
Model Checking Probabilistic Pushdown Automata

Javier Esparza
Institute for Formal Methods in Computer Science,

University of Stuttgart,
Universität str. 38, 70569 Stuttgart, Germany.
esparza@informatik.uni-stuttgart.de

Antonı́n Kučera∗

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno,

Czech Republic.
tony@fi.muni.cz

Richard Mayr†

Department of Computer Science,
Albert-Ludwigs-University Freiburg

Georges-Koehler-Allee 51,
D-79110 Freiburg, Germany.

mayrri@informatik.uni-freiburg.de

Abstract

We consider the model checking problem for probabilistic
pushdown automata (pPDA) and properties expressible in
various probabilistic logics. We start with properties that
can be formulated as instances of a generalized random
walk problem. We prove that both qualitative and quantita-
tive model checking for this class of properties and pPDA is
decidable. Then we show that model checking for the qual-
itative fragment of the logic PCTL and pPDA is also decid-
able. Moreover, we develop an error-tolerant model check-
ing algorithm for general PCTL and the subclass of state-
less pPDA. Finally, we consider the class of properties de-
finable by deterministic B̈uchi automata, and show that both
qualitative and quantitative model checking for pPDA is de-
cidable.

1. Introduction

Probabilistic systems can be used for modeling systems
that exhibit uncertainty, such as communication protocols
over unreliable channels, randomized distributed systems,
or fault-tolerant systems. Finite-state models of such sys-
tems often use variants of probabilistic automata whose

∗ On leave at the Institute for Formal Methods in Computer Science,
University of Stuttgart. Supported by the Alexander von Humboldt
Foundation and by the Grant Agency of the Czech Republic, grant
No. 201/03/1161.

† Supported by Landesstiftung Baden–Württemberg, grant No. 21–
655.023.

underlying semantics is defined in terms of homogeneous
Markov chains, which are also called “fully probabilistic
transition systems” in this context. For fully probabilistic
finite-state systems, algorithms for various (probabilistic)
temporal logics like LTL, PCTL, PCTL∗, probabilisticµ-
calculus, etc., have been presented in [22, 18, 26, 10, 17,
5, 11, 19, 12]. As for infinite-state systems, most works
so far considered probabilistic lossy channel systems [20]
which model asynchronous communication through unreli-
able channels [7, 1, 2, 8]. A notable recent result is the de-
cidability of quantitative model checking of liveness prop-
erties specified by Büchi-automata for probabilistic lossy
channel systems [24]. In fact, this algorithm iserror tol-
erant in the sense that the quantitative model checking is
solved only up to an arbitrarily small (but non-zero) given
error.

In this paper we considerprobabilistic pushdown au-
tomata (pPDA), which are a natural model for probabilistic
sequential programs with recursive procedure calls. There
is a large number of results about model checking of
non-probabilistic PDA or similar models (see for instance
[4, 9, 13, 27]), but the probabilistic extension has so far
not been considered. As a related work we can mention
[23], where it is shown that a restricted subclass of pPDA
(where essentially all probabilities for outgoing arcs areei-
ther 1 or 1/2) generates a richer class of languages than
non-deterministic PDA. Another work [3] shows the equiv-
alence of pPDA and probabilistic context-free grammars.

Here we consider model checking problems for pPDA
(and its natural subclass ofstateless pPDAdenoted pBPA1)

1 This is a standard notation adopted in concurrency theory.The sub-

and various probabilistic logics. We start with a class of

xxxx

1−x1−x1−x1−x

Z IZ IIZDZDDZ

Figure 1. Bernoulli random walk as a pBPA

properties that can be specified as a generalizedrandom
walk problem. To get a better intuition about this class
of problems, realize that some random walks can easily
be specified by pBPA systems. For example, consider a
pBPA with just three stack symbolsZ, I,D and transitions

Z
x
→ IZ, Z

1−x
→ DZ, I

x
→ II, I

1−x
→ ε, D

1−x
→ DD,

andD
x
→ ε, wherex ∈ [0, 1]. Then the transition graph

of Z (see Fig. 1) is the well-knownBernoulli walk. A typi-
cal question examined in theory of random walks is “Do we
eventually revisit a given state (with probability one)?”,or
more generally “What is the probability of reaching a given
state from another given state?” For example, it is a stan-
dard result that the stateZ of Fig. 1 is revisited with prob-
ability 1 iff x = 1/2. This simple example indicates that
answers to qualitative questions about pPDA (i.e., whether
something holds with probability1 or 0) depend on the ex-
act probabilities of individual transitions. This is different
from finite-state systems where qualitative properties de-
pend only on the topology of a given finite-state Markov
chain.

The generalized random walk problem is formulated as
follows: Let C1 andC2 be subsets of the set of states of a
given Markov chain, and lets be a state ofC1. What is the
probability that, starting ats, a state ofC2 is reached via a
path leading only through states ofC1? Let us denote this
probability by P(s, C1 U C2). The problem of computing
P(s, C1 U C2) has been previously considered (and solved)
for finite-state systems, where this probability can be com-
puted precisely [17, 11]. In Section 3, we propose a solution
for pPDA applicable to those setsC1, C2 which areregular,
i.e., recognizable by finite-state automata. More precisely,
we show that the problem whetherP(s, C1 U C2) ∼ ̺,
where∼ ∈ {≤, <,≥, >,=} and̺ ∈ [0, 1], is decidable.
Interestingly, this is achieved without explicitly comput-
ing the probabilityP(s, C1 U C2). Nevertheless, for an ar-
bitrary precision0 < λ < 1 we can compute rational
lower and upper approximationsPℓ,Pu ∈ [0, 1] such that
Pℓ ≤ P(s, C1 U C2) ≤ Pu andPu − Pℓ ≤ λ.

In Section 4, we consider the model checking problem
for pPDA and the logic PCTL. This is a more general prob-
lem than the one about random walks (the class of prop-

class of stateless PDA corresponds to a natural subclass of ACP known
as Basic Process Algebra [6].

erties expressible in PCTL is strictly larger). In Section 4.1,
we give a model checking algorithm for thequalitative frag-
mentof PCTL and pPDA processes. For general PCTL for-
mulae and pBPA processes, anerror tolerantmodel check-
ing algorithm is developed in Section 4.2. The question
whether this result can be extended to pPDA is left open.

Finally, in Section 5 we prove that both qualitative and
quantitative model checking for the class of properties de-
finable by deterministic Büchi automata is decidable for
pPDA. Again, this is done without computing the probabil-
ity explicitly, but rational lower and upper approximations
can be computed up to an arbitrarily small given error.

Due to the lack of space, some proofs have been omitted.
These can be found in a full version of this paper [14].

2. Preliminary Definitions

Definition 2.1. A (fully) probabilistic transition systemis a
triple T = (S,→,Prob) whereS is a finite or countably
infinite set ofstates, → ⊆ S × S is a transition relation,
andProb is a function which to each transitions → t of
T assigns its probabilityProb(s → t) ∈ (0, 1] so that for
everys ∈ S we have

∑
s→t Prob(s → t) ∈ {0, 1}. (The

sum above can be0 if it is empty, i.e., ifs does not have any
outgoing transitions.)

In the rest of this paper we also writes
x
→ t instead of

Prob(s → t) = x. A path in T is a finite or infinite se-
quencew = s0, s1, · · · of states such thatsi → si+1 for
every i. We also usew(i) to denote the statesi of w (by
writing w(i) = s we implicitly impose the condition that
the length ofw is at leasti + 1). A run is a maximal path,
i.e., a path which cannot be prolonged. The sets of all finite
paths and all runs ofT are denotedFPath andRun, respec-
tively2. Similarly, the sets of all finite paths and runs that
start in a givens ∈ S are denotedFPath(s) andRun(s),
respectively.

Eachw ∈ FPath determines abasic cylinderRun(w)
which consists of all runs that start withw. To everys ∈ S
we associate the probabilistic space(Run(s),F ,P) where
F is theσ-field generated by all basic cylindersRun(w)
wherew starts withs, andP : F → [0, 1] is the unique
probability function such thatP(Run(w)) = Πm−1

i=0 xi

wherew = s0, · · · , sm andsi
xi→ si+1 for every0 ≤ i < m

(if m = 0, we putP(Run(w)) = 1). We say that sets
A ⊆ FPath(s) andA′ ⊆ FPath(s′) areP-equivalentiff∑

w∈A P(Run(w)) =
∑

w∈A′ P(Run(w)).

The Logic PCTL

PCTL, the probabilistic extension of CTL, was defined
by Hansson & Jonsson in [17]. LetAp = {a, b, c, . . .} be a

2 In this paper, theT is always clear from the context.

countably infinite set ofatomic propositions. The syntax of
PCTL3 is given by the following abstract syntax equation:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | X∼̺ϕ | ϕ1 U
∼̺ϕ2

Herea ranges overAp, ̺ ∈ [0, 1], and∼ ∈ {≤, <,≥, >}.
Let T = (S,→,Prob) be a probabilistic transition system.
For alls ∈ S, all C, C1, C2 ⊆ S, and allk ∈ N0, let

• Run(s,XC) = {w ∈ Run(s) | w(1) ∈ C}
• Run(s, C1 U C2) = {w ∈ Run(s) | ∃i ≥ 0 : w(i) ∈
C2 andw(j) ∈ C1 for all 0 ≤ j < i}

• FPathk(s, C1 U C2) = {s0, · · ·, sℓ ∈ FPath(s) | 0 ≤
ℓ ≤ k, sℓ ∈ C2 andsj ∈ C1rC2 for all 0 ≤ j < ℓ}

• FPath(s, C1 U C2) =
⋃∞

k=0 FPathk(s, C1 U C2)

Obviously,

P(Run(s, C1 U C2)) =
∑

w∈FPath(s,C1 U C2)

P(Run(w)).

Let ν : Ap → 2S be avaluation. The denotation of a
PCTL formulaϕ overT w.r.t. ν, denoted[[ϕ]]ν , is defined
inductively as follows:

[[tt]]ν = S

[[a]]ν = ν(a)

[[¬ϕ]]ν = S r [[ϕ]]ν

[[ϕ1 ∧ ϕ2]]
ν = [[ϕ1]]

ν ∩ [[ϕ2]]
ν

[[X∼̺ϕ]]ν = {s ∈ S | P(Run(s,X [[ϕ]]ν)) ∼ ̺}

[[ϕ1 U
∼̺ϕ2]]

ν = {s ∈ S | P(Run(s, [[ϕ1]]
ν U [[ϕ2]]

ν)) ∼ ̺}

As usual, we writes |=ν ϕ instead ofs ∈ [[ϕ]]ν .
Thequalitative fragmentof PCTL is obtained by restrict-

ing the allowed operator/number combinations to ‘≤ 0’ and
‘≥ 1’, which will be also written as ‘= 0’ and ‘= 1’, resp.
(Observe that ‘< 1’, ‘> 0’ are definable from ‘≤ 0’, ‘ ≥ 1’,
and negation; for example,aU <1b ≡ ¬(aU ≥1b).)

Probabilistic PDA

Definition 2.2. A probabilistic pushdown automaton
(pPDA) is a tuple∆ = (Q,Γ, δ,Prob) whereQ is a fi-
nite set ofcontrol states, Γ is a finitestack alphabet, δ ⊆
Q × Γ × Q × Γ∗ is a finite transition relation(we write
pX → qα instead of(p,X, q, α) ∈ δ), andProb is a func-
tion which to each transitionpX → qα assigns its proba-
bility Prob(pX → qα) ∈ (0, 1] so that for allp ∈ Q and
X ∈ Γ we have that

∑
pX→qα Prob(pX → qα) ∈ {0, 1}.

A pBPA is a pPDA with just one control state. Formally,
a pBPA is understood as a triple∆ = (Γ, δ,Prob) where
δ ⊆ Γ × Γ∗.

In the rest of this paper we adopt a more intuitive nota-
tion, writing pX

x
→ qα instead ofProb(pX → qα) = x.

3 For simplicity we omit the bounded ‘until’ operator of [17].

The setQ × Γ∗ of all configurations of∆ is denoted by
C(∆). We also assume (w.l.o.g.) that ifpX → qα ∈ δ, then
|α| ≤ 2.

To ∆ we associate the probabilistic transition systemT∆

whereC(∆) is the set of states and the probabilistic transi-
tion relation is determined bypXβ

x
→ qαβ iff pX

x
→ qα.

The model checking problem for pPDA configurations
and PCTL formulae (i.e., the question whetherpα |=ν ϕ
for givenpα, ϕ, andν) is clearly undecidable for general
valuations. Therefore, we restrict ourselves toregularvalu-
ations which to everya ∈ Ap assign aregular set of config-
urations:

Definition 2.3. A∆-automatonis a tripleA = (St , γ,Acc)
whereSt is a finite set ofstatess.t.Q ⊆ St , γ : St×Γ → St

is a (total) transition function, andAcc ⊆ St a set ofac-
cepting states.

The functionγ is extended to the elements ofΓ∗ in
the standard way. Each∆-automatonA determines a set
C(A) ⊆ C(∆) given bypα ∈ C(A) iff γ(p, αR) ∈ Acc.
HereαR is the reverse ofα, i.e., the word obtained by read-
ingα from right to left.

We say that a setC ⊆ C(∆) is regulariff there is a∆-
automatonA such thatC = C(A).

In other words, regular sets of configurations are rec-
ognizable by finite-state automata which read the stack
bottom-up (the bottom-up direction was chosen just for
technical convenience).

3. Random Walks on pPDA Graphs

For the rest of this section, let us fix a pPDA∆ =
(Q,Γ, δ,Prob).

An important technical step in our development is the
replacement of regular sets of configurations with “simple”
ones for which the membership function depends just on the
control state and the top stack symbol of a given configura-
tion.

Definition 3.1. A set of configurationsC is simpleif there is
a setG ⊆ Q× (Γ ∪ {ε}) such that for eachpα ∈ C(∆) we
have thatpα ∈ C iff eitherα = ε andpε ∈ G, or α = Xβ
andpX ∈ G.

The next lemma says that regular sets of configurations
can be effectively replaced with simple ones. A proof is
standard (see, e.g.,[15]).

Lemma 3.2. For each pPDA∆ = (Q,Γ, δ,Prob) and reg-
ular setsC1, · · · , Ck ⊆ C(∆) there effectively exist a pPDA
∆′ = (Q,Γ′, δ′,Prob ′), simple setsC′

1, · · · , C
′
k ⊆ C(∆′),

and an injective mappingG : C(∆) → C(∆′) such that for
eachpα ∈ C(∆) the following conditions are satisfied:

• if pα
x
→ qβ, thenG(pα)

x
→ G(qβ);

• if G(pα)
x
→ s for somes ∈ C(∆′), then there ispα

x
→ qβ

such thatG(qβ) = s;
• for each1 ≤ j ≤ k we havepα ∈ Cj iff G(pα) ∈ C′

j.

Moreover, ifC ⊆ C(∆′) is regular, thenG−1(C) is also reg-
ular.

For the rest of this section, letC1, C2 ⊆ C(∆) be (fixed)
simple sets, and letG1, G2 ⊆ Q× (Γ∪ {ε}) be the sets as-
sociated toC1, C2 in the sense of Definition 3.1. To simplify
our notation, we adopt the following conventions:

• For eachC ⊆ C(∆), letC• = Cr (Q×{ε}). Observe that
if C is simple, then so isC•.

• For all p, q ∈ Q andX ∈ Γ, we use[pXq] to ab-
breviateP(pX, C1rC2 U {qε}), and[pX•] to abbreviate
P(pX, C1 U C•

2).

The next lemma says how to compute
P(Run(pX1 · · ·Xn, C1 U C2)) from the finite fam-
ily of all [pXq], [pX•] probabilities.

Lemma 3.3. For eachpX1 · · ·Xn ∈ C(∆) wheren ≥ 0
we have thatP(Run(pX1 · · ·Xn, C1 U C2)) equals to

n∑

i=1

∑

(q1,··· ,qi)∈Qi

wherep=q1

[qiXi•] ·
i−1∏

j=1

[qjXjqj+1]

+
∑

(q1,··· ,qn+1)∈Qn+1

wherep=q1 andqn+1ε∈C2

n∏

j=1

[qjXjqj+1]

with the convention that empty sum equals to0 and empty
product equals to1.

Now we show that the probabilities[pXq], [pX•] form
the least solution of an effectively constructible system of
equations. This can be seen as a generalization of a simi-
lar result for finite-state systems [17, 11]. In the finite-state
case, the equations are linear and can be further modified so
that they have auniquesolution (which is then computable,
e.g., by Gauss elimination). In the case of pPDA, the equa-
tions are not linear and cannot be generally solved by ana-
lytical methods. The question whether the equations can be
further modified so that they have a unique solution is left
open; we just note that the method used for finite-state sys-
tems is insufficient (this is demonstrated by Example 3.5).

Let V = {〈pXq〉, 〈pX•〉 | p, q ∈ Q,X ∈ Γ} be a set of
“variables”. Let us consider the system of recursive equa-
tions constructed as follows:

• if pX 6∈ G1rG2, then〈pXq〉 = 0 for eachq ∈ Q; other-
wise, we put

〈pXq〉 =
∑

pX
x
→rY Z

x ·
∑

t∈Q

〈rY t〉 · 〈tZq〉

+
∑

pX
x
→rY

x · 〈rY q〉 +
∑

pX
x
→qε

x

• if pX ∈ G2, then〈pX•〉 = 1; if pX 6∈ G1 ∪ G2, then
〈pX•〉 = 0; otherwise we put

〈pX•〉 =
∑

pX
x
→rY Z

x · (〈rY •〉 +
∑

t∈Q

〈rY t〉 · 〈tZ•〉)

+
∑

pX
x
→rY

x · 〈rY •〉

For givent ∈ [0, 1]| V |, p, q ∈ Q, andX ∈ Γ we use
〈pXq〉t and 〈pX•〉t to denote the component oft which
corresponds to the variable〈pXq〉 and〈pX•〉, respectively.
The above defined system of equations determines a unique
operatorF : [0, 1]| V | → [0, 1]| V | whereF(t) is the tu-
ple of values obtained by evaluating the right-hand sides of
the equations where all〈pXq〉 and 〈pX•〉 are substituted
with 〈pXq〉t and〈pX•〉t, respectively.

Theorem 3.4. The operatorF has the least fixed-pointµ.
Moreover, for all p, q ∈ Q and X ∈ Γ we have that
〈pXq〉µ = [pXq] and〈pX•〉µ = [pX•].

Example 3.5. Let us consider the pBPA system∆ of Fig. 1,
and letC1 = Γ∗, C2 = {Z}. Then we obtain the following
system of equations (since∆ has only one control statep,
we write 〈X, •〉 and 〈X, ε〉 instead of〈pX•〉 and 〈pXp〉,
resp.):

〈Z, •〉 = 1

〈Z, ε〉 = x〈I, ε〉〈Z, ε〉 + (1−x)〈D,ε〉〈Z, ε〉

〈I, •〉 = x(〈I, •〉 + 〈I, ε〉〈I, •〉)

〈I, ε〉 = x〈I, ε〉〈I, ε〉 + 1−x

〈D, •〉 = (1−x)(〈D, •〉 + 〈D, ε〉〈D, •〉)

〈D, ε〉 = (1−x)〈D, ε〉〈D, ε〉 + x

As the least solution we obtain the probabilities[Z, •] =
1, [Z, ε] = 0, [I, •] = 0, [I, ε] = min{1, (1−x)/x},
[D, •] = 0, [D, ε] = min{1, x/(1−x)}. By applying
Lemma 3.3 we further obtain that, e.g.,P(IIZ, C1 U C2) =
min{1, (1−x)2/x2}.

In Example 3.5, the least solution of the constructed sys-
tem of equations could be computed explicitly. This is gen-
erally impossible, but certain properties of the least solution
are still decidable. For our purposes, it suffices to consider
the class of properties defined in the next theorem.

Theorem 3.6. Let Const = Q ∪ {[pXq], [pX•] | p, q ∈
Q andX ∈ Γ}, whereQ is the set of all rational constants.
Let E1, E2 be expressions built overConst using ‘·’ and
‘+’, and let∼ ∈ {<,=}. It is decidable whetherE1 ∼ E2.

Proof. We show that, due to Theorem 3.4,E1 ∼ E2 is ef-
fectively expressible as a closed formula of(R,+, ∗,≤).
Hence, the theorem follows from the decidability of first-
order arithmetic of reals [25].

For all p, q ∈ Q andX ∈ Γ, let x(pXq), x(pX•),
y(pXq), and y(pX•) be first order variables, and let~X

and~Y be the vectors of allx(pXq), x(pX•), andy(pXq),
y(pX•) variables, respectively. Let us consider the formula
Φ constructed as follows:

∃ ~X : ~0 ≤ ~X ≤ ~1 ∧ ~X = F(~X)

∧ (∀~Y : (~0 ≤ ~Y ≤ ~1 ∧ ~Y = F(~Y)) ⇒ ~X ≤ ~Y))

∧ E1[~X/π] ∼ E2[~X/π]

Observe that the conditions~X = F(~X) and ~Y = F(~Y)
are expressible only using multiplication, summation, and
equality. The expressionsE1[~X/π] andE2[~X/π] are ob-
tained fromE1 andE2 by substituting all[pXq] and[pX•]
with x(pXq) andx(pX•), respectively. It follows immedi-
ately thatE1 ∼ E2 iff Φ holds.

Input: pX ∈ C(∆), 0 < λ < 1
Output: Pℓ, Pu

1: Pℓ := 0; Pu := 1;
2: for i = 1 to ⌈− log

2
λ⌉

3: if [pX•] +
∑

qε∈C2
[pXq] ≥ (Pu − Pℓ)/2

4: then Pℓ := (Pu −Pℓ)/2
5: else Pu := (Pu − Pℓ)/2
6: fi

Figure 2. Computing Pℓ,Pu

An immediate consequence of Theorem 3.6 is the fol-
lowing:

Theorem 3.7. Let pα ∈ C(∆), ̺ ∈ [0, 1], ∼ ∈
{≤, <,≥, >} and 0 < λ < 1. It is decidable whether
P(pα, C1 U C2) ∼ ̺. Moreover, there effectively exist ratio-
nal numbersPℓ,Pu such thatPℓ ≤ P(pα, C1 U C2) ≤ Pu

andPu − Pℓ ≤ λ.

Proof. We can assume w.l.o.g. thatα = X for some
X ∈ Γ. Note thatP(pX, C1 U C2) ∼ ̺ iff [pX•] +∑

qε∈C2
[pXq] ∼ ̺ by Lemma 3.3. Hence, we can apply

Theorem 3.6. The numbersPℓ,Pu are computable, e.g., by
the algorithm of Fig. 2.

4. Model Checking PCTL for pPDA Processes

4.1. Qualitative Fragment of PCTL

For the rest of this section we fix a pPDA∆ =
(Q,Γ, δ,Prob).

Lemma 4.1. LetC ⊆ C(∆) be a simple set. The sets{pα ∈
C(∆) | P(pα,XC) = 1} and{pα ∈ C(∆) | P(pα,XC) =
0} are effectively regular.

Proof. Immediate.

Lemma 4.2. Let C1, C2 ⊆ C(∆) be simple sets. The set
{pα ∈ C(∆) | P(pα, C1 U C2) = 1} is effectively regu-
lar.

Proof. Let R(pX) = {q ∈ Q | [pXq] > 0} for all p ∈
Q, X ∈ Γ. For eachi ∈ N0 we define the setSi ⊆ C(∆)
inductively as follows:

• S0 = {qε | qε ∈ C2} ∪ {qXα | [qX•] = 1, α ∈ Γ∗}
• Si+1 = {pXβ | [pX•] +

∑
q∈R(pX)[pXq] = 1 and

∀q ∈ R(pX) : qβ ∈ Si}

Using Lemma 3.3, we can easily check that
⋃∞

i=0 Si =
{pα ∈ C(∆) | P(pα, C1 U C2) = 1}. To see that the set⋃∞

i=0 Si is effectively regular, for eachp ∈ Q we construct
a finite automatonMp such thatL(Mp) = {α ∈ Γ∗ | pα ∈⋃∞

i=0 Si}. A ∆-automatonA recognizing the set
⋃∞

i=0 Si

can then be constructed using standard algorithms of au-
tomata theory (in particular, note that regular languages are
effectively closed under reverse). The states ofMp are all
subsets ofQ, {p} is the initial state,Γ is the input alpha-
bet, final states are thoseT ⊆ Q where for everyq ∈ T
we have thatqε ∈ C2 (in particular, note that∅ is a final

state), and transition function is given byT
X
→ U iff for ev-

ery q ∈ T we have that[qX•] +
∑

r∈R(qX)[qXr] = 1 and

U =
⋃

q∈T R(qX). Note that∅
X
→ ∅ for eachX ∈ Γ.

The definition ofMp is effective due to Theorem 3.6. It is
straightforward to check thatL(Mp) = {α ∈ Γ∗ | pα ∈⋃∞

i=0 Si}.

Lemma 4.3. Let C1, C2 ⊆ C(∆) be simple sets. The set
{pα ∈ C(∆) | P(pα, C1 U C2) = 0} is effectively regu-
lar.

Proof. Let R(pX) = {q ∈ Q | [pXq] > 0} for all p ∈
Q, X ∈ Γ. For eachi ∈ N0 we define the setSi ⊆ C(∆)
inductively as follows:

• S0 = {qε | qε 6∈ C2}
• Si+1 = {pXβ | [pX•] = 0 and∀q ∈ R(pX) : qβ ∈ Si}

The fact
⋃∞

i=0 Si = {pα ∈ C(∆) | P(pα, C1 U C2) = 0}
follows immediately from Lemma 3.3. The set

⋃∞
i=0 Si is

effectively regular, which can be shown by constructing a
finite automatonMp recognizing the set{α ∈ Γ∗ | pα ∈⋃∞

i=0 Si}. This construction and the rest of the argument are
very similar to the ones of the proof of Lemma 4.2. There-
fore, they are not given explicitly.

Theorem 4.4. Letϕ be a qualitative pCTL formula andν
a regular valuation. The set{pα ∈ C(∆) | pα |=ν ϕ} is
effectively regular.

Proof. By induction on the structure ofϕ. The cases when
ϕ ≡ tt and ϕ ≡ a follow immediately. For Boolean
connectives we use the fact that regular sets are closed
under complement and intersection. The other cases are

covered by Lemma 4.1, 4.2, and 4.3 (here we also need
Lemma 3.2).

4.2. Model Checking PCTL for pBPA Processes

In this section we provide an error tolerant model check-
ing algorithm for PCTL formulae and pBPA processes.
Since it is not so obvious what is meant by error tolerance
in the context of PCTL model checking, this notion is de-
fined formally.

Let T = (S,→,Prob) be a probabilistic transition sys-
tem and0 < λ < 1. For every negation-free PCTL for-
mulaϕ and valuationν we define the denotation ofϕ over
T w.r.t.ν with error toleranceλ, denoted[[ϕ]]νλ, in the same
way as[[ϕ]]ν . The only exception isϕ1 U ∼̺ϕ2 where

• if ∼ ∈ {<,≤}, then

[[ϕ1 U
∼̺ϕ2]]

ν

λ = {s ∈ S | P(Run(s, [[ϕ1]]
ν

λ U [[ϕ2]]
ν

λ)) ∼ ̺+λ}

• if ∼ ∈ {>,≥}, then

[[ϕ1 U
∼̺ϕ2]]

ν

λ
= {s ∈ S | P(Run(s, [[ϕ1]]

ν

λ
U [[ϕ2]]

ν

λ
)) ∼ ̺−λ}

Note that for every negation-free formulaϕ we have
that [[ϕ]]

ν ⊆ [[ϕ]]
ν
λ. Negations can be “pushed inside” to

atomic propositions using dual connectives (note that, e.g.,
¬(ϕU ≥̺ψ) is equivalent toϕU <̺ψ), and for regular val-
uations we can further replace every¬a with a fresh propo-
sition b whereν(b) is the complement ofν(a). Hence, we
can assume w.l.o.g. thatϕ is negation-free.

An error tolerant PCTL model checking algorithmis an
algorithm which, for each PCTL formulaϕ, valuationν,
s ∈ S, and0 < λ < 1, outputs YES/NO so that

• if s ∈ [[ϕ]]ν , then the answer is YES;
• if the answer is YES, thens ∈ [[ϕ]]

ν
λ.

For the rest of this section, let us fix a pBPA∆ =
(Γ, δ,Prob). Since∆ has just one (or “none”) control state
p, we write[X, •] and[X, ε] instead of[pX•] and[pXp], re-
spectively.

Lemma 4.5. LetC ⊆ C(∆) be a simple set,̺ ∈ [0, 1], and
∼ ∈ {≤, <,≥, >}. The set{α ∈ C(∆) | P(α,XC) ∼ ̺}
is effectively regular.

Proof. Immediate.

The following lemma presents the crucial part of the al-
gorithm. This is the place where we need the assumption
that∆ is stateless.

Lemma 4.6. LetC1, C2 ⊆ C(∆) be simple sets. For all̺ ∈
[0, 1] and0 < λ < 1 there effectively exist∆-automataA≥

andA≤ such that for allα ∈ C(∆) we have that

• if P(α, C1 U C2) ≥ ̺ (or P(α, C1 U C2) ≤ ̺), thenα ∈
C(A≥) (or α ∈ C(A≤), respectively.)

• if α ∈ C(A≥) (or α ∈ C(A≤)), thenP(α, C1 U C2) ≥
̺− λ (or P(α, C1 U C2) ≤ ̺+ λ, respectively.)

Theorem 4.7. There is an error-tolerant PCTL model
checking algorithm for pBPA processes.

Proof. The proof is similar to the one of Theorem 4.4, us-
ing Lemma 4.5 and 4.6 instead of Lemma 4.1, 4.2, and 4.3.
Note that Lemma 3.2 is applicable also to pBPA (the sys-
tem∆′ constructed in Lemma 3.2 has the same set of con-
trol states as the original system∆).

5. Model Checking Deterministic Büchi Au-
tomata Specifications

Definition 5.1. A deterministic Büchi automatonis a tuple
B = (Σ, B, ̺, bI ,Acc), whereΣ is a finitealphabet, B is
a finite set ofstates, ̺ : B × Σ → B is a (total) transition
function(we writeb

a
→ b′ instead of̺ (b, a) = b′), bI is the

initial state, andAcc ⊆ B is a set ofaccepting states.
A run of B is an infinite sequenceb0b1 . . . of states such

that for everyi ≥ 0 there isa ∈ Σ such thatbi
a
→ bi+1.

A run b0b1 . . . is acceptingif bi ∈ Acc for infinitely many
indicesi ≥ 0.

For the rest of this section, we fix a pPDA∆ =
(Q,Γ, δ,Prob).

Definition 5.2. Given a configurationpXα of ∆, we call
pX the headandα the tail of pXα. The setQ × Γ of all
heads of∆ is also denoted byH(∆).

We consider specifications given by deterministic Büchi
automata havingH(∆) as their alphabet. It is well known
that every LTL formula whose atomic propositions are in-
terpreted over simple sets can be encoded into anondeter-
ministicBüchi automaton havingH(∆) as alphabet. Deter-
ministic Büchi automata can encode the fragment of LTL
that can also be expressed in the alternation-free modalµ-
calculus [21]. Our results can be extended to atomic propo-
sitions interpreted over arbitrary regular sets of configura-
tions using the same technique as in [15].

Definition 5.3. Theproductof ∆ andB is a probabilistic
pushdown automaton∆B = (Q×B,Γ, δ′,Prob ′) whereδ′

andProb ′ are determined as follows:[p, b]X
x
→ [p′, b′]α iff

pX
x
→ p′α andb

pX
→ b′ are transitions of∆ andB, respec-

tively.

Notice that every (finite or infinite) path inT∆B corre-
sponds to a unique path inT∆ obtained by projecting the
control state of every configuration[p, b]α of the path onto
its first component, yielding the configurationpα. Con-
versely, for each path inT∆ (starting in somepα) and each
b ∈ B there is exactly one path inT∆B starting in[p, b]α be-
causeB is deterministic.

Definition 5.4. A configuration[p, b]α of ∆B is accepting
if b ∈ Acc. A run in T∆B is acceptingif it visits accepting
configurations infinitely often. A run inT∆ is accepting if
its corresponding run inT∆B is accepting.

The probabilityP(pα,B) that a configurationpα of
∆ satisfies the specificationB is defined asP(pα,B) =
P({w ∈ Run(pα) | w is accepting}).

We solve the following two problems for a given config-
urationpα of ∆:

(a) Given̺ ∈ [0, 1] and∼ ∈ {≤, <,≥, >,=}, do we have
P(pα,B) ∼ ̺ ?

(b) Given0 < λ < 1, compute rationalsPℓ,Pu such that
Pℓ ≤ P(pα,B) ≤ Pu andPu − Pℓ ≤ λ.

For finite-state automata, the problem can be solved as
follows (see [11]). LetA be a finite-state automaton. Since
the product automatonA×B is finite, it can be transformed
into a finite Markov chainM by just ‘copying’ the proba-
bilities of the system [11]. It is then possible to reduce prob-
lems (a),(b) to the problem of computing the probability of
hitting a bottom strongly connected component ofM which
contains a state of the form(s, b), whereb is accepting.

In our case, the product automaton∆B is again a pPDA,
and so its associated probabilistic transition system is infi-
nite. The key to our solution for (a) and (b) is the construc-
tion of a new finite Markov chainM∆B that plays the rôle
ofM in the case of finite automata.

5.1. The Markov chainM∆

A Büchi pPDA is a tuple∆ = (Q,Γ, δ,Prob,Acc∆),
where all elements except forAcc∆ are defined as for pPDA
andAcc∆ ⊆ Q is a set ofaccepting states.

A configurationpα of ∆ is acceptingif p ∈ Acc∆. A
run of ∆ is acceptingif it visits accepting configurations
infinitely often. For allp ∈ Q andX ∈ Γ, the probabil-
ity that a runw ∈ Run(pX) is accepting is denoted by
P(pX,Acc).

Obviously, the model checking problems (a),(b) of the
previous section can be reduced to the following problems
about a given configurationpX of a Büchi pPDA∆ (where
pX ∈ H(∆)):

(A) Given̺ ∈ [0, 1] and∼ ∈ {≤, <,≥, >,=}, do we have
P(pX,Acc) ∼ ̺ ?

(B) Given0 < λ < 1, compute rationalsPℓ,Pu such that
Pℓ ≤ P(pX,Acc) ≤ Pu andPu − Pℓ ≤ λ.

For the rest of this section, we fix a Büchi pPDA∆ =
(Q,Γ, δ,Prob,Acc∆).

Definition 5.5. Letw = p0α0, p1α1, · · · be an infinite run
in T∆. For eachi ∈ N we define theith minimumofw, de-
notedmini(w), inductively as follows:

• min1(w) = pkαk, wherek ∈ N0 is the least number such
that |αk′ | ≥ |αk| for eachk′ ≥ k.

• mini+1(w) = min1(wℓ+1), wheremini(w) = pℓαℓ.
Herewℓ+1 is the suffix ofw that starts withpℓ+1αℓ+1.

We say thatw flashesat mini(w) if either i = 1 and
min1(w) is accepting, ori > 1 andw visits an accept-
ing configuration betweenmini−1(w) andmini(w) (where
mini−1(w) is not included).

Sometimes we abuse language and usemini(w) to de-
note not only a configuration, but the particularoccurrence
of the configuration that corresponds to theith minimum.

For all pX ∈ H(∆) and all i ∈ N we define a ran-

dom variableV (i)
pX over Run(pX) as follows: The possi-

ble values ofV (i)
pX are all pairs of the form(qY, f), where

qY ∈ H(∆) andf ∈ {0, 1} is a boolean flag; there is also a

special value⊥. For a givenw ∈ Run(pX), V (i)
pX(w) is de-

termined as follows:

• if w is finite thenV (i)
pX(w) = ⊥;

• if conditions (1)–(3) below are satisfied, thenV (i)
pX (w) =

(qY, 1);

(1)w is infinite;
(2) the head ofmini(w) is qY ;
(3)w flashes atmini(w).

• if conditions (1) and (2) above are satisfied and condition
(3) is not satisfied, thenV (i)

pX (w) = (qY, 0)

Notice that the random variables are well defined, because
they assign to each run exactly one value.

Lemma 5.6. For all pX ∈ H(∆), n ∈ N, andv1, · · · , vn,

the probability ofV (1)
pX =v1 ∧ · · · ∧ V

(n)
pX =vn exists (i.e., the

set of allw ∈ Run(pX) which satisfy this condition isP-
measurable). Moreover, for every rational constanty there
is an effectively constructible formula of(R,+, ∗,≤) which

holds if and only ifP(V
(1)
pX =v1 ∧ · · · ∧ V

(n)
pX =vn) = y.

The following lemma proves the Markov property. In
fact, it follows immediatelly from the construction used in
the proof of Lemma 5.6.

Lemma 5.7. The conditional probability ofV (n)
pX = vn on

the hypothesisV (1)
pX = v1 ∧ · · · ∧ V

(n−1)
pX = vn−1 is equal

to the probability ofV (n)
pX = vn conditioned onV (n−1)

pX =

vn−1, assuming that the probability ofV (1)
pX = v1 ∧ · · · ∧

V
(n−1)
pX = vn−1 is non-zero.

For each control stateq ∈ Q we define a flagfq, which
is equal either to1 or 0 depending on whetherq ∈ Acc∆ or
not, respectively. Another consequence of Lemma 5.6 is the
following:

Lemma 5.8. The conditional probability of
V

(n)
pX =(q′Y ′, f ′) on the hypothesisV (n−1)

pX =(qY, f))

is equal to the conditional probability ofV (2)
qY =(q′Y ′, f ′)

on the hypothesis V (1)
qY =(qY, fq), assuming that

P(V
(n−1)
pX =(qY, f)) 6= 0.

Now we can define the finite Markov chainM∆.

Definition 5.9. Let M∆ be a finite-state Markov chain
where the set of states is

{(qY, 0) | q 6∈ Acc∆, Y ∈ Γ,P(V
(1)
qY =(qY, 0)) > 0}

∪ {(qY, 1) | qY ∈ H(∆),P(V
(1)
qY =(qY, fq)) > 0}

∪ H(∆) ∪ {⊥}

and transition probabilities are defined as follows:

• Prob(⊥ → ⊥) = 1,

• Prob(pX → (qY, f)) = P(V
(1)
pX =(qY, f)),

• Prob(pX → ⊥) = P(V
(1)
pX =⊥),

• Prob((qY, f) → (q′Y ′, f ′)) = P(V
(2)
qY =(q′Y ′, f ′) |

V
(1)
qY =(qY, fq)).

One can readily check thatM∆ is indeed a Markov
chain, i.e., for every states of M∆ we have that the sum
of probabilities of all outgoing transitions ofs is equal to
one.

A trajectoryinM∆ is an infinite sequenceσ(0)σ(1) · · ·
of states ofM∆ whereProb(σ(i) → σ(i+ 1)) > 0 for ev-
ery i ∈ N0.

To every runw ∈ Run(pX) of ∆ we associate itsfoot-
print, which is an infinite sequenceσ of states ofM∆ de-
fined as follows:

• σ(0) = pX
• if w is finite, then for everyi ∈ N we haveσ(i) = ⊥;
• if w is infinite, then for everyi ∈ N we haveσ(i) =

(piXi, fi), wherepiXi is the head ofmini(w), andfi =
1 iff w flashes atmini(w).

We say that a givenw ∈ Run(pX) is goodif the footprint
of w is a trajectory inM∆. Our next lemma reveals that al-
most all runs are good.

Lemma 5.10. Let pX ∈ H(∆). We have thatP({w ∈
Run(pX) | w is good}) = 1.

It follows directly from the definition ofM∆ that if both
(qY, 0) and (qY, 1) are states ofM∆, then they have the
“same” outgoing arcs (i.e.,(qY, 0)

x
→ (rZ, f) iff (qY, 1)

x
→

(rZ, f), wherex > 0). In particular, this means that if
(qY, 0) or (qY, 1) belongs to some strongly connected com-
ponentC ofM∆, then all of the outgoing arcs of(qY, 0) and
(qY, 1) lead toC. Hence, the following definition is correct:

Definition 5.11. We say that a givenqY ∈ H(∆) is recur-
rentif there is a bottom strongly connected componentCqY

ofM∆ such that(qY, f) ∈ CqY for somef ∈ {0, 1}.
Each recurrent head is eitheracceptingor rejecting, de-

pending on whetherCqY contains a state of the form(rZ, 1)
or not, respectively.

We say that a runw of ∆ hits a headqY ∈ H(∆) if
there is somei ∈ N such that the head ofmini(w) is qY .
The next lemma says that an infinite run eventually hits a re-
current head.

Lemma 5.12. Let pX ∈ H(∆). The conditional probabil-
ity thatw ∈ Run(pX) hits a recurrent head on the hypoth-
esis thatw is infinite is equal to one.

So, an infinite run eventually hits a recurrent head. Now
we prove that if this head is accepting/rejecting, then the run
will be accepting/rejecting with probability one.

Lemma 5.13. Let qY be an accepting/rejecting head. The
conditional probability thatw ∈ Run(pX) is accept-
ing/rejecting on the hypothesis that the first recurrent head
hit byw is accepting/rejecting is equal to one.

Lemma 5.14. (cf. Proposition 4.1.5 of [11]) LetpX ∈
H(∆). P(pX,Acc) is equal to the probability that a trajec-
tory frompX in M∆ hits a state of the form(qY, f) where
qY is an accepting head (this is equivalent to saying that
the trajectory hits a bottom strongly connected component
ofM∆ which contains a state of the form(rZ, 1)).

Theorem 5.15. Let ∆ be a B̈uchi pPDA. Given a head
pX ∈ H(∆), ∼ ∈ {≤, <,≥, >,=}, and ̺ ∈ [0, 1],
we can decide ifP(pX,Acc) ∼ ̺. Further, for each
0 < λ < 1 we can compute rationalsPℓ,Pu such that
Pℓ ≤ P(pX,Acc) ≤ Pu andPu − Pℓ ≤ λ.

Proof. Similarly as in Theorem 3.6, we compute a closed
formula Φ of (R,+, ∗,≤) such thatP(pX,Acc) ∼ ̺ iff
Φ holds. Then, the rationalsPℓ,Pu can be computed by a
simple binary search similarly as in Fig. 2.

Due to Lemma 5.14 we know thatP(pX,Acc) =
P(pX, C1UC2), whereC1 is the set of all states ofM∆, and
C2 consists of all states of the form(qY, f) whereqY is an
accepting head. This means that there is a system of recur-
sive equations such thatP(pX,Acc) appears in the tuple of
values which form the least solution of the system (we can
assume thatP(pX,Acc) is, e.g., the first element of this tu-
ple). SinceM∆ is finite, these equations are linear and by
using the results of [17, 11] we can even assume that there
is a unique solution. The only problem is that numeric co-
efficients in this system of equations are the probabilities
of transitions inM∆ which cannot be precisely computed.
This can be overcome as follows: we construct the men-
tioned system of linear equations where we replace each co-
efficient with a fresh first-order variable; let~C be the tuple

of all variables which correspond to the coefficients. Now
we can effectively construct the formula

Ψ ≡ ∃~Z : ~Z = L(~Z) ∧ ~Z1 ∼ ̺

where~Z = L(~Z) says that the tuple of variables~Z is a solu-
tion of the constructed system of linear equations. Note that
Ψ is not closed because the variables of~C (which appear
in the ~Z = L(~Z) subformula) are free. Due to Lemma 5.6,
for each of these coefficients there effectively exists a for-
mula of (R,+, ∗,≤) which says that a given coefficient is
equal to the probability of the corresponding transition in
M∆ (we just “translate” the definition ofProb given in Def-
inition 5.9 into(R,+, ∗,≤), using the formulae provided by
Lemma 5.6). LetΨ ~C

by a conjunction of all these formu-
lae. The formulaΦ is constructed as follows:

Φ ≡ ∃~Z : ∃~C : Ψ ~C
∧ ~Z = L(~Z) ∧ ~Z1 ∼ ̺

Obviously,P(pX,Acc) ∼ ̺ iff Φ holds.

We conclude this section by trying to explain why our re-
sults cannot be directly extended to nondeterministic Büchi
automata. First of all, notice that we cannot assign proba-
bilities to the transitions of∆B in a meaningful way, be-
cause a transitionpα

x
→ qβ of ∆ should ‘split’ into sev-

eral transitions of∆B. In the case of a finite automatonA,
this problem can be solved by working with the product of
A and dB, wheredB is the result of applying the deter-
minization construction toB. LetAdB denote this product.
In [11], a definition of recurrence is provided, which char-
acterizes the states[s, b] of AdB that, loosely speaking, re-
turn to[s, b] with probability 1 in terms of topological prop-
erties of the probabilistic transition systemAdB. It is then
possible to compute the accepting recurrent states.

Unfortunately, this construction does not seem to gener-
alize to the case of pushdown automata. The problem is that
the Büchi pPDA∆dB has infinitely many states, and so it
must be replaced by the chainM∆dB. However, inM∆dB

we cannot directly ‘observe’ the points at which a run hits
an accepting state; we can only observe the points at which
a run hits a minimum. While we can useM∆dB to com-
pute the recurrent minima, i.e., the heads to which one can
return with probability 1 at a minimum, at the moment we
do not know how to compute the accepting recurrent min-
ima, i.e., the recurrent minima that not only return, but also
visit an accepting configuration along the way. More pre-
cisely, we know how to decide for a given headpX if the
runs starting at it will almost surely hitsomeheadpiXi out
of a setH = {p1X1, . . . , pnXn} and visit some accept-
ing configuration along the way. We can also decide ifsome
headpjXj ∈ H(∆) will hit pX with probability one. How-
ever, since we do not know whetheri = j or not, this in-
formation is not sufficient to decide ifpX is an accepting
recurrent minimum.

6. Conclusions

We have provided model checking algorithms for
pushdown automata against PCTL specifications, and
against linear-time specifications represented as determinis-
tic Büchi automata. Contrary to the case of finite automata,
qualitative properties (i.e., whether a property holds with
probability 0 or 1), depend on the exact probabilities of the
transitions.

There are many possibilities for future work. An obvi-
ous question is what is the complexity of the obtained al-
gorithms. Since the formulae of first order arithmetic which
are constructed in our algorithms have a fixed alternation
depth, we can apply a powerful result of Grigoriev [16]
which says that the validity of such formulae is decidable in
single exponential time. From this we can easily derive the
time complexity of some of our algorithms (for example,
the qualitative/quantitative random walk problem of Sec-
tion 3 is decidable in exponential time). Since the complex-
ity issues were not the main priority of our work, the effi-
ciency of our algorithms can be improved even by relatively
straightforward optimizations. Moreover, there is a lot of
space for advanced numerical algorithms which might be
used to compute the required probabilities with enough pre-
cision.

An obvious question about linear-time specifications is
whether our procedure can be improved to deal with nonde-
terministic Büchi automata. Another possibility is to con-
sider LTL specifications and try to generalize the technique
of [11], which modifies the probabilistic transition systems
step-by-step and at the same time simplifies the formula, un-
til it becomes a propositional formula.

7. Acknowledgments

The authors would like to thank Stefan Schwoon for
many helpful insights.

References

[1] P.A. Abdulla, C. Baier, S.P. Iyer, and B. Jonsson. Reason-
ing about probabilistic channel systems. InProceedings of
CONCUR 2000, vol. 1877 ofLecture Notes in Computer Sci-
ence, pp. 320–330. Springer, 2000.

[2] P.A. Abdulla and A. Rabinovich. Verification of probabilis-
tic systems with faulty communication. InProceedings of
FoSSaCS 2003, vol. 2620 ofLecture Notes in Computer Sci-
ence, pp. 39–53. Springer, 2003.

[3] A. Abney, D. McAllester, and F. Pereira. Relating probabilis-
tic grammars and automata. InProceedings of ACP’99, pp.
542–549, 1999.

[4] R. Alur, K. Etessami, and M. Yannakakis. Analysis of re-
cursive state machines. InProceedings of CAV 2001, vol.
2102 of Lecture Notes in Computer Science, pp. 207–220.
Springer, 2001.

[5] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and
A. Sangiovanni-Vincentelli. It usually works: The tempo-
ral logic of stochastic systems. InProceedings of CAV’95,
vol. 939 ofLecture Notes in Computer Science, pp. 155–165.
Springer, 1995.

[6] J.C.M. Baeten and W.P. Weijland.Process Algebra. No. 18
in Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1990.

[7] C. Baier and B. Engelen. Establishing qualitative properties
for probabilistic lossy channel systems: an algorithmic ap-
proach. InProceedings of 5th International AMAST Work-
shop on Real-Time and Probabilistic Systems (ARTS’99),
vol. 1601 ofLecture Notes in Computer Science, pp. 34–52.
Springer, 1999.

[8] N. Bertrand and Ph. Schnoebelen. Model checking lossy
channel systems is probably decidable. InProceedings of
FoSSaCS 2003, vol. 2620 ofLecture Notes in Computer Sci-
ence, pp. 120–135. Springer, 2003.

[9] O. Burkart and B. Steffen. Model checking the full modal
mu-calculus for infinite sequential processes. InProceed-
ings of ICALP’97, vol. 1256 ofLecture Notes in Computer
Science, pp. 419–429. Springer, 1997.

[10] C. Courcoubetis and M. Yannakakis. Verifying temporal
properties of finite-state probabilistic programs. InProceed-
ings of 29th Annual Symposium on Foundations of Computer
Science, pp. 338–345. IEEE Computer Society Press, 1988.

[11] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. Journal of the Association for
Computing Machinery, 42(4):857–907, 1995.

[12] J.M. Couvreur, N. Saheb, and G. Sutre. An optimal automata
approach to LTL model checking of probabilistic systems.
In Proceedings of LPAR 2003, vol. 2850 ofLecture Notes in
Computer Science, pp. 361–375. Springer, 2003.

[13] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Ef-
ficient algorithms for model checking pushdown systems.
In Proceedings of CAV 2000, vol. 1855 ofLecture Notes in
Computer Science, pp. 232–247. Springer, 2000.

[14] J. Esparza, A. Kučera, and R. Mayr. Model checking prob-
abilistic pushdown automata. Technical Report FIMU-RS-
2004-03, Faculty of Informatics, Masaryk University, 2004.

[15] J. Esparza, A. Kučera, and S. Schwoon. Model-checking
LTL with regular valuations for pushdown systems.Infor-
mation and Computation, 186(2):355–376, 2003.

[16] D. Grigoriev. Complexity of deciding Tarski algebra.Jour-
nal of Symbolic Computation, 5(1–2):65–108, 1988.

[17] H. Hansson and B. Jonsson. A logic for reasoning about
time and reliability. Formal Aspects of Computing, 6:512–
535, 1994.

[18] S. Hart and M. Sharir. Probabilistic temporal logic forfinite
and bounded models. InProceedings of POPL’84, pp. 1–13.
ACM Press, 1984.

[19] M. Huth and M.Z. Kwiatkowska. Quantitative analysis and
model checking. InProceedings of LICS’97, pp. 111–122.
IEEE Computer Society Press, 1997.

[20] S.P. Iyer and M. Narasimha. Probabilistic lossy channel sys-
tems. InProceedings of TAPSOFT’97, vol. 1214 ofLecture
Notes in Computer Science, pp. 667–681. Springer, 1997.

[21] O. Kupferman and M.Y. Vardi. Freedom, weakness, and de-
terminism: From linear-time to branching-time. InProceed-
ings of LICS’98, pp. 81–92. IEEE Computer Society Press,
1998.

[22] D. Lehman and S. Shelah. Reasoning with time and chance.
Information and Control, 53:165–198, 1982.

[23] I. Macarie and M. Ogihara. Properties of probabilisticpush-
down automata.Theoretical Computer Science, 207:117–
130, 1998.

[24] A. Rabinovich. Quantitative analysis of probabilistic lossy
channel systems. InProceedings of ICALP 2003, vol.
2719 ofLecture Notes in Computer Science, pp. 1008–1021.
Springer, 2003.

[25] A. Tarski. A Decision Method for Elementary Algebra and
Geometry. Univ. of California Press, Berkeley, 1951.

[26] M. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. InProceedings of 26th Annual Sym-
posium on Foundations of Computer Science, pp. 327–338.
IEEE Computer Society Press, 1985.

[27] I. Walukiewicz. Pushdown processes: Games and model-
checking. Information and Computation, 164(2):234–263,
2001.

