. Let C[R1, R2] be a set of configurations where
R1 and R2 are of type II, tS(2) < 0, tS(1) < 0, τR1

< 0,
and τR2

> 0. Then C[R1, R2] is good for ∅.

Proof: Let E = {E[BII , DII ], CS [c2=0∧ c1≥BII ]}. We
show that C[R1, R2] reducible to E similarly as in Lemma 12.

The case when R1 and R2 are of type II, tS(2) < 0,
tS(1) < 0, τR1

> 0, and τR2
< 0 is symmetric to the case

considered in Lemma 14.
Now we continue with Case (b)

Lemma 15. Let C[R1, R2] be a set of configurations where
R1 is of type IV and R2 is of type II such that tS(2) < 0 and
τR2

> 0. Then C[R1, R2] is good for ∅.

Proof: Let E be the set consisting of E[BII , BIV ],
CS [c2=0∧ c1≥BII ], and all C[R′1, R2], where R′1 is a type I
region reachable from R1 in A1. We show that C[R1, R2]
reducible to E similarly as in previous lemmata.

Lemma 16. Let C[R1, R2] be a set of configurations where
R1 is of type IV and R2 is of type II such that tS(2) < 0 and
τR2 < 0. Then C[R1, R2] is good for ∅.

Proof: Let E be the set consisting of E[DII , BIV ] and all
C[R′1, R2], where R′1 is a type I region reachable from R1 in
A1. Then C[R1, R2] reducible to E and each C ∈ E is good
for ∅.

Lemma 17. Let C[R1, R2] be a set of configurations where
R1 is of type II and R2 is of type IV such that tS(2) < 0 and
tS(1) > 0. Then C[R1, R2] is good for ∅.

Proof: Let E be the set consisting of E[BIV , DII ] and
all C[R1, R

′
2], where R′2 is a type I region reachable from R2

in A2. Then C[R1, R2] reducible to E . Further, all elements
of E are good for ∅.

Note that the case when R1 is of type II and R2 is of type IV
such that tS(2) < 0 and tS(1) < 0 is symmetric to the cases
covered in Lemma 15 and Lemma 16.

Finally, in the next lemma we consider Case (c).

Lemma 18. Let C[R1, R2] be a set of configurations where
both R1 and R2 are type IV regions, and the trend tS of the
associated BSCC S of CA is negative in some component.
Then C[R1, R2] is good for ∅.

Proof: Let E be the set consisting of E[BIV , BIV ] and
all C[R1, R

′
2], C[R′1, R2], C[R′1, R

′
2], where R′i is a type I

region reachable from Ri in Ai (for i ∈ {1, 2}). We show
that C[R1, R2] reducible to E .

V. SOME NOTES ON THREE-COUNTER PVASS

In this section we give an example of a 3-dimensional
pVASS A such that MA is strongly connected, and the
pattern frequency vector seems to take the ⊥ value with
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p

t1 t2 t3

(-1,-1,0);Q
(0,-1,-1);Q

(-1,0,-1);Q
(0,3,0);1

(0,0,3);1

(3,0,0);1

(2,0,0);P, (0,2,0);P, (0,0,2);P, (-1,-1,-1);R

Fig. 2: A 3-dimensional pVASS A. For suitable weights
P,Q,R > 0, we have that FA = ⊥ almost surely.

probability one (this intuition is confirmed by Monte Carlo
simulations, see below). Further, the example is insensitive
to small changes in rule weights, and it also shows that
the method of Section IV based on constructing pVASS of
smaller dimension by “forgetting” one of the counters and then
studying the “trend” of this counter in the smaller pVASS is
insufficient for three (or more) counters.

The pVASS A is shown in Fig. 2. Some rules increase the
counter by more that 1, so these should be formally replaced
by several rules using auxiliary control states. Intuitively, A
behaves in the following way. Suppose we start in an initial
configuration p(m, 0, 0), where m is “large”. Then, A starts
to decrease the first counter and increase the second one. On
average, the value of the second counter becomes 2m when the
first counter is decreased to zero, and the third counter is kept
“small”. So, “on average” we eventually reach a configuration
p(0, 2m, 0) in about 2m transitions. Then, the second counter
is decreased and the third counter is increased, where the value
is again doubled “on average”, using 4m transitions. Thus, we
reach a configuration p(0, 0, 4m). Then, we “pump” the tokens
from the third counter to the first one, reaching p(8m, 0, 0) in
about 8m transitions. And so on. Observe that the k-th phase
takes about 2k transitions, and so at the end of each phase,
about half of the time was spent in configurations with the
“current” pattern. Hence, the pattern frequency oscillates.

A precise formulation of this phenomenon, and a formal
proof that almost all runs really behave in the above indicated
way, are technically demanding and we do not provide them in
this paper. For the reader’s convenience, we have implemented
a simple Maple sheet which can be used to perform Monte
Carlo simulations of A and observe the above described
phenomenon in practice2.

Note that the oscillation of A is insensitive to small changes
in rule weights. However, if we modify A into A′ so that the
counter value is decreased on average in each phase (e.g., we
start in p(m, 0, 0), and then reach p(0,m−1, 0), p(0, 0,m−2),
p(m− 3, 0, 0), etc., on average), then the sum of the counters
has a tendency to decrease and MA′ has a finite attractor.
This means that the pattern frequency vector is well defined
for almost all runs of A′. Still, the behaviour of all two-counter

2Available at http://www.cs.ox.ac.uk/people/stefan.kiefer/pVASS-simulation.txt

machines B1, B2, B3 obtained from A by “forgetting” the first,
the second, and the third counter, is essentially similar to the
behaviour of B′1, B′2, and B′3 obtained from A′ in the same
way (for example, both in B1 and B′1, the second counter has a
tendency to increase and the third has a tendency to decrease).
Hence, we cannot distinguish between the behaviour of A and
A′ just by studying the “trends” in the two-counter pVASS
obtained by “forgetting” one of the counters. This indicates
that the study of 3-dimensional pVASS requires different (and
perhaps more advanced) methods than those presented in this
paper.
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