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1 Introduction

The importance gbushdown automata (PDAs recently been recognized also in
areas different from theory of formal languages. In patédgUWPDA are a natural and
convenient model for sequential programs with recursiee@dure calls (see, e.g., [1,
2,13, 15, 14]). Global data of such a program is stored in thieefcontrol, and the
stack symbols correspond to activation records of indi@igwocedures. A procedure
call is thus modeled by pushing a new symbol onto the stadkaareturn from the
procedure is modeled by poping the symbol from the stack. s€guently, a PDA
is seen as a finite description of a “computational behauiatfier than a language
acceptor in this contekt The behavior of a given PDA\ is formally defined by the
associated transition systefia, where the states are configurationsandpa %
¢ if this move is consistent with the transition functiond®f Hence 7a has infinitely
many states.

One of the dominating approaches to formal verification dfveare systems is
equivalence-checkin@ he idea is to compare the behavior of a given program wath it
intended behavior called trepecification Since the two behaviors are formalized as
transition systems, the comparison means proving somediseimantic equivalence
between the initial states of the two transition systemac&such proofs cannot be
completed by humans for programs of realistic size, a nefyurestion is whether the
problem is decidable and what is its complexity. This questias been considered for
many computational models and a large number of results e achieved during
the last decade (see [30, 11, 20, 5, 23, 7, 33] for surveysmésubfields).

In this paper we restrict our attention to the class of progravhose behavior is
definable by pushdown automata, and to the class of speitfisathich are definable
by finite-state systems. On the other hand, we consider a EHags of equivalences
which subsumes the linear/branching time spectrum of [2], 4

The state of the artChecking semantic equivalences between two pushdown au-
tomata tends to be undecidable. Special attention has les@ted tostateles$PDA,
which are often denoted BPAnN this context. The first result indicating that the situ-
ation is not completely hopeless is due to Baeten, BergstihKlop [3] who proved
that strong bisimilarity is decidable farormedBPA (a PDA is normed if the stack
can be emptied from every reachable configuration). Sinleofs were given later
in[9, 17, 19], and there is even a polynomial-time algorifi®]. The decidability re-
sult has been extended to all (not necessarily normed) BPEOpand an elementary
upper complexity bound is due to [8]. RecenBBSPACE-hardness of this problem
has been established in [34]. Strong bisimilarity was shtwine decidable also for

1From the language-theoretic point of view, the definitiorP&fA adopted in this area corresponds to the
subclass of real-time PDA. It does not mean that the condepit@nsitions vanished—it has only been
replaced by “silent” transitions with a distinguished labavhich may (but does not have to) be taken into
account by a given semantic equivalence.

2This is because stateless PDA correspond to a natural frtgphéCP known as “BPA’ (Basic Process
Algebra; see [4]). BPA cannot model global data, but theysafficiently powerful to model, e.g., the
interprocedural data-flow [13]. It is worth noting that thepeessive power of PDA is strictly greater than
the one of BPA w.r.t. most of the considered semantic ecqereas.



normed PDA [36]. Later, Sénizergues proved that bisimtitais decidable for all
PDA processes [32]. For simulation-like and trace-likeiegjences, the equivalence-
checking problem is undecidable even for (normed) BPA; fibliows directly from
Friedman'’s result [16]. In the presence of silent movessthetion gets even worse.
Weak bisimilarity is undecidable for PDA [35], and in fact Bovery modest subclass
of PDA known as one-counter nets [28].

Comparing a PDA with a finite-state system is computatigredisier. Strong and
weak bisimilarity between a BPA and a finite-state systene@dhble in polynomial
time [25]. For general pushdown automata, both problem$&RACEcomplete
[24]. Checking strong and weak simulation equivalence betwa BPA and a finite-
state system iIEXPTIME -complete [24], and the same holds for general PDA. Trace-
like equivalences between BPA and finite-state systemgswaieaidable (this is a direct
consequence of the undecidability of language equivajence

Our contribution: In this paper we consider the equivalence-checking problem
between PDA and finite-state systems. More precisely, waidenthe problem of
checkingfull equivalence between a given PDA procgasand a given procesp of
a given finite-state syste. The processesa and f arefully equivalentif pa is
equivalent tof and, in addition, every reachable stateafis equivalent to some state
/' of T. In other words, the specification must define the “globalidgour of a
given program. For bisimulation-like equivalences, thea@xondition about reach-
able states is redundant. However, for simulation-liketaack-like equivalences, this
condition is fully meaningful.

We propose a unified method for deciding full equivalencevben PDA and finite-
state systems. The method consists of two parts. The firstgogeneric and works
for every “reasonable” semantic equivalence (an equiecaes considered “reason-
able” if it is a right PDA congruence; see Definition 4). Thelears are not aware
of any semantic equivalence which is not reasonable in #hises The second part
is equivalence-specific. The difference between indiMiégaivalences is hidden in
the notion ofexpansion There are four abstract conditions which guarantee appro-
priateness of the designed expansion for a given equivaldrtee applicability of the
method to concrete equivalences is demonstrated by defapipgppriate expansions
for the main conceptual representatives. Special atteigidevoted to bisimulation-
like equivalences (we explicitly consider weak, early,agelbranching, and proba-
bilistic bisimilarity), but we also show how to handle wedknslation equivalence
and weak trace equivalence. The application part is ndat@nd most of technical
tricks are hidden there.

Interestingly, the generality of the method does not leddedoss of efficiency. For
bisimulation-like and simulation-like equivalences, onethod results in algorithms
which arepolynomialin the size of the PDA and the finite-state system on input, and
exponentialn the number of control states of the PDA. So, the algorithiexiponen-
tial for general PDA, but polynomial for each subclass of Pere the number of
control states is bounded by a fixed constant (in partictiarapplies to BPA). Since
these problems afeRSPACE-hard for general PDA processes, the obtained algorithms
are essentially time-optimal. For trace-like equivalendee algorithm requires expo-
nential time even for BPA, but the problem is aRSPACE-hard for BPA.



The list of particular results obtained by applying our noetincludes some items
which are first results of their kind. Below we explicitly ntem some of them (the
subclass of PDA where the number of control states is boulngladjivenk is denoted
PDAF):

(a) Branching bisimilarity [43] between PDAand finite-state systems is decidable
in polynomial time. To the best of authors’ knowledge, thighe first result about
computational tractability of branching bisimilarity feystems with infinitely many
states. Branching bisimilarity plays a distinguished rial¢he semantics of systems
with silent moves [39], similarly as strong bisimilarityl[Bfor processes without silent
moves. However, the “algorithmic support” for branchingitmilarity has been so far
limited only to finite-state systems. A related concept oalvbkisimilarity [29] is sub-
stantially more developed in this sense. One reason is thalk Wisimilarity admits a
simple game-theoretic characterization [37, 38] and apuesetly it is “more manage-
able” than branching bisimilarity. Our method treats alligglences in the same way
and consequently branching bisimilarity is equivalentigmageable as weak bisimi-
larity in our setting (the same applies to early and delayiarity; results for these
equivalences are also first of their kind).

(b) Probabilistic bisimilarity [27, 41] between PBAand finite-state systems is
decidable in polynomial time. This result applies to (flilprobabilistic extensions
of PDA and finite-state systems. Probabilistic bisimilahits so far been considered
only for finite-state systems. The obtained polynomialetiabgorithm indicates that
one can go beyond this limit without losing efficiency.

(c) For simulation-like equivalences (represented by wadakilation equivalence),
we prove that full equivalence between PDANd finite-state systems is decidable
in polynomial time. Since the non-full variant of the profolés EXPTIME -complete
even for BPA [24], this result shows that the extra condiibout reachable states used
in the definition of full equivalence actually makes the gesb more tractable (rather
than more complicated). The same applies to trace-likevatgrices (represented
by weak trace equivalence in this paper). Trace-like edeinees between BPA and
finite-state systems are undecidable; this is a direct quesece of the undecidability
of language equivalence. However, full trace-like eqeinaks between PDA and
finite-state systems are decidable in exponential tims (ifoblem iSPSPACE-hard
even for BPA).

Another generic outcome of our method is an algorithm dagidvhether a given
finite-state procesg is the~-quotient of a given PDA procesg for a given seman-
tic equivalence~. The complexity of this algorithm is essentially the sametes
complexity of deciding full~-equivalence. In particular, it is polynomial for PDA
processes wher is simulation-like, and exponential for PDA processes wkeis
trace-like. In the context of formal verification, semargigotients are used as suc-
cinct representations of original systems. Since mostbifii) of the existing process
equivalences are preserved under their respective qtefeh 22], the information
about the state-space of a given process is faithfully pvesan its~-quotient.

This paper is organized as follows. We start with basic di#dims in Section 2. In
Section 3, a suitable composition principle allowing toidenew pairs of equivalent
processes from already existing ones is developed. Thigjrim allows to repre-



sent full equivalence between a given PDA and a given findeesystem by a finite
relation calledbase The method is related to the technique of bisimulation base
neered by Caucal [9], and can also be seen as a generalinftiom method used in
[25] to prove that weak bisimilarity between BPA and finitate systems is decidable
in polynomial time. In Section 4 we show how to compute theebabhe first part
of our development is again generic; we give an abstracrigthgo for computing the
base and identify the equivalence-specific part of the grablhich is hidden in the
notion of expansion. In subsequent subsections, we showtdalefine expansions
for various concrete process equivalences.

Due to the lack of space, we had to omit all proofs and also Hrésplevoted
to probabilistic bisimilarity, simulation-like equivaiees, and trace-like equivalences.
These can be found in a full version of this paper [26].

2 Basic Definitions

DEFINITION 1 Atransition systenis a triple 7 = (S, —, .A) whereS is a finite or
countably infinite set oftates.A is a finite set ofactionsand— C S x A x Sisa
transition relation

We write s % ¢ instead of(s, a,t) € —, and we extend this notation to the elements
of A* in the standard way. We say that a state reachablefrom a states, written

s —* t, if there isw € A* such that - ¢. Letr be a distinguisheslilentaction, and
let A, = AU {7}. For everya € A, we define the relatioss C S x S as follows:

e s = tiff there is a sequence of the form= py — - - - = pi, = t wherek > 0;
e s = t wherea # 7 iff there arep, g such thats = p % ¢ = t.

From now on, grocesds formally understood as a state of (some) transition gyste
Intuitively, transitions from a given processnodel possible computational steps, and
the silent actionr is used to mark those steps which are internal (i.e., notextg
observable).

DEFINITION 2 Apushdown automaton (PDAg a tupleA = (Q,T, A, §) where@
is a finite set ofcontrol stategsl" is a finitestack alphabetA is a finiteinput alphabet
ands : (Q xT) — 2AXQxT"* is atransition functiorwherel'S2 = {¢} UT U (I'xT)

In the rest of this paper we adopt a more intuitive notationting pX % ¢8 € 6
instead of(a, (¢, 8)) € d(p, X). To A we associate the transition systék where
Q@ x I'* is the set of states (we wrifev instead of(p, a)), A is the set of actions, and
the transition relation is determined pX o — ¢ iff pX % ¢ € 6.

3 A Finite Semantic Base for PDA

For the rest of this section, let us fix a pushdown automatea (@, T, A, §) and
afinite state systerfi = (F, A, —). The symbolF’; denotes the st U {_L}, where
1 ¢ F stands for “undefined”.

DEFINITION 3 For every procespa of A we define the setf,, = {¢ € Q |

pa —* ¢ge}. AfunctionF : Q — F is compatiblewith p« iff for everyq € M, we
have thatF(q) # L. The class of all functions that are compatible withis denoted
C(pa).



For every procesga of A and everyF € C(pa) we define the processyF whose
transitions are determined by the following rules:

Flp) = f
pF = pF[f/p]

Here F[f/p] : @ — F is a function which returns the same result/agor every
argument except fop whereF[f /p](p) = f. In other wordspaF behaves likea

until the point when the stack is emptied and a configuratfdheformqe is entered;
from that point onpaF behaves likeF (q). Note that if F € C(pa) andpa —* ¢,

thenF € C(q3). We putStack(A, F) =T* U {paF |p € Q,a € T*,F € (F)%},

andP(AF)={pa|peQ,a eT*}U{paF |pe Q,a eT* F e C(pa)}.

pa S qp

————  F e C(pa
paF = qBF (pe)

F € C(pe)

DEFINITION 4 We say that an equivalenee over P(A, F) U F is aright PDA
congruencdf the following conditions are satisfied:

e For every procespa of A and allw, v € Stack(A, F') we have that iffw ~ gu for
all ¢ € M, then alsoppaw ~ pav.

e pF ~ F(p) for everypF € P(A, F). (This condition is satisfied by all “behav-
ioral” equivalences which do not distinguish between isgohic processes. How-
ever,~ can be an arbitrary equivalence, and therefore this condifs not redun-
dant.)

One intuitively expects that every “reasonable” semangigiealence should be a
right PDA congruence. In particular, bisimulation-likeénsilation-like, and trace-like
equivalences (even in their “weak” forms) are right PDA car@nces. For the rest of
this section, we fix a right PDA congruense

In this paper we consider the problem of full equivalenceckivey between PDA
and finite-state processes. The notion of full equivalesdatroduced in our next
definition.

DEFINITION 5 Let pa be a process ofA and f € F. We say thapa is fully
equivalent tof (with respect tov), writtenpa 3 f, iff pa ~ f and for evenpa —*
gBthereis somg’ € F suchthays ~ f’. (Note thatf’ does not have to be reachable
from f.)

Now we formulate a composition lemma for pushdown processes

LEMMA 6 LetpaG 3 f, whereG € C(pa) and f € F. Further, lets,~ € T'* and
H : Q — F. Then the following holds:

(1) If g8 2 G(g) for all g € My, thenpas 3 f.

(2) If H € C(gy) andgyH 3 G(q) forall ¢ € M, thenH € C(pa~y) andpayH X f.
DEFINITION 7 Leta e T'*, F,G: Q — F,. We write

ea~F iff Vpe@:F(p)# L = pa3F();
eaG~F iff VpeQ:F(p)# L = G eC(pa)ApaG = F(p).



DEFINITION 8 Let
K={EF)|exFtU{GF)|G~F} UK’

whereK’ C T'x(F)? U ([x(FL)?9))x(FL)?). (Thatis,K’ consists of (some)
pairs of the form( X, F) and (X G, F)).
We say thaf is well-formediff K satisfies the following conditions:

oif (XG,F) € K andF(p) # L, theng € C(pX);
oif (X,F) € K (or (XG,F) € K)and(F,H) € K, then also(X,H) € K (or
(XG,H) € K, resp.).

Itis clear that there are only finitely many well-formed setsd that there exists the
greatest well-formed s&t whose size i€(|T'| - |F|*|9!). Further, observe that if
is decidable for finite-state processes, tliéis effectively constructible.

DEFINITION 9 Let K be a well-formed set. Thedosure of K, denotedCl(K), is
the least sef. satisfying the following conditions:

WK CL;

(2)if (aG,F) € L, (e,G) € K, andae, then(a, F) € L;

(3)if (aG, F)eL, (H,G)e K, andaze, then(aH, F) € L;

4)if (aG, F)eL, (X,G)eK, andaze, then(aX,F) € L;

(5)if (G, F) € L, (XH,G) € K, andaz#e, then(aXH,F) € L.

Note thatCl(K) = (32, CI'(K) whereCI’(K) = K and CI'*' (K consists of ex-
actly those pairs which are either @i’ (K) or can be derived fronk and Cl*(K) by
applying one of the rules (1)—(5) of Definition 9. Another plmobservation (which
will be useful later) is the following:

LEMMA 10 LetK be awell-formed set, and l&F, H) € K. If (o, F) € CI'(K),
then also(a, H) € CI'(K). Similarly, if (oG, F) € CI'(K), then also(aG, H) €
Cl'(K).

For our purposes, the following well-formed set is partielyl important:
DEFINITION 11 ThebaseB is defined as follows:
B = {eF)|c=F} U{G.F)|G=F) U {X.F)| X ~F}
U {(XG,F)| XG~F}
THEOREM 12 Leta e T* andF,G: Q — F,. We have

ea~F iff (o, F) € Cl(B);
oG ~ F iff (aG,F) € Cl(B).

4 Computing the Base

In this section we present algorithms for computing the li&ar various process
equivalences. We start by describing the generic part afisthod together with some
auxiliary technical results which are also valid for everggess equivalence which is



a right PDA congruence. The applicability of the method toarete process equiva-
lences is demonstrated in subsequent subsections (due lacthof space, we could
include only a subsection devoted to bisimulation equiveds with silent moves; the
other parts can be found in [26]). For the rest of this seclitrus fix

e a pushdown automatah = (Q, T, A, §) of sizen;
o a finite state systeri = (F, A, —) of sizem.

e a right PDA congruences over P(A, F') U F which is decidable for finite-state
processes.

In our complexity estimations we also use the parameter| F| |9l

Let W be the (finite) set of all well-formed sets. Note thiay, C) is a complete
lattice. LetEzp : W — W be a function satisfying the following four conditions:
(1) Ezp(B) = B.
(2) Exp is monotonic, i.e K CL implies Exzp(K)C Exp(L).
(3) If K = Exp(K), thenK C B.
(4) For every well formed sek’, the membership t&zp(K) is decidable.

The conditions (1) and (3) together say ti¥as the greatest fixed-point dfzp. Since
Ezp is monotonic andV is finite, we further havé8 = ;2 Ezp’(G) whereG is the
greatest well-formed set. In other words, the basan be computed by the algorithm
of Figure 1. Observe that is effectively computable becauseis decidable over
finite-state processes.

Input: A PDA A, afinite-state systeri
Output: The bases

1: := the greatest well-formed set
2:repeat
3: K:=B;B:=0

4: forall (w,F)e€ K do

5: if (w,F) € Exp(K)thenB :=BU {(w,F)}fi
6: od;

7:untl B=K

Figure 1.  An algorithm for computing3

As we shall see, an approprial&p satisfying the conditions (1)—(4) can be de-
signed for almost every process equivalence of the linemmfthing time spectrum

[40, 42]. Now we introduce further notions and results whiclkderpin our technical
constructions.

For every set of process@&sand every actiom we define the sets
e Post,(P)={t|IscP:s5t}
o Post™(P)={t|3seP:s—>"1}
o Post:(P)={t|3s€P:s=t}
Note thatifP is a subset oP (A, F'), then so aréost,(P), Post™(P), andPost;.(P).



To be able to represent infinite subset$gf\, F') in a finite and compact way, we
borrow the following concept from [6]:

DEFINITION 13 A multi-automatons a tupleM = (S, %, §, Acc) where

¢ S is afinite set ofstatessuch thaty) C S (i.e, the control states ak are among the
states ofM);

X =TU{F | F:Q — F.} is theinput alphabe(the alphabet has a special
symbol for eacl¥ : Q — F);

e ) C S x X x Sisatransition relation;

e Acc C Sis a set ofaccepting states

Every multi-automatorM determines a unique set

LM) ={pw|peQuweX"ip w)N Acc # 0}
AsetP C P(A, F) isrecognizedy a multi-automatooM iff P = L(M).
A proof of the following lemma can be found, e.g., in [12].

LEMMA 14 LetP C P(A, F) be aset of processes recognized by a multi-automaton
M. Then one can compute multi-automata recognizing thefzets, (P), Post™ (P),
and Post; (P) in time which is polynomial imn, n, z and the size ofM.

DEFINITION 15 Let K be a well-formed set. For alf € F andi € N, we define
the setGen’s (K) =

{pa | AF s.t. F(p) = f and(a, F) € CI'(K)}
U {paG | 3F st.F(p) = fand(agG, F) € CI'(K)}

Further, we putGen ;(K) = |2, Gen's(K).
LEMMA 16 The relations overP (A, F) x Fis exactiy J ;. Gens(B) x {f}.

LEMMA 17 LetK be awell-formed setanfle F. The setGen(K) is recognized
by a multi-automatouM g ¢ which is constructible in time polynomial in, n, z.

Proof: We refer to [25] where a similar result is proven explicitthie construction
required for Lemma 17 differs from the one presented in [2By i minor details.(]

We finish this part by an auxiliary technical lemma whose pi®also independent
of a concrete choice of.

LEMMA 18 Let K be a well-formed set. The following conditions hold:

(1) If gB8G€ Geny(K) and (e, G)e K, thengBe Gen 4 (K).
(2) If g8Ge Geny(K), (X, G)eK, thengBX € Geny(K).
(3)pG € Geny(K)iff G(p) 3 g. ‘

(4) Letg 3 ¢'. Thenpwe Gen, (K) impliespwe Geng, (K).



4.1 Bisimulation Equivalences with Silent Moves

In this subsection we show how to compute the lHaser bisimulation-like equiv-
alences which take into account silent moves. We explicitigsider the main four
representatives which ameak early, delay, andbranching bisimilarity We prove
that for all these equivalences, the bise computable in time polynomial im, n, z.

DEFINITION 19 Let R be a binary relation over processes, and(eft) € R. We
say that a move = ¢’ is R-consistent with a move % s’ in a weak, early, delay, or
branching style, respectivel§,one of the following conditions is satisfied:

ea=r,t=1t,and(s',t) € R;
e the move = ¢ is of the formt=ug = --- 5 u; = vy — --- = v;=t', where
i,j > 0, such thats’,¢') € Rand

(i) if the style is early or branching, then alge, u;) € R;
(ii) if the style is delay or branching, then al$e/, vg)€R.

We say thats, t) € R expandsinR (in the respective style) iff for all € Act, and
s = s there is a move = t' which is R-consistent withs % s’. Furthermore, we
say that(s,t) € R b-expands imR (in the respective style) {f, t) expands inR and
(t,s) expands ink~! in the respective style.

A binary relationR over processes iswaeak, early, delay, or branching bisimula-
tion if for every(s,t) € R we have thats,t) b-expands inR in the respective style.
Processes, t are weakly, early, delayed, or branching bisimilar if theg aelated by
some weak, early, delay, or branching bisimulation, resigely.

REMARK 20 Animportant fact (which will be used in the proof of Lemmai@3at
thesamenotion of weak, early, delay, and branching bisimilaritylstained when the
conditions(i) and (ii) of Definition 19 are reformulated as follows:

(i) if the style is early or branching, the@, u,) € Rforall 0 < ¢ < i;
(i) if the style is delay or branching, thér’,v,) € Rforall 0 < /¢ < j,

Since our constructions are to a large extent independethteothosen style of
bisimilarity, from now on we refer just to “bisimilarity” wich is denoted by~ in
the rest of this subsection. It follows directly from Defiait 19 that~ = = over
P(A, F) x F and therefore we do not distinguish between these two oalsti

For technical reasons which become clear in (the proof ofofém 19, we need
to assume that the transition relation@fs “complete” in the following sense:

DEFINITION 21 Let~p be the relation of bisimilarity restricted t6' x F'. We say
that7 is completef for all f, /' € F anda € A, the following condition is satisfied:
If there is a sequence of transitions forming'a® f’ move which isv p-consistent
with ahypotheticatransition f % f’ (note that the condition of --consistency with
f % f' makes a clear sense everfif> f’ is not a transition of7'), thenf % f’is a
realtransition of7 .

From now on in this subsection, we assume thas complete. This assumption is
not restrictive because if we add the missing transition® tevhich can be done in



polynomial time because r is computable in polynomial time), each stgtef 7
stays bisimilar to itself. A pleasant consequence of thésiamption is that we do not

have to deal with the” moves of f; it suffices to consider the®” ones.

DEFINITION 22 LetR C P(A, F) x F be arelation. We say that a pajpw, f) €
R quasi-expandm R iff it satisfies the following conditions:

eforalla € Aandpw % qu, thereisf % g such that(qu, g) € R;
eforalla € Aandf = g, one of the following conditions is satisfied:

—a=r71and(pw,g) € R;
— there is anR-consistent movpw = qv such that(qv,g) € R. Moreover, we
require that ifpw is of the formpaG, then the moveaG = quv contains at most

one transition of the formG % K (which can appear only at the end of the
whole move).

We say thaR? is aquasi-bisimulatioriff every pair ofR quasi-expandsiik. Processes
pw and f are quasi-bisimilar iff they are related by some quasi+igiation.

Every quasi-bisimulation is clearly a bisimulation. Thepopite is not necessarily
true, but we can prove the following (here we need the fachtdated in Remark 20
and the assumption thd@t is complete):

LEMMA 23 The relation~ restricted toP (A, F') x F is a quasi-bisimulation.

DEFINITION 24 Let K be a well-formed set, and 1t = ;. Gen(K)x{f}.
The setBEzp(K) consists of all pair§w, F) € K such that for each € Q we have
that if 7(p) # L, then the paifpw, F(p)) quasi-expands itk.

Now we prove thaBEzp satisfies the conditions (1)-(4) formulated at the begignin
of Section 4. It follows immediatelly from the definition &Ezp that BExp is mono-
tonic. Due to Lemma 16 and Lemma 23 we obt&fxp(B) = B. Now we prove
that if K = BEzp(K) thenK C B. This is where we need the above introduced
technicalities (completeness @f, quasi-expansion, etc.). If the definition BFzp
was based “directly” on the notion éfexpansion, which seems to be the most natural
possibility, the following theorem wouldot hold.

THEOREM 25 LetK be a well-formed set. IK' = BExp(K), thenK C 5.

Now we show how to decide the membershipgBzp(K). At the same time, we
perform a (rough) complexity analysis. Pairs of the faig F) and (e, F) belong
to BExp(K) if and only if they belong td<. Hence, they do not require any special
attention. As for pairs of the forrlX, ), by Definition 24 we have thdtX, F) €
BEzp(K) iff for all p € @ such thatF(p) # L we have that the paifp X, F(p))
quasi-expandsit) ;. . Gens(K) x {f}. This means to check if

efor all pX % ¢p there is someF(p) % g such thatg3 € Gen,(K). In other
words, we are interested if there is somes F such thatF(p) % ¢ andg3 €
L(Mg,4). Since the multi-automatonm k 4 is effectively constructible in time



which is polynomial inm, n, z (see Lemma 17), this condition can be also checked
in time which is polynomial inn, n, z.
o for all 7(p) % g, one of the following two conditions is satisfied:

—a =7 andpX € Geny(K). In other words, we check whetheX € L(Mk 4)
which can be done in time polynomialin, n, z due to Lemma 17.
— there is a sequengeX = qa — 73 = sv such thaty € Gen,(K) and

* if the style is early or branching, thej € Gen () (K);
« if the style is delay or branching, the € Gen,(K).

Depending on whether the style is weak, early, delay, ordiriaug, this condition
can be reformulated as follows:

* Post’ (Postq(Post:({pX}))) N Geng(K) # 0

* Posty (Posta(Post; ({pX})NGenr(p) (K)))NGeng (K)#D

* Postk (Postq(Post:({pX})) N Geng(K)) N Geng(K) # 0

* Posty (Posta(Post;({pX}) N Gengp)(K)) N Geng(K)) N Geng(K) # 0

Due to Lemma 17 and Lemma 14, each of these four conditionseamecked
in a purely “symbolic” way by performing the required opéoat directly on the
underlying multi-automata. Obviously, the whole procediakes time which is
still polynomial inm, n, z.

Pairs of the form(X g, F) are handled in a similar way. So, the membership to
BEzp(K) for a given K is decidable in time polynomial im, n, z. This means
that the algorithm of Fig. 1 terminates in time which is paymal inm, n, z. So, we
obtain the following theorem:

THEOREM 26 The problem of weak, early, delay, and branching bisimijakbie-
tween PDA and finite-state processes is decidable in timgnpatial inm, n, z. For
PDA* processes, the same problem is decidable in time polynamial » (for each
fixedk).
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