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Abstract. We design a general method for proving decidability of bisimulation-
like equivalences between infinite-state processes and finite-state ones. We apply
this method to the class of PAD processes, which strictly subsumes PA and push-
down (PDA) processes, showing that a large class of bisimulation-like equiva-
lences (including e.g. strong and weak bisimilarity) is decidable between PAD
and finite-state processes. On the other hand, we also demonstrate that no ‘rea-
sonable’ bisimulation-like equivalence is decidable between state-extended PA
processes and finite-state ones. Furthermore, weak bisimilarity with finite-state
processes is shown to be undecidable even for state-extended BPP (which are
also known as ‘parallel pushdown processes’).

1 Introduction

In this paper we study the decidability of bisimulation-like equivalences between infinite-
state processes and finite-state ones. First we examine this problem in a general setting,
extracting its core in a form of two rather special subproblems (which are naturally not
decidable in general). A special variant of this method which works for strong bisimi-
larity has been described in [10]; here we extend and generalize the concept, obtaining
a universal mechanism for proving decidability of bisimulation-like equivalences be-
tween infinite-state and finite-state processes. Then we apply the designed method to
the class of PAD processes (defined in [16]), which properly subsumes all PA and push-
down processes. We prove that a large class of bisimulation-like equivalences (including
e.g. strong and weak bisimilarity) is decidable between PAD and finite-state processes,
utilizing previously established results on decidability of the model-checking problem
for EF logic [15,17]. We also provide several undecidability results to complete the
picture—we show that any ‘reasonable’ bisimulation-like equivalence is undecidable
between state-extended PA processes and finite-state ones. Moreover, even for state-
extended BPP processes (which are a natural subclass of Petri nets) weak bisimilarity
with finite-state processes is undecidable.
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Decidability of bisimulation-like equivalences has been intensively studied for var-
ious process classes (see e.g. [19] for a complete survey). The majority of the results
are about the decidability of strong bisimilarity, e.g. [3,6,5,22,4,13,8].

Strong bisimilarity with finite-state processes is known to be decidable for (labelled)
Petri nets [12], PA and pushdown processes [10]. Another positive result of this kind is
presented in [14], where it is shown that weak bisimilarity is decidable between BPP
and finite-state processes. However, weak bisimilarity with finite-state processes is un-
decidable for Petri nets [9]. In [21] it is shown that the problem of equivalence-checking
with finite-state systems can be reduced to the model-checking problem for the modal
µ-calculus. Thus, in this paper we obtain original positive results for PAD (and hence
also PA and PDA) processes, and an undecidability result for state-extended BPP pro-
cesses. Moreover, all positive results are proved using the same general strategy, which
can also be adapted to previously established ones.

2 Definitions

Transition systems are widely accepted as a structure which can exactly define the op-
erational semantics of processes. In the rest of this paper we understand processes as
(being associated with) nodes in transition systems of certain types.

Definition 1. A transition system (TS) T is a triple (S, Act,→) where S is a set of
states, Act is a finite set of actions (or labels) and →⊆ S × Act × S is a transition
relation.

We defined Act as a finite set; this is a little bit nonstandard, but we can allow this as all
classes of processes we consider generate transition systems of this type. As usual, we
write s

a→ t instead of (s, a, t) ∈→ and we extend this notation to elements of Act∗ in
an obvious way (we sometimes write s →∗ t instead of s

w→ t if w ∈ Act∗ is irrelevant).
A state t is reachable from a state s if s →∗ t.

Let Var = {X, Y, Z, . . .} be a countably infinite set of variables. The class of pro-
cess expressions, denoted E , is defined by the following abstract syntax equation:

E ::= λ | X | E‖E | E.E

Here X ranges over Var and λ is a constant that denotes the empty expression. In the
rest of this paper we do not distinguish between expressions related by structural con-
gruence which is the smallest congruence relation over process expressions such that
the following laws hold: associativity for ‘.’ and ‘‖’, commutativity for ‘‖’, and ‘λ’ as
a unit for ‘.’ and ‘‖’.

A process rewrite system [16] is specified by a finite set ∆ of rules which are of
the form E

a→ F , where E,F are process expressions and a is an element of a finite
set Act. Each process rewrite system determines a unique transition system where states
are process expressions, Act is the set of labels, and transitions are defined by ∆ and the
following inference rules (remember that ‘‖’ is commutative):



(E a→ F ) ∈ ∆

E
a→ F

E
a→ E′

E.F
a→ E′.F

E
a→ E′

E‖F a→ E′‖F
The classes of BPA, BPP, PA, and PAD systems are subclasses of process rewrite sys-
tems obtained by certain restrictions on the form of the expressions which can appear
at the left-hand and the right-hand side of rules. To specify those restrictions, we first
define the classes of sequential and parallel expressions, composed of all process ex-
pressions which do not contain the ‘‖’ and the ‘.’ operator, respectively. BPA, BPP, and
PA allow only a single variable at the left-hand side of rules, and a sequential, parallel,
and general process expression at the right-hand side, respectively. Note that each tran-
sition E

a→ F is due to some rule X
a→ G of ∆ (i.e. X is rewritten by G within E,

yielding the expression F ). Generally, there can be more than one rule of ∆ with this
property—if e.g. ∆ = {X a→ X‖Y, Y

a→ Y ‖Y }, then the transition X‖Y a→ X‖Y ‖Y
can be derived in one step in two different ways. For each transition E

a→ F we denote
the set of all rules of ∆ which allow to derive the transition in one step by Step(E a→ F ).

The PA class strictly subsumes BPA and BPP systems; a proper extension of PA is
the class of PAD systems (see [16]), where sequential expressions are allowed at the
left-hand side and general ones at the right-hand side of rules. The PAD class strictly
subsumes not only PA but also PDA processes (see below). This is demonstrated in [16].

Another way how to extend a PA system is to add a finite-state control unit to it. A
state-extended PA system is a triple (∆, Q, BT) where ∆ is a PA system, Q is a finite
set of states, and BT ⊆ ∆ ×Q ×Q is a set of basic transitions. The transition system
generated by a state-extended PA system (∆, Q, BT) has Q× E as the set of states (its
elements are called state-extended PA processes, or StExt(PA) processes for short), Act
is the set of labels, and the transition relation is determined by

(p, E)
a→ (q, F ) iff E

a→ F and (X
a→ G, p, q) ∈ BT for some X

a→ G ∈ Step(E
a→ F )

Natural subclasses of StExt(PA) systems are StExt(BPA) and StExt(BPP), which are
also known as pushdown (PDA) and parallel pushdown (PPDA) systems, respectively.
Each StExt(BPA) system can also be seen as a PAD system; however, the classes of
StExt(BPP) and PAD systems are semantically incomparable (w.r.t. strong bisimilarity,
which is defined in the next section—see also [16]).

3 A General Method for Bisimulation-Like Equivalences

In this section we design a general method for proving decidability of bisimulation-like
equivalences between infinite-state processes and finite-state ones.

Definition 2. Let R : Act → 2Act∗ be a (total) function, assigning to each action
its corresponding set of responses. We say that R is closed under substitution if the
following conditions hold:

– a ∈ R(a) for each a ∈ Act
– If b1b2 . . . bn ∈ R(a) and w1 ∈ R(b1), w2 ∈ R(b2), . . . , wn ∈ R(bn), then also

w1w2 . . . wn ∈ R(a).

In order to simplify our notation, we adopt the following conventions in this section:



– G = (G, Act,→) always denotes a (general) transition system.
– F = (F, Act,→) always denotes a finite-state transition system with k states.
– R always denotes a function from Act to 2Act∗ which is closed under substitution.
– N always denotes a decidable binary predicate defined for pairs (s, t) of nodes in

transition systems (which will be clear from the context). Moreover, N is reflexive,
symmetric, and transitive.

– We write s
a⇒ t if s

w→ t for some w ∈ R(a).
Note that G and F have the same set of actions Act. All definitions and propositions
which are formulated for G should be considered as general; if we want to state some
specific property of finite-state transition systems, we refer toF . We also assume that G,
F , R, and N are defined in a ‘reasonable’ way so that we can allow natural decidability
assumptions on them (e.g. it is decidable whether g

a→ g′ for any given g, g′ ∈ G and
a ∈ Act, or whether w ∈ R(a) for a given w ∈ Act∗, etc.)

Definition 3. A relation P ⊆ G × G is an R-N-bisimulation if whenever (s, t) ∈ P ,
then N(s, t) is true and for each a ∈ Act:

– If s
a→ s′, then t

a⇒ t′ for some t′ ∈ G such that (s′, t′) ∈ P .
– If t

a→ t′, then s
a⇒ s′ for some s′ ∈ G such that (s′, t′) ∈ P .

States s, t ∈ G are R-N-bisimilar, written s
RN∼ t, if there is an R-N-bisimulation relating

them.

Various special versions of R-N-bisimilarity appeared in the literature, e.g. strong and
weak bisimilarity (see [20,18]). The corresponding versions of R (denoted by S and W ,
respectively) are defined as follows:

– S(a) = {a} for each a ∈ Act

– W (a) =
{
{τ i | i ∈ IN0} if a = τ
{τ iaτ j | i, j ∈ IN0} otherwise

The ‘τ ’ is a special (silent) action, usually used to model an internal communication.
As the predicate N is not employed in the definitions of strong and weak bisimilarity,
we can assume it is always true (we use T to denote this special case of N ).

The concept of R-N-bisimilarity covers many equivalences, which have not been
explicitly investigated so far; for example, we can define the function R like this:

– K(a) = {ai | i ∈ IN0} for each a ∈ Act.
– L(a) = {w ∈ Act∗ | w begins with a}.

– M(a) =
{

Act∗ if a = τ
{w ∈ Act∗ | w contains at least one a} otherwise

The predicate N can also have various forms. We have already mentioned the ‘T ’
(always true). Another natural example is the I predicate: I(s, t) is true iff s and t
have the same sets of initial actions (the set of initial actions of a state g ∈ G is
{a ∈ Act | g

a→ g′ for some g′ ∈ G}). It is easy to see that e.g. ST∼ coincides with
SI∼, while WI∼ refines WT∼.

To the best of our knowledge, the only bisimulation-like equivalence which cannot
be seen as R-N-bisimilarity is branching bisimilarity introduced in [23]. This relation
also places requirements on ‘intermediate’ nodes that extended transitions pass through,



and this brings further difficulties. Therefore we do not consider branching bisimilarity
in our paper.

R-N-bisimilarity can also be defined in terms of the so-called R-N-bisimulation
game. Imagine that there are two tokens initially placed in states s and t such that
N(s, t) is true. Two players, Al and Ex, now start to play a game consisting of a (pos-
sibly infinite) sequence of rounds, where each round is performed as follows:
1. Al chooses one of the two tokens and moves it along an arbitrary (but single!)

transition, labelled by some a ∈ Act.
2. Ex has to respond by moving the other token along a finite sequence of transitions

in such a way that the corresponding sequence of labels belongs to R(a) and the
predicate N is true for the states where the tokens lie after Ex finishes his move.

Al wins the R-N-bisimulation game, if after a finite number of rounds Ex cannot respond
to Al’s final attack. Now it is easy to see that the states s and t are R-N-bisimilar iff Ex
has a universal defending strategy (i.e. Ex can play in such a way that Al cannot win).

A natural way how to approximate R-N-bisimilarity is to define the family of rela-
tions RN∼i⊆ G × G for each i ∈ IN0 as follows: s

RN∼i t iff N(s, t) is true and Ex has
a defending strategy within the first i rounds in the R-N-bisimulation game. However,
RN∼i does not have to be an equivalence relation. Moreover, it is not necessarily true that
s

RN∼ t ⇐⇒ s
RN∼i t for each i ∈ IN0. A simple counterexample is the weak bisimilarity

(i.e. W-T-bisimilarity) and its approximations.
Now we show how to overcome those drawbacks; to do this, we introduce the ex-

tended R-N-bisimulation relation:

Definition 4. A relation P ⊆ G × G is an extended R-N-bisimulation if whenever
(s, t) ∈ P , then N(s, t) is true and for each a ∈ Act:

– If s
a⇒ s′, then t

a⇒ t′ for some t′ ∈ G such that (s′, t′) ∈ P .
– If t

a⇒ t′, then s
a⇒ s′ for some s′ ∈ G such that (s′, t′) ∈ P .

States s, t ∈ G are extended R-N-bisimilar if there is an extended R-N-bisimulation
relating them.

Naturally, we can also define the extended R-N-bisimilarity by means of the extended
R-N-bisimulation game; we simply allow Al to use the ‘long’ moves (i.e. Al can play
the same kind of moves as Ex). Moreover, we can define the family of approximations
of extended R-N-bisimilarity in the same way as in case of R-N-bisimilarity—for each
i ∈ IN0 we define the relation

RN'i⊆ G × G as follows: s
RN'i t iff N(s, t) is true and

Ex has a defending strategy within the first i rounds in the extended R-N-bisimulation
game where tokens are initially placed in s and t.

Lemma 1. Two states s, t of G are R-N-bisimilar iff s and t are extended R-N-bisimilar.

Lemma 2. The following properties hold:

1.
RN'i is an equivalence relation for each i ∈ IN0.

2. Let s, t be states of G. Then s
RN∼i t for each i ∈ IN0 iff s

RN'i t for each i ∈ IN0.

Now we examine some special features of R-N-bisimilarity on finite-state transition
systems (remember that F is a finite-state TS with k states).



Lemma 3. Two states s, t of F are R-N-bisimilar iff s
RN'k−1 t.

Proof. As F has k states and
RN'i+1 refines

RN'i for each i ∈ IN0, we have that
RN'k−1 =

RN'k, hence
RN'k−1 = RN∼.

Theorem 1. States g ∈ G, f ∈ F are R-N-bisimilar iff g
RN'k f and for each state g′

reachable from g there is a state f ′ ∈ F such that g′
RN'k f ′.

Proof.
‘=⇒’: Obvious.
‘⇐=’: We prove that the relation P = {(g′, f ′) | g →∗ g′ and g′

RN'k f ′} is an extended
R-N-bisimulation. Let (g′, f ′) ∈ P and let g′

a⇒ g′′ for some a ∈ Act (the case when
f ′

a⇒ f ′′ is handled is the same way). By definition of
RN'k, there is f ′′ such that f ′ a⇒ f ′′

and g′′
RN'k−1 f ′′. It suffices to show that g′′

RN'k f ′′; as g →∗ g′′, there is a state f of F
such that g′′

RN'k f . By transitivity of
RN'k−1 we have f

RN'k−1 f ′′, hence f
RN'k f ′′ (due

to Lemma 3). Now g′′
RN'k f

RN'k f ′′ and thus g′′
RN'k f ′′ as required. Clearly (g, f) ∈ P

and the proof is complete. ut

Remark 1. We have already mentioned that the equivalence s
RN∼ t ⇐⇒ s

RN'i t for each
i ∈ IN0 is generally invalid (e.g. in case of weak bisimilarity). However, as soon as we
assume that t is a state in a finite-state transition system, the equivalence becomes true.
This is an immediate consequence of the previous theorem. Moreover, the second part
of Lemma 2 says that we could also use the RN∼i approximations in the right-hand side
of the equivalence.

The previous theorem in fact says that one can use the following strategy to decide
whether g

RN∼ f :

1. Decide whether g
RN'k f (if not, then g 6RN∼ f ).

2. Check whether g can reach a state g′ such that g′ 6RN'k f ′ for any state f ′ of F (if
there is such a g′ then g 6RN∼ f ; otherwise g

RN∼ f ).
However, none of these tasks is easy in general. Our aim is to examine both sub-
problems in detail, keeping the general setting. Thus we cannot expect any ‘univer-
sal’ (semi)decidability result, because even the problems g

WT'1 f and g 6WT'1 f are not
semidecidable in general (see Section 5).

As F has finitely many states, the extended transition relation ⇒ is finite and effec-
tively constructible. This allows us to “extract” from F the information which is rele-
vant for the first k moves in the extended R-N-bisimulation game by means of branching
trees with depth at most k, whose arcs are labelled by elements of Act and nodes are
labelled by elements of F ∪ {⊥}, where ⊥ 6∈ F . The aim of following definition is to
describe all such trees up to isomorphism (remember that Act is a finite set).

Definition 5. For each i ∈ IN0 we define the set of Trees with depth at most i (denoted
Treei) inductively as follows:

– A Tree with depth 0 is any tree with no arcs and a single node (the root) which is
labelled by an element of F ∪ {⊥}.



– A Tree with depth at most i + 1 is any directed tree with root r whose nodes are
labelled by elements of F∪{⊥}, arcs are labelled by elements of Act, which satisfies
the following conditions:

– If r
a→ s, then the subtree rooted by s is a Tree with depth at most i.

– If r
a→ s and r

a→ s′, then the subtrees rooted by s and s′ are not isomorphic.

It is clear that the set Treej is finite and effectively constructible for any j ∈ IN0. As
each Tree can be seen as a transition system, we can also speak about Tree-processes
which are associated with roots of Trees (we do not distinguish between Trees and
Tree-processes in the rest of this paper).

Now we introduce special rules which replace the standard ones whenever we con-
sider an extended R-N-bisimulation game with initial state (g, p), where g ∈ G and p is
a Tree process (formally, these rules determine is a new (different) game—however, it
does not deserve a special name in our opinion).

– Al and Ex are allowed to play only ‘short’ moves consisting of exactly one transi-
tion whenever playing within the Tree process p (transitions of Trees correspond to
extended transitions of F).

– The predicate N(g′, p′), where g′ ∈ G and p′ a state of the Tree process p, is
evaluated as follows:

– if label(p′) 6= ⊥, then N(g′, p′) = N(g′, label(p′))
– if label(p′) = ⊥ and N(g′, f) = true for some f ∈ F, then N(g′, p′) = false
– if label(p′) = ⊥ and N(g′, f) = false for any f ∈ F, then N(g′, p′) = true

Whenever we write g
RN'i p, where g ∈ G and p is a Tree process, we mean that Ex has a

defending strategy within the first i rounds in the ‘modified’ extended R-N-bisimulation
game. The importance of Tree processes is clarified by the two lemmas below:

Lemma 4. Let g be a state of G, j ∈ IN0. Then g
RN'j p for some p ∈ Treej

Lemma 5. Let f be a state of F , j ∈ IN0, and p ∈ Treej such that f
RN'j p. Then for

any state g of G we have that g
RN'j f iff g

RN'j p.

Now we can extract the core of both subproblems which appeared in the previously
mentioned general strategy in a (hopefully) nice way by defining two new and rather
special problems—the Step-problem and the Reach-problem:

The Step-problem
Instance: (g, a, j, p) where g is a state of G, a ∈ Act, 0 ≤ j < k, and p ∈ Treej .
Question: Is there a state g′ of G such that g

a⇒ g′ and g′
RN'j p?

The oracle which for any state g′′ of G answers whether g′′
RN'j p can be used.

The Reach-problem
Instance: (g, p) where g is a state of G and p is a Tree-process of depth ≤ k.
Question: Is there a state g′ of G such that g →∗ g′ and g′

RN'k p?

The oracle which for any state g′′ of G answers whether g′′
RN'k p can be used.



Formally, the transition system F should also be present in instances of both problems,
as it determines the sets Treej and the constant k; we prefer the simplified form to make
the following proofs more readable.

Theorem 2. If the Step-problem is decidable (with possible usage of the mentioned
oracle), then

RN'k is decidable between any states g and f of G and F , respectively.

Proof. We prove by induction on j that
RN'j is decidable for any 0 ≤ j ≤ k. First,

RN'0

is decidable because the predicate N is decidable. Let us assume that
RN'j is decidable

(hence the mentioned oracle can be used). It remains to prove that if the Step-problem
is decidable, then

RN'j+1 is decidable as well. We introduce two auxiliary finite sets:

– The set of Compatible Steps, denoted CSf
j , is composed exactly of all pairs of the

form (a, p) where a ∈ Act and p ∈ Treej , such that f
a⇒ f ′ for some f ′ with

f ′
RN'j p.

– The set of INCompatible Steps, denoted INCSf
j , is a complement of CSf

j w.r.t.
Act× Treej .

The sets CSf
j and INCSf

j are effectively constructible. By definition, g
RN'j+1 f iff

N(g, f) is true and the following conditions hold:

1. If f
a⇒ f ′, then g

a⇒ g′ for some g′ with g′
RN'j f ′.

2. If g
a⇒ g′, then f

a⇒ f ′ for some f ′ with g′
RN'j f ′.

The first condition in fact says that (g, a, j, p) is a positive instance of the Step-problem
for any (a, p) ∈ CSf

j (see Lemma 4 and 5). It can be checked effectively due to the
decidability of the Step-problem.

The second condition does not hold iff g
a⇒ g′ for some g′ such that g′

RN'j p where
(a, p) is an element of INCSf

j (due to Lemma 4 and 5). This is clearly decidable due to
the decidability of the Step-problem again. ut

It is worth mentioning that the Step-problem is generally semidecidable (provided it
is possible to enumerate all finite paths starting in g). However, it does not suffice for
semidecidability of

RN'i or 6RN'i between states of G and F .

Theorem 3. Decidability of the Step-problem and the Reach-problem (with possible
usage of the indicated oracles) implies decidability of the problem whether for each g′

reachable from a given state g of G there is a state f ′ of F with g′
RN'k f ′.

Proof. First, the oracle indicated in the definition of Reach-problem can be used be-
cause we already know that decidability of the Step-problem implies decidability of

RN'k

between states of G and F (see the previous theorem). To complete the proof, we need
to define one auxiliary set:

– The set of INCompatible Trees, denoted INCT , is composed of all p ∈ Treek such
that f 6RN'k p for each state f of F .



The set INCT is finite and effectively constructible. The state g can reach a state g′ such
that g′ 6RN'k f for any state f of F (i.e. g is a negative instance of the problem specified
in the second part of this theorem) iff (g, p) is a positive instance of the Reach problem
for some p ∈ INCT (due to Lemma 4 and 5). ut

4 Applications

In this section we show that the Step and Reach problems can be reduced to the model
checking problem for the branching-time temporal logic EF . In this way we elegantly
prove that a large class of R-N-bisimulation equivalences is decidable between PAD
processes and finite-state ones (the class includes all versions of R-N-bisimulation
equivalences we defined in this paper and many others). First we define the logic EF
(more exactly an extended version of EF with constraints on sequences of actions).
The formulae have the following syntax:

Φ ::= true | ¬Φ | Φ1 ∧ Φ2 | 〈a〉Φ | 3CΦ

where a is an atomic action and C is a unary predicate on sequences of atomic actions.
Let T = (S, Act,→) be a transition system. The denotation [[Φ]] of a formula Φ is a set
of states of T , which is defined as follows (sequences of actions are denoted by w):

[[true]] := S, [[¬Φ]] := S − [[Φ]], [[Φ1 ∧ Φ2]] := [[Φ1]] ∩ [[Φ2]]
[[〈a〉Φ]] := {s ∈ S | ∃s′ ∈ S. s

a→ s′ ∈ [[Φ]]}
[[3CΦ]] := {s ∈ S | ∃w, s′. s

w→ s′ ∧ C(w) ∧ s′ ∈ [[Φ]]}

The predicates C are used to express constraints on sequences of actions. For every
R-N-bisimulation we define predicates Ca s.t. for every action a and every sequence w
we have Ca(w) ⇐⇒ w ∈ R(a). Let EFR be the fragment of EF that contains only
constraints Ca for R and the true constraint.

An instance of the model checking problem is given by a state s in S and an EFR-
formula Φ. The question is whether s ∈ [[Φ]]. This property is also denoted by s |= Φ.

Let us fix a general TS G = (G, Act,→) and a finite-state TS F = (F, Act,→)
with k states in the same way as in the previous section. We show how to encode the
Step and the Reach problems by EFR formulae. The first difficulty is the N predicate.
Although it is decidable, this fact is generally of no use as we do not know anything
about the strategy of the model-checking algorithm. Instead, we restrict our attention
to those predicates which can be encoded by EFR formulae in the following sense:
for each f ∈ F there is an EFR formula Ψf such that for each g ∈ G we have that
g |= Ψf iff N(g, f) is true. In this case we also define the formula Ψ⊥ :=

∧
f∈F ¬Ψf . A

concrete example of a predicate which can be encoded by EFR formulae is e.g. the ‘I’
predicate defined in the previous section. Now we design the family of Φj,p formulae,
where 0 ≤ j ≤ k and p ∈ Treej , in such a way that for each g ∈ G the equivalence
g

RN'j p ⇐⇒ g |= Φj,p holds. Having these formulae, the Step and the Reach problems
can be encoded in a rather straightforward way:

– (g, a, j, p) is a positive instance of the Step problem iff g |= 3Ca(Φj,p)
– (g, p) is a positive instance of the Reach problem iff g |= 3(Φk,p)

The family of Φj,p formulae is defined inductively on j as follows:



– Φ0,p := Ψf , where f = label(p)

– Φj+1,p := Ψf ∧

 ∧
a∈Act

∧
p′∈S(p,a)

3CaΦj,p′

∧

 ∧
a∈Act

(¬3Ca(
∧

p′∈S(p,a)

¬Φj,p′))

,

where f = label(p) and S(p, a) = {p′ | p a→ p′}. If the set S(p, a) is empty, any
conjunction of the form

∧
p′∈S(p,a) Θp′ is replaced by true.

The decidability of model checking with the logic EFR depends on the constraints that
correspond to R. It has been shown in [15] that model checking PA-processes with
the logic EF is decidable for the class of decomposable constraints. This result has
been generalized to PAD processes in [17]. These constraints are called decomposable,
because they can be decomposed w.r.t. sequential and parallel composition. The formal
definition is as follows: A set of decomposable constraints DC is a finite set of unary
predicates on finite sequences of actions that contains the predicates true and false and
satisfies the following conditions.
1. For every C ∈ DC there is a finite index set I and a finite set of decomposable

constraints {C1
i , C2

i ∈ DC | i ∈ I} s.t.
∀w,w1, w2. w1w2 = w ⇒ (C(w) ⇐⇒

∨
i∈I C1

i (w1) ∧ C2
i (w2))

2. For every C ∈ DC there is a finite index set J and a finite set of decomposable
constraints {C1

i , C2
i ∈ DC | i ∈ J} s.t.

∀w1, w2.( (∃w ∈ interleave(w1, w2). C(w)) ⇐⇒
∨

i∈J(C1
i (w1) ∧ C2

i (w2)))
Here w ∈ interleave(w1, w2) iff w is an arbitrary interleaving of w1 and w2.

It is easy to see that the closure of a set of decomposable constraints under disjunction
is again a set of decomposable constraints. All the previously mentioned examples of
functions R can be expressed by decomposable constraints. However, there are also
functions R that are closed under substitution, but which yield non-decomposable con-
straints. For example, let Act = {a, b} and R(a) := {w | #aw > #bw} and R(b) :=
{b}, where #aw is the number of actions a in w. On the other hand, there are decom-
posable constraints that are not closed under substitution like R(a) := {ai | 1 ≤ i ≤ 5}.
Now we can formulate a very general decidability theorem:

Theorem 4. The problem g
RN∼ f , where R yields a set of constraints contained in a set

DC of decomposable constraints, N is expressible in EFR, g is a PAD processes, and
f is a finite-state process, is decidable.

5 Undecidability Results

Intuitively, any ‘nontrivial’ equivalence with finite-state processes should be undecid-
able for a class of processes having ‘full Turing power’, which can be formally ex-
pressed as e.g. the ability to simulate Minsky counter machines. Any such machine M
can be easily ‘mimicked’ by a StExt(PA) process P (M). A construction of the P (M)
process is described in [10]. If we label each transition in P (M) by an action a then
it is can either perform the action a boundedly many times and stop (its behaviour can
be defined as an for some n) or do a forever (its behaviour being aω); this depends



on whether the corresponding counter machine M halts or not. Notice that aω is the
behaviour of the 1-state transition system ({s}, {a}, {(s, a, s)}). When we declare as
reasonable any equivalence which distinguishes between (processes with) behaviours
aω and an, we can conclude:

Theorem 5. Any reasonable equivalence between StExt(PA) processes and finite-state
ones is undecidable.

It is obvious that (almost) any R-N-bisimilarity is reasonable in the above sense, ex-
cept for some trivial cases. For weak bisimilarity, we can even show that none of the
problems g

WT'1 f , g 6WT'1 f is semidecidable when g is a StExt(PA) process.
Once seeing that StExt(PA) are strong enough to make our equivalences undecid-

able, it is natural to ask what happens when we add finite-state control parts to processes
from subclasses of PA, namely to BPA and BPP. The StExt(BPA) (i.e. PDA) processes
have been examined in the previous section. In the case of StExt(BPP), strong bisimila-
rity with finite-state processes is decidable [12]. Here we demonstrate that the problem
for weak bisimilarity is undecidable; the proof is obtained by a modification of the one
which has been used for labelled Petri nets in [9].

It can be easily shown that a labelled Petri net where each transition t has exactly
one input place is equivalent to a BPP process (the corresponding transition systems are
isomorphic)—see e.g. [7]. Similarly, if any transition has at most one unbounded place
among its input places, then it is easy to transform the net into an equivalent StExt(BPP)
process (the marking of bounded places is modelled by finite control states); let us call
such nets as StExt(BPP)-nets.

The idea of the mentioned construction from [9] looks as follows. First, a 7-state
transition system F is fixed. Then it is shown how to construct a net NM for any two-
counter machine M such that NM is weakly bisimilar to F iff M does not halt for
zero input. Therefore, if the net NM were always a StExt(BPP)-net, we would be done.
In fact, it is not the case but NM can be suitably transformed. The description of the
transformation is omitted due to the lack of space; it can be found in [11]. Now we can
conclude:

Theorem 6. Weak bisimilarity is undecidable between StExt(BPP) processes and finite-
state ones.

6 Conclusions, Future Work

A complete summary of the results on decidability of bisimulation-like equivalences
with finite-state processes is given in the table below. As we want to make clear what
results have been previously obtained by other researchers, our table contains more
columns than it is necessarily needed (e.g., the positive result for PAD and RN∼, where
R and N have the above indicated properties, ‘covers’ all positive results for BPA,
BPP, PA, and PDA). The results obtained in this paper are in boldface. We also add a
special row which indicates decidability of the model-checking problem for EF . Note
that although model-checking EF logic is undecidable for StExt(BPP) processes and
Petri nets, strong bisimilarity with finite-state systems is decidable. The original proof



in [12] in fact demonstrates decidability of the Reach problem (the Step problem is
trivially decidable), hence our general strategy applies also in this case.

BPA BPP PA StExt(BPA) StExt(BPP) StExt(PA) PAD PN
ST∼ Yes [6] Yes [5] Yes [10] Yes [10] Yes [12] No [10] YES Yes [12]
WT∼ YES Yes [14] YES YES NO No [10] YES No [9]
RN∼ YES YES YES YES NO No [10] YES No [9]
EF Yes Yes Yes Yes No No Yes No

References
1. Proceedings of CONCUR’96, volume 1119 of LNCS. Springer-Verlag, 1996.
2. Proceedings of CONCUR’97, volume 1243 of LNCS. Springer-Verlag, 1997.
3. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for

processes generating context-free languages. JACM, 40:653–682, 1993.
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