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Abstract. We consider the problem of computing the value and an optimal strat-
egy for minimizing the expected termination time in one-counter Markov deci-
sion processes. Since the value may be irrational and an optimal strategy may be
rather complicated, we concentrate on the problems of approximating the value
up to a given error ε > 0 and computing a finite representation of an ε-optimal
strategy. We show that these problems are solvable in exponential time for a given
configuration, and we also show that they are computationally hard in the sense
that a polynomial-time approximation algorithm cannot exist unless P=NP.

1 Introduction

In recent years, a lot of research work has been devoted to the study of stochastic ex-
tensions of various automata-theoretic models such as pushdown automata, Petri nets,
lossy channel systems, and many others. In this paper we study the class of one-counter
Markov decision processes (OC-MDPs), which are infinite-state MDPs [19, 13] gener-
ated by finite-state automata operating over a single unbounded counter. Intuitively, an
OC-MDP is specified by a finite directed graph A where the nodes are control states
and the edges correspond to transitions between control states. Each control state is ei-
ther stochastic or non-deterministic, which means that the next edge is chosen either
randomly (according to a fixed probability distribution over the outgoing edges) or by
a controller. Further, each edge either increments, decrements, or leaves unchanged the
current counter value. A configuration q(i) of an OC-MDP A is given by the current
control state q and the current counter value i (for technical convenience, we also allow
negative counter values, although we are only interested in runs where the counter stays
non-negative). The outgoing transitions of q(i) are determined by the edges ofA in the
natural way.

Previous works on OC-MDPs [4, 2, 3] considered mainly the objective of maximiz-
ing/minimizing termination probability. We say that a run initiated in a configuration
q(i) terminates if it visits a configuration with zero counter. The goal of the controller
is to play so that the probability of all terminating runs is maximized (or minimized).
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In this paper, we study a related objective of minimizing the expected termination time.
Formally, we define a random variable T over the runs of A such that T (ω) is equal
either to ∞ (if the run ω is non-terminating) or to the number of transitions needed
to reach a configuration with zero counter (if ω is terminating). The goal of the con-
troller is to minimize the expectation E(T ). The value of q(i) is the infimum of E(T )
over all strategies. It is easy to see that the controller has a memoryless deterministic
strategy which is optimal (i.e., achieves the value) in every configuration. However,
since OC-MDPs have infinitely many configurations, this does not imply that an opti-
mal strategy is finitely representable and computable. Further, the value itself can be
irrational. Therefore, we concentrate on the problem of approximating the value of a
given configuration up to a given (absolute or relative) error ε > 0, and computing a
strategy which is ε-optimal (in both absolute and relative sense). Our main results can
be summarized as follows:

– The value and optimal strategy can be effectively approximated up to a given
relative/absolute error in exponential time. More precisely, we show that given
an OC-MDP A, a configuration q(i) of A where i ≥ 0, and ε > 0, the value of
q(i) up to the (relative or absolute) error ε is computable in time exponential in
the encoding size of A, i, and ε, where all numerical constants are represented
as fractions of binary numbers. Further, there is a history-dependent deterministic
strategy σ computable in exponential time such that the absolute/relative difference
between the value of q(i) and the outcome of σ in q(i) is bounded by ε.

– The value is not approximable in polynomial time unless P=NP. This hardness
result holds even if we restrict ourselves to configurations with counter value equal
to 1 and to OC-MDPs where every outgoing edge of a stochastic control state has
probability 1/2. The result is valid for absolute as well as relative approximation.

Let us sketch the basic ideas behind these results. The upper bounds are obtained in two
steps. In the first step (Section 3.1), we analyze the special case when the underlying
graph of A is strongly connected. We show that minimizing the expected termination
time is closely related to minimizing the expected increase of the counter per transition,
at least for large counter values. We start by computing the minimal expected increase
of the counter per transition (denoted by x̄) achievable by the controller, and the asso-
ciated strategy σ. This is done by standard linear programming techniques developed
for optimizing the long-run average reward in finite-state MDPs (see, e.g., [19]) applied
to the underlying finite graph of A. Note that σ depends only on the current control
state and ignores the current counter value (we say that σ is counterless). Further, the
encoding size of x̄ is polynomial in the encoding size of A (which we denote by ||A||).
Then, we distinguish two cases.
Case (A), x̄ ≥ 0. Then the counter does not have a tendency to decrease regardless
of the controller’s strategy, and the expected termination time value is infinite in all
configurations q(i) such that i ≥ |Q|, where Q is the set of control states of A (see
Proposition 5. A). For the finitely many remaining configurations, we can compute the
value and optimal strategy precisely by standard methods for finite-state MDPs.
Case (B), x̄ < 0. Then, one intuitively expects that applying the strategy σ in an ini-
tial configuration q(i) yields the expected termination time about i/|x̄|. Actually, this



is almost correct; we show (Proposition 5. B.2) that this expectation is bounded by
(i + U)/|x̄|, where U ≥ 0 is a constant depending only on A whose size is at most
exponential in ||A||. Further, we show that an arbitrary strategy π applied to q(i) yields
the expected termination time at least (i − V)/|x̄|, where V ≥ 0 is a constant depending
only on A whose size is at most exponential in ||A|| (Proposition 5. B.1). In particular,
this applies to the optimal strategy π∗ for minimizing the expected termination time.
Hence, π∗ can be more efficient than σ, but the difference between their outcomes is
bounded by a constant which depends only on A and is at most exponential in ||A||.
We proceed by computing a sufficiently large k so that the probability of increasing the
counter to i + k by a run initiated in q(i) is inevitably (i.e., under any optimal strategy)
so small that the controller can safely switch to the strategy σ when the counter reaches
the value i + k. Then, we construct a finite-state MDPM and a reward function f over
its transitions such that

– the states are all configurations p( j) where 0 ≤ j ≤ i + k;
– all states with counter values less than i + k “inherit” their transitions from A;

configurations of the form p(i + k) have only self-loops;
– the self-loops on configurations where the counter equals 0 or i+k have zero reward,

transitions leading to configurations where the counter equals i + k have reward
(i + k + U)/|x̄|, and the other transitions have reward 1.

In this finite-state MDPM, we compute an optimal memoryless deterministic strategy
% for the total accumulated reward objective specified by f . Then, we consider another
strategy σ̂ for q(i) which behaves like % until the point when the counter reaches i + k,
and from that point on it behaves like σ. It turns out that the absolute as well as relative
difference between the outcome of σ̂ in q(i) and the value of q(i) is bounded by ε, and
hence σ̂ is the desired ε-optimal strategy.

In the general case whenA is not necessarily strongly connected (see Section 3.2),
we have to solve additional difficulties. Intuitively, we split the graph of A into maxi-
mal end components (MECs), where each MEC can be seen as a strongly connected
OC-MDP and analyzed by the techniques discussed above. In particular, for every
MEC C we compute the associated x̄C (see above). Then, we consider a strategy which
tries to reach a MEC as quickly as possible so that the expected value of the fraction
1/|x̄C | is minimal. After reaching a target MEC, the strategy starts to behave as the strat-
egy σ discussed above. It turns out that this particular strategy cannot be much worse
than the optimal strategy (a proof of this claim requires new observations), and the rest
of the argument is similar as in the strongly connected case.

The lower bound, i.e., the result saying that the value cannot be efficiently ap-
proximated unless P=NP (see Section 4), seems to be the first result of this kind for
OC-MDPs. Here we combine the technique of encoding propositional assignments pre-
sented in [17] (see also [15]) with some new gadgets constructed specifically for this
proof (let us note that we did not manage to improve the presented lower bound to
PSPACE by adapting other known techniques [14, 20, 16]). As a byproduct, our proof
also reveals that the optimal strategy for minimizing the expected termination time can-
not ignore the precise counter value, even if the counter becomes very large. In our
example, the (only) optimal strategy is eventually periodic in the sense that for a suffi-
ciently large counter value i, it is only “i modulo c” which matters, where c is a fixed



(exponentially large) constant. The question whether there always exists an optimal
eventually periodic strategy is left open. Another open question is whether our results
can be extended to stochastic games over one-counter automata.

Due to space constraints, most proofs are omitted and can be found in [?].
Related Work: One-counter automata can also be seen as pushdown automata with one
letter stack alphabet. Stochastic games and MDPs generated by pushdown automata and
stateless pushdown automata (also known as BPA) with termination and reachability
objectives have been studied in [11, 12, 5, 6]. To the best of our knowledge, the only
prior work on the expected termination time (or, more generally, total accumulated
reward) objective for a class of infinite-state MDPs or stochastic games is [9], where
this problem is studied for stochastic BPA games. However, the proof techniques of [9]
are not directly applicable to one-counter automata.

The termination objective for one-counter MDPs and games has been examined
in [4, 2, 3], where it was shown (among other things) that the equilibrium termination
probability (i.e., the termination value) can be approximated up to a given precision in
exponential time, but no lower bound was provided. In this paper, we build on some
of the underlying observations presented in [4, 2, 3]. In particular, we employ the sub-
martingale of [3] to derive certain bounds in Section 3.1.

The games over one-counter automata are also known as “energy games” [7, 8].
Intuitively, the counter is used to model the amount of currently available energy, and
the aim of the controller is to optimize the energy consumptions.

Finally, let us note that OC-MDPs can be seen as discrete-time Quasi-Birth-Death
Processes (QBDs, see, e.g., [18, 10]) extended with a control. Hence, the theory of
one-counter MDPs and games is closely related to queuing theory, where QBDs are
considered as a fundamental model.

2 Preliminaries

Given a set A, we use |A| to denote the cardinality of A. We also write |x| to denote the
absolute value of a given x ∈ R, but this should not cause any confusions. The encoding
size of a given object B is denoted by ||B||. The set of integers is denoted by Z, and the
set of positive integers by N.

We assume familiarity with basic notions of probability theory. In particular, we call
a probability distribution f over a discrete set A positive if f (a) > 0 for all a ∈ A.

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =

(S , (S 0, S 1), { ,Prob), consisting of a countable set of states S partitioned into the
sets S 0 and S 1 of stochastic and non-deterministic states, respectively. The edge rela-
tion { ⊆ S × S is total, i.e., for every r ∈ S there is s ∈ S such that r{ s. Finally,
Prob assigns to every s ∈ S 0 a positive probability distribution over its outgoing edges.

A finite path is a sequence w = s0s1 · · · sn of states such that si{ si+1 for all 0 ≤ i < n.
We write len(w) = n for the length of the path. A run is an infinite sequence ω of states
such that every finite prefix of ω is a path. For a finite path, w, we denote by Run(w) the
set of runs having w as a prefix. These generate the standard σ-algebra on the set of all
runs. If w is a finite path or a run, we denote by w(i) the i-th state of sequence w.



Definition 2 (OC-MDP). A one-counter MDP (OC-MDP) is a tuple A =

(Q, (Q0,Q1), δ, P), where Q is a finite non-empty set of control states partitioned into
stochastic and non-deterministic states (as in the case of MDPs), δ ⊆ Q×{+1, 0,−1}×Q
is a set of transition rules such that δ(q) B {(q, i, r) ∈ δ} , ∅ for all q ∈ Q, and
P = {Pq}q∈Q0 where Pq is a positive rational probability distribution over δ(q) for all
q ∈ Q0.

In the rest of this paper we often write q i
−→ r to indicate that (q, i, r) ∈ δ, and q i,x

−→ r
to indicate that (q, i, r) ∈ δ, q is stochastic, and Pq(q, i, r) = x. Without restrictions, we
assume that for each pair q, r ∈ Q there is at most one i such that (q, i, r) ∈ δ. The
encoding size of A is denoted by ||A||, where all numerical constants are encoded as
fractions of binary numbers. The set of all configurations is C B {q(i) | q ∈ Q, i ∈ Z}.

To A we associate an infinite-state MDPM∞
A

= (C, (C0,C1), { ,Prob), where the
partition of C is defined by q(i) ∈ C0 iff q ∈ Q0, and similarly for C1. The edges are
defined by q(i){ r( j) iff (q, j − i, r) ∈ δ. The probability assignment Prob is derived
naturally from P and we write q(i) x

{ r( j) to indicate that q(i) ∈ C0, and Prob(q(i))
assigns probability x to the edge q(i){ r( j).

By forgetting the counter values, the OC-MDP A also defines a finite-state MDP
MA = (Q, (Q0,Q1), { ,Prob′). Here q{ r iff (q, i, r) ∈ δ for some i, and Prob′ is
derived in the obvious way from P by forgetting the counter changes.
Strategies and Probability. LetM be an MDP. A history is a finite path inM, and
a strategy (or policy) is a function assigning to each history ending in a state from S 1
a distribution on edges leaving the last state of the history. A strategy σ is pure (or
deterministic) if it always assigns 1 to one edge and 0 to the others, and memoryless if
σ(ws) depends just on the last state s, for every w ∈ S ∗.

Now consider some OC-MDPA. A strategy σ over the histories inM∞
A

is counter-
less if it is memoryless and σ(q(i)) = σ(q( j)) for all i, j. Observe that every strategy σ
forMA gives a unique strategy σ′ forM∞

A
which just forgets the counter values in the

history and plays as σ. This correspondence is bijective when restricted to memoryless
strategies inMA and counterless strategies inM∞

A
, and it is used implicitly throughout

the paper.
Fixing a strategy σ and an initial state s, we obtain in a standard way a probabil-

ity measure Pσs (·) on the subspace of runs starting in s. For MDPs of the form M∞
A

for some OC-MDP A, we consider two sequences of random variables, {C(i)}i≥0 and
{S (i)}i≥0, returning the current counter value and the current control state after complet-
ing i transitions.
Termination Time in OC-MDPs. LetA be an OC-MDP. A run ω inM∞

A
terminates

if ω( j) = q(0) for some j ≥ 0 and q ∈ Q. The associated termination time, denoted
by T (ω), is the least j such that ω( j) = q(0) for some q ∈ Q. If there is no such j, we
put T (ω) = ∞, where the symbol ∞ denotes the “infinite amount” with the standard
conventions, i.e., c < ∞ and∞+ c = ∞+∞ = ∞· d = ∞ for arbitrary real numbers c, d
where d > 0.

For every strategy σ and a configuration q(i), we use Eσq(i) to denote the ex-
pected value of T in the probability space of all runs initiated in q(i) where Pσq(i)(·)
is the underlying probability measure. The value of a given configuration q(i) is de-
fined by Val(q(i)) B infσ Eσq(i). Let ε ≥ 0 and i ≥ 1. We say that a constant ν



maximize x, subject to

zq ≤ −x + k + zr for all q ∈ Q1 and (q, k, r) ∈ δ,

zq ≤ −x +
∑

(q,k,r)∈δ Pq((q, k, r)) · (k + zr) for all q ∈ Q0,

Fig. 1. The linear program L over x and zq, where q ∈ Q.

approximates Val(q(i)) up to the absolute or relative error ε if |Val(q(i)) − ν| ≤ ε or
|Val(q(i))− ν|/Val(q(i)) ≤ ε, respectively. Note that if ν approximates Val(q(i)) up to the
absolute error ε, then it also approximates Val(q(i)) up to the relative error ε because
Val(q(i)) ≥ 1. A strategy σ is (absolutely or relatively) ε-optimal if Eσq(i) approximates
Val(q(i)) up to the (absolute or relative) error ε. A 0-optimal strategy is called optimal.

It is easy to see that there is a memoryless deterministic strategy σ inM∞
A

which is
optimal in every configuration ofM∞

A
. First, observe that for all q ∈ Q0, q′ ∈ Q1, and

i , 0 we have that

Val(q(i)) = 1 +
∑

q(i)
x
{r( j) x · Val(r( j))

Val(q′(i)) = 1 + min{Val(r( j)) | q′(i){ r( j)}.

We put σ(q′(i)) = r( j) if q′(i){ r( j) and Val(q′(i)) = 1 + Val(r( j)) (if there are several
candidates for r( j), any of them can be chosen). Now we can easily verify that σ is
indeed optimal in every configuration.

3 Upper Bounds

The goal of this section is to prove the following:

Theorem 3. LetA be an OC-MDP, q(i) a configuration ofA where i ≥ 0, and ε > 0.

1. The problem whether Val(q(i)) = ∞ is decidable in polynomial time.
2. There is an algorithm that computes a rational number ν such that
|Val(q(i)) − ν| ≤ ε, and a strategy σ that is absolutely ε-optimal starting in q(i).
The algorithm runs in time exponential in ||A|| and polynomial in i and 1/ε. (Note
that ν then approximates Val(q(i)) also up to the relative error ε, and σ is also
relatively ε-optimal in q(i)).

For the rest of this section, we fix an OC-MDPA = (Q, (Q0,Q1), δ, P). First, we prove
Theorem 3 under the assumption thatMA is strongly connected (Section 3.1). A gen-
eralization to arbitrary OC-MDP is then given in Section 3.2.

3.1 Strongly Connected OC-MDP

Let us assume thatMA is strongly connected, i.e., for all p, q ∈ Q there is a finite path
from p to q in MA. Consider the linear program of Figure 1. Intuitively, the variable
x encodes a lower bound on the long-run trend of the counter value. More precisely,



the maximal value of x corresponds to the minimal long-run average change in the
counter value achievable by any strategy. The program corresponds to the one used for
optimizing the long-run average reward in Sections 8.8 and 9.5 of [19], and hence we
know it has a solution.

Lemma 4 ([19]). There is a rational solution
(
x̄, (z̄q)q∈Q

)
∈ Q|Q|+1 to L, and the encod-

ing size3 of the solution is polynomial in ||A||.

Note that x̄ ≥ −1, because for any fixed x ≤ −1 the program L trivially has a feasible
solution. Further, we put V := maxq∈Q z̄q − minq∈Q z̄q. Observe that V ∈ exp

(
||A||O(1)

)
and V is computable in time polynominal in ||A||.

Proposition 5. Let
(
x̄, (z̄q)q∈Q

)
be a solution of L.

(A) If x̄ ≥ 0, then Val(q(i)) = ∞ for all q ∈ Q and i ≥ |Q|.
(B) If x̄ < 0, then the following holds:

(B.1) For every strategy π and all q ∈ Q, i ≥ 0 we have that Eπq(i) ≥ (i − V)/|x̄|.
(B.2) There is a counterless strategy σ and a number U ∈ exp

(
||A||O(1)

)
such that

for all q ∈ Q, i ≥ 0 we have that Eσq(i) ≤ (i + U)/|x̄|. Moreover, σ and U are
computable in time polynomial in ||A||.

First, let us realize that Proposition 5 implies Theorem 3. To see this, we consider
the cases x̄ ≥ 0 and x̄ < 0 separately. In both cases, we resort to analyzing a finite-
state MDP GK , where K is a suitable natural number, obtained by restricting M∞

A
to

configurations with counter value at most K, and by substituting all transitions leaving
each p(K) with a self-loop of the form p(K){ p(K).

First, let us assume that x̄ ≥ 0. By Proposition 5 (A), we have that Val(q(i)) = ∞ for
all q ∈ Q and i ≥ |Q|. Hence, it remains to approximate the value and compute ε-optimal
strategy for all configurations q(i) where i ≤ |Q|. Actually, we can even compute these
values precisely and construct a strategy σ̂ which is optimal in each such q(i). This is
achieved simply by considering the finite-state MDP G|Q| and solving the objective of
minimizing the expected number of transitions needed to reach a state of the form p(0),
which can be done by standard methods in time polynomial in ||A||.

If x̄ < 0, we argue as follows. The strategy σ of Proposition 5 (B.2) is not neces-
sarily ε-optimal in q(i), so we cannot use it directly. To overcome this problem, con-
sider an optimal strategy π∗ in q(i), and let x` be the probability that a run initiated
in q(i) (under the strategy π∗) visits a configuration of the form r(i + `). Obviously,
x` · minr∈Q{E

π∗r(i+`)} ≤ Eσq(i), because otherwise π∗ would not be optimal in q(i).
Using the lower/upper bounds for Eπ

∗

r(i+`) and Eσq(i) given in Proposition 5 (B), we
obtain x` ≤ (i + U)/(i + ` − V). Then, we compute k ∈ N such that

xk ·

(
max
r∈Q

{
(i + k + U)/|x̄| − Eπ

∗

r(i+k)
})

≤ ε

A simple computation reveals that it suffices to choose any k such that

k ≥
(i + U) · (U + V)

ε · |x̄|
+ V − i,

3 Recall that rational numbers are represented as fractions of binary numbers.



so the value of k is exponential in ||A|| and polynomial in i and 1/ε. Now, consider
Gi+k, and let f be a reward function over the transitions of Gi+k such that the loops
on configurations where the counter equals 0 or i + k have zero reward, transitions
leading to configurations of the form r(i+k) have reward (i + k + U)/|x̄|, and all of the
remaining transitions have reward 1. Now we solve the finite-state MDP Gi+k with the
objective of minimizing the total accumulated reward. Note that an optimal strategy %
in Gi+k is computable in time polynomial in the size of Gi+k [19]. Then, we define the
corresponding strategy σ̂ inM∞

A
, which behaves like % until the counter reaches i + k,

and from that point on it behaves like the counterless strategy σ. It is easy to see that σ̂
is indeed ε-optimal in q(i).
Proof of Proposition 5. Similarly as in [3], we use the solution (x̄, (z̄q)q∈Q) ∈ Q|Q|+1 of
L to define a suitable submartingale, which is then used to derive the required bounds.
In [3], Azuma’s inequality was applied to the submartingale to prove exponential tail
bounds for termination probability. In this paper, we need to use the optional stopping
theorem rather than Azuma’s inequality, and therefore we need to define the submartin-
gale relative to a suitable filtration so that we can introduce an appropriate stopping
time (without the filtration, the stopping time would have to depend just on numerical
values returned by the martingale, which does not suit our purposes).

Given the solution (x̄, (z̄q)q∈Q) ∈ Q|Q|+1 from Lemma 4, we define a sequence of
random variables {m(i)}i≥0 by setting

m(i) B

C(i) + z̄S (i) − i · x̄ if C( j) > 0 for all j, 0 ≤ j < i,
m(i−1) otherwise.

Note that for every history u of length i and every 0 ≤ j ≤ i, the random variable m( j)

returns the same value for every ω ∈ Run(u). The same holds for variables S ( j) and C( j).
We will denote these common values m( j)(u), S ( j)(u) and C( j)(u), respectively. Using the
same arguments as in Lemma 3 of [3], one may show that for every history u of length
i we have E(m(i+1) | Run(u)) ≥ m(i)(u). This shows that {m(i)}i≥0 is a submartingale
relative to the filtration {Fi}i≥0, where for each i ≥ 0 the σ-algebra Fi is the σ-algebra
generated by all Run(u) where len(u) = i. Intuitively, this means that value m(i)(ω)
is uniquely determined by prefix of ω of length i and that the process {m(i)}i≥0 has
nonnegative average change. For relevant definitions of (sub)martingales see, e.g., [21].
Another important observation is that |m(i+1) −m(i)| ≤ 1 + x̄ + V for every i ≥ 0, i.e., the
differences of the submartingale are bounded.

Lemma 6. Under an arbitrary strategy π and with an arbitrary initial configuration
q( j) where j ≥ 0, the process {m(i)}i≥0 is a submartingale (relative to the filtration
{Fi}i≥0) with bounded differences.

Part (A) of Proposition 5. This part can be proved by a routine application of the op-
tional stopping theorem to the martingale {m(i)}i≥0. Let z̄max B maxq∈Q z̄q, and consider
a configuration p(`) where ` + z̄p > z̄max. Let σ be a strategy which is optimal in every
configuration. Assume, for the sake of contradiction, that Val(p(`)) < ∞.

Let us fix k ∈ N such that ` + z̄p < z̄max + k and define a stopping time τ which
returns the first point in time in which either m(τ) ≥ z̄max + k, or m(τ) ≤ z̄max. To apply
the optional stopping theorem, we need to show that the expectation of τ is finite.



We argue that every configuration q(i) with i ≥ 1 satisfies the following: under the
optimal strategy σ, a configuration with counter height i − 1 is reachable from q(i) in
at most |Q|2 steps (i.e., with a bounded probability). To see this, realize that for every
configuration r( j) there is a successor, say r′( j′), such that Val(r( j)) > Val(r′( j′)). Now
consider a run w initiated in q(i) obtained by subsequently choosing successors with
smaller and smaller values. Note that whenever w( j) and w( j′) with j < j′ have the
same control state, the counter height of w( j′) must be strictly smaller than the one of
w( j) because otherwise the strategy σ could be improved (it suffices to behave in w( j)
as in w( j′)). It follows that there must be k ≤ |Q|2 such that the counter height of w(k) is
i−1. From this we obtain that the expected value of τ is finite because the probability of
terminating from any configuration with bounded counter height is bounded from zero.
Now we apply the optional stopping theorem and obtain Pσp(`)(m

(τ) ≥ z̄max+k) ≥ c/(k+d)
for suitable constants c, d > 0. As m(τ) ≥ z̄max + k implies C(τ) ≥ k, we obtain that

Pσp(`)(T ≥ k) ≥ Pσp(`)(C
(τ) ≥ k) ≥ Pσp(`)(m

(τ) ≥ z̄max + k) ≥
c

k + d

and thus

Eσp(`) =

∞∑
k=1

Pσp(`)(T ≥ k) ≥

∞∑
k=1

c
k + d

= ∞

which contradicts our assumption that σ is optimal and Val(p(`)) < ∞.
It remains to show that Val(p(`)) = ∞ even for ` = |Q|. This follows from the

following simple observation:

Lemma 7. For all q ∈ Q and i ≥ |Q| we have that Val(q(i)) < ∞ iff Val(q(|Q|)) < ∞.

The “only if” direction of Lemma 7 is trivial. For the other direction, let Bk denote the
set of all p ∈ Q such that Val(p(k)) < ∞. Clearly, B0 = Q, Bk ⊆ Bk−1, and one can
easily verify that Bk = Bk+1 implies Bk = Bk+` for all ` ≥ 0. Hence, B|Q| = B|Q|+` for
all `. Note that Lemma 7 holds for general OC-MDPs (i.e., we do not need to assume
thatMA is strongly connected).

Part (B1) of Proposition 5. Let π be a strategy and q(i) a configuration where i ≥ 0.
If Eπq(i) = ∞, we are done. Now assume Eπq(i) < ∞. Observe that for every k ≥ 0
and every run ω, the membership of ω into {T ≤ k} depends only on the finite prefix of
ω of length k. This means that T is a stopping time relative to filtration {Fn}n≥0. Since
Eπq(i) < ∞ and the submartingale {m(n)}n≥0 has bounded differences, we can apply the
optional stopping theorem and obtain Eπ(m(0)) ≤ Eπ(m(T )). But Eπ(m(0)) = i + z̄q and
Eπ(m(T )) = Eπz̄S (T ) +Eπq(i) · |x̄|. Thus, we get Eπq(i) ≥ (i + z̄q −E

πz̄S (T ) )/|x̄| ≥ (i−V)/|x̄|.

Part (B2) of Proposition 5. First we show how to construct the desired strategy σ.
Recall again the linear programL of Figure 1. We have already shown that this program
has an optimal solution

(
x̄, (z̄q)q∈Q

)
∈ Q|Q|+1, and we assume that x̄ < 0. By the strong

duality theorem, this means that the linear program dual toL also has a feasible solution(
(ȳq)q∈Q0 , (ȳ(q,i,q′))q∈Q1,(q,i,q′)∈δ

)
. Let

D = {q ∈ Q0 | ȳq > 0} ∪ {q ∈ Q1 | ȳ(q,i,q′) > 0 for some (q, i, q′) ∈ δ}.



By Corollary 8.8.8 of [19], the solution
(
(ȳq)q∈Q0 , (ȳ(q,i,q′))q∈Q1,(q,i,q′)∈δ

)
can be chosen so

that for every q ∈ Q1 there is at most one transition (q, i, q′) with ȳ(q,i,q′) > 0. Follow-
ing the construction given in Section 8.8 of [19], we define a counterless deterministic
strategy σ such that

– in a state q ∈ D ∩ Q1, the strategy σ selects the transition (q, i, q′) with ȳ(q,i,q′) > 0;
– in the states outside D, the strategy σ behaves like an optimal strategy for the ob-

jective of reaching the set D.

Clearly, the strategy σ is computable in time polynomial in ||A||. In the full version of
this paper [?], we show that σ indeed satisfies Part (B.2) of Proposition 5.

3.2 General OC-MDP

In this section we prove Theorem 3 for general OC-MDPs, i.e., we drop the as-
sumption that MA is strongly connected. We say that C ⊆ Q is an end compo-
nent of A if C is strongly connected and for every p ∈ C ∩ Q0 we have that
{q ∈ Q | p{ q} ⊆ C. A maximal end component (MEC) of A is an end compo-
nent of A which is maximal w.r.t. set inclusion. The set of all MECs of A is de-
noted by MEC(A). Every C ∈ MEC(A) determines a strongly connected OC-MDP
AC = (C, (C∩Q0,C∩Q1), δ∩ (C × {+1, 0,−1} ×C), {Pq}q∈C∩Q0 ). Hence, we may apply
Proposition 5 to AC , and we use x̄C and VC to denote the constants of Proposition 5
computed forAC .

Part 1. of Theorem 3. We show how to compute, in time polynomial in ||A||, the set
Qfin = {p ∈ Q | Val(p(k)) < ∞ for all k ≥ 0}. From this we easily obtain Part 1. of
Theorem 3, because for every configuration q(i) where i ≥ 0 we have the following:

– if i ≥ |Q|, then Val(q(i)) < ∞ iff q ∈ Qfin (see Lemma 7);
– if i < |Q|, then Val(q(i)) < ∞ iff the set {p(0) | p ∈ Q} ∪ {p(|Q|) | p ∈ Qfin}

can be reached from q(i) with probability 1 in the finite-state MDP G|Q| defined in
Section 3.1 (here we again use Lemma 7).

So, it suffices to show how to compute the set Qfin in polynomial time.

Proposition 8. Let Q<0 be the set of all states from which the set
H = {q ∈ Q | q belongs to a MEC C satisfying x̄C < 0} is reachable with probabil-
ity 1. Then Qfin = Q<0. Moreover, the membership to Q<0 is decidable in time
polynomial in ||A||.

Part 2. of Theorem 3. First, we generalize Part (B) of Proposition 5 into the following:

Proposition 9. For every q ∈ Qfin there is a number tq computable in time polynomial
in ||A|| such that −1 ≤ tq < 0, 1/|tq| ∈ exp

(
||A||O(1)

)
, and the following holds:

(A) There is a counterless strategy σ and a number U ∈ exp(||A||O(1)) such that for
every configuration q(i) where q ∈ Qfin and i ≥ 0 we have that Eσq(i) ≤ i/|tq| + U.
Moreover, both σ and U are computable in time polynomial in ||A||.



(B) There is a number L ∈ exp(||A||O(1)) such that for every strategy π and every config-
uration q(i) where i ≥ |Q| we have that Eπ ≥ i/|tq| − L. Moreover, L is computable
in time polynomial in ||A||.

Once the Proposition 9 is proved, we can compute an ε-optimal strategy for an arbitrary
configuration q(i) where q ∈ Qfin and i ≥ |Q| in exactly the same way (and with the
same complexity) as in the strongly connected case. Actually, it can also be used to
compute the approximate values and ε-optimal strategies for configurations q( j) such
that q < Qfin or 1 ≤ j < |Q|. Observe that

– if q < Qfin and j ≥ |Q|, the value is infinite by Part 1;
– otherwise, we construct the finite-state MDP G|Q| (see Section 3.1) where the loops

on configurations with counter value 0 have reward 0, the loops on configurations
of the form r(|Q|) have reward 0 or 1, depending on whether r ∈ Q f in or not, tran-
sitions leading to r(|Q|) where r ∈ Q f in are rewarded with some ε-approximation
of Val(r(|Q|)), and all other transitions have reward 1. The reward function can be
computed in time exponential in ||A|| by Proposition 9, and the minimal total accu-
mulated reward from q( j) in G|Q|, which can be computed by standard algorithms,
is an ε-approximation of Val(q( j)). The corresponding ε-optimal strategy can be
computed in the obvious way.

The missing proofs of Propositions 8 and 9 can be found in [?].

4 Lower Bounds

In this section, we show that approximating Val(q(i)) is computationally hard, even if
i = 1 and the edge probabilities in the underlying OC-MDP are all equal to 1/2. More
precisely, we prove the following:

Theorem 10. The value of a given configuration q(1) cannot be approximated in poly-
nomial time up to a given absolute/relative error ε > 0 unless P=NP, even if all outgoing
edges of all stochastic control states in the underlying OC-MDP have probability 1/2.

The proof of Theorem 10 is split into two phases, which are relatively independent.
First, we show that given a propositional formula ϕ, one can efficiently compute an
OC-MDPA, a configuration p(K) ofA, and a number N such that the value of p(K) is
either N − 1 or N depending on whether ϕ is satisfiable or not, respectively. The num-
bers K and N are exponential in ||ϕ||, which means that their encoding size is polynomial
(we represent all numerical constants in binary). Here we use the technique of encoding
propositional assignments into counter values presented in [17], but we also need to
invent some specific gadgets to deal with our specific objective. The first part already
implies that approximating Val(q(i)) is computationally hard. In the second phase, we
show that the same holds also for configurations where the counter is initiated to 1. This
is achieved by employing another gadget which just increases the counter to an expo-
nentially high value with a sufficiently large probability. The two phases are elaborated
in [?].
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