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Abstract

We compare the classes of behaviours (transition systems) which can be generated
by normed BPAτ and normed BPPτ processes. We exactly classify the intersection of
these two classes, i.e. the class of transition systems which can be equivalently (up to
bisimilarity) described by the syntax of normed BPAτ and normed BPPτ processes.
We provide such a characterisation for classes of normed BPA and normed BPP
processes as well.

Next we show that it is decidable in polynomial time whether for a given normed
BPAτ (or BPPτ respectively) process ∆ there is some (unspecified) normed BPPτ (or
BPAτ respectively) process ∆′ such that ∆ is bisimilar to ∆′. Moreover, if the answer
is positive then our algorithms also construct the process ∆′. Simplified versions of
the algorithms mentioned above for normed BPA and normed BPP are given too.

As an immediate (but important) consequence we also obtain the decidability of
bisimilarity in the union of normed BPAτ and normed BPPτ processes.

1 Introduction

We study a relationship between the classes of transition systems, which are generated
by normed BPAτ [BK88] and normed BPPτ [Chr93] processes. We also examine such a
relationship between their respective subclasses, namely normed BPA and normed BPP
processes. BPA processes form type 2 class of prefix processes in Chomsky hierarchy for
processes as given in [Sti96] and [Mol96], whereas BPP form type 2 class of commutative
processes in this hierarchy.

BPA processes can be seen as simple sequential programs (they are equipped with a
binary sequential operator). This class of processes has been intensively studied by many
researchers. Baeten, Bergstra and Klop proved in [BBK87] that bisimilarity is decidable
for normed BPA processes. Much simpler proofs of this were later given in [Cau88], [HS91]
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and [Gro91]. In [HS91] Hüttel and Stirling used a tableau decision method and gave also
sound and complete equational theory. Hirshfeld, Jerrum and Moller demonstrated in
[HJM94a] that the problem is decidable in polynomial time. The decidability result was
later extended to the whole class of BPA processes by Christensen, Hüttel and Stirling in
[CHS92].

If we replace the binary sequential operator with the parallel operator, we obtain BPP
processes. They can thus be seen as simple parallel programs. Christensen, Hirshfeld and
Moller proved in [CHM93] that bisimilarity is decidable for BPP processes. A polynomial
decision algorithm for normed BPP processes was presented in [HJM94b] by Hirshfeld,
Jerrum and Moller.

If we allow a parallel operator not to specify just merge but also an internal commu-
nication between two BPP processes resulting in a special action τ , we obtain the class of
BPPτ processes ([Chr93]). In order to compare this class with its sequential counterpart
we employ the class of BPAτ processes ([BK88]). Decidability and complexity results just
mentioned hold for these classes as well.

An interesting problem is, what is the exact relationships between BPAτ and BPPτ

processes and that between their subclasses BPA and BPP, i.e. what is the relationship
between sequencing and parallelism (possibly allowing simple communication). We answer
these questions for normed subclasses of processes just mentioned. In the sequel we denote
these subclasses by nBPAτ , nBPA, nBPPτ and nBPP respectively.

Our paper is organised as follows. First we recall some basic definitions and proper-
ties of BPAτ , BPPτ and regular processes which are relevant to the subject of our paper.
In Section 3 we give an exact characterisation of those transition systems which can be
equivalently (up to bisimilarity) described by the syntax of nBPPτ and nBPAτ processes.
Next we show that if we restrict ourselves to nBPA and nBPP processes we obtain much
simpler (and hopefully nice) characterisation of those behaviours which are common to
these subclasses. In Section 4 we demonstrate it is decidable whether for a given nBPA
(nBPAτ , nBPPτ , nBPP respectively) process ∆ there is some (unspecified) nBPP (nBPPτ ,
nBPAτ , nBPA respectively) process ∆′ such that ∆ ∼ ∆′. These algorithms are polyno-
mial. We also show that if the answer to the previous question is positive, then the process
∆′ can be effectively constructed. Hence, as an important consequence we also obtain the
decidability of bisimulation equivalence in the union of normed BPAτ and normed BPPτ

processes. We conclude with remarks to related works and future research.
In many constructions of our paper we use the fact that regularity is decidable for

normed BPA and normed BPP processes in polynomial time (a process is regular if it is
bisimilar to a process with finitely many states). Regularity of BPA processes was examined
for the first time by Mauw and Mulder in [MM94], but their notion of regularity is different
from the usual one. Kučera showed in [Kuč95] that the result of Mauw and Mulder can
be used to decide regularity of normed BPA processes (BPAτ case is an easy consequence)
and that regularity of normed BPP and normed BPPτ processes is also decidable. These
algorithms are polynomial.
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2 Basic definitions, preliminary knowledge

2.1 BPAτ and BPPτ processes

Let Λ = {a, b, c, . . .} be a countably infinite set of atomic actions such that for each a ∈ Λ
there is a corresponding dual action a with the convention that a = a. Let Act = Λ ∪ {τ}
where τ 6∈ Λ is a special (silent) action. Let Var = {X, Y, Z, . . .} be a countably infinite set
of variables such that Var ∩Act = ∅. The classes of recursive BPAτ and BPPτ expressions
are defined by the following abstract syntax equations:

EBPAτ ::= a — X — EBPAτ .EBPAτ — EBPAτ + EBPAτ

EBPPτ ::= a — X — aEBPPτ — EBPPτ |EBPPτ — EBPPτ + EBPPτ

Here a ranges over Act (note that we allow also τ as an action prefix) and X ranges over
Var . The symbol Act∗ denotes the set of all finite strings over Act.

As usual, we restrict our attention to guarded expressions. A BPAτ or BPPτ expression
E is guarded if every variable occurrence in E is within the scope of an atomic action.

A guarded BPAτ (or BPPτ) process is defined by a finite family ∆ of recursive process
equations

∆ = {Xi
def
= Ei | 1 ≤ i ≤ n}

where Xi are distinct elements of Var and Ei are guarded BPAτ (or BPPτ ) expressions,
containing variables from {X1, . . . , Xn}. The set of variables which appear in ∆ is denoted
by Var(∆).

The variable X1 plays a special role (X1 is sometimes called the leading variable—it is
a root of a labelled transition system, defined by the process ∆ and following rules:

a
a→ ε

E
a→ E ′

E.F
a→ E ′.F

E
a→ E ′

E + F
a→ E ′

F
a→ F ′

E + F
a→ F ′

E
a→ E ′

E|F a→ E ′|F
F

a→ F ′

E|F a→ E|F ′
E

a→ E ′ F
a→ F ′

E|F τ→ E ′|F ′ (a 6= τ) E
a→ E ′

X
a→ E ′ (X

def
= E ∈ ∆)

The symbol ε denotes the empty expression with usual conventions: ε|E = E, E|ε = E and
ε.E = E. Nodes of the transition system generated by ∆ are BPAτ (or BPPτ ) expressions,
which are often called states of ∆, or just “states” when ∆ is understood from the context.
We also define the relation

w→* , where w ∈ Act∗, as the reflexive and transitive closure of
a→ (we often write E →∗ F instead of E

w→* F if w is irrelevant). Given two states E,F ,
we say that F is reachable from E, if E →∗ F . States of ∆ which are reachable from X1

are said to be reachable.

Remark 1. Processes are often identified with their leading variables. Furthermore, if we
assume a fixed process ∆, we can view any process expression E (not necessarily guarded)
whose variables are defined in ∆ as a process too; we simply add a new leading equation

X
def
= E ′ to ∆, where X is a variable from Var such that X 6∈ Var(∆) and E ′ is a process

expression which is obtained from E by substituting each variable in E with the right-hand
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side of its corresponding defining equation in ∆ (E ′ must be guarded now). All notions
originally defined for processes can be used for process expressions in this sense too.

2.1.1 Bisimulation

The equivalence between process expressions (states) we are interested in here is bisimilarity
[Par81], defined as follows:

Definition 1. A binary relation R over process expressions is a bisimulation if whenever
(E, F ) ∈ R then for each a ∈ Act

• if E
a→ E ′, then F

a→ F ′ for some F ′ such that (E ′, F ′) ∈ R

• if F
a→ F ′, then E

a→ E ′ for some E ′ such that (E ′, F ′) ∈ R

Processes ∆ and ∆′ are bisimilar, written ∆ ∼ ∆′, if their leading variables are related by
some bisimulation.

2.1.2 Normed processes

An important subclass of BPAτ and BPPτ processes can be obtained by an extra restriction
of normedness. A variable X ∈ Var(∆) is normed if there is w ∈ Act∗ such that X

w→* ε.
In that case we define the norm of X, written |X|, to be the length of the shortest such w.
In case of BPPτ processes we also require that no τ action which appears in w is a result
of a communication on dual actions in the sense of operational semantics given above.
This is necessary if we want the norm to be additive over ‘|’ operator (τ can still occur in
w—remember it can be used as an action prefix). A process ∆ is normed if all variables of
Var(∆) are normed. The norm of ∆ is then defined to be the norm of X1. Note the norm
of a normed process is easy to compute and bisimilar processes must have the same norm.

2.1.3 Greibach normal form

Any BPAτ or BPPτ process ∆ can be effectively presented in so-called 3-Greibach normal
form (see [BBK87] and [Chr93]). Before the definition we need to introduce the set Var(∆)∗

of all finite sequences of variables from Var(∆), and the set Var(∆)⊗ of all finite multisets
over Var(∆). Each multiset of Var(∆)⊗ denotes a BPPτ expression by combining its
elements in parallel using the ‘|’ operator.

Definition 2. A BPAτ (or BPPτ) process ∆ is said to be in Greibach normal form (GNF)
if all its equations are of the form

X
def
=

n∑
j=1

ajαj

where n ∈ N , aj ∈ Act and αj ∈ Var(∆)∗ (or αj ∈ Var(∆)⊗). If Length(αj) ≤ 2 (or
card(αj) ≤ 2) for each j, 1 ≤ j ≤ n, then ∆ is said to be in 3-GNF.
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From now on we assume that all BPAτ and BPPτ processes we are working with are
presented in GNF. This justifies also the assumption that all reachable states of a BPAτ

process ∆ are elements of Var(∆)∗ and all reachable states of a BPPτ process ∆′ are
elements of Var(∆′)⊗.

Remark 2. In the rest of this paper we let Greek letters α, β, . . . range over reachable
states of a BPAτ or BPPτ process ∆ in GNF. Occasionally we also use the notation αi

with the following meaning:

αi = α.α · · ·α︸ ︷︷ ︸
i

if α is a state of some BPAτ process in GNF

αi = α|α · · · |α︸ ︷︷ ︸
i

if α is a state of some BPPτ process in GNF

2.2 Regular processes

Many proofs in this paper take advantage of the fact that regularity of normed BPAτ and
normed BPPτ processes is decidable in polynomial time. Regularity of BPA processes was
examined for the first time by Mauw and Mulder in [MM94], but their notion of regularity
is different from the usual one. Kučera showed in [Kuč95] that the result of Mauw and
Mulder can be used to decide regularity of normed BPA (and thus also BPAτ ) processes
and that regularity of normed BPP and BPPτ processes is also decidable. These algorithms
are polynomial. The next definition explains what is meant by the notion of regularity and
introduce standard normal form for regular processes.

Definition 3. A process ∆ is regular if there is a process ∆′ with finitely many states such
that ∆ ∼ ∆′. A regular process ∆ is said to be in normal form if all its equations are of
the form

X
def
=

n∑
j=1

ajXj

where n ∈ N , aj ∈ Act and Xj ∈ Var(∆).

It is easy to see that a process is regular iff it can reach only finitely many states up to
bisimilarity. In [Mil89] it is shown, that regular processes can be represented in the normal
form just defined. Thus a process ∆ is regular iff there is a regular process ∆′ in normal
form such that ∆ ∼ ∆′. Now we present several propositions which concern regularity of
normed BPAτ and normed BPPτ processes. Proofs can be found in [Kuč95].

Proposition 1. Let ∆ be a normed BPAτ or BPPτ process. The problem whether ∆ is
regular is decidable in polynomial time. Moreover, if ∆ is regular then a regular process ∆′

in normal form such that ∆ ∼ ∆′ can be effectively constructed.

Definition 4. Let ∆ be a normed BPAτ (or BPPτ) process. A variable Y ∈ Var(∆) is
growing if Y →∗ Y.α (or Y →∗ Y |α) where α ∈ Var(∆)∗ such that Length(α) ≥ 1 (or
α ∈ Var(∆)⊗ such that card(α) ≥ 1).
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Proposition 2. A normed BPAτ (or BPPτ) process ∆ is non-regular iff Var(∆) contains
a growing variable Y such that there is a reachable state of the form Y.β where β ∈ Var(∆)∗

(or the state Y is reachable).

Remark 3. If ∆ is a normed BPAτ (or BPPτ) process and α is a BPAτ (or BPPτ)
expression whose variables are defined in ∆, then Proposition 2 can be applied also to α
— each such expression denotes a process in the sense of Remark 1. Namely variables of
∆ are BPAτ and BPPτ expressions—hence we can also speak about regular variables.

3 The characterisation of nBPAτ ∩ nBPPτ

In this section we give an exact characterisation of those normed processes which can be
equivalently defined by both BPAτ and BPPτ syntax.

Definition 5 (the class nBPAτ ∩ nBPPτ ). Let nBPAτ and nBPPτ denote the classes of
normed BPAτ and normed BPPτ processes, respectively. We define the class nBPAτ ∩ nBPPτ

in the following way:

nBPAτ ∩ nBPPτ = {∆ ∈ nBPAτ , | ∃∆′ ∈ nBPPτ such that ∆ ∼ ∆′} ∪
{∆ ∈ nBPPτ , | ∃∆′ ∈ nBPAτ such that ∆ ∼ ∆′}

The class nBPAτ ∩ nBPPτ can be seen as a “semantical intersection” of nBPAτ and nBPPτ .
It is clearly nonempty because each normed finite-state process belongs to nBPAτ ∩ nBPPτ .
But nBPAτ ∩ nBPPτ contains also processes with infinitely many states—assume the fol-
lowing process:

X
def
= a(X|X) + a (1)

X is a normed BPPτ process with infinitely many states. If we replace the operator ‘|’
with ‘.’, we obtain a bisimilar BPAτ process:

X
def
= a(X.X) + a (2)

Clearly X ∼ X because transition systems generated by those processes are even isomor-
phic:

◦ • a //aoo ◦ a //
a

oo ◦ a //
a

oo ◦
a

oo

Now we modify the process X slightly:

X
def
= a(X|X) + a + a (3)

Although the process (3) does not differ from the process (1) too much, it is not hard to
prove that there is no BPAτ process bisimilar to (3).

In [ČKK96] it is proved that each normed BPPτ and BPAτ process from nBPAτ ∩ nBPPτ

can be represented in a special normal form denoted INFBPP and INFBPA, respectively. Be-
fore the definitions of INFBPP and INFBPA we first introduce the notion of reduced processes:
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Definition 6 (reduced processes). Let ∆ be a normed BPAτ (or BPPτ) process in GNF.
We say that ∆ is reduced if

1. variables of Var(∆) are pairwise non-bisimilar

2. for each V ∈ Var(∆) there is a reachable state of the form V.α, where α ∈ Var(∆)∗

(or the state V is reachable).

As bisimilarity is decidable for normed BPAτ and normed BPPτ processes in polynomial
time (see [HJM94a], [HJM94b]), the first condition can be assumed w.l.o.g. Variables which
do not fulfil the second condition cannot contribute to the behaviour of ∆ and they can
be effectively removed in polynomial time. Hence we can assume (w.l.o.g.) that a normed
BPAτ or BPPτ process ∆ is reduced.

Definition 7 (INFBPP). Let ∆ be a normed reduced BPPτ process in GNF.

1. A variable Z ∈ Var(∆) is simple if all summands in the def. equation for Z are of the
form aZi, where a ∈ Act and i ∈ N ∪{0}. Moreover, at least one of those summands
must be of the form aZk where a ∈ Act and k ≥ 2. Finally, the def. equation for Z
must not contain two summands of the form b, b, where b ∈ Act.

2. The process ∆ is said to be in INFBPP if whenever aα is a summand in a def. equation
from ∆ such that Length(α) ≥ 2, then α = Zi for some simple variable Z and i ≥ 2.

Note that if Z is a simple variable, then |Z| = 1 because Z could not be normed otherwise.

Example 1. The following process as well as process (1) are in INFBPP, while the processes
(3) is not:

X
def
= aY + b(Z|Z) + b + b

Y
def
= cY + bX + a(Z|Z|Z)

Z
def
= a(Z|Z) + a(Z|Z|Z) + b + a

Remark 4. The set of all reachable states of a process ∆ in INFBPP looks as follows:

Var(∆) ∪ {Zi | Z ∈ Var(∆) is a simple variable and i ∈ N ∪ {0}}
Proposition 3. Each process ∆ in INFBPP belongs to nBPAτ ∩ nBPPτ .

Proof: We show how to construct a normed BPAτ process ∆, which is bisimilar to ∆.
First we need to define the notion of closed simple variables—a simple variable Z ∈ Var(∆)
is closed if the following condition holds: If the def. equation for Z contains two summands
of the form bZi, bZj, then it also contains a summand τZ i+j−1 (note that Z is simple,
hence the case i = j = 0 is impossible).

The set of variables of ∆ looks as follows: for each V ∈ Var(∆) we fix a fresh variable
V . Moreover, for each simple non-closed variable Z ∈ Var(∆) we also fix a fresh variable

ZC. Now we can start to transform ∆ into ∆. For each equation Y
def
=

∑n
i=1 aiαi of ∆ we

add the equation Y
def
=

∑n
i=1 aiT (αi) to ∆, where T is defined as follows:
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1. T (V ) = V , where V ∈ Var(∆).

2. T (Zi) = Z
i
, where i ≥ 2 and Z ∈ Var(∆) is a closed simple variable.

3. T (Zi) = ZC

i−1
.Z, where i ≥ 2 and Z ∈ Var(∆) is a non-closed simple variable.

The defining equation for ZC, where Z ∈ Var(∆) is a non-closed simple variable, is con-
structed using following rules:

1. if aZ i is a summand in the def. equation for Z, then aZC

i
is a summand in the def.

equation for ZC in ∆.

2. if bZ i, bZj are summands in the def. equation for Z, then τZC

i+j−1
is a summand in

the def. equation for ZC in ∆.

The fact ∆ ∼ ∆ is easy to check.

Example 2. If we apply the transformation algorithm to the process from Example 1, we
obtain the following bisimilar BPAτ process:

X
def
= aY + b(ZC.Z) + b + b

Y
def
= cY + bX + a(ZC.ZC.Z)

Z
def
= a(ZC.Z) + a(ZC.ZC.Z) + b + a

ZC

def
= a(ZC.ZC) + a(ZC.ZC.ZC) + b + a + τ(ZC.ZC.ZC.ZC) + τZC

As we can also prove that each normed BPPτ process from nBPAτ ∩ nBPPτ can be repre-
sented in INFBPP (see [ČKK96]), we obtain the following theorem:

Theorem 1. The class nBPAτ ∩ nBPPτ contains exactly (up to bisimilarity) normed BPPτ

processes in INFBPP.

The class nBPAτ ∩ nBPPτ can also be characterised using BPAτ syntax. To do this, we
introduce a special normal form for normed BPAτ processes:

Definition 8 (INFBPA). Let ∆ be a normed reduced BPAτ process in GNF.

1. Let X,Y ∈ Var(∆) be non-regular variables. We say that Y is a communication
closure (C-closure) of X if the following conditions hold:

• All summands in the def. equation for X are either of the form a where a ∈ Act,
or a(Y i.X) where a ∈ Act and i ∈ N ∪{0}. Moreover, at least one summand is
of the form a(Y k.X) where k ≥ 1.

• All summands in the def. equation for Y are of the form aY i, where a ∈ Act
and i ∈ N ∪ {0}.
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• aY i is a summand in the def. equation for Y iff one of the following conditions
holds:

(a) i = 0 and a is a summand in the def. equation for X.

(b) i ≥ 1 and a(Y i−1.X) is a summand in the def. equation for X.

(c) a = τ and there are two summands of the form bα1, bα2 in the def. equation
for X such that i = Length(α1) + Length(α2) − 1 (note that this condition
ensures that def. equations for X, Y do not contain two summands of the
form b, b).

2. The process ∆ is said to be in INFBPA if whenever aα is a summand in a def. equation
from ∆ such that Length(α) ≥ 2, then α = X i.Y for some i ∈ N and X, Y ∈ Var(∆)
such that Y is a C-closure of X (note that X,Y need not be different—there can be
variables which are C-closed by themselves).

Note that if Y is a C-closure of X, then |Y | = |X| = 1. Another interesting property of X
and Y is presented in the following remark.

Remark 5. It is easy to check that if Y is a C-closure of X, then Y i.X ∼ X
i+1

where
X is a normed BPP process composed of a single variable whose def. equation is obtained
from the def. equation for X by substituting ‘.’ with ‘|’ and replacing each occurence of X
and Y with X.

The previous remark in fact says that if ∆ is a normed BPAτ process in INFBPA, then a
bisimilar normed BPPτ process can be constructed by an algorithm which is inverse to the
algorithm presented in the proof of Proposition 3.

Theorem 2. The class nBPAτ ∩ nBPPτ contains exactly (up to bisimilarity) normed BPAτ

processes in INFBPA.

BPAτ and BPPτ processes are often defined in a simplified form, where ‘τ ’ cannot be used
as an action prefix and pure merge operator ‘‖’, which does not allow synchronisations on
dual actions, is used instead of ‘|’. These process classes are denoted BPA and BPP by
convention. So far we have investigated the intersection of nBPAτ and nBPPτ processes.
It was desirable to work with this unrestricted syntax, because we could also examine
when it is possible to simulate “real” communications in a BPPτ process by a sequential
BPAτ process. Obviously these results applies to nBPA/nBPP processes as well. But the
characterisation of nBPA ∩ nBPP is much simpler and therefore we present it explicitly.

Definition 9 (INF). Let ∆ be a normed reduced BPA or BPP process in GNF.

1. A variable Z ∈ Var(∆) is simple if all summands in the def. equation for Z are
of the form aZi, where a ∈ Act and i ∈ N ∪ {0}. Moreover, at least one of those
summands must be of the form aZk where a ∈ Act and k ≥ 2.
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2. The process ∆ is said to be in INF if whenever aα is a summand in a def. equation
from ∆ such that Length(α) ≥ 2 (or card(α) ≥ 2), then α = Zi for some simple
variable Z and i ≥ 2.

Note that normed BPA (or BPP) processes in INF have a nice property—a bisimilar normed
BPP (or BPA) process can be obtained just by replacing ‘.’ operator with ‘‖’ operator (or
by replacing ‘‖’ operator with ‘.’ operator).

Theorem 3. The class nBPA ∩ nBPP contains exactly (up to bisimilarity) normed BPA
(or BPP) processes in INF.

4 Deciding whether ∆ ∈ nBPAτ ∩ nBPPτ

In this section we prove that the problem whether a given normed BPAτ or BPPτ process
∆ belongs to nBPAτ ∩ nBPPτ is decidable in polynomial time. The technique is essentially
similar in both cases—we check if each summand of each defining equation of ∆ whose form
is not admitted by INFBPA or INFBPP can be in principal transformed so that requirements of
INFBPA or INFBPP are fulfilled. We also present simplified versions of our algorithms which
work for normed BPA and BPP processes.

Next we show how to modify presented algorithms so that they become constructive.
Unfortunately, these algorithms are no longer polynomial. We start with some definitions:

Definition 10 (S(∆),R(∆) and G(∆) sets). Let ∆ be a normed BPAτ or BPPτ process
in GNF.

• the set S(∆) ⊆ Var(∆) is composed of all variables V such that |V | = 1, V is non-
regular and if aα is a summand in the defining equation for V in ∆, then α ∼ V |α|.

• the set R(∆) ⊆ Var(∆) contains all regular variables of ∆.

• the set G(∆) ⊆ Var(∆) contains all growing variables of ∆.

The sets S(∆), R(∆) and G(∆) can be constructed in polynomial time because bisimilar-
ity and regularity are decidable in polynomial time for normed BPAτ and normed BPPτ

processes (see [HJM94a], [HJM94b] and [Kuč95]).
If ∆ is a normed BPAτ (or BPPτ ) process from nBPAτ ∩ nBPPτ , then there is ∆′ in

INFBPA (or INFBPP) such that ∆ ∼ ∆′. In case of normed BPPτ processes the set S(∆)
contains in fact variables which can be (potentially) bisimilar to simple variables of ∆′. In
case of normed BPAτ processes the set S(∆) contains variables which can be bisimilar to
C-closures of variables from Var(∆′).

Now we present three lemmas which help us to prove the corectness of the algorithm
below (it decides whether a given normed BPPτ process belongs to nBPAτ ∩ nBPPτ ).

Lemma 1. Let ∆ be a normed reduced BPPτ process in 3-GNF and let a(A|B) be a
summand of a defining equation from ∆ such that A is regular and B is non-regular. Then
∆ 6∈ nBPAτ ∩ nBPPτ .
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Proof: Assume there is a normed BPPτ process ∆′ in INFBPP such that ∆ ∼ ∆′. Let
n = max{|Y |, Y ∈ Var(∆′)}. As B is non-regular, it can reach a state of an arbitrary
norm—let B →∗ β where |β| > n. Then A|β is a reachable state of ∆ and thus A|β ∼ β′

for some reachable state β′ of ∆′. As |A|β | > n, we can conclude that β′ ≡ Z |A|β | where
Z ∈ Var(∆′) is a simple variable (see Remark 4). Hence A ∼ Z |A| and as each simple
variable is growing (see Definition 7), it contradicts regularity of A.

Lemma 2. Let ∆ be a normed reduced BPPτ process in 3-GNF, ∆ ∈ nBPAτ ∩ nBPPτ . Let
a(A|B) be a summand of a defining equation from ∆ such that A and B are non-regular.
Then there is exactly one variable Z ∈ S(∆) such that A|B ∼ Z |A|B |.

Proof: Let ∆′ be a normed BPPτ process in INFBPP such that ∆ ∼ ∆′. Let n =
max{|Y |, Y ∈ Var(∆′)}. Using the same argument as in the proof of Lemma 1 we
obtain A ∼ P |A|, B ∼ Q|B| where P, Q ∈ Var(∆′) are simple variables. We show that
P ≡ Q. Let A →∗ α where |α| > n. Then clearly α ∼ P |α| and as α|B is a reachable
state of ∆, α|B ∼ R|α|B| where R ∈ Var(∆′) is a simple variable. To sum up, we have
α|B ∼ P |α||Q|B| ∼ R|α|B |. Hence P ∼ R ∼ Q and thus P ≡ R ≡ Q because ∆′ is reduced.
As e.g. P is a reachable state of ∆′, there is a reachable state γ of ∆ such that P ∼ γ.
As |P | = 1, we can conclude γ ≡ Z for some Z ∈ Var(∆) which clearly belongs to S(∆).
Moreover, Z is unique because ∆ is reduced.

Lemma 3. Let ∆ be a normed BPPτ process in GNF and let X ∈ S(∆). If the defining
equation for X contains two summands of the form b, b, then ∆ 6∈ nBPAτ ∩ nBPPτ .

Proof: Assume there is a normed BPPτ process ∆′ in INFBPP such that ∆ ∼ ∆′. Using
the same kind of argument as in the proof of Lemma 1 we obtain that X ∼ Z for some
simple variable Z ∈ Var(∆′). As the def. equation for X contains two summands of the
form b, b and X ∼ Z, the def. equation for Z must contain those summands too—hence Z
is not simple and we have a contradiction.

The promised (constructive) algorithm for normed BPPτ processes is presented on Fig-
ure 1. Steps which are executed only by the constructive algorithm are shaded—if we omit
everything on a grey background, we obtain a non-constructive polynomial algorithm. The
abbreviation “NFR(∆)” stands for the Normal Form of the Regular process ∆, which can
be effectively constructed (see Proposition 1). We always assume that NFR(∆) contains
fresh variables which are not contained in any other process we are working with. When
the command return is executed, the algorithm halts and returns the value which follows
immediately after the keyword return.

The constructive algorithm is not polynomial because the construction of NFR is not
polynomial—a normed regular BPP process in 3-GNF with n variables can generally reach
exponentially many pairwise non-bisimilar states and each of these states requires a special
variable.

Our algorithm for normed BPPτ processes works for pure normed BPP processes as
well. It suffices to replace the ‘|’ operator with ‘‖’ operator in our description. As there
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Algorithm: A constructive test of the membership to nBPAτ ∩ nBPPτ for normed BPPτ

processes.

Input: A normed reduced BPPτ process ∆ in 3-GNF.

Output: YES and a normed BPPτ process ∆′ in INFBPP such that ∆ ∼ ∆′

if ∆ ∈ nBPAτ ∩ nBPPτ .
NO otherwise.

1. Construct the sets S(∆), R(∆) and G(∆).

2. If there is X ∈ S(∆) whose def. equation contains two summands of the form b, b then
return NO;

3. If G(∆) = ∅ then
∆′ :=NFR(∆) ;

return YES and ∆′ ;

4. ∆′ := ∆ ;

5. for each summand of the form a(A|B) in defining equations of ∆ do

if A,B ∈ R(∆) then
Construct NFR(A|B) ;

Replace the summand a(A|B) with aN in ∆′, where N is the leading

variable of NFR(A|B) ;

∆′ := ∆′∪NFR(A|B) ;

if (A ∈ R(∆) and B 6∈ R(∆)) or (A 6∈ R(∆) and B ∈ R(∆)) then
return NO;

if A,B 6∈ R(∆) then
if there exists Z ∈ S(∆) such that A|B ∼ Z |A|B |

then Replace the summand a(A|B) with a(Z |A|B |) in ∆′ ;
else return NO;

6. return YES and ∆′ ;

Figure 1: An algorithm which (constructively) decides the membership to nBPAτ ∩ nBPPτ

for normed BPPτ processes.
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are no communications in BPP, the notion of dual action is no longer sensible—hence the
second step of our algorithm can be removed in case of normed BPP processes.

Now we provide an analogous algorithm for normed BPAτ processes. We start with
some auxiliary definitions and lemmas.

Definition 11 (CL sets). Let ∆ be a normed BPAτ process in GNF. For each Y ∈ S(∆)
we define the set CL(Y ), composed of all X ∈ Var(∆) which fulfil the following conditions:

• If aα is a summand in the def. equation for X such that Length(α) ≥ 1, then α ∼
Y |α|−1.X.

• The def. equation for Y contains a summand bisimilar to aY k, k ∈ N ∪ {0}, iff one
of the following conditions holds:

1. α = ε and the def. equation for X contains a summand a

2. α 6= ε and the def. equation for X contains a summand which is bisimilar to
a(Y k−1.X).

3. a = τ and the def. equation for X contains two summands of the form bα1, bα2

such that k = Length(α1) + Length(α2)− 1.

It is easy to see that the set CL(Y ) can be constructed in polynomial time for each Y ∈
S(∆). The following lemma is due to D. Caucal (see [Cau88]):

Lemma 4. Let ∆, ∆′ be normed BPAτ processes in GNF and let α, β ∈ Var(∆), α′, β′ ∈
Var(∆′) such that β ∼ β′ and α.β ∼ α′.β′. Then α ∼ α′

Lemma 5. Let ∆, ∆′ be normed BPAτ processes. Let A1, . . . , Ak ∈ Var(∆), X,Y ∈
Var(∆′) such that |X| = |Y | = 1 and A1. · · · .Ak ∼ Y l.X where l = |A1. · · · .Ak| − 1. Then
Ak ∼ Y |Ak|−1.X and Ai ∼ Y |Ai| for 1 ≤ i < k.

Proof: Clearly Ak ∼ Y |Ak|−1.X. Hence A1. · · · .Ak−1 ∼ Y |A1.···.Ak−1| (due to Lemma 4).
The fact Ai ∼ Y |Ai| for 1 ≤ i < k can be proved by induction on k. If k = 2 then
A1 ∼ Y |A1| and our lemma holds. If k > 2, then clearly Ak−1 ∼ Y |Ak−1| and due to
Lemma 4 we have A1. · · · .Ak−2 ∼ Y |A1.···.Ak−2|. Now we can use induction hypothesis and
conclude that Ai ∼ Y |Ai| for 1 ≤ i < (k − 2).

Lemma 6. Let ∆ be a normed reduced BPAτ process in 3-GNF, ∆ ∈ nBPAτ ∩ nBPPτ .
Let Q.α be a reachable state of ∆ such that Q ∈ G(∆), α 6= ε. Then there are unique
variables Y ∈ S(∆), X ∈ CL(Y ) such that Q.α ∼ Y |Q.α|−1.X.

Proof: As ∆ ∈ nBPAτ ∩ nBPPτ , there is a normed BPAτ process ∆′ in INFBPA such that
∆ ∼ ∆′. Let n = max{|A|, A ∈ Var(∆′)}. As Q is growing, Q →∗ Q.γ where γ 6= ε.
Hence the state Q.γn.α is a reachable state of ∆ and therefore there is a reachable state δ
of ∆′ such that Q.γn.α ∼ δ. As |Q.γn.α| > n, we can conclude δ = R|Q.γn.α|−1.S, where R
is a C-closure of S (see Definition 8). Hence Q.γn.α ∼ R|Q.γn.α|−1.S and due to Lemma 5
we have α ∼ R|α|−1.S and Q ∼ R|Q|, thus Q.α ∼ R|Q.α|−1.S. Now it suffices to show
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that there are Y ∈ S(∆), X ∈ CL(Y ) such that Y ∼ R and X ∼ S. As ∆ is normed,
Q

s→* Y where |Y | = 1 and s is a norm-decreasing sequence of actions. Then Q.α
s→* Y.α

and as Q.α ∼ R|Q.α|−1.S, the state R|Q.α|−1.S must be able to match the sequence s and
enter a state bisimilar to Y.α. As s is norm-decreasing and |R| = 1, the only such state
is R|Y.α|−1.S. Hence Y.α ∼ R|Y.α|−1.S and due to Lemma 5 we have Y ∼ R. The fact
Y ∈ S(∆) follows directly from Definition 8. As S is a reachable state of ∆′, there is a
variable X ∈ S(∆) such that X ∼ S. Clearly X ∈ CL(Y ) (see Definition 8). Variables
X,Y are unique because ∆ is reduced.

It is worth noting that the variables X, Y of the previous lemma need not be different—if
a normed BPAτ process ∆ belongs to nBPAτ ∩ nBPPτ , then each Y ∈ S(∆) belongs to
CL(Y ).

To prove the corectness of our algorithm for normed BPAτ processes we need some
lemmas about summands:

Lemma 7. Let ∆ be a normed reduced BPAτ process in 3-GNF and let a(A.B) be a
summand of a defining equation from ∆ such that A is non-regular and B is regular. Then
∆ 6∈ nBPAτ ∩ nBPPτ .

Proof: As a(A.B) is a summand of a defining equation from ∆ and ∆ is normed and
reduced, there is a reachable state of the form A.B.β. As A is non-regular, A →∗ Q.α
where Q ∈ G(∆). Hence Q.α.B.β is a reachable state of ∆ and due to Lemma 6 we have
Q.α.B.β ∼ Y |Q.α.B.β|−1.X for some Y ∈ S(∆), X ∈ CL(Y ). With a help of Lemma 5 we
obtain B ∼ Y |B| or B ∼ Y |B|−1.X (the latter possibility holds if β = ε). As X,Y are
growing, it contradicts regularity of B.

Lemma 8. Let ∆ be a normed reduced BPAτ process in 3-GNF. Let a(A.B) be a summand
of a defining equation from ∆ such that A is regular and B is non-regular. Then it is
possible to replace the summand a(A.B) with aN where N 6∈ Var(∆) and to add a finite
number of new equations in INFBPA to ∆ such that the resulting process ∆1 is bisimilar to
∆.

Proof: As A is regular, it is possible to construct ∆A := NFR(A) such that Var(∆) ∩
Var(∆A) = ∅. Now we modify defining equations of ∆A slightly—each summand of the
form a where a ∈ Act is replaced with aB. The resulting system of equations is in INFBPA.
If we add the modified system ∆A to ∆ and replace the summand a(A.B) with aN where
N is the leading variable of ∆A, we obtain a process ∆1 which is clearly bisimilar to ∆.

Lemma 9. Let ∆ be a normed reduced BPAτ process in 3-GNF and let a(A.B) be a
summand of a defining equation from ∆ such that A and B are non-regular. Then

1. If ∆ ∈ nBPAτ ∩ nBPPτ then there are unique variables Y ∈ S(∆), X ∈ CL(Y ) such
that B ∼ Y |B|−1.X

2. Let B ∼ Y |B|−1.X for some Y ∈ S(∆) and X ∈ CL(Y ). If there is a sequence of

transitions A = A0
a0→ A1.α1

a1→ A2.α2
a2→ · · · ak→ Ak.αk such that k ≥ 0, Ak ∈ G(∆)

and Ak.αk 6∼ Y |Ak.αk|, then ∆ 6∈ nBPAτ ∩ nBPPτ .
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3. Let B ∼ Y |B|−1.X for some Y ∈ S(∆) and X ∈ CL(Y ). If for each sequence of

transitions A = A0
a0→ A1.α1

a1→ A2.α2
a2→ · · · ak→ Ak.αk such that Ak ∈ G(∆) the state

Ak.αk is bisimilar to Y |Ak.αk|, then the summand a(A.B) can be replaced with aN
where N 6∈ Var(∆) and a finite number of new equations in INFBPA can be added to
∆ such that the resulting process ∆2 is bisimilar to ∆.

Proof:
1. As A is non-regular, A →∗ Q.α where Q ∈ G(∆). The proof can be easily completed
with a help of Lemma 5 and Lemma 6.
2. This is a consequence of Lemma 5 and Lemma 6.
3. It suffices to realize that if A = A0

a0→ A1.α1
a1→ A2.α2

a2→ · · · ak→ Ak.αk is a sequence
of transitions such that A0, . . . , Ak−1 6∈ G(∆) and Ak ∈ G(∆), then Length(Ai.αi) ≤
card(Var(∆)) for 0 ≤ i ≤ k−1 (here we use the assumption that ∆ is in 3-GNF. Naturally,
Length(Ai.αi) is bounded also in case of general GNF). As there are only finitely many
sequences of variables of this bounded length, we can introduce a fresh variable for each of
them. To construct the process ∆2, we use a similar procedure as in the proof of Lemma
8.

An existence of a sequence A = A0
a0→ A1.α1

a1→ A2.α2
a2→ · · · ak→ Ak.αk such that Ak ∈ G(∆)

and Ak.αk 6∼ Y |Ak.αk| is decidable in polynomial time:

Lemma 10. Let ∆ be a normed reduced BPA process in 3-GNF. Let A ∈ Var(∆) be a
non-regular variable and let Y ∈ S(∆). The problem whether A can reach a state of the
form Q.α where Q ∈ G(∆) and Q.α 6∼ Y |Q.α| is decidable in polynomial time.

Proof: We divide the set Var(∆) into two disjoint subsets of successful and unsuccessful
variables. P ∈ Var(∆) is unsuccessful if one of the following conditions holds:

• P is growing and P 6∼ Y |P |.

• The defining equation for P in ∆ contains a summand of the form a(R.S) where R
is non-regular and S 6∼ Y |S|.

A variable is successful if it is not unsuccessful. Furthermore, we define the binary relation
‘⇒’ on Var(∆): U ⇒ V iff U is successful and the defining equation for U in ∆ contains
a summand which is of one of the following forms:

• aV

• a(V.W ) where W ∈ Var(∆)

• a(W.V ) where W ∈ Var(∆) is regular

Let ‘⇒∗’ be the reflexive and transitive closure of ‘⇒’. It is not hard to prove that A can
reach a state of the form Q.α where Q is growing and Q.α 6∼ Y |Q.α| iff A ⇒∗ T for some
unsuccessful variable T . As the relation ‘⇒∗’ can be constructed in polynomial time, the
proof is finished.
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Algorithm: A constructive test of the membership to nBPAτ ∩ nBPPτ for normed BPAτ

processes.

Input: A normed reduced BPAτ process ∆ in 3-GNF.

Output: YES and a normed BPAτ process ∆′ in INFBPA such that ∆ ∼ ∆′

if ∆ ∈ nBPAτ ∩ nBPPτ .
NO otherwise.

1. Construct the sets S(∆), R(∆), G(∆) and for each Y ∈ S(∆) construct the set CL(Y ).

2. If (G(∆) = ∅) then
∆′ :=NFR(∆) ;

return YES and ∆′ ;

3. ∆′ := ∆ ;

4. for each summand of the form a(A.B) in defining equations of ∆ do

if A,B ∈ R(∆) then
Construct NFR(A.B) ;

Replace the summand a(A.B) with aN in ∆′, where N is the leading

variable of NFR(A.B) ;

∆′ := ∆′∪NFR(A.B) ;

if A 6∈ R(∆) and B ∈ R(∆) then
return NO;

if A ∈ R(∆) and B 6∈ R(∆) then
Construct the process ∆1 of Lemma 8 ;

∆′ := ∆1 ;

if A,B 6∈ R(∆) then
if there exist Y ∈ S(∆), X ∈ CL(Y ) such that B ∼ Y |B|−1.X

then if A can reach a state Q.α where Q ∈ G(∆) and Q.α 6∼ Y |Q.α|

then return NO;
else Construct the process ∆2 of Lemma 9 ;

∆′ := ∆2 ;
else return NO;

5. return YES and ∆′ ;

Figure 2: An algorithm which (constructively) decides the membership to nBPAτ ∩ nBPPτ

for normed BPAτ processes.
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An algorithm which decides the membership to nBPAτ ∩ nBPPτ for normed BPAτ pro-
cesses is presented on Figure 2. We use the same notation as in the case of BPPτ .

There is a little shortcoming in the constructive variant of our algorithm for normed
BPAτ processes—as the process ∆2 of Lemma 9 need not be in 3-GNF, the process ∆′ need
not remain in 3-GNF either. But each lemma about summands (Lemma 7, 8, 9) is formu-
lated for normed BPAτ process in 3-GNF. Naturally, it is not a problem to prove analogous
lemmas about processes in general GNF—but we think that readability is more important
feature than technical accuracy (note there is a similar problem in the constructive variant
of our algorithm for normed BPPτ processes).

In case of normed BPA processes our algorithm must be slightly modified (and sim-
plified). This is a consequence of the fact that a normed BPA process ∆ belongs to
nBPA ∩ nBPP iff it can be represented in INF—and INF is a little diffrent from INFBPA

(see Definitions 9 and 8). Lemma 7 and Lemma 8 are valid also for normed BPA processes.
Instead of Lemma 9 we can prove the following (in a similar way):

Lemma 11. Let ∆ be a normed reduced BPA process in 3-GNF and let a(A.B) be a
summand of a defining equation from ∆ such that A and B are non-regular. Then

1. If ∆ ∈ nBPA ∩ nBPP then there is a unique variable Z ∈ S(∆) such that B ∼ Z |B|

2. Let B ∼ Z |B| for some Z ∈ S(∆). If there is a sequence of transitions A = A0
a0→

A1.α1
a1→ A2.α2

a2→ · · · ak→ Ak.αk such that k ≥ 0, Ak ∈ G(∆) and Ak.αk 6∼ Z |Ak.αk|,
then ∆ 6∈ nBPA ∩ nBPP.

3. Let B ∼ Z |B| for some Z ∈ S(∆). If for each sequence of transitions A = A0
a0→

A1.α1
a1→ A2.α2

a2→ · · · ak→ Ak.αk such that Ak ∈ G(∆) the state Ak.αk is bisimilar to
Z |Ak.αk|, then the summand a(A.B) can be replaced with aN where N 6∈ Var(∆) and
a finite number of new equations in INF can be added to ∆ such that the resulting
process ∆2 is bisimilar to ∆.

Our algoritm for normed BPA processes differs from the algorithm on Figure 2 in two
things—the sets CL(Y ) for Y ∈ S(∆) are not computed at all and the last if statement in
the loop of step 4 is replaced with the following code:

if A,B 6∈ R(∆) then
if there exist Z ∈ S(∆) such that B ∼ Z |B|

then if A can reach a state Q.α where Q ∈ G(∆) and Q.α 6∼ Z |Q.α|

then return NO;
else Construct the process ∆2 of Lemma 11 ;

∆′ := ∆2 ;
else return NO;

The existence of constructive variants of presented algorithms allow us to prove the fol-
lowing theorem:

Theorem 4. Bisimilarity is decidable in the union of normed BPAτ and normed BPPτ

processes.
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Proof: Given two normed BPAτ or BPPτ processes, it is possible to check bisimilarity
using algorithms which were published e.g. in [HJM94a] and [HJM94b]. If we get a normed
BPPτ process ∆1 and a normed BPAτ process ∆2, then we run one of the constructive
algorithms presented earlier. We can choose e.g. the first algorithm with ∆1 on input. If
it answers NO, then ∆1 6∼ ∆2. Otherwise we obtain a normed BPPτ process ∆′

1 in INFBPP

which is bisimilar to ∆1. Now it suffices to check bisimilarity between two normed BPAτ

processes ∆′
1 and ∆2, where ∆′

1 is obtained by running the algorithm presented in the
proof of Proposition 3 with ∆′

1 on input.

Note that the corresponding statement holds for normed BPA and BPP processes by
specialisation.

5 Conclusions, Related Works and Future Research

We have studied the class nBPAτ ∩ nBPPτ of those transition systems which can be gen-
erated by both nBPAτ and nBPPτ processes, i.e. the class of normed transition systems
which can be equivalently (up to bisimilarity) expressed within the syntax of BPAτ and
BPPτ . We have shown that the problems whether a given nBPAτ or nBPPτ process ∆ be-
longs to nBPAτ ∩ nBPPτ are decidable in polynomial time. We also provided constructive
variants of these algorithms which are unfortunately not polynomial. Hence our algorithms
for deciding bisimilarity in the union of nBPAτ and nBPPτ processes are not polynomial
either. A simplified characterisation of nBPA ∩ nBPP and the corresponding algorithms
are given as well. An obvious question is, whether there exists a decision algorithm of
polynomial complexity. Another problem is, whether our results can be extended to the
unnormed cases.

The problem whether a given nBPP process belongs to nBPA ∩ nBPP has been inde-
pendently examined by Blanco in [Bla95] where it is shown that given a nBPP process,
one can decide whether it is a nBPA process. His approach is based on well-known spec-
ification of properties of BPA transition graphs ([CM90]). A test whether a given nBPP
graph fits this specification is given in the work. Consequently, his result does not allow
for testing whether a given nBPA process belongs to the intersection as well as for general-
isation for ‘—’ operator. Also we would like to mention that our result on the classification
of nBPA ∩ nBPP can be considered as a refinement of the result achieved in [Sch92] on
the context-freeness of languages generated by Petri nets, as BPP processes form a proper
subclass of Petri nets.

Our result about the classification of nBPAτ ∩ nBPPτ might be of some interest from
the point of view of formal languages/automata theory as well. INF (for nBPA processes)
can be taken as a special type of CF grammars which generate languages of the form
R.(L1 ∪ . . . ∪ Ln), where R is regular and each Li can be generated by a CF grammar
having just one nonterminal and rules of the form Z → aZk, k ≥ 0. Considering language
equivalence only, it is obvious that languages of the mentioned type R.(L1 ∪ . . . ∪ Ln)
can be recognized by nondeterministic one counter automata. Hence our result on the
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classification of nBPA ∩ nBPP can be considered as a refinement of the result achieved
in [Sch92] on the context-freeness of languages generated by Petri nets, as BPP processes
form a proper subclass of Petri nets.

We hope a part of our work can be considered as one of the steps towards a solution
of the open problem whether bisimilarity is decidable for PA processes. Furthermore,
we would like to examine deeper the relationship between classes of behaviours which
are generated by different types of syntax (e.g. Petri nets and BPA) and provide similar
results like in the case of nBPAτ and nBPPτ processes—i.e. to characterise the “semantical
intersection” and design algorithms which can decide (constructively) the membership to
this intersection for both types of syntax. Last but not least corresponding complexity
results should be provided.
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