
Zero-Reachability in Probabilistic Multi-Counter Automata ∗
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Abstract
We study the qualitative and quantitative zero-reachability prob-
lem in probabilistic multi-counter systems. We identify the unde-
cidable variants of the problems, and then we concentrate on the
remaining two cases. In the first case, when we are interested in
the probability of all runs that visit zero in some counter, we show
that the qualitative zero-reachability is decidable in time which is
polynomial in the size of a given pMC and doubly exponential in
the number of counters. Further, we show that the probability of
all zero-reaching runs can be effectively approximated up to an ar-
bitrarily small given error ε > 0 in time which is polynomial in
log(ε) and exponential in the size of a given pMC and the number
of counters. In the second case, we are interested in the probabil-
ity of all runs that visit zero in some counter different from the
last counter. Here we show that the qualitative zero-reachability is
decidable and SQUAREROOTSUM-hard, and the probability of all
zero-reaching runs can be effectively approximated up to an arbi-
trarily small given error ε > 0 (these results apply to pMC satisfy-
ing a suitable technical condition that can be verified in polynomial
time). The proof techniques invented in the second case allow to
construct counterexamples for some classical results about ergod-
icity in stochastic Petri nets.

Categories and Subject Descriptors G.3 [Probability and Statis-
tics]: Markov processes

General Terms Theory
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1. Introduction
A probabilistic multi-counter automaton (pMC) A of dimension
d ∈ N is an abstract fully probabilistic computational device
equipped with a finite-state control unit and d unbounded counters
that can store non-negative integers. A configuration pvvv of A is
given by the current control state p and the vector of current counter
values vvv. The dynamics of A is defined by a finite set of rules
of the form (p, α, c, q) where p is the current control state, q
is the next control state, α is a d-dimensional vector of counter
changes ranging over {−1, 0, 1}d, and c is a subset of counters
that are tested for zero. Moreover, each rule is assigned a positive
integer weight. A rule (p, α, c, q) is enabled in a configuration pvvv
if the set of all counters with zero value in vvv is precisely c and
no component of vvv + α is negative; such an enabled rule can be
fired in pvvv and generates a probabilistic transition pvvv x→ q(vvv+α)
where the probability x is equal to the weight of the rule divided
by the total weight of all rules enabled in pvvv. A special subclass of
pMC are probabilistic vector addition systems with states (pVASS),
which are equivalent to (discrete-time) stochastic Petri nets (SPN).
Intuitively, a pVASS is a pMC where no subset of counters is tested
for zero explicitly (see Section 2 for a precise definition).

The decidability and complexity of basic qualitative/quantitative
problems for pMCs has so far been studied mainly in the one-
dimensional case, and there are also some results about unbounded
SPN (a more detailed overview of the existing results is given be-
low). In this paper, we consider multi-dimensional pMC and the
associated zero-reachability problem. That is, we are interested in
the probability of all runs initiated in a given pvvv that eventually
visit a “zero configuration”. Since there are several counters, the
notion of “zero configuration” can be formalized in various ways
(for example, we might want to have zero in some counter, in all
counters simultaneously, or in a given subset of counters). There-
fore, we consider a general stopping criterion Z which consists of
minimal subsets of counters that are required to be simultaneously
zero. For example, if Z = Zall = {{1}, . . . , {d}}, then a run is
stopped when reaching a configuration with zero in some counter;
and if we put Z = {{1, 2}}, then a run is stopped when reaching
a configuration with zero in counters 1 and 2 (and possibly also in
other counters). We use P(Run(pvvv,Z)) to denote the probability
of all runs initiated in pvvv that reach a configuration satisfying the
stopping criterionZ . The main algorithmic problems considered in
this paper are the following:

• Qualitative Z-reachability: Is P(Run(pvvv,Z)) = 1?
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Figure 1. Firing process may not be ergodic.

• Approximation: Can P(Run(pvvv,Z)) be approximated up to a
given absolute/relative error ε > 0?

We start by observing that the above problems are not effectively
solvable in general, and we show that there are only two potentially
decidable cases, where Z is equal either to Zall (Case I) or to
Z−i = Zall r {{i}} (Case II). Recall that if Z = Zall, then a
run is stopped when some counter reaches zero; and if Z = Z−i,
then a run is stopped when a counter different from i reaches zero.
Cases I and II are analyzed independently and the following results
are achieved:

Case I: We show that the qualitative Zall-reachability problem
is decidable in time polynomial in the encoding size of A (which
we denote by |A|) and doubly exponential in d. In particular, this
means that the problem is decidable in polynomial time for every
fixed d. Then, we show that P(Run(pvvv,Zall)) can be effectively
approximated up to a given absolute/relative error ε > 0 in time
which is polynomial in log(ε) and exponential in |A| and d (in the
special case when d = 1, the problem is known to be solvable in
time polynomial in |A| and log(ε), see [18]).

Case II: We analyze Case II only under a technical assump-
tion that counter i is not critical; roughly speaking, this means that
counter i has either a tendency to increase or a tendency to de-
crease when the other counters are positive. The problem whether
counter i is critical or not is solvable in time polynomial in |A|, so
we can efficiently check whether a given pMC can be analyzed by
our methods.

Under the mentioned assumption, we show how to construct a
suitable martingale which captures the behaviour of certain runs
in A. Thus, we obtain a new and versatile tool for analyzing quan-
titative properties of runs in multi-dimensional pMC, which is
more powerful than the martingale of [13] constructed for one-
dimensional pMC. Using this martingale and the results of [7],
we show that the qualitative Z−i-reachability problem is decid-
able. We also show that the problem is SQUARE-ROOM-SUM-hard,
even for two-dimensional pMC satisfying the mentioned technical
assumption. Further, we show that P(Run(pvvv,Z−i)) can be effec-
tively approximated up to a given absolute error ε > 0. The main
reason why we do not provide any upper complexity bounds in
Case II is a missing upper bound for coverability in vector addition
systems with one zero test (see [7]).

It is worth noting that the techniques developed in Case II re-
veal the existence of phenomena that should not exist according to
the previous results about ergodicity in SPN. A classical paper in
this area [22] has been written by Florin & Natkin in 80s. In the
paper, it is claimed that if the state-space of a given SPN (with ar-
bitrarily many unbounded places) is strongly connected, then the
firing process is ergodic (see Section IV.B. in [22]). In the setting
of discrete-time probabilistic Petri nets, this means that for almost
all runs, the limit frequency of transitions performed along a run
is defined and takes the same value. However, in Fig. 1 there is
an example of a pVASS (depicted as SPN with weighted transi-
tions) with two counters (places) and strongly connected state space
where the limit frequency of transitions may take two eligible val-

ues (each with probability 1/2). Intuitively, if both counters are
positive, then both of them have a tendency to decrease (i.e., the
trend of the only BSCC of FA is negative in both components, see
Section 3.1). However, if we reach a configuration where the first
counter is zero and the second counter is sufficiently large, then
the second counter starts to increase, i.e., it never becomes zero
again with some positive probability (cf. the oc-trend of the only
BSCC D of B1 introduced in Section 3.2). The first counter stays
zero for most of the time, because when it becomes positive, it is
immediatelly emptied with a very large probability. This means that
the frequency of firing t2 will be much higher than the frequency of
firing t1. When we reach a configuration where the first counter is
large and the second counter is zero, the situation is symmetric, i.e.,
the frequency of firing t1 becomes much higher than the frequency
of firing t2. Further, almost every run eventually behaves accord-
ing to one of the two scenarios, and therefore there are two eligible
limit frequencies of transitions, each of which is taken with prob-
ability 1/2. So, we must unfortunately conclude that the results of
[22] are not valid for general SPN.

Related Work. One-dimensional pMC and their extensions into
decision processes and games were studied in [9–11, 13, 18–20].
In particular, in [18] it was shown that the termination probabil-
ity (a “selective” variant of zero-reachability) in one-dimensional
pMC can be approximated up to an arbitrarily small given error in
polynomial time. In [13], it was shown how to construct a martin-
gale for a given one-dimensional pMC which allows to derive tail
bounds on termination time (we use this martingale in Section 3.1).

There is also a vast amount of literature about SPN (see, e.g.,
[5, 27]), and some of these works also consider algorithmic aspects
of unbounded SPN (see, e.g., [1, 21, 22]).

A considerable amount of papers has been devoted to algo-
rithmic analysis of so-called probabilistic lossy channel systems
(PLCS) and their game extensions (see e.g. [2–4, 6, 23]). PLCS
are a stochastic extension of lossy channel systems, i.e., an infinite-
state model comprising several interconnected unbounded queues
coupled with a finite-state control unit. The main ingredient, which
makes results about PLCS incomparable with our results on pMCs,
is that queues may lose messages with a fixed loss rate, which sub-
stantially simplifies the associated analysis.

2. Preliminaries
We use Z, N, N+, Q, and R to denote the set of all integers, non-
negative integers, positive integers, rational numbers, and real num-
bers, respectively. For a vector vvv we denote by vvv[i] the i-component
of vvv.

A labelled transition system is a tuple V = (V,L, → ), where
V is a non-empty set of vertices, L a non-empty set of labels, and
→ ⊆ V × L × V a total relation (i.e., for every v ∈ V there is
at least one outgoing transition (v, `, u) ∈ → ). As usual, we write
v
`→u instead of (v, `, u) ∈ → , and v→u iff v `→u for some

` ∈ L. The reflexive and transitive closure of → is denoted by
→ ∗. A finite path in V of length k ≥ 0 is a finite sequence of the
form v0`0v1`1 . . . `k−1vk, where vi

`i→ vi+1 for all 0 ≤ i < k. The
length of a finite path w is denoted by length(w). A run in V is an
infinite alternating sequence w of vertices and labels v0`0v1`1 . . .
such that every finite prefix of w ending in a vertex is a finite path
in V . For w = v0`0v1`1 . . . we denote by w(i) the vertex vi. The
sets of all finite paths and all runs in V are denoted by FPathV and
RunV , respectively. The sets of all finite paths and all runs in V
that start with a given finite pathw are denoted by FPathV(w) and
RunV(w), respectively. A strongly connected component (SCC) of
V is a maximal subset C ⊆ V such that for all v, u ∈ C we have
that v→ ∗u. A SCC C of V is a bottom SCC (BSCC) of V if for all
v ∈ C and u ∈ V such that v→u we have that u ∈ C.



We assume familiarity with basic notions of probability theory,
e.g., probability space, random variable, or the expected value. As
usual, a probability distribution over a finite or countably infinite
set A is a function f : A → [0, 1] such that

∑
a∈A f(a) = 1.

We call f positive if f(a) > 0 for every a ∈ A, and rational if
f(a) ∈ Q for every a ∈ A.

Definition 1. A labeled Markov chain is a tupleM = (S,L, → ,
Prob) where S 6= ∅ is a finite or countably infinite set of
states, L 6= ∅ is a finite or countably infinite set of labels,
→ ⊆ S × L× S is a total transition relation, and Prob is a func-
tion that assigns to each state s ∈ S a positive probability distri-
bution over the outgoing transitions of s. We write s `,x−→ t when
s
`→ t and x is the probability of (s, `, t).

All notions defined for labelled transition systems naturally extend
to Markov chains. If L = {`} is a singleton, we say that M is
non-labeled, and we omit both L and ` when specifying M (in
particular, we write s x→ t instead of s `,x−→ t). To every s ∈ S
we associate the standard probability space (RunM(s),F ,P) of
runs starting at s, where F is the σ-field generated by all basic
cylinders RunM(w), where w is a finite path starting at s, and
P : F → [0, 1] is the unique probability measure such that
P(RunM(w)) =

∏length(w)
i=1 xi where xi is the probability of

w(i−1)
`i−1−→w(i) for every 1 ≤ i ≤ length(w). If length(w) =

0, we put P(RunM(w)) = 1.
Now we introduce probabilistic multi-counter automata (pMC).

For technical convenience, we consider labeled rules, where the
associated finite set of labels always contains a distinguished ele-
ment τ . The role of the labels becomes clear in Section 3.2 where
we abstract a (labeled) one-dimensional pMC from a given multi-
dimensional one.

Definition 2. Let L be a finite set of labels such that τ ∈ L, and let
d ∈ N+. An L-labeled d-dimensional probabilistic multi-counter
automaton (pMC) is a triple A = (Q, γ,W ), where

• Q is a finite set of states,
• γ ⊆ Q× {−1, 0, 1}d × 2{1,...,d} × L×Q is a set of rules

such that for all p ∈ Q and c ⊆ {1, . . . , d} there is at least one
outgoing rule of the form (p,ααα, c, `, q),

• W : γ → N+ is a weight assignment.

The encoding size of A is denoted by |A|, where the weights used
in W and the counter indexes used in γ are encoded in binary.

A configuration of A = (Q, γ,W ) is an element of Q × Nd,
written as pvvv. We useZ(pvvv) = {i | 1 ≤ i ≤ d,vvv[i] = 0} to denote
the set of all counters that are zero in pvvv. A rule (p,ααα, c, `, q) ∈ γ
is enabled in a configuration pvvv if Z(pvvv) = c and for all 1 ≤ i ≤ d
where ααα[i] = −1 we have that vvv[i] > 0.

The semantics of a pMCA is given by the associated L-labeled
Markov chainMA whose states are the configurations of A, and
the outgoing transitions of a configuration pvvv are determined as
follows:

• If no rule of γ is enabled in pvvv, then pvvv
1,τ−→ pvvv is the only

outgoing transition of pvvv;
• otherwise, for every rule (p,ααα, c, `, q) ∈ γ enabled in pvvv

there is a transition pvvv
x,`−→ quuu such that uuu = vvv + ααα and

x = W ((p,ααα, c, `, q))/T , where T is the total weight of all
rules enabled in pvvv.

WhenL = {τ}, we say thatA is non-labeled, and bothL and τ are
omitted when specifyingA. We say thatA is a probabilistic vector
addition system with states (pVASS) if no subset of counters is
tested for zero, i.e., for every (p,ααα, `, q) ∈ Q×{−1, 0, 1}d×L×Q
we have that γ contains either all rules of the form (p,ααα, c, `, q)
(for all c ⊆ {1, . . . , d}) with the same weight, or no such rule. For

every configuration pvvv, we use state(pvvv) and cval(pvvv) to denote
the control state p and the vector of counter values vvv, respectively.
We also use cval i(pvvv) to denote vvv[i].

Qualitative zero-reachability. A stopping criterion is a non-empty
set Z ⊆ 2{1,...,d} of pairwise incomparable non-empty subsets of
counters. For every configuration pvvv, let Run(pvvv,Z) be the set
of all w ∈ Run(pvvv) such that there exist k ∈ N and % ∈ Z
satisfying % ⊆ Z(w(k)). Intuitively, Z specifies the minimal
subsets of counters that must be simultaneously zero to stop a run.
The qualitative Z-reachability problem is formulated as follows:

Instance: A d-dimensional pMC A and a control state p of A.
Question: Do we have P(Run(p111,Z)) = 1 ?

Here 111 = (1, . . . , 1) is a d-dimensional vector of 1’s. We also
use Run(pvvv,¬Z) to denote Run(pvvv) r Run(pvvv,Z), and we say
that w ∈ FPath(pvvv) is Z-safe if for all w(i) where 0 ≤ i <
length(w) and all % ∈ Z we have that % 6⊆ Z(w(i)).

3. The Results
We start by observing that the qualitative zero-reachability problem
is undecidable in general, and we identify potentially decidable
subcases.

Observation 1. Let Z ⊆ 2{1,...,d} be a stopping criterion satisfy-
ing one of the following conditions:

(a) there is % ∈ Z with more than one element;
(b) there are i, j ∈ {1, . . . , d} such that i 6= j and for every % ∈ Z

we have that {i, j} ∩ % = ∅.

Then, the qualitative Z-reachability problem is undecidable, even
if the set of instances is restricted to pairs (A, p) such that
P(Run(p111,Z)) is either 0 or 1 (hence,P(Run(p111,Z)) cannot be
effectively approximated up to an absolute error smaller than 0.5).

A proof of Observation 1 is immediate. For a given Minsky ma-
chine M (see [26]) with two counters initialized to one, we con-
struct pMCs Aa and Ab of dimension 2 and 3, respectively, and a
control state p such that

• if M halts, then we have P(RunMAa
(p111, {{1, 2}})) = 1 and

P(RunMAb
(p111, {{3}})) = 1;

• if M does not halt, then P(RunMAa
(p111, {{1, 2}})) = 0 and

P(RunMAb
(p111, {{3}})) = 0.

The construction of Aa and Ab is trivial (and hence omitted).
Note that Ab can faithfully simulate the instructions of M using
the counters 1 and 2. The third counter is decreased to zero only
when a control state corresponding to the halting instruction of M
is reached. Similarly, Aa simulates the instructions of M using
its two counters, but here we need to ensure that a configuration
where both counters are simultaneously zero is entered iff a control
state corresponding to the halting instruction of M is reached.
This is achieved by increasing both counters by 1 initially, and
then decreasing/increasing counter i before/after simulating a given
instruction of M operating on counter i.

Note that the construction ofAa andAb can trivially be adapted
to pMCs of higher dimensions satisfying the conditions (a) and (b)
of Observation 1, respectively. However, there are two cases not
covered by Observation 1:

I. Zall = {{1}, . . . , {d}}, i.e., a run is stopped when some
counter reaches zero.

II. Z−i = {{1}, . . . , {d}} r {{i}} where i ∈ {1, . . . , d}, i.e.,
a run is stopped when a counter different from i reaches zero.
The counters different from i are called stopping counters.



These cases are analyzed in the following subsections. The proofs
omitted due to space constraints can be found in the full version of
this paper [16].

3.1 Zero-Reachability, Case I
For the rest of this section, let us fix a (non-labeled) pMC A =
(Q, γ,W ) of dimension d ∈ N+ and a configuration pvvv.

Our aim is to identify the conditions under which it holds
P(Run(pvvv,¬Zall)) > 0. To achieve that, we first consider a (non-
labeled) finite-state Markov chain FA = (Q, ↪→ ,Prob) where
q
x
↪→ r iff

x =
∑

(q,ααα,∅,r)∈γ

P∅(q,ααα, ∅, r) > 0.

Here P∅ : γ → [0, 1] is the probability assignment for the rules de-
fined as follows (we writeP∅(q,ααα, ∅, r) instead ofP∅((q,ααα, ∅, r))):

• For every rule (p,ααα, c, q) with c 6= ∅we put P∅(p,ααα, c, q) = 0.
• P∅(p,ααα, ∅, q) = W ((p, α, ∅, q))/T , where T is the total

weight of all rules of the form (p,ααα′, ∅, q′).

Intuitively, a state q of FA captures the behavior of configurations
quuu where all components of uuu are positive.

Further, we partition the states of Q into SCCs C1, . . . , Cm
according to ↪→. Note that every run w ∈ Run(pvvv) eventually
stays in precisely one Cj , i.e., there is precisely one 1 ≤ j ≤ m
such that for some k ∈ N, the control state of every w(k′), where
k′ ≥ k, belongs to Cj . We use Run(pvvv, Cj) to denote the set of
all w ∈ Run(pvvv,¬Zall) that stay in Cj . Obviously,

Run(pvvv,¬Zall) = Run(pvvv, C1) ] · · · ] Run(pvvv, Cm).

For any n ∈ N denote by Pn the probability that a run w
initiated in pvvv satisfies the following for every 0 ≤ i ≤ n:
state(w(i)) does not belong to any BSCC of FA and Z(w(i)) =
∅. The following lemma shows that Pn decays exponentially fast.

Lemma 1. For any n ∈ N we have

Pn ≤ (1− p|Q|min)
b n
|Q| c,

where pmin is the minimal positive transition probability inMA.
In particular, for any non-bottom SCC C of FA it holds that
P(Run(pvvv, C)) = 0.

Proof. The lemma immediately follows from the fact that for every
configuration pvvv there is a path (in A) of length at most |Q| to a
configuration quuu satisfying either Z(quuu) 6= ∅ or q ∈ D for some
BSCC D of FA.

Now, let C be a BSCC of FA. For every q ∈ C, let changechangechangeq be
a d-dimensional vector of expected counter changes given by

changechangechangeq[i] =
∑

(q,ααα,∅,r)∈γ

P∅(q,ααα, ∅, r) ·ααα[i] .

Note that C can be seen as a finite-state irreducible Markov chain,
and hence there exists the unique invariant distribution µ on the
states of C (see, e.g., [24]) satisfying

µ(q) =
∑
r

x
↪→q

µ(r) · x .

The trend of C is a d-dimensional vector ttt defined by

ttt[i] =
∑
q∈C

µ(q) · changechangechangeq[i] .

Further, for every i ∈ {1, . . . , d} and every q ∈ C, we denote by
botfini(q) the least j ∈ N such that for every configuration quuu

where uuu[i] = j, there is no w ∈ FPathMA(quuu) where counter i is
zero in the last configuration of w and all counters stay positive in
every w(k), where 0 ≤ k < length(w). If there is no such j, we
put botfini(q) =∞. It is easy to show that if botfini(q) <∞, then
botfini(q) ≤ |C|; and if botfini(q) =∞, then botfini(r) =∞ for
all r ∈ C. Moreover, if botfini(q) < ∞, then there is a Z−i-safe
finite path of length at most |C|−1 from quuu to a configuration with
counter i equal to 0, where uuu[i] = botfini(q) − 1 and uuu[`] = |C|
for ` 6= i. In particular, the number botfini(q) is computable in
time polynomial in |C|.

We say that counter i is decreasing in C if botfini(q) =∞ for
some (and hence all) q ∈ C.

Definition 3. Let C be a BSCC of FA with trend ttt, and let
i ∈ {1, . . . , d}. We say that counter i is diverging in C if either
ttt[i] > 0, or ttt[i] = 0 and the counter i is not decreasing in C.

Intuitively, our aim is to prove that P(Run(pvvv, C)) > 0 iff
all counters are diverging in C and pvvv can reach a configuration
quuu (via a Zall-safe finite path) where all components of uuu are
“sufficiently large”. To analyze the individual counters, for every
i ∈ {1, . . . , d} we introduce a (labeled) one-dimensional pMC
which faithfully simulates the behavior of counter i and “updates”
the other counters just symbolically in the labels.

Definition 4. Let L = {−1, 0, 1}d−1, and let Bi = (Q, γ̂, Ŵ ) be
an L-labeled pMC of dimension one such that

• (q, j, ∅,βββ, r) ∈ γ̂ iff (q, 〈βββ, j〉i, ∅, r) ∈ γ;
• (q, j, {1},βββ, r) ∈ γ̂ iff (q, 〈βββ, j〉i, {i}, r) ∈ γ;

• Ŵ (q, j, ∅,βββ, r) = W (q, 〈βββ, j〉i, ∅, r).

• Ŵ (q, j, {1},βββ, r) = W (q, 〈βββ, j〉i, {i}, r).

Here, 〈(j1, . . . , jd−1), j〉i = (j1, . . . , ji−1, j, ji, . . . , jd−1).

Observe that the symbolic updates of the counters different from i
“performed” in the labels of Bi mimic the real updates performed
by A in configurations where all of these counters are positive.

Given a run w ≡ p0(v0)ααα0 p1(v1)ααα1 p2(v2)ααα2 . . . from
RunMBi (p0(v0)) and k ∈ N, we denote by tot (w; k) the vec-
tor
∑k−1
n=0αααn, and given j ∈ {1, . . . , d} r {i}, we denote by

totj(w; k) the number
∑k−1
n=0αααn[j] (i.e., the j-th component of

tot (w; k)).
Let Υi be a function which for a given run w ≡ p0vvv0 p1vvv1 . . .

of RunMA(pvvv,¬Z−i) returns a run

Υi(w) ≡ p0(vvv0[i])ααα0 p1(vvv1[i])ααα1 p2(vvv2[i])ααα2 . . .

of RunMBi (p(vvv[i])) where the label αααj corresponds to the up-
date in the abstracted counters performed in the transition pjvvvj→
pj+1vvvj+1, i.e., vvvj+1−vvvj = 〈αααj , vvvj+1[i]−vvvj [i]〉i. The next lemma
is immediate.

Lemma 2. For all w ∈ RunMA(pvvv,¬Z−i) and k ∈ N we have

• state(w(k)) = state(Υi(w)(k)),
• cval(w(k)) = 〈tot (Υi(w); k), cval1(Υi(w)(k))〉i.

Further, for every measurable set R ⊆ RunMA(pvvv,¬Z−i) we
have that Υi(R) is measurable and

P(R) = P(Υi(R)) (1)

Now we examine the runs of Run(pvvv, C) where C is a BSCC of
FA such that some counter is not diverging in C.

Lemma 3. Let C be a BSCC of FA. If some counter is not
diverging in C, then P(Run(pvvv, C)) = 0.

It remains to consider the case when C is a BSCC of FA where
all counters are diverging. Here we use the results of [13] which al-



low to derive a bound on divergence probability in one-dimensional
pMC. These results are based on designing and analyzing a suitable
martingale for one-dimensional pMC.

Lemma 4. Let B be a 1-dimensional pMC, let C be a BSCC of
FB such that the trend t of the only counter in C is positive and
let δ = 2|C|/x|C|min where xmin is the smallest non-zero transition
probability in MB. Then for all q ∈ C and k > 2δ/t we have
that P(q(k),¬Z) ≥ 1 −

(
ak/(1− a)

)
, where Z = {1} and

a = exp
(
−t2 / 8(δ + t+ 1)2

)
.

Proof. Denote by [q(k)↓, `] the probability that a run initiated in
q(k) visits a configuration with zero counter value for the first
time in exactly ` steps. By Proposition 7 of [13] we obtain for all
` ≥ h = 2δ/t 1,

[q(k)↓, `] ≤ a`

where a = exp
(
−t2 / 8(δ + t+ 1)2

)
for δ ≤ 2|C|/x|C|min

2.
Thus

P(q(k),¬Z) ≥ 1−
∞∑
`=k

[q(k)↓, `] ≥ 1− ak

1− a

Definition 5. Let C be a BSCC of FA where all counters are
diverging, and let q ∈ C. We say that a configuration quuu is above
a given n ∈ N if uuu[i] ≥ n for every i such that ttt[i] > 0, and
uuu[i] ≥ botfini(q) for every i such that ttt[i] = 0.

Lemma 5. Let C be a BSCC of FA where all counters are diverg-
ing. Then P(Run(pvvv, C)) > 0 iff there is a Zall-safe finite path of
the form pvvv→ ∗quuu→ ∗qzzz where q ∈ C, quuu is above 1, zzz−uuu ≥ 000,
and (zzz − uuu)[i] > 0 for every i such that ttt[i] > 0.

Proof. We start with “⇒”. Let ttt be the trend of C. We show that
for almost all w ∈ Run(pvvv, C) and all i ∈ {1, . . . , d}, one of the
following conditions holds:

(A) ttt[i] > 0 and lim infk→∞ cval i(w(k)) =∞,
(B) ttt[i] = 0 and cval i(w(k)) ≥ botfini(state(w(k))) for all k’s

large enough.

First, recall that C is also a BSCC of FBi , and realize that the trend
of the (only) counter in the BSCC C of FBi is ttt[i].

Concerning (A), it follows, e.g., from the results of [13], that al-
most all runsw′ ∈ RunMBi (p(1)) that stay inC and do not visit a
configuration with zero counter satisfy lim infk→∞ cval1(w′(k)) =
∞. In particular, this means that almost all w′ ∈ Υi(Run(pvvv, C))
satisfy this property. Hence, by Lemma 2, for almost all w ∈
Run(pvvv, C) we have that lim infk→∞ cval i(w(k)) =∞.

Concerning (B), note that almost all runs w ∈ Run(pvvv, C) sat-
isfying cval i(w

′(k)) < botfini(state(w(k))) for infinitely many
k’s eventually visit zero in some counter (there is a path of length
at most |C| from each such w(k) to a configuration with zero in
counter i, or in one of the other counters).

The above claim immediately implies that for every k ∈ N,
almost every run of Run(pvvv, C) visits a configuration quuu above k.
Hence, there must be a Zall-safe path of the form pvvv→ ∗quuu→ ∗qzzz
with the required properties.

“⇐”: If there is a Zall-safe path of the form pvvv→ ∗quuu→ ∗qzzz
where q ∈ C, quuu is above 1, zzz − uuu ≥ 000, and (zzz − uuu)[i] > 0 for
every i such that ttt[i] > 0, then pvvv can a reach a configuration qyyy
above k for an arbitrarily large k ∈ N via a Zall-safe path.

1 The precise bound on h is given in the proof of Proposition 7 [14].
2 The bound on δ is given in Proposition 6 [14].

By Lemma 4, there exists k ∈ N such that for every i ∈
{1, . . . , d} where ttt[i] > 0 and every n ≥ k, the probabil-
ity of all w ∈ RunMBi (q(n)) that visit a configuration with
zero counter is strictly smaller than 1/d. Let qyyy be a configura-
tion above k reachable from pvvv via a Zall-safe path (as shown
above, the existence of such a qyyy follows from the existence of
pvvv→ ∗quuu→ ∗qzzz). It suffices to show that P(Run(qyyy,Zall)) < 1.
For every i ∈ {1, . . . , d} where ttt[i] > 0, let Ri be the set of all
w ∈ Run(qyyy,Zall) such that cval i(w(k)) = 0 for some k ∈ N
and all counters stay positive in all w(k′) where k′ < k. Clearly,
Run(qyyy,Zall) =

⋃
iRi, and thus we obtain

P(Run(qyyy,Zall)) ≤
∑
i

P(Ri) =
∑
i

P(Υi(Ri)) < d · 1

d
= 1

The following lemma shows that it is possible to decide,
whether for a given n ∈ N a configuration above n can be reached
via a Zall-safe path. Its proof uses the results of [8] on the cover-
ability problem in (non-stochastic) VASS.

Lemma 6. Let C be a BSCC of FA where all counters are di-
verging and let q ∈ C. There is a Zall-safe finite path of the form
pvvv→ ∗quuu with quuu above some n ∈ N iff there is a Zall-safe finite
path of length at most (|Q| + 2 · |γ|) · (3 + n)(3d)!+1 of the form
pvvv→ ∗qu′u′u′ with qu′u′u′ is above n. Moreover, the existence of such a
path can be decided in time (|A| · n)c

′·2d log(d)

where c′ is a fixed
constant independent of d and A.

Proof. We employ a decision procedure of [8] for VASS coverabil-
ity. Since we need to reach qu′u′u′ above n via a Zall-safe finite path,
we transform A into a (non-probabilistic) VASS A′ whose control
states and rules are determined as follows: for every rule (p,ααα, ∅, q)
of A, we add to A′ the control states p, q together with two auxil-
iary fresh control states q′, q′′, and we also add the rules (p,−1−1−1, q′),
(q′,111, q′′), (q′′,ααα, q). Hence, A′ behaves like A, but when some
counter becomes zero, then A′ is stuck (i.e., no transition is en-
abled except for the self-loop). Now it is easy to check that pvvv can
reach a configuration quuu above n via a Zall-safe finite path inA iff
pvvv can reach a configuration quuu above n via some finite path inA′,
which is exactly the coverability problem for VASS. Theorem 1
in [8] shows that such a configuration can be reached iff there is
configuration qu′u′u′ above n reachable via some finite path of length
at mostm = (|Q|+2·|γ|)·(3+n)(3d)!+1. (The term (|Q|+2·|γ|)
represents the number of control states ofA′.) This path induces, in
a natural way, aZall-safe path from pvvv to qu′u′u′ inA of length at most
m/2. Moreover, Theorem 2 in [8] shows that the existence of such
a path inA′ can be decided in time (|Q|+2·|γ|)·(3+n)2

O(d log(d))

,
which proves the lemma.

Theorem 1. The qualitative Zall-reachability problem for d-di-
mensional pMC is decidable in time |A|κ·2

d log(d)

, where κ is a
fixed constant independent of d and A.

Proof. Note that the Markov chain FA is computable in time poly-
nomial in |A| and d, and we can efficiently identify all diverging
BSCCs of FA. For each diverging BSCC C, we need to check the
condition of Lemma 5. By applying Lemma 2.3. of [29], we ob-
tain that if there exist some quuu above 1 and a Zall-safe finite path
of the form quuu→ ∗qzzz such that zzz − uuu ≥ 000 and (zzz − uuu)[i] > 0
for every i where ttt[i] > 0, then such a path exists for every quuu
above |A|c·d and its length is bounded by |A|c·d. Here c is a fixed
constant independent of |A| and d (let us note that Lemma 2.3. of
[29] is formulated for vector addition systems without states and
a non-strict increase in every counter, but the corresponding result



for VASS is easy to derive; see also Lemma 15 in [12]). Hence,
the existence of such a path for a given q ∈ C can be decided in
|A|d

O(1)

time, e.g., by simple inductive enumeration of all config-
urations that can be reached via a path of length at most |A|c·d. It
remains to check whether pvvv can reach a configuration quuu above
|A|c·d via a Zall-safe finite path. By Lemma 6 this can be done in
time (|A| · |A|c·d)c

′·2d log(d)

for another constant c′. This gives us
the desired complexity bound.

Note that for every fixed dimension d, the qualitativeZall-reach-
ability problem is solvable in polynomial time.

Now we show that P(Run(pvvv,Zall)) can be effectively ap-
proximated up to an arbitrarily small absolute/relative error ε > 0.
A full proof of Theorem 2 can be found in [16].

Theorem 2. For a given d-dimensional pMCA and its initial con-
figuration pvvv, the probability P(Run(pvvv,Zall)) can be approx-
imated up to a given absolute error ε > 0 in time (exp(|A|) ·
log(1/ε))O(d3).

Proof sketch. First we check whether P(Run(pvvv,Zall)) = 1 (us-
ing the algorithm of Theorem 1) and return 1 if it is the case. Other-
wise, we first show how to approximate P(Run(pvvv,Zall)) under
the assumption that p is in some diverging BSCC of FA, and then
we show how to drop this assumption.

So, let C be a diverging BSCC of FA with P(Run(pvvv, C)) <
1, and let us assume that p ∈ C. We show how to compute a num-
ber ν > 0 such that |P(Run(pvvv,Zall)) − ν| ≤ d · ε in time
(exp(|A|) · log(1/ε))O(d2). We proceed by induction on d. The
key idea of the inductive step is to find a sufficiently large con-
stant K such that if some counter reaches K, it can be safely “for-
gotten”, i.e., replaced by∞, without influencing the probability of
reaching zero in some counter by more than ε. Hence, whenever
we visit a configuration quuu where some counter value in uuu reaches
K, we can apply induction hypothesis and approximate the prob-
ability or reaching zero in some counter from quuu by “forgetting”
the large counter a thus reducing the dimension. Obviously, there
are only finitely many configurations where all counters are be-
low K, and here we employ the standard methods for finite-state
Markov chains. The numberK is computed by using the bounds of
Lemma 4.

Let us note that the base (when d = 1) is handled by relying
only on Lemma 4. Alternatively, we could employ the results of
[18]. This would improve the complexity for d = 1, but not for
higher dimensions.

Finally, we show how to approximate P(Run(pvvv,Zall)) when
the control state p does not belong to a BSCC of FA. Here we use
the bound of Lemma 1.

Note that the complexity of the approximation is lower than the
doubly-exponential complexity of the qualitative problem. This is
because the complexity of solving the qualitative problem is dom-
inated by searching for a Zall-safe path from the initial configura-
tion pvvv to some configuration in a BSCC of FA, whose length can
be doubly-exponential in d (see Lemma 6). Intuitively, the proba-
bilities of such long paths are negligible and hence we do not need
to search for these paths when we are only interested in approxi-
mating P(Run(pvvv,Zall)).

Also note that ifP(Run(pvvv,Zall)) > 0, then this probability is
at least pm·|Q|min where pmin is the least positive transition probability
inMA and m is the maximal component of vvv. Hence, Theorem 2
can also be used to approximate P(Run(pvvv,Zall)) up to a given
relative error ε > 0.

3.2 Zero-Reachability, Case II
Let us fix a (non-labeled) pMC A = (Q, γ,W ) of dimension
d ∈ N+ and i ∈ {1, . . . , d}. As in the previous section, our aim
is to identify the conditions under which Run(p111,¬Z−i) > 0.
Without restrictions, we assume that i = d, i.e., we consider
Z−d = {{1}, . . . , {d − 1}}. Also, for technical reasons, we
assume that P(Run(p111,¬Z−d)) = P(Run(puuuin,¬Z−d)) where
uuuin[i] = 1 for all i ∈ {1, . . . , d − 1} but uuuin[d] = 0. (Note that
every pMC can be easily modified in polynomial time so that this
condition is satisfied.)

To analyze the runs of Run(puuuin,¬Z−d), we re-use the finite-
state Markov chain FA from Section 3.1. Intuitively, the chain FA
is useful for analyzing those runs of Run(puuuin,¬Z−d) where all
counters stay positive. Since the structure of Run(puuuin,¬Z−d) is
more complex than in Section 3.1, we also need some new analytic
tools.

We also re-use the L-labeled 1-dimensional pMC Bd to deal
with runs that visit zero in counter d infinitely many times. To
simplify notation, we use B to denote Bd. The behaviour of B is
analyzed using the finite-state Markov chain X (see Definition 6
below) that has been employed already in [13] to design a model-
checking algorithm for linear-time properties in one-dimensional
pMC.

Let us denote by [q↓r] the probability that a run ofMB initiated
in q(0) visits the configurations r(0) without visiting any configu-
ration of the form r′(0) (where r′ 6= r) in between. Given q ∈ Q,
we denote by [q↑] the probability 1 −

∑
r∈Q[q↓r] that a run ini-

tiated in q(0) never visits a configuration with zero counter value
(except for the initial one).

Definition 6. Let XB = (X, → ,Prob) be a non-labelled finite-
state Markov chain where X = Q ∪ {q↑ | q ∈ Q} and the transi-
tions are defined as follows:

• q x→ r iff 0 < x = [q↓r];
• q x→ q↑ iff 0 < x = [q↑];
• for every q ∈ Q we have q↑ 1→ q↑;
• there are no other transitions.

The correspondence between the runs of RunMB (p(0)) and
RunXB (p) is captured by a function Φ : RunMB (p(0)) →
RunXB (p) ∪ {⊥}, where Φ(w) is obtained from a given w ∈
RunMB (p(0)) as follows:

• First, each maximal subpath in w of the form q(0), . . . , r(0)
such that the counter stays positive in all of the intermediate
configurations is replaced with a single transition q→ r.

• Note that if w contained infinitely many configurations with
zero counter, then the resulting sequence is a run of RunXB (p),
and thus we obtain our Φ(w). Otherwise, the resulting sequence
takes the form v ŵ, where v ∈ FPathXB (p) and ŵ is a suffix
of w initiated in a configuration r(1). Let q be the last state of
v. Then, Φ(w) is either v (q↑)ω or ⊥, depending on whether
[q↑] > 0 or not, respectively (here, (q↑)ω is a infinite sequence
of q↑).

Lemma 7. For every measurable subset R ⊆ RunXB (p) we have
that Φ−1(R) is measurable and P(R) = P(Φ−1(R)).

A proof of Lemma 7 is straightforward (it suffices to check that
the lemma holds for all basic cylinders RunXB (w) where w ∈
FPathXB (p)). Note that Lemma 7 implies P(Φ=⊥) = 0.

LetD1, . . . , Dk be all BSCCs of XB reachable from p. Further,
for every Dj , we use Run(puuuin, Dj) to denote the set of all w ∈
RunMA(puuuin,¬Z−d) such that Φ(Υd(w)) 6= ⊥ and Φ(Υd(w))



visits Dj . Observe that

P(RunMA(puuuin,¬Z−d)) =

k∑
j=1

P(Run(puuuin, Dj)) (2)

Indeed, note that almost all runs w of RunXB (p) visit some Dj ,
and hence by Lemma 7, we obtain that Φ(w) visits some Dj for
almost all w ∈ RunMB (p(1)). In particular, for almost all w of
Υd(RunMA(puuuin,¬Z−d)) we have that Φ(w) visits some Dj .
By Lemma 2, for almost all w ∈ RunMA(puuuin,¬Z−d), the run
Φ(Υd(w)) visits some Dj , which proves Equation (2).

Now we examine the runs of Run(puuuin, Dj) in greater detail
and characterize the conditions under whichP(Run(puuuin, Dj)) >
0. Note that for every BSCCD inXB we have that eitherD = {q↑}
for some q ∈ Q, or D ⊆ Q. We treat these two types of BSCCs
separately, starting with the former.

Lemma 8. P(
⋃
q∈Q Run(puuuin, {q↑})) > 0 iff there exists

a BSCC C of FA with all counters diverging and a Z−d-safe finite
path of the form puuuin→ ∗quuu→ ∗qzzz where the subpath quuu→ ∗qzzz
is Zall-safe, q ∈ C, quuu is above 1, zzz − uuu ≥ 000, and (zzz − uuu)[i] > 0
for every i such that ttt[i] > 0.

Now let D be a BSCC of XB reachable from p such that D ⊆ Q
(i.e., D 6= {q↑} for any q ∈ Q). Let eee ∈ [1,∞]D where eee[q] is
the expected number of transitions needed to revisit a configuration
with zero counter from q(0) inMB.

Proposition 1 ([13], Corollary 6). The problem whether eee[q] <∞
is decidable in polynomial time.

From now on, we assume that eee[q] <∞ for all q ∈ D.

In Section 3.1, we used the trend ttt ∈ Rd to determine tendency
of counters either to diverge, or to reach zero. As defined, each
ttt[i] corresponds to the long-run average change per transition of
counter i as long as all counters stay positive. Allowing zero value
in counter d, the trend ttt[i] is no longer equal to the long-run average
change per transition of counter i and hence it does not correctly
characterize its behavior. Therefore, we need to redefine the notion
of trend in this case.

Recall that B is L = {−1, 0, 1}d−1-labeled pMC. Given i ∈
{1, . . . , d−1}, we denote by δδδi ∈ RQ the vector where δδδi[q] is
the i-th component of the expected total reward accumulated along
a run from q(0) before revisiting another configuration with zero
counter. Formally, δδδi[q] = ETi where Ti is a random variable
which to every w ∈ RunMB (q(0)) assigns tot i(w; `) such that
` > 0 is the least number satisfying w(`) = r(0) for some r ∈ D.

Let µµµoc ∈ [0, 1]D be the invariant distribution of the BSCC D
of XB, i.e., µµµoc is the unique solution of

µµµoc[q] =
∑

r∈D,r x→q

µµµoc[r] · x

The oc-trend ofD is a (d−1)-dimensional vector tttoc ∈ [−1, 1]d−1

defined by

tttoc[i] =
(
µµµToc · δδδi

)
/
(
µµµToc · eee

)
The following lemma follows from the standard results about irre-
ducible Markov chains (see, e.g., [28]).

Lemma 9. For almost all w ∈ RunMB (q(0)) we have that

tttoc[i] = lim
k→∞

tot i(w; k)

k

That is, tttoc[i] is the i-th component of the expected long-run aver-
age reward per transition in a run of RunMB (q(0)), and as such,

determines the long-run average change per transition of counter i
as long as all counters of {1, . . . , d−1} remain positive.

Further, for every i ∈ {1, . . . , d − 1} and every q ∈ D,
we denote by botinf i(q) the least j ∈ N such that every w ∈
FPathMB (q(0)) ending in q(0) satisfies tot i(w; k) ≥ −j for all
0 ≤ k ≤ length(w). If there is no such j, we put botinf i(q) =∞.
It is easy to show that if botinf i(q) = ∞, then botinf i(r) = ∞
for all r ∈ D.

Lemma 10. If botinf i(q) < ∞, then botinf i(q) ≤ (|Q| + 1)3

and the exact value of botinf i(q) is computable in time polynomial
in |A|.
We say that counter i is oc-decreasing in D if botinf i(q) =∞ for
some (and hence all) q ∈ D.

Definition 7. For a given i ∈ {1, . . . , d−1}, we say that the i-th
reward is oc-diverging in D if either tttoc[i] > 0, or tttoc[i] = 0 and
counter i is not oc-decreasing in D.

Lemma 11. If some reward is not oc-diverging inD, then we have
P(Run(puuuin, D)) = 0.

It remains to analyze the case when all rewards are oc-diverging
in D. Similarly to Case I, we need to obtain a bound on probability
of divergence of an arbitrary counter i ∈ {1, . . . , d − 1} with
tttoc[i] > 0. The following lemma (an analogue of Lemma 4) is
crucial in the process.

Lemma 12. Let D be a {−1, 0, 1}-labeled one-dimensional pMC
with a set of states Q, and let D ⊆ Q be a BSCC of XD such
that the oc-trend toc of the only reward in D is positive. Then
for all q ∈ D, there exist computable constants h′ and A0 where
0 < A0 < 1, such that for all h ≥ h′ we have that the probability
that a run w ∈ RunMD (q(0)) satisfies

inf
k∈N

tot1(w; k) ≥ −h

is at least 1−Ah0 .

A proof of Lemma 12 is the most involved part of this paper,
where we need to construct new analytic tools. A sketch of the
proof is included at the end of this section.

Definition 8. Let D be a BSCC of XB where all rewards are oc-
diverging, and let q ∈ D. We say that a configuration quuu is oc-
above a given n ∈ N if uuu[i] ≥ n for every i ∈ {1, . . . , d− 1} such
that tttoc[i] > 0, anduuu[i] ≥ botinf i(q) for every i ∈ {1, . . . , d−1}
such that tttoc[i] = 0.

The next lemma is an analogue of Lemma 5 and it is proven
using the same technique, using Lemma 12 instead of Lemma 4.

Lemma 13. Let D be a BSCC of XB where all rewards are
diverging. Then there exists a computable constant n ∈ N such
that P(Run(puuuin, D)) > 0 iff there is a Z−d-safe finite path of
the form puuuin→ ∗quuu where q ∈ D, uuu is oc-above n, and uuu[d] = 0.

A direct consequence of Lemma 13 and the results of [7] is the
following:

Theorem 3. The qualitative Z−d-reachability problem for d-di-
mensional pMC is decidable (assuming eee[q] <∞ for all q ∈ D in
every BSCC of XB).

A proof of Theorem 3 is straightforward, since we can effectively
compute the structure of XB (in time polynomial in |A|), express
its transition probabilities and oc-trends in BSCCs of XB in the ex-
istential fragment of Tarski algebra, and thus effectively identify
all BSCCs of XB where all rewards are oc-diverging. To check the
condition of Lemma 13, we use the algorithm of [7] for construct-
ing finite representation of filtered covers in VAS with one zero test.



This is the only part where we miss an upper complexity bound, and
therefore we cannot provide any bound in Theorem 3. It is worth
noting that the qualitative Z−d-reachability problem is SQUARE-
ROOT-SUM-hard (see below), and hence it cannot be solved effi-
ciently without a breakthrough results in the complexity of exact
algorithms. For more comments and a proof of the next Proposi-
tion, see [16].

Proposition 2. The qualitativeZ−d-reachability problem is SQUA-
RE-ROOT-SUM-hard, even for two-dimensional pMC where eee[q] <
∞ for all q ∈ D in every BSCC of XB.

Using Lemma 13, we can also approximate P(Run(pvvv,Z−d))
up to an arbitrarily small absolute error ε > 0 (due to the problems
mentined above, we do not provide any complexity bounds). The
procedure mimics the one of Theorem 2. The difference is that now
we eventually use methods for one-dimensional pMC instead of the
methods for finite-state Markov chains.

Theorem 4. For a given d-dimensional pMCA and its initial con-
figuration pvvv, the probability P(Run(pvvv,Z−d)) can be effectively
approximated up to a given absolute error ε > 0.

A Proof of Lemma 12. The lemma differs from Lemma 4 in that
it effectively bounds the probability of not reaching zero in one
of the counters of a two-dimensional pMC. Hence, the results on
one-dimensional pMCs are not sufficient here. Below, we sketch a
stronger method that allows us to prove the lemma. The method
is again based on analysing a suitable martingale; however, the
construction and structure of the martingale is much more complex
than in the one-dimensional case.

Before we show how to construct the desired martingale, let us
mention the following useful lemma:

Lemma 14. Let r ∈ D. Given a run w ∈ RunMB (r(0)), we
denote by E(w) = inf{` > 0 | cval1(w(`)) = 0}, i.e., the time
it takes w to re-visit zero counter value. Then there are constants
c′ ∈ N and a ∈ (0, 1) computable in polynomial space such that
for all k ≥ c′ we have

P(E ≥ k) ≤ ak

Proof. This follows immediately from Proposition 6 and Theo-
rem 7 in [15].

Let us fix an 1-dimensional pMCD with the set of states Q and
let D ⊆ Q be a BSCC of XD in which the oc-trend of the only
reward is positive. Let us summarize the notation used throughout
the proof.

• Recall that eee ∈ [1,∞]D is the vector such that eee[q] is the
expected total time of a nonempty run from q(0) to the first
visit of r(0) for some r ∈ Q. By our assumptions, eee↓ is finite.

• Let Post(D) be the set of all states q ∈ Q such that there is an
r ∈ D and ` ∈ N such that q(`) is reachable from r(0) in D.

• Let eee↓ ∈ [1,∞]Post(D) be the vector such that eee↓[q] is the
expected total time of a run from q(1) to the first visit of r(0)
for some r ∈ Q. Since eee is finite, also eee↓ is finite.

• Recall that δδδ1 ∈ RD is the vector such that δδδ1[q] is the expected
total reward accumulated during a nonempty run from q(0) to
the first visit of r(0) for some r ∈ Q. Since |δδδ1[q]| ≤ |eee[q]|
holds for all q ∈ Q, the vector δδδ1 is finite.

• Let δδδ↓ ∈ RPost(D) be the vector such that δδδ↓[q] is the expected
total reward accumulated during a run from q(1) to the first visit
of r(0) for some r ∈ Q. Similarly as before, δδδ↓ is finite.

• Let us denote byA ∈ RD×D transition matrix of the irreducible
Markov chain induced by BSCC D of XD , i.e., A[q, r] is the

probability that starting from q(0) the configuration r(0) is
visited before visiting any configuration r′(0) for any r′ 6= r.
Clearly the matrix A is stochastic and irreducible.

• Let G ∈ RPost(D)×Post(D) denote the matrix such that G[q, r]
is the probability that starting from q(1) the configuration r(0)
is visited before visiting any configuration r′(0) for any r′ 6= r.
By our assumptions the matrix G is stochastic, i.e., G111 = 111.

• Recall that µµµToc = µµµTocA ∈ [0, 1]D denotes the invariant distri-
bution of the finite Markov chain XD induced by A.

• Recall that t = (µµµTocδδδ1)/(µµµToceee) ∈ [−1,+1] is the oc-trend
of D, so intuitively t is the expected average reward per step
accumulated during a run started from q(0) for some q ∈ D.

• Let rrr↓ := δδδ↓ − teee↓ ∈ RPost(D) and let rrr0 := δδδ1 − teee ∈ RD .

Lemma 15. There exists a vector ggg(0) ∈ RPost(D) such that

ggg(0)[D] = rrr0 +Aggg(0)[D] , (3)

where ggg(0)[D] denotes the vector obtained from ggg(0) by deleting
the non-D-components.

Proof sketch. The proof is based on the notion of group inverses
for matrices [17]. Close connections of this concept to (finite)
Markov chains are discussed in [25]. In [16] we show that for any
non-negative irreducible matrix P with spectral radius3 equal to
1 there is a matrix, denoted by (I − P )#, such that (I − P ) ·
(I − P )# = I −W , where W is a matrix whose rows are scalar
multiples of a dominant left eigenvector ofP (i.e., a left eigenvector
corresponding to the eigenvalue of maximal absolute value). Then,
we prove Lemma 15 as follows:

Recall that the matrixA is stochastic and irreducible. Also, note
that the invariant distribution µµµToc satisfies µµµTocA = µµµToc, i.e., it is a
left eigenvector of A with the corresponding eigenvalue equal to
1. By the Perron-Frobenius theorem, an eigenvector with strictly
positive components (such as µµµToc) of an irreducible non-negative
matrix must be a dominant eigenvector of this matrix. It follows
that the spectral radius of A is 1, so (I −A)# exists.

Now define ggg(0)[D] := (I − A)#rrr0. The non-D-components
can be set arbitrarily, for instance, they can be set to 0. So we have
ggg(0)[D] = rrr0 + Aggg(0)[D] − Wrrr0, where the rows of W are
multiples of µµµToc. We have:

µµµTocrrr0 = µµµToc

(
δδδ1 −

µµµTocδδδ1
µµµToceee

eee

)
by the definitions of rrr0 and t

= 0 .

So (3) follows.

Now take an arbitrary vector ggg(0) satisfying (3) and extend it to
a function ggg : N→ RPost(D) inductively by putting

ggg(n+ 1) = rrr↓ +Gggg(n) for all n ∈ N. (4)

Let us fix any q ∈ D and any h ∈ N. For a runw ∈ RunMD (q(0))

and all ` ∈ N let p(`) ∈ Q and x
(`)
1 , x

(`)
2 ∈ N be such that

p(`) = state(w(`)), x(`)2 = cval(w(`)) and x(`)1 = h+ tot (w; `).
Finally, let us define

m(`) := x
(`)
1 − t`+ ggg

(
x
(`)
2

)
[p(`)] for all ` ∈ N. (5)

Then we have:

3 The spectral radius of P is the maximal absolute value of an eigenvalue of
P .



Proposition 3. Write E for the expectation with respect to P . We
have for all ` ∈ N:

E
(
m(`+1)

∣∣∣ w(`)
)

= m(`) .

In other words, the stochastic process {m(`)}∞`=0 is a martin-
gale, and this holds for any choice of vector ggg(0) satisfying (3) and
any choice of x(0) = h ∈ N. For our purposes we need to pick
ggg(0) and h in a rather specific way.

Lemma 16. There is ggg(0) satisfying (3) such that for the function
ggg : N→ RPost(D) defined by (4) the following holds: There exists a
constant c effectively computable in polynomial space such that for
every q ∈ D and n ≥ 1 we have |ggg(0)[q]| ≤ c and |ggg(n)[q]| ≤ c·n.

Proof sketch. First we show that there is a vector ggg∗ ∈ RD with
ggg∗ = rrr0 +Aggg∗ and

0 ≤ ggg∗[q] ≤ emax|D|
y
|D|
min

for all q ∈ D, (6)

where emax := 1 + maxq∈Post(D) eee↓[q] and ymin denotes the
smallest nonzero entry in the matrix A. To see this, pick an arbi-
trary vector ggg′(0)[D] satisfying (3) (whose existence is shown by
Lemma 15) and observe that sinceA111 = 111, for every κ ∈ R it holds
that g′g′g′(0)[D] + κ111 = rrr0 +A(ggg′(0)[D] + κ111), i.e., ggg′(0)[D] + κ111
also satisfies (3). So let κ be such that for ggg∗ := ggg′(0)[D] + κ111

it holds maxq∈D ggg
∗[q] ≤ emax|D|/y|D|min (such κ clearly exists).

In [16] we show that then the vector ggg∗ is non-negative, which
shows that (6) holds.

Now put ggg(0)[D] = ggg∗ and define the non-D components of
ggg(0) arbitrarily (e.g., make them zero). A straightforward induc-
tion, which we leave to the full version [16], shows that for every
n ∈ N it holds |ggg(n)| ≤ |ggg(0)|+ n|rrr↓|. Using (6) and the fact that
|rrr↓| ≤ |eee↓| ≤ emax, we get |ggg(n)| ≤ emax|D|/y|D|min + nemax,
from which the lemma follows.

Now let ggg(0) be the vector from Lemma 16 and h ∈ N be
such that (t · 4

√
h)/c ≥ c′, where c is from Lemma 16 and c′

from Lemma 14. As shown by Proposition 3, the stochastic process
{m(`)}∞`=0 defined by (5) (where ggg(0) is extended to N using
(4)) is a martingale. Unfortunately, this martingale may still have
unbounded differences, i.e. |m(`+1)

i −m(`)
i |may become arbitrarily

large with increasing `, which prohibits us from applying standard
tools of martingale theory (such as Azuma’s inequality) directly on
{m(`)}∞`=0. We now show how to overcome this difficulty.

Let us fix any i ∈ N such that i ≥ h and denoteK = (t· 4
√
i)/c.

We define a new stochastic process {m(`)
i }
∞
`=0 as follows:

m
(`)
i :=

{
m(`) if x(`

′)
2 ≤ K for all `′ ≤ `

m
(`−1)
i otherwise.

(7)

Observe that {m(`)
i }
∞
`=0 is also a martingale. Moreover, using the

bound of Lemma 16 we have for every ` ∈ N that |m(`+1)
i −

m
(`)
i | ≤ 1 + t + 2cK ≤ 4t 4

√
i, i.e., {m(`)

i }
∞
`=0 is a bounded-

difference martingale.
Now let Hi be the set of all runs w that satisfy x(i)1 = 0 and

x
(`)
1 > 0 for all 0 ≤ ` < i. Moreover, denote by Over i the set of

all runs w such that x(`)2 ≥ K for some 0 ≤ ` ≤ i, and by ¬Over i
the complement of Over i.

Note that every run can perform at most i-revisits of zero
counter value during the first i steps. By Lemma 14 the probability
that counter value at least K is reached between two visits of zero
counter is at most aK . It follows that P(Over i) ≤ i · a(t·

4√i)/c.

Next, for every run w ∈ ¬Over i ∩Hi it holds

(m
(i)
i −m

(0)
i )(w) = (m(i) −m(0))(w)

= −it+ ggg(x
(i)
2 )[p(i)]− h− ggg(0)[p(0)]

≤ −it+ 2cK = −it+ 2 · · 4
√
i ≤ −i t

2
,

where the first inequality follows from the bound on ggg(n) in
Lemma 16 and the last inequality holds since 4

√
i ≤ i/2 for all

i ≥ 3.
Using the Azuma’s inequality, we get

P(Over i ∩Hi) ≤ P(m
(i)
i −m

(0)
i ≤ −it/2)

≤ exp

(
− i2 · t2

8i(4t 4
√
i)2

)
= exp

(
−
√
i

128

)
.

Altogether, we have

P(Hi) = P(Hi ∩Over i) + P(Hi ∩ ¬Over i)

≤ i · a(t·
4√i)/c + e−

√
i/128 ≤ i ·A

4√i,

where A = max{at/c, 2−1/128}. Note that A is also computable
in polynomial space.

We now have all the tools needed to prove Lemma 12. We have

P( inf
k∈N

tot1(w; k) ≤ −h) =
∑
i≥h

P(Hi) ≤
∑
i≥h

i ·A
4√i.

Note that
∑∞
`=h ` · A

4√
` =

∑∞
j=b 4√

hc

∑(j+1)4−1

`=j4
` · A

4√
` ≤∑∞

j=b 4√
hc

∑(j+1)4−1

`=j4
(j+1)4Aj ≤

∑∞
j=b 4√

hc 8(j+1)7Aj . Using
standard methods of calculus we can bound the last sum by (c′′ ·
h7 · Ah)/(1 − A)8 for some known constant c′′ independent of
B. Thus, from the knowledge of A and c′′ we can easily compute,
again in polynomial space, numbers h0 ∈ N, A0 ∈ (0, 1) such that
for all h ≥ h0 it holds

P( inf
k∈N

tot1(w; k) ≥ h) ≥ 1−Ah0 .

4. Conclusions
We have shown that the qualitative zero-reachability problem is
decidable in Case I and II, and the probability of all zero-reaching
runs can be effectively approximated. Let us note when the techni-
cal condition adopted in Case II is not satisfied, than the oc-trends
may be undefined and the problem requires a completely differ-
ent approach. An important technical contribution of this paper is
the new martingale defined in Section 3.2, which provides a versa-
tile tool for attacking other problems of pMC analysis (model-
checking, expected termination time, constructing (sub)optimal
strategies in multi-counter decision processes, etc.) similarly as
the martingale of [13] for one-dimensional pMC.
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