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1 Introduction
The importance ofpushdown automata (PDA)has recently been recognized also in

areas different from theory of formal languages. In particular, PDA are a natural and
convenient model for sequential programs with recursive procedure calls (see, e.g., [1,
2, 13, 15, 14]). Global data of such a program is stored in the finite control, and the
stack symbols correspond to activation records of individual procedures. A procedure
call is thus modeled by pushing a new symbol onto the stack, and a return from the
procedure is modeled by poping the symbol from the stack. Consequently, a PDA
is seen as a finite description of a “computational behavior”rather than a language
acceptor in this context1. The behavior of a given PDA∆ is formally defined by the
associated transition systemT∆, where the states are configurations of∆ andpα

a
→

qβ if this move is consistent with the transition function of∆. Hence,T∆ has infinitely
many states.

One of the dominating approaches to formal verification of software systems is
equivalence-checking. The idea is to compare the behavior of a given program with its
intended behavior called thespecification. Since the two behaviors are formalized as
transition systems, the comparison means proving some kindof semantic equivalence
between the initial states of the two transition systems. Since such proofs cannot be
completed by humans for programs of realistic size, a natural question is whether the
problem is decidable and what is its complexity. This question has been considered for
many computational models and a large number of results havebeen achieved during
the last decade (see [30, 11, 20, 5, 23, 7, 33] for surveys of some subfields).

In this paper we restrict our attention to the class of programs whose behavior is
definable by pushdown automata, and to the class of specifications which are definable
by finite-state systems. On the other hand, we consider a large class of equivalences
which subsumes the linear/branching time spectrum of [40, 42].

The state of the art:Checking semantic equivalences between two pushdown au-
tomata tends to be undecidable. Special attention has been devoted tostatelessPDA,
which are often denoted BPA2 in this context. The first result indicating that the situ-
ation is not completely hopeless is due to Baeten, Bergstra,and Klop [3] who proved
that strong bisimilarity is decidable fornormedBPA (a PDA is normed if the stack
can be emptied from every reachable configuration). Simplerproofs were given later
in [9, 17, 19], and there is even a polynomial-time algorithm[18]. The decidability re-
sult has been extended to all (not necessarily normed) BPA in[10], and an elementary
upper complexity bound is due to [8]. Recently,PSPACE-hardness of this problem
has been established in [34]. Strong bisimilarity was shownto be decidable also for

1From the language-theoretic point of view, the definition ofPDA adopted in this area corresponds to the
subclass of real-time PDA. It does not mean that the concept of ε-transitions vanished—it has only been
replaced by “silent” transitions with a distinguished label τ which may (but does not have to) be taken into
account by a given semantic equivalence.
2This is because stateless PDA correspond to a natural fragment of ACP known as “BPA” (Basic Process
Algebra; see [4]). BPA cannot model global data, but they aresufficiently powerful to model, e.g., the
interprocedural data-flow [13]. It is worth noting that the expressive power of PDA is strictly greater than
the one of BPA w.r.t. most of the considered semantic equivalences.



normed PDA [36]. Later, Sénizergues proved that bisimilarity is decidable for all
PDA processes [32]. For simulation-like and trace-like equivalences, the equivalence-
checking problem is undecidable even for (normed) BPA; thisfollows directly from
Friedman’s result [16]. In the presence of silent moves, thesituation gets even worse.
Weak bisimilarity is undecidable for PDA [35], and in fact for a very modest subclass
of PDA known as one-counter nets [28].

Comparing a PDA with a finite-state system is computationally easier. Strong and
weak bisimilarity between a BPA and a finite-state system is decidable in polynomial
time [25]. For general pushdown automata, both problems arePSPACE-complete
[24]. Checking strong and weak simulation equivalence between a BPA and a finite-
state system isEXPTIME -complete [24], and the same holds for general PDA. Trace-
like equivalences between BPA and finite-state systems are undecidable (this is a direct
consequence of the undecidability of language equivalence).

Our contribution: In this paper we consider the equivalence-checking problem
between PDA and finite-state systems. More precisely, we consider the problem of
checkingfull equivalence between a given PDA processpα and a given processf of
a given finite-state systemT . The processespα andf are fully equivalentif pα is
equivalent tof and, in addition, every reachable state ofpα is equivalent to some state
f ′ of T . In other words, the specification must define the “global” behaviour of a
given program. For bisimulation-like equivalences, the extra condition about reach-
able states is redundant. However, for simulation-like andtrace-like equivalences, this
condition is fully meaningful.

We propose a unified method for deciding full equivalence between PDA and finite-
state systems. The method consists of two parts. The first part is generic and works
for every “reasonable” semantic equivalence (an equivalence is considered “reason-
able” if it is a right PDA congruence; see Definition 4). The authors are not aware
of any semantic equivalence which is not reasonable in this sense. The second part
is equivalence-specific. The difference between individual equivalences is hidden in
the notion ofexpansion. There are four abstract conditions which guarantee appro-
priateness of the designed expansion for a given equivalence. The applicability of the
method to concrete equivalences is demonstrated by definingappropriate expansions
for the main conceptual representatives. Special attention is devoted to bisimulation-
like equivalences (we explicitly consider weak, early, delay, branching, and proba-
bilistic bisimilarity), but we also show how to handle weak simulation equivalence
and weak trace equivalence. The application part is nontrivial and most of technical
tricks are hidden there.

Interestingly, the generality of the method does not lead tothe loss of efficiency. For
bisimulation-like and simulation-like equivalences, ourmethod results in algorithms
which arepolynomialin the size of the PDA and the finite-state system on input, and
exponentialin the number of control states of the PDA. So, the algorithm is exponen-
tial for general PDA, but polynomial for each subclass of PDAwhere the number of
control states is bounded by a fixed constant (in particular,this applies to BPA). Since
these problems arePSPACE-hard for general PDA processes, the obtained algorithms
are essentially time-optimal. For trace-like equivalences, the algorithm requires expo-
nential time even for BPA, but the problem is alsoPSPACE-hard for BPA.



The list of particular results obtained by applying our method includes some items
which are first results of their kind. Below we explicitly mention some of them (the
subclass of PDA where the number of control states is boundedby a givenk is denoted
PDAk):

(a) Branching bisimilarity [43] between PDAk and finite-state systems is decidable
in polynomial time. To the best of authors’ knowledge, this is the first result about
computational tractability of branching bisimilarity forsystems with infinitely many
states. Branching bisimilarity plays a distinguished rolein the semantics of systems
with silent moves [39], similarly as strong bisimilarity [31] for processes without silent
moves. However, the “algorithmic support” for branching bisimilarity has been so far
limited only to finite-state systems. A related concept of weak bisimilarity [29] is sub-
stantially more developed in this sense. One reason is that weak bisimilarity admits a
simple game-theoretic characterization [37, 38] and consequently it is “more manage-
able” than branching bisimilarity. Our method treats all equivalences in the same way
and consequently branching bisimilarity is equivalently manageable as weak bisimi-
larity in our setting (the same applies to early and delay bisimilarity; results for these
equivalences are also first of their kind).

(b) Probabilistic bisimilarity [27, 41] between PDAk and finite-state systems is
decidable in polynomial time. This result applies to (fully) probabilistic extensions
of PDA and finite-state systems. Probabilistic bisimilarity has so far been considered
only for finite-state systems. The obtained polynomial-time algorithm indicates that
one can go beyond this limit without losing efficiency.

(c) For simulation-like equivalences (represented by weaksimulation equivalence),
we prove that full equivalence between PDAk and finite-state systems is decidable
in polynomial time. Since the non-full variant of the problem isEXPTIME -complete
even for BPA [24], this result shows that the extra conditionabout reachable states used
in the definition of full equivalence actually makes the problem more tractable (rather
than more complicated). The same applies to trace-like equivalences (represented
by weak trace equivalence in this paper). Trace-like equivalences between BPA and
finite-state systems are undecidable; this is a direct consequence of the undecidability
of language equivalence. However, full trace-like equivalences between PDA and
finite-state systems are decidable in exponential time (this problem isPSPACE-hard
even for BPA).

Another generic outcome of our method is an algorithm deciding whether a given
finite-state processf is the∼-quotient of a given PDA processpα for a given seman-
tic equivalence∼. The complexity of this algorithm is essentially the same asthe
complexity of deciding full∼-equivalence. In particular, it is polynomial for PDAk

processes when∼ is simulation-like, and exponential for PDA processes when∼ is
trace-like. In the context of formal verification, semanticquotients are used as suc-
cinct representations of original systems. Since most (if not all) of the existing process
equivalences are preserved under their respective quotients [21, 22], the information
about the state-space of a given process is faithfully preserved in its∼-quotient.

This paper is organized as follows. We start with basic definitions in Section 2. In
Section 3, a suitable composition principle allowing to derive new pairs of equivalent
processes from already existing ones is developed. This, inturn, allows to repre-



sent full equivalence between a given PDA and a given finite-state system by a finite
relation calledbase. The method is related to the technique of bisimulation bases pio-
neered by Caucal [9], and can also be seen as a generalizationof the method used in
[25] to prove that weak bisimilarity between BPA and finite-state systems is decidable
in polynomial time. In Section 4 we show how to compute the base. The first part
of our development is again generic; we give an abstract algorithm for computing the
base and identify the equivalence-specific part of the problem which is hidden in the
notion of expansion. In subsequent subsections, we show howto define expansions
for various concrete process equivalences.

Due to the lack of space, we had to omit all proofs and also the parts devoted
to probabilistic bisimilarity, simulation-like equivalences, and trace-like equivalences.
These can be found in a full version of this paper [26].

2 Basic Definitions
Definition 1 A transition systemis a tripleT = (S,→,A) whereS is a finite or
countably infinite set ofstates, A is a finite set ofactions, and→ ⊆ S × A × S is a
transition relation.

We writes
a
→ t instead of(s, a, t) ∈ →, and we extend this notation to the elements

of A∗ in the standard way. We say that a statet is reachablefrom a states, written
s →∗ t, if there isw ∈ A∗ such thats

w
→ t. Let τ be a distinguishedsilentaction, and

let Aτ = A ∪ {τ}. For everya ∈ Aτ we define the relation
a
⇒ ⊆ S × S as follows:

• s
τ
⇒ t iff there is a sequence of the forms = p0

τ
→ · · ·

τ
→ pk = t wherek ≥ 0;

• s
a
⇒ t wherea 6= τ iff there arep, q such thats

τ
⇒ p

a
→ q

τ
⇒ t.

From now on, aprocessis formally understood as a state of (some) transition system.
Intuitively, transitions from a given processs model possible computational steps, and
the silent actionτ is used to mark those steps which are internal (i.e., not externally
observable).

Definition 2 A pushdown automaton (PDA)is a tuple∆ = (Q, Γ,A, δ) whereQ
is a finite set ofcontrol states, Γ is a finitestack alphabet, A is a finiteinput alphabet,
andδ : (Q×Γ) → 2A×Q×Γ≤2

is a transition functionwhereΓ≤2 = {ε}∪Γ∪ (Γ×Γ)

In the rest of this paper we adopt a more intuitive notation, writing pX
a
→ qβ ∈ δ

instead of(a, (q, β)) ∈ δ(p, X). To ∆ we associate the transition systemT∆ where
Q × Γ∗ is the set of states (we writepα instead of(p, α)), A is the set of actions, and
the transition relation is determined bypXα

a
→ qβα iff pX

a
→ qβ ∈ δ.

3 A Finite Semantic Base for PDA
For the rest of this section, let us fix a pushdown automaton∆ = (Q, Γ,A, δ) and

a finite state systemT = (F,A,→). The symbolF⊥ denotes the setF ∪ {⊥}, where
⊥ 6∈ F stands for “undefined”.

Definition 3 For every processpα of ∆ we define the setMpα = {q ∈ Q |
pα →∗ qε}. A functionF : Q → F⊥ is compatiblewith pα iff for everyq ∈ Mpα we
have thatF(q) 6= ⊥. The class of all functions that are compatible withpα is denoted
C(pα).



For every processpα of ∆ and everyF ∈ C(pα) we define the processpαF whose
transitions are determined by the following rules:

pα
a
→ qβ

pαF
a
→ qβF

F ∈ C(pα)
F(p)

a
→ f

pF
a
→ pF [f/p]

F ∈ C(pε)

HereF [f/p] : Q → F⊥ is a function which returns the same result asF for every
argument except forp whereF [f/p](p) = f . In other words,pαF behaves likepα
until the point when the stack is emptied and a configuration of the formqε is entered;
from that point on,pαF behaves likeF(q). Note that ifF ∈ C(pα) andpα →∗ qβ,
thenF ∈ C(qβ). We putStack(∆, F ) = Γ∗ ∪ {pαF | p ∈ Q, α ∈ Γ∗,F ∈ (F⊥)Q},
andP(∆, F ) = {pα | p ∈ Q, α ∈ Γ∗} ∪ {pαF | p ∈ Q, α ∈ Γ∗,F ∈ C(pα)}.

Definition 4 We say that an equivalence∼ overP(∆, F ) ∪ F is a right PDA
congruenceiff the following conditions are satisfied:

• For every processpα of ∆ and allw, v ∈ Stack(∆, F ) we have that ifqw ∼ qv for
all q ∈ Mpα, then alsopαw ∼ pαv.

• pF ∼ F(p) for everypF ∈ P(∆, F ). (This condition is satisfied by all “behav-
ioral” equivalences which do not distinguish between isomorphic processes. How-
ever,∼ can be an arbitrary equivalence, and therefore this condition is not redun-
dant.)

One intuitively expects that every “reasonable” semantic equivalence should be a
right PDA congruence. In particular, bisimulation-like, simulation-like, and trace-like
equivalences (even in their “weak” forms) are right PDA congruences. For the rest of
this section, we fix a right PDA congruence∼.

In this paper we consider the problem of full equivalence checking between PDA
and finite-state processes. The notion of full equivalence is introduced in our next
definition.

Definition 5 Let pα be a process of∆ and f ∈ F . We say thatpα is fully
equivalent tof (with respect to∼), writtenpα - f , iff pα ∼ f and for everypα →∗

qβ there is somef ′ ∈ F such thatqβ ∼ f ′. (Note thatf ′ does not have to be reachable
fromf .)

Now we formulate a composition lemma for pushdown processes.

Lemma 6 Let pαG - f , whereG ∈ C(pα) andf ∈ F . Further, letβ, γ ∈ Γ∗ and
H : Q → F⊥. Then the following holds:

(1) If qβ - G(q) for all q ∈ Mpα, thenpαβ - f .
(2) IfH ∈ C(qγ) andqγH - G(q) for all q ∈ Mpα, thenH ∈ C(pαγ) andpαγH - f .

Definition 7 Letα ∈ Γ∗, F ,G : Q → F⊥. We write

• α ≃ F iff ∀p ∈ Q : F(p) 6= ⊥ =⇒ pα - F(p);
• αG ≃ F iff ∀p ∈ Q : F(p) 6= ⊥ =⇒ G ∈ C(pα) ∧ pαG - F(p).



Definition 8 Let

K = {(ε,F) | ε ≃ F} ∪ {(G,F) | G ≃ F} ∪ K ′

whereK ′ ⊆ Γ×(F⊥)Q ∪ (Γ×(F⊥)Q))×(F⊥)Q). (That is,K ′ consists of (some)
pairs of the form(X,F) and(XG,F)).

We say thatK is well-formediff K satisfies the following conditions:

• if (XG,F) ∈ K andF(p) 6= ⊥, thenG ∈ C(pX);
• if (X,F) ∈ K (or (XG,F) ∈ K) and (F ,H) ∈ K, then also(X,H) ∈ K (or

(XG,H) ∈ K, resp.).

It is clear that there are only finitely many well-formed sets, and that there exists the
greatest well-formed setG whose size isO(|Γ| · |F |2·|Q|). Further, observe that if∼
is decidable for finite-state processes, thenG is effectively constructible.

Definition 9 Let K be a well-formed set. Theclosure ofK, denotedCl(K), is
the least setL satisfying the following conditions:

(1) K ⊆ L;
(2) if (αG,F) ∈ L, (ε,G) ∈ K, andα6=ε, then(α,F) ∈ L;
(3) if (αG,F)∈L, (H,G)∈K, andα6=ε, then(αH,F) ∈ L;
(4) if (αG,F)∈L, (X,G)∈K, andα6=ε, then(αX,F) ∈ L;
(5) if (αG,F) ∈ L, (XH,G) ∈ K, andα6=ε, then(αXH,F) ∈ L.

Note thatCl(K) =
⋃∞

i=0 Cl i(K) whereCl0(K) = K andCl i+1(K) consists of ex-
actly those pairs which are either inCl i(K) or can be derived fromK andCl i(K) by
applying one of the rules (1)–(5) of Definition 9. Another simple observation (which
will be useful later) is the following:

Lemma 10 Let K be a well-formed set, and let(F ,H) ∈ K. If (α,F) ∈ Cl i(K),
then also(α,H) ∈ Cl i(K). Similarly, if (αG,F) ∈ Cl i(K), then also(αG,H) ∈
Cl i(K).

For our purposes, the following well-formed set is particularly important:

Definition 11 ThebaseB is defined as follows:

B = {(ε,F) | ε ≃ F} ∪ {(G,F) | G ≃ F} ∪ {(X,F) | X ≃ F}

∪ {(XG,F) | XG ≃ F}

Theorem 12 Letα ∈ Γ∗ andF ,G : Q → F⊥. We have

• α ≃ F iff (α,F) ∈ Cl(B);
• αG ≃ F iff (αG,F) ∈ Cl(B).

4 Computing the Base
In this section we present algorithms for computing the baseB for various process

equivalences. We start by describing the generic part of themethod together with some
auxiliary technical results which are also valid for every process equivalence which is



a right PDA congruence. The applicability of the method to concrete process equiva-
lences is demonstrated in subsequent subsections (due to the lack of space, we could
include only a subsection devoted to bisimulation equivalences with silent moves; the
other parts can be found in [26]). For the rest of this section, let us fix

• a pushdown automaton∆ = (Q, Γ,A, δ) of sizen;
• a finite state systemT = (F,A,→) of sizem.
• a right PDA congruence∼ overP(∆, F ) ∪ F which is decidable for finite-state

processes.

In our complexity estimations we also use the parameterz = |F ||Q|.
Let W be the (finite) set of all well-formed sets. Note that(W ,⊆) is a complete

lattice. LetExp : W → W be a function satisfying the following four conditions:

(1) Exp(B) = B.
(2) Exp is monotonic, i.e.K⊆L impliesExp(K)⊆Exp(L).
(3) If K = Exp(K), thenK ⊆ B.
(4) For every well formed setK, the membership toExp(K) is decidable.

The conditions (1) and (3) together say thatB is the greatest fixed-point ofExp. Since
Exp is monotonic andW is finite, we further haveB =

⋂∞
i=0 Expi(G) whereG is the

greatest well-formed set. In other words, the baseB can be computed by the algorithm
of Figure 1. Observe thatG is effectively computable because∼ is decidable over
finite-state processes.

Input: A PDA ∆, a finite-state systemT
Output: The baseB

1:B := the greatest well-formed set;
2:repeat
3: K := B; B := ∅
4: for all (w,F) ∈ K do
5: if (w,F) ∈ Exp(K) thenB := B ∪ {(w,F)} fi
6: od;
7:until B = K

Figure 1. An algorithm for computingB

As we shall see, an appropriateExp satisfying the conditions (1)–(4) can be de-
signed for almost every process equivalence of the linear/branching time spectrum
[40, 42]. Now we introduce further notions and results whichunderpin our technical
constructions.

For every set of processesP and every actiona we define the sets

• Posta(P) = {t | ∃s ∈ P : s
a
→ t}

• Post∗(P) = {t | ∃s ∈ P : s →∗ t}

• Post∗τ (P) = {t | ∃s ∈ P : s
τ
⇒ t}

Note that ifP is a subset ofP(∆, F ), then so arePosta(P), Post∗(P), andPost∗τ (P).



To be able to represent infinite subsets ofP(∆, F ) in a finite and compact way, we
borrow the following concept from [6]:

Definition 13 A multi-automatonis a tupleM = (S, Σ, δ,Acc) where

• S is a finite set ofstatessuch thatQ ⊆ S (i.e, the control states of∆ are among the
states ofM);

• Σ = Γ ∪ {F | F : Q → F⊥} is the input alphabet(the alphabet has a special
symbol for eachF : Q → F⊥);

• δ ⊆ S × Σ × S is a transition relation;
• Acc ⊆ S is a set ofaccepting states.

Every multi-automatonM determines a unique set

L(M) = {pw | p ∈ Q, w ∈ Σ∗, δ(p, w) ∩ Acc 6= ∅}

A setP ⊆ P(∆, F ) is recognizedby a multi-automatonM iff P = L(M).

A proof of the following lemma can be found, e.g., in [12].

Lemma 14 LetP ⊆ P(∆, F ) be a set of processes recognized by a multi-automaton
M. Then one can compute multi-automata recognizing the setsPosta(P), Post∗(P),
andPost∗τ (P) in time which is polynomial inm, n, z and the size ofM.

Definition 15 Let K be a well-formed set. For allf ∈ F andi ∈ N0 we define
the setGeni

f (K) =

{pα | ∃F s.t.F(p) = f and(α,F) ∈ Cl i(K)}

∪ {pαG | ∃F s.t.F(p) = f and(αG,F) ∈ Cl i(K)}

Further, we putGenf (K) =
⋃∞

i=0 Gen i
f (K).

Lemma 16 The relation- overP(∆, F ) × F is exactly
⋃

f∈F Genf (B) × {f}.

Lemma 17 LetK be a well-formed set andf ∈ F . The setGenf (K) is recognized
by a multi-automatonMK,f which is constructible in time polynomial inm, n, z.

Proof: We refer to [25] where a similar result is proven explicitly;the construction
required for Lemma 17 differs from the one presented in [25] only in minor details.�

We finish this part by an auxiliary technical lemma whose proof is also independent
of a concrete choice of∼.

Lemma 18 LetK be a well-formed set. The following conditions hold:

(1) If qβG∈Geng(K) and(ε,G)∈K, thenqβ∈Geng(K).
(2) If qβG∈Geng(K), (X,G)∈K, thenqβX∈Geng(K).
(3) pG ∈ Geng(K) iff G(p) - g.
(4) Letg - g′. Thenpw∈Geni

g(K) impliespw∈Geni
g′(K).



4.1 Bisimulation Equivalences with Silent Moves
In this subsection we show how to compute the baseB for bisimulation-like equiv-

alences which take into account silent moves. We explicitlyconsider the main four
representatives which areweak, early, delay, andbranching bisimilarity. We prove
that for all these equivalences, the baseB is computable in time polynomial inm, n, z.

Definition 19 Let R be a binary relation over processes, and let(s, t) ∈ R. We
say that a movet

a
⇒ t′ is R-consistent with a moves

a
→ s′ in a weak, early, delay, or

branching style, respectively,if one of the following conditions is satisfied:

• a = τ , t = t′, and(s′, t) ∈ R;
• the movet

a
⇒ t′ is of the formt=u0

τ
→ · · ·

τ
→ ui

a
→ v0

τ
→ · · ·

τ
→ vj=t′, where

i, j ≥ 0, such that(s′, t′) ∈ R and

(i) if the style is early or branching, then also(s, ui) ∈ R;
(ii) if the style is delay or branching, then also(s′, v0)∈R.

We say that(s, t) ∈ R expands inR (in the respective style) iff for alla ∈ Actτ and
s

a
→ s′ there is a movet

a
⇒ t′ which isR-consistent withs

a
→ s′. Furthermore, we

say that(s, t) ∈ R b-expands inR (in the respective style) if(s, t) expands inR and
(t, s) expands inR−1 in the respective style.

A binary relationR over processes is aweak, early, delay, or branching bisimula-
tion if for every(s, t) ∈ R we have that(s, t) b-expands inR in the respective style.
Processess, t are weakly, early, delayed, or branching bisimilar if they are related by
some weak, early, delay, or branching bisimulation, respectively.

Remark 20 An important fact (which will be used in the proof of Lemma 23)is that
thesamenotion of weak, early, delay, and branching bisimilarity isobtained when the
conditions(i) and(ii) of Definition 19 are reformulated as follows:

(i) if the style is early or branching, then(s, uℓ) ∈ R for all 0 ≤ ℓ ≤ i;
(ii) if the style is delay or branching, then(s′, vℓ) ∈ R for all 0 ≤ ℓ ≤ j,

Since our constructions are to a large extent independent ofthe chosen style of
bisimilarity, from now on we refer just to “bisimilarity” which is denoted by∼ in
the rest of this subsection. It follows directly from Definition 19 that∼ = - over
P(∆, F ) × F and therefore we do not distinguish between these two relations.

For technical reasons which become clear in (the proof of) Theorem 19, we need
to assume that the transition relation ofT is “complete” in the following sense:

Definition 21 Let∼F be the relation of bisimilarity restricted toF × F . We say
thatT is completeif for all f, f ′ ∈ F anda ∈ Aτ the following condition is satisfied:
If there is a sequence of transitions forming af

a
⇒ f ′ move which is∼F -consistent

with ahypotheticaltransitionf
a
→ f ′ (note that the condition of∼F -consistency with

f
a
→ f ′ makes a clear sense even iff

a
→ f ′ is not a transition ofT ), thenf

a
→ f ′ is a

realtransition ofT .

From now on in this subsection, we assume thatT is complete. This assumption is
not restrictive because if we add the missing transitions toT (which can be done in



polynomial time because∼F is computable in polynomial time), each statef of T
stays bisimilar to itself. A pleasant consequence of this assumption is that we do not
have to deal with the “

a
⇒” moves off ; it suffices to consider the “

a
→” ones.

Definition 22 LetR ⊆ P(∆, F )×F be a relation. We say that a pair(pw, f) ∈
R quasi-expandsin R iff it satisfies the following conditions:

• for all a ∈ A andpw
a
→ qv, there isf

a
→ g such that(qv, g) ∈ R;

• for all a ∈ A andf
a
→ g, one of the following conditions is satisfied:

− a = τ and(pw, g) ∈ R;
− there is anR-consistent movepw

a
⇒ qv such that(qv, g) ∈ R. Moreover, we

require that ifpw is of the formpαG, then the movepαG
a
⇒ qv contains at most

one transition of the formrG
x
→ rH (which can appear only at the end of the

whole move).

We say thatR is aquasi-bisimulationiff every pair ofR quasi-expands inR. Processes
pw andf are quasi-bisimilar iff they are related by some quasi-bisimulation.

Every quasi-bisimulation is clearly a bisimulation. The opposite is not necessarily
true, but we can prove the following (here we need the fact formulated in Remark 20
and the assumption thatT is complete):

Lemma 23 The relation∼ restricted toP(∆, F ) × F is a quasi-bisimulation.

Definition 24 Let K be a well-formed set, and letR =
⋃

f∈F Genf (K)×{f}.
The setBExp(K) consists of all pairs(w,F) ∈ K such that for eachp ∈ Q we have
that if F(p) 6= ⊥, then the pair(pw,F(p)) quasi-expands inR.

Now we prove thatBExp satisfies the conditions (1)–(4) formulated at the beginning
of Section 4. It follows immediatelly from the definition ofBExp thatBExp is mono-
tonic. Due to Lemma 16 and Lemma 23 we obtainBExp(B) = B. Now we prove
that if K = BExp(K) thenK ⊆ B. This is where we need the above introduced
technicalities (completeness ofT , quasi-expansion, etc.). If the definition ofBExp

was based “directly” on the notion ofb-expansion, which seems to be the most natural
possibility, the following theorem wouldnot hold.

Theorem 25 LetK be a well-formed set. IfK = BExp(K), thenK ⊆ B.

Now we show how to decide the membership toBExp(K). At the same time, we
perform a (rough) complexity analysis. Pairs of the form(G,F) and(ε,F) belong
to BExp(K) if and only if they belong toK. Hence, they do not require any special
attention. As for pairs of the form(X,F), by Definition 24 we have that(X,F) ∈
BExp(K) iff for all p ∈ Q such thatF(p) 6= ⊥ we have that the pair(pX,F(p))
quasi-expands in

⋃
f∈F Genf (K) × {f}. This means to check if

• for all pX
a
→ qβ there is someF(p)

a
→ g such thatqβ ∈ Geng(K). In other

words, we are interested if there is someg ∈ F such thatF(p)
a
→ g andqβ ∈

L(MK,g). Since the multi-automatonMK,g is effectively constructible in time



which is polynomial inm, n, z (see Lemma 17), this condition can be also checked
in time which is polynomial inm, n, z.

• for all F(p)
a
→ g, one of the following two conditions is satisfied:

− a = τ andpX ∈ Geng(K). In other words, we check whetherpX ∈ L(MK,g)
which can be done in time polynomial inm, n, z due to Lemma 17.

− there is a sequencepX
τ
⇒ qα

a
→ rβ

τ
⇒ sγ such thatsγ ∈ Geng(K) and

∗ if the style is early or branching, thenqα ∈ GenF(p)(K);
∗ if the style is delay or branching, thenrβ ∈ Geng(K).

Depending on whether the style is weak, early, delay, or branching, this condition
can be reformulated as follows:

∗ Post∗τ (Posta(Post∗τ ({pX}))) ∩ Geng(K) 6= ∅

∗ Post
∗
τ (Posta(Post

∗
τ ({pX})∩GenF(p)(K)))∩Geng(K)6=∅

∗ Post
∗
τ (Posta(Post

∗
τ ({pX})) ∩ Geng(K)) ∩ Geng(K) 6= ∅

∗ Post
∗
τ (Posta(Post

∗
τ ({pX}) ∩ GenF(p)(K)) ∩ Geng(K)) ∩ Geng(K) 6= ∅

Due to Lemma 17 and Lemma 14, each of these four conditions canbe checked
in a purely “symbolic” way by performing the required operations directly on the
underlying multi-automata. Obviously, the whole procedure takes time which is
still polynomial inm, n, z.

Pairs of the form(XG,F) are handled in a similar way. So, the membership to
BExp(K) for a givenK is decidable in time polynomial inm, n, z. This means
that the algorithm of Fig. 1 terminates in time which is polynomial inm, n, z. So, we
obtain the following theorem:

Theorem 26 The problem of weak, early, delay, and branching bisimilarity be-
tween PDA and finite-state processes is decidable in time polynomial inm, n, z. For
PDAk processes, the same problem is decidable in time polynomialin m, n (for each
fixedk).
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