
Runtime Analysis of Probabilistic Programs with
Unbounded Recursion

Tomáš Brázdil1?, Stefan Kiefer2†, Antonı́n Kučera1?, and Ivana Hutařová Vařeková1‡

1 Faculty of Informatics, Masaryk University, Czech Republic.
{brazdil,kucera}@fi.muni.cz,ivarekova@centrum.cz

2 Department of Computer Science, University of Oxford, United Kingdom.
stefan.kiefer@cs.ox.ac.uk

Abstract. We study the runtime in probabilistic programs with unbounded re-
cursion. As underlying formal model for such programs we use probabilistic
pushdown automata (pPDA) which exactly correspond to recursive Markov chains.
We show that every pPDA can be transformed into a stateless pPDA (called
“pBPA”) whose runtime and further properties are closely related to those of the
original pPDA. This result substantially simplifies the analysis of runtime and other
pPDA properties. We prove that for every pPDA the probability of performing a
long run decreases exponentially in the length of the run, if and only if the expected
runtime in the pPDA is finite. If the expectation is infinite, then the probability
decreases “polynomially”. We show that these bounds are asymptotically tight.
Our tail bounds on the runtime are generic, i.e., applicable to any probabilistic
program with unbounded recursion. An intuitive interpretation is that in pPDA the
runtime is exponentially unlikely to deviate from its expected value.

1 Introduction

We study the termination time in programs with unbounded recursion, which are either
randomized or operate on statistically quantified inputs. As underlying formal model
for such programs we use probabilistic pushdown automata (pPDA) [13, 14, 6, 3] which
are equivalent to recursive Markov chains [18, 16, 17]. Since pushdown automata are
a standard and well-established model for programs with recursive procedure calls,
our abstract results imply generic and tight tail bounds for termination time, the main
performance characteristic of probabilistic recursive programs.

A pPDA consists of a finite set of control states, a finite stack alphabet, and a finite
set of rules of the form pX x

↪→ qα, where p, q are control states, X is a stack symbol, α
is a finite sequence of stack symbols (possibly empty), and x ∈ (0, 1] is the (rational)
probability of the rule. We require that for each pX, the sum of the probabilities of
all rules of the form pX x

↪→ qα is equal to 1. Each pPDA ∆ induces an infinite-state
Markov chain M∆, where the states are configurations of the form pα (p is the current
control state and α is the current stack content), and pXβ x

→ qαβ is a transition of M∆ iff

? Tomáš Brázdil and Antonı́n Kučera are supported by the Institute for Theoretical Computer Sci-
ence (ITI), project No. 1M0545, and by the Czech Science Foundation, grant No. P202/10/1469.
† Stefan Kiefer is supported by a postdoctoral fellowship of the German Academic Exchange

Service (DAAD)
‡ Ivana Hutařová Vařeková is supported by by the Czech Science Foundation, grant

No. 102/09/H042.



function And(node)

if node.leaf then
return node.value

else
v := Or(node.left)

if v = 0 then
return 0

else
return Or(node.right)

function Or(node)

if node.leaf then
return node.value

else
v := And(node.left)

if v = 1 then
return 1

else
return And(node.right)

qA 1/4
↪→ r1ε qO 1/4

↪→ r1ε

qA 1/4
↪→ r0ε qO 1/4

↪→ r0ε

qA 1/2
↪→ qOA qO 1/2

↪→ qAO

r0A 1
↪→ r0ε r1O 1

↪→ r1ε

r1A 1
↪→ qO r0O 1

↪→ qA

Fig. 1. The program Tree and its pPDA model ∆Tree.

pX x
↪→ qα is a rule of ∆. We also stipulate that pε 1

→ pε for every control state p, where
ε denotes the empty stack. For example, consider the pPDA ∆̂ with two control states
p, q, two stack symbols X,Y , and the rules

pX ↪
1/4
−−→ pε, pX ↪

1/4
−−→ pXX, pX ↪

1/2
−−→ qY, pY ↪

1
−→ pY, qY ↪

1/2
−−→ qX, qY ↪

1/2
−−→ qε, qX ↪

1
−→ qY .

The structure of Markov chain M∆̂ is indicated below.

pε pX pXX pXXX pXXXX

qε qY qX qYX qXX qYXX qXXX qYXXX

1

1

1/4

1/2

1/4

1/2

1/4

1/2

1/4

1/2

1/4

1/4 1/4 1/4 1/4

11/211/211/211/2

1/21/21/21/2

pPDA can model programs that use unbounded “stack-like” data structures such
as stacks, counters, or even queues (in some cases, the exact ordering of items stored
in a queue is irrelevant and the queue can be safely replaced with a stack). Transition
probabilities may reflect the random choices of the program (such as “coin flips” in
randomized algorithms) or some statistical assumptions about the input data. In particular,
pPDA model recursive programs. The global data of such a program are stored in the
finite control, and the individual procedures and functions together with their local data
correspond to the stack symbols (a function call/return is modeled by pushing/popping
the associated stack symbol onto/from the stack). As a simple example, consider the
recursive program Tree of Figure 1, which computes the value of an And/Or-tree, i.e.,
a tree such that (i) every node has either zero or two children, (ii) every inner node is
either an And-node or an Or-node, and (iii) on any path from the root to a leaf And-
and Or-nodes alternate. We further assume that the root is either a leaf or an And-node.
Tree starts by invoking the function And on the root of a given And/Or-tree. Observe
that the program evaluates subtrees only if necessary. Now assume that the input are
random And/Or trees following the Galton-Watson distribution: a node of the tree has
two children with probability 1/2, and no children with probability 1/2. Furthermore,
the conditional probabilities that a childless node evaluates to 0 and 1 are also both equal
to 1/2. On inputs with this distribution, the algorithm corresponds to a pPDA ∆Tree of
Figure 1 (the control states r0 and r1 model the return values 0 and 1).

We study the termination time of runs in a given pPDA ∆. For every pair of control
states p, q and every stack symbol X of ∆, let Run(pXq) be the set of all runs (infinite



paths) in M∆ initiated in pX which visit qε. The termination time is modeled by the
random variable TpX , which to every run w assigns either the number of steps needed
to reach a configuration with empty stack, or ∞ if there is no such configuration. The
conditional expected value E [TpX | Run(pXq)], denoted just by E[pXq] for short, then
corresponds to the average number of steps needed to reach qε from pX, computed only
for those runs initiated in pX which terminate in qε. For example, using the results of
[13, 14, 18], one can show that the functions And and Or of the program Tree terminate
with probability one, and the expected termination times can be computed by solving a
system of linear equations. Thus, we obtain the following:

E[qAr0] = 7.155113 E[qOr0] = 7.172218 E[r0Ar0] = 1.000000 E[r1Or1] = 1.000000
E[qAr1] = 7.172218 E[qOr1] = 7.155113 E[r1Ar0] = 8.172218 E[r0Or1] = 8.172218

E[r1Ar1] = 8.155113 E[r0Or0] = 8.155113

However, the mere expectation of the termination time does not provide much informa-
tion about its distribution until we analyze the associated tail bound, i.e., the probability
that the termination time deviates from its expected value by a given amount. That is,
we are interested in bounds for the conditional probability P(TpX ≥ n | Run(pXq)).
(Note this probability makes sense regardless of whether E[pXq] is finite or infi-
nite.) Assuming that the (conditional) expectation and variance of TpX are finite, one
can apply Markov’s and Chebyshev’s inequalities and thus yield bounds of the form
P(TpX ≥ n | Run(pXq)) ≤ c/n and P(TpX ≥ n | Run(pXq)) ≤ c/n2, respectively, where
c is a constant depending only on the underlying pPDA. However, these bounds are
asymptotically always worse than our exponential bound (see below). If E[pXq] is
infinite, these inequalities cannot be used at all.
Our contribution. The main contributions of this paper are the following:
• We show that every pPDA can be effectively transformed into a stateless pPDA (called

“pBPA”) so that all important quantitative characteristics of runs are preserved. This
simple (but fundamental) observation was overlooked in previous works on pPDA
and related models [13, 14, 6, 3, 18, 16, 17], although it simplifies virtually all of these
results. Hence, we can w.l.o.g. concentrate just on the study of pBPA. Moreover, for
the runtime analysis, the transformation yields a pBPA all of whose symbols terminate
with probability one, which further simplifies the analysis.
• We provide tail bounds for TpX which are asymptotically optimal for every pPDA and

are applicable also in the case when E[pXq] is infinite. More precisely, we show that
for every pair of control states p, q and every stack symbol X, there are essentially
three possibilities:
− There is a “small” k such that P(TpX ≥ n | Run(pXq)) = 0 for all n ≥ k.
− E[pXq] is finite and P(TpX ≥ n | Run(pXq)) decreases exponentially in n.
− E[pXq] is infinite and P(TpX ≥ n | Run(pXq)) decreases “polynomially” in n.
The exact formulation of this result, including the explanation of what is meant by a
“polynomial” decrease, is given in Theorem 7 (technically, Theorem 7 is formulated
for pBPA which terminate with probability one, which is no restriction as explained
above). Observe that a direct consequence of the above theorem is that all conditional
moments E [Tk

pX | Run(pXq)] are simultaneously either finite or infinite (in particular,
if E[pXq] is finite, then so is the conditional variance of TpX).

The characterization given in Theorem 7 is effective. In particular, it is decidable in
polynomial space whether E[pXq] is finite or infinite by using the results of [13, 14, 18],



and if E[pXq] is finite, we can compute concrete bounds on the probabilities. Our results
vastly improve on what was previously known on the termination time TpX . Previous
work, in particular [14, 2], has focused on computing expectations and variances for a
class of random variables on pPDA runs, a class that includes TpX as prime example.
Note that our exponential bound given in Theorem 7 depends, like Markov’s inequality,
only on expectations, which can be efficiently approximated by the methods of [14, 12].

An intuitive interpretation of our results is that pPDA with finite (conditional)
expected termination time are well-behaved in the sense that the termination time
is exponentially unlikely to deviate from its expectation. Of course, a detailed analysis
of a concrete pPDA may lead to better bounds, but these bounds will be asymptotically
equivalent to our generic bounds. Also note that the conditional expected termination
time can be finite even for pPDA that do not terminate with probability one. Hence, for
every ε > 0 we can compute a tight threshold k such that if a given pPDA terminates at
all, it terminates after at most k steps with probability 1− ε (this is useful for interrupting
programs that are supposed but not guaranteed to terminate).

Proof techniques. The main mathematical tool for establishing our results on runtime is
(basic) martingale theory and its tools such as the optional stopping theorem and Azuma’s
inequality (see Section 3.2). More precisely, we construct two different martingales
corresponding to the cases when the expected termination time is finite resp. infinite. In
combination with our reduction to pBPA this establishes a powerful link between pBPA,
pPDA, and martingale theory.

Our analysis of termination time in the case when the expected termination time is
infinite builds on Perron-Frobenius theory for nonnegative matrices as well as on recent
results from [18, 12]. We also use some of the observations presented in [13, 14, 6].

Related work. The application of Azuma’s inequality in the analysis of particular
randomized algorithms is also known as the method of bounded differences; see, e.g., [24,
10] and the references therein. In contrast, we apply martingale methods not to particular
algorithms, but to the pPDA model as a whole.

Analyzing the distribution of termination time is closely related to the analysis of
multitype branching processes (MT-BPs) [19]. A MT-BP is very much like a pBPA
(see above). The stack symbols in pBPA correspond to species in MT-BPs. An ε-rule
corresponds to the death of an individual, whereas a rule with two or more symbols on the
right hand side corresponds to reproduction. Since in MT-BPs the symbols on the right
hand side of rules evolve concurrently, termination time in pBPA does not correspond
to extinction time in MT-BPs, but to the size of the total progeny of an individual, i.e.,
the number of direct or indirect descendants of an individual. The distribution of the
total progeny of a MT-BP has been studied mainly for the case of a single species,
see, e.g., [19, 25, 26] and the references therein, but to the best of our knowledge, no
tail bounds for MT-BPs have been given. Hence, Theorem 7 can also be seen as a
contribution to MT-BP theory.

Stochastic context-free grammars (SCFGs) [23] are also closely related to pBPA.
The termination time in pBPA corresponds to the number of nodes in a derivation tree
of a SCFG, so our analysis of pBPA immediately applies to SCFGs. Quasi-Birth-Death
processes (QBDs) can also be seen as a special case of pPDA. A QBD is a generalization
of a birth-death process studied in queueing theory and applied probability (see, e.g.,
[22, 1, 15]). Intuitively, a QBD describes an unbounded queue, using a counter to count
the number of jobs in the queue, where the queue can be in one of finitely many distinct



“modes”. Hence, a (discrete-time) QBD can be equivalently defined by a pPDA with
one stack symbol used to emulate the counter. These special pPDA are also known as
probabilistic one-counter automata (pOC) [15, 5, 4]. Recently, it has been shown in [7]
that every pOC induces a martingale apt for studying the properties of both terminating
and nonterminating runs in pOC. The construction is based on ideas specific to pOC that
are completely unrelated to the ones presented in this paper.

Previous work on pPDA and the equivalent model of recursive Markov chains
includes [13, 14, 6, 3, 18, 16, 17]. In this paper we use many of the results presented in
these papers, which is explicitly acknowledged at appropriate places. Missing proofs
can be found in [8].

2 Preliminaries

In the rest of this paper, N, N0, and R denote the set of positive integers, non-negative
integers, and real numbers, respectively. The tuples of A1 × A2 · · · × An are often written
simply as a1a2 . . . an. The set of all finite words over a given alphabet Σ is denoted by Σ∗,
and the set of all infinite words over Σ is denoted by Σω. We write ε for the empty word.
The length of a given w ∈ Σ∗ ∪Σω is denoted by |w|, where the length of an infinite word
is∞. Given a word (finite or infinite) over Σ, the individual letters of w are denoted by
w(0),w(1), . . .

Definition 1 (Markov Chains). A Markov chain is a triple M = (S , → ,Prob) where S
is a finite or countably infinite set of states, → ⊆ S × S is a transition relation, and Prob
is a function which to each transition s→ t of M assigns its probability Prob(s→ t) > 0
so that for every s ∈ S we have

∑
s→t Prob(s→ t) = 1 (as usual, we write s x

→ t instead
of Prob(s→ t) = x).

A path in M is a finite or infinite word w ∈ S + ∪ S ω such that w(i−1)→w(i) for every
1 ≤ i < |w|. A run in M is an infinite path in M. We denote by Run[M] the set of all runs
in M. The set of all runs that start with a given finite path w is denoted by Run[M](w).
When M is understood, we write just Run and Run(w) instead of Run[M] and Run[M](w),
respectively. Given s ∈ S and A ⊆ S , we say A is reachable from s if there is a run w
such that w(0) = s and w(i) ∈ A for some i ≥ 0.

To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the
σ-field generated by all basic cylinders Run(w) where w is a finite path starting with s,
and P : F → [0, 1] is the unique probability measure such that P(Run(w)) = Π |w|−1

i=1 xi

where w(i−1) xi→w(i) for every 1 ≤ i < |w|. If |w| = 1, we put P(Run(w)) = 1. Note that
only certain subsets of Run(s) are P-measurable, but in this paper we only deal with
“safe” subsets that are guaranteed to be in F .

Definition 2 (probabilistic PDA). A probabilistic pushdown automaton (pPDA) is
a tuple ∆ = (Q, Γ, ↪→ ,Prob) where Q is a finite set of control states, Γ is a fi-
nite stack alphabet, ↪→ ⊆ (Q × Γ) × (Q × Γ≤2) is a transition relation (where
Γ≤2 = {α ∈ Γ∗, |α| ≤ 2}), and Prob is a function which to each transition pX ↪→ qα
assigns its probability Prob(pX ↪→ qα) > 0 so that for all p ∈ Q and X ∈ Γ we
have that

∑
pX↪→qα Prob(pX ↪→ qα) = 1. As usual, we write pX x

↪→ qα instead of
Prob(pX ↪→ qα) = x.



Elements of Q × Γ∗ are called configurations of ∆. A pPDA with just one control state
is called pBPA.6 In what follows, configurations of pBPA are usually written without
the (only) control state p (i.e., we write just α instead of pα). We define the size of a
pPDA ∆ as |∆| = |Q| + |Γ| + | ↪→| + |Prob|, where |Prob| is the sum of sizes of binary
representations of values taken by Prob. To ∆ we associate the Markov chain M∆ with
Q × Γ∗ as the set of states and transitions defined as follows:
• pε 1

→ pε for each p ∈ Q;
• pXβ x

→ qαβ is a transition of M∆ iff pX x
↪→ qα is a transition of ∆.

For all pXq ∈ Q × Γ × Q and rY ∈ Q × Γ, we define
• Run(pXq) = {w ∈ Run(pX) | w(i) = qε for some i ∈ N}
• Run(rY↑) = Run(rY) \

⋃
s∈Q Run(rY s).

Further, we put [pXq] = P(Run(pXq)) and [pX↑] = P(Run(pX↑)). If ∆ is a pBPA, we
write [X] and [X↑] instead of [pXp] and [pX↑], where p is the only control state of ∆.

Let pα ∈ Q × Γ∗. We denote by Tpα a random variable over Run(pα) where Tpα(w)
is either the least n ∈ N0 such that w(n) = qε for some q ∈ Q, or∞ if there is no such n.
Intuitively, Tpα(w) is the number of steps (“the time”) in which the run w initiated in pα
terminates.

3 The Results

In this section we present the results outlined in Section 1. More precisely, in Section 3.1
we show how to transform a given pPDA into an equivalent pBPA, and in Section 3.2
we design the promised martingales and derive our tight tail bounds for the termination
probability.

3.1 Transforming pPDA into pBPA

Let ∆ = (Q, Γ, ↪→ ,Prob) be a pPDA. We show how to construct a pBPA ∆• which is
“equivalent” to ∆ in a well-defined sense. This construction is a relatively straightforward
modification of the standard method for transforming a PDA into an equivalent context-
free grammar (see, e.g., [20]), but has so far been overlooked in the existing literature
on probabilistic PDA. The idea behind this method is to construct a BPA with stack
symbols of the form 〈pXq〉 for all p, q ∈ Q and X ∈ Γ. Roughly speaking, such a triple
corresponds to terminating paths from pX to qε. Subsequently, transitions of the BPA are
induced by transitions of the PDA in a way corresponding to this intuition. For example,
a transition of the form pX ↪→ rYZ induces transitions of the form 〈pXq〉 ↪→〈rY s〉〈sZq〉
for all s ∈ Q. Then each path from pX to qε maps naturally to a path from 〈pXq〉
to ε. This construction can also be applied in the probabilistic setting by assigning
probabilities to transitions so that the probability of the corresponding paths is preserved.
We also deal with nonterminating runs by introducing new stack symbols of the form
〈pX↑〉.

Formally, the stack alphabet of ∆• is defined as follows: For every pX ∈ Q × Γ such
that [pX↑] > 0 we add a stack symbol 〈pX↑〉, and for every pXq ∈ Q × Γ × Q such that

6 The “BPA” acronym stands for “Basic Process Algebra” and it is used mainly for historical
reasons. pBPA are closely related to stochastic context-free grammars and are also called 1-exit
recursive Markov chains (see, e.g., [18]).



[pXq] > 0 we add a stack symbol 〈pXq〉. Note that the stack alphabet of ∆• is effectively
constructible in polynomial space by applying the results of [13, 18].

Now we construct the rules ↪−→• of ∆•. For all 〈pXq〉 we have the following rules:
• if pX x

↪→ rYZ in ∆, then for all s ∈ Q such that y = x · [rY s] · [sZq] > 0 we put

〈pXq〉 ↪
y/[pXq]
−−−−−→• 〈rY s〉〈sZq〉;

• if pX x
↪→ rY in ∆, where y = x · [rYq] > 0, we put 〈pXq〉 ↪

y/[pXq]
−−−−−→• 〈rYq〉;

• if pX x
↪→ qε in ∆, we put 〈pXq〉 ↪

x/[pXq]
−−−−−−→• ε.

For all 〈pX↑〉 we have the following rules:
• if pX x

↪→ rYZ in ∆, then for every s ∈ Q where y = x · [rY s] · [sZ↑] > 0 we add

〈pX↑〉 ↪
y/[pX↑]
−−−−−→• 〈rY s〉〈sZ↑〉;

• for all qY ∈ Q × Γ where x = [qY↑] ·
∑

pX↪→qYβ Prob(pX ↪→ qYβ) > 0, we add

〈pX↑〉 ↪
x/[pX↑]
−−−−−−→• 〈qY↑〉.

Note that the transition probabilities of ∆• may take irrational values. Still, the construc-
tion of ∆• is to some extent “effective” due to the following proposition:

Proposition 3 ([13, 18]). Let ∆ = (Q, Γ, ↪→ ,Prob) be a pPDA. Let pXq ∈ Q × Γ × Q.
There is a formula Φ(x) of ExTh(R) (the existential theory of the reals) with one free
variable x such that the length of Φ(x) is polynomial in |∆| and Φ(x/r) is valid iff
r = [pXq].

Using Proposition 3, one can compute formulae of ExTh(R) that “encode” transition
probabilities of ∆•. Moreover, these probabilities can be effectively approximated up to
an arbitrarily small error by employing either the decision procedure for ExTh(R) [9] or
by using Newton’s method [11, 21, 12].

Example 4. Consider a pPDA ∆ with two control states, p, q, one stack symbol, X, and
the following transition rules:

pX ↪
a
−→ qXX, pX ↪

1−a
−−→ qε, qX ↪

b
−→ pXX, qX ↪

1−b
−−→ pε,

where both a, b are greater than 1/2. Apparently, [pXp] = [qXq] = 0. Using results
of [13] one can easily verify that [pXq] = (1 − a)/b and [qXp] = (1 − b)/a. Thus
[pX↑] = (a + b − 1)/b and [qX↑] = (a + b − 1)/a. Thus the stack symbols of ∆• are
〈pXq〉, 〈qXp〉, 〈pX↑〉, 〈qX↑〉. The transition rules of ∆• are:

〈pXq〉 ↪
1−b
−−→• 〈qXp〉〈pXq〉 〈pXq〉 ↪

b
−→• ε 〈qXp〉 ↪

1−a
−−→• 〈pXq〉〈qXp〉 〈qXp〉 ↪

a
−→• ε

〈pX↑〉 ↪
1−b
−−→• 〈qXp〉〈pX↑〉 〈pX↑〉 ↪

b
−→• 〈qX↑〉 〈qX↑〉 ↪

1−a
−−→• 〈pXq〉〈qX↑〉 〈qX↑〉 ↪

a
−→• 〈pX↑〉

As both a, b are greater than 1/2, the resulting pBPA has a tendency to remove symbols
rather than add symbols. Thus both 〈pXq〉 and 〈qXp〉 terminate with probability 1.

When studying long-run properties of pPDA (such as ω-regular properties or limit-
average properties), one usually assumes that the runs are initiated in a configuration p0X0
which cannot terminate, i.e., [p0X0↑] = 1. Under this assumption, the probability spaces
over Run[M∆](p0X0) and Run[M∆•](〈p0X0↑〉) are “isomorphic” w.r.t. all properties that
depend only on the control states and the top-of-the-stack symbols of the configurations
visited along a run. This is formalized in our next proposition.



Proposition 5. Let p0X0 ∈ Q×Γ such that [p0X0↑] = 1. Then there is a partial function
Υ : Run[M∆](p0X0) → Run[M∆•](〈p0X0↑〉) such that for every w ∈ Run[M∆](p0X0),
where Υ(w) is defined, and every n ∈ N we have the following: if w(n) = qYβ, then
Υ(w)(n) = 〈qY†〉γ, where † is either an element of Q or ↑. Further, for every measurable
set of runs R ⊆ Run[M∆•](〈p0X0↑〉) we have that Υ−1(R) is measurable and P(R) =

P(Υ−1(R)).

As for terminating runs, observe that the “terminating” symbols of the form 〈pXq〉 do
not depend on the “nonterminating” symbols of the form 〈pX↑〉, i.e., if we restrict ∆•
just to terminating symbols, we again obtain a pBPA. A straightforward computation
reveals the following proposition about terminating runs that is crucial for our results
presented in the next section.

Proposition 6. Let pXq ∈ Q × Γ × Q and [pXq] > 0. Then almost all runs of M∆•

initiated in 〈pXq〉 terminate, i.e., reach ε. Further, for all n ∈ N we have that

P(TpX = n | Run(pXq)) = P(T〈pXq〉 = n | Run(〈pXq〉))

Observe that this proposition, together with a very special form of rules in ∆•, implies
that all configurations reachable from a nonterminating configuration p0X0 have the
form α〈qY↑〉, where α terminates almost surely and 〈qY↑〉 never terminates. It follows
that such a pBPA can be transformed into a finite-state Markov chain (whose states
are the nonterminating symbols) which is allowed to make recursive calls that almost
surely terminate (using rules of the form 〈pX↑〉 ↪−→ 〈rZq〉〈qY↑〉). This observation is
very useful when investigating the properties of nonterminating runs, and many of the
existing results about pPDA can be substantially simplified using this result.

3.2 Analysis of pBPA

In this section we establish the promised tight tail bounds for termination probability. By
virtue of Proposition 6, it suffices to analyze pBPA where each stack symbol terminates
with probability 1. In what follows we assume that ∆ is such a pBPA, and we also fix an
initial stack symbol X0. For X,Y ∈ Γ, we say that X depends directly on Y , if there is
a rule X ↪→α such that Y occurs in α. Further, we say that X depends on Y , if either X
depends directly on Y , or X depends directly on a symbol Z ∈ Γ which depends on Y .
One can compute, in linear time, the directed acyclic graph (DAG) of strongly connected
components (SCCs) of the dependence relation. The height of this DAG, denoted by
h, is defined as the longest distance between a top SCC and a bottom SCC plus 1 (i.e.,
h = 1 if there is only one SCC). We can safely assume that all symbols on which X0 does
not depend were removed from ∆. We abbreviate P(TX0 ≥ n | Run(X0)) to P(TX0≥n),
and we use pmin to denote min{p | X p

↪→α in ∆}. Here is our main result:

Theorem 7. Let ∆ be a pBPA with stack alphabet Γ where every stack symbol terminates
with probability one. Assume that X0 ∈ Γ depends on all X ∈ Γ \ {X0}, and let pmin =

min{p | X p
↪→α in ∆}. Then one of the following is true:

(1) P(TX0≥2|Γ|) = 0.
(2) E

[
TX0

]
is finite and for all n ∈ N with n ≥ 2E

[
TX0

]
we have that

pn
min ≤ P(TX0≥n) ≤ exp

(
1 − n

8E2
max

)
where Emax = maxX∈Γ E [TX].



(3) E
[
TX0

]
is infinite and there is n0 ∈ N such that for all n ≥ n0 we have that

c/n ≤ P(TX0≥n) ≤ d1/nd2

where d1 = 18h|Γ|/p3|Γ|
min , and d2 = 1/(2h+1 − 2). Here, h is the height of the DAG of

SCCs of the dependence relation, and c is a suitable positive constant depending
on ∆.

More colloquially, Theorem 7 states that ∆ satisfies either (1) or (2) or (3), where (1) is
when ∆ does not have any long terminating runs; and (2) resp. (3) is when the expected
termination time is finite (resp. infinite) and the probability of performing a terminating
run of length n decreases exponentially (resp. polynomially) in n.

One can effectively distinguish between the three cases set out in Theorem 7. More
precisely, case (1) can be recognized in polynomial time by looking only at the structure
of the pBPA, i.e., disregarding the probabilities. Determining whether E

[
TX0

]
is finite

or infinite can be done in polynomial space by employing the decision procedure for
E

[
TX0

]
and the results of [14, 2]. This holds even if the transition probabilities of ∆ are

represented just symbolically by formulae of ExTh(R) (see Proposition 3).
The proof of Theorem 7 is based on designing suitable martingales that are used to

analyze the concentration of the termination probability. Recall that a martingale is an
infinite sequence of random variables m(0),m(1), . . . such that, for all i ∈ N, E [|m(i)|] < ∞,
and E [m(i+1) | m(1), . . . ,m(i)] = m(i) almost surely. If |m(i) −m(i−1)| < ci for all i ∈ N, then
we have the following Azuma’s inequality (see, e.g., [27]):

P(m(n) − m(0) ≥ t) ≤ exp
 −t2

2
∑n

k=1 c2
k


Due to space restrictions we can only sketch the proof of Theorem 7 (see [8] for details).
Proof sketch for the upper bound of Theorem 7(2). Observe that if E

[
TX0

]
is fi-

nite, then E [TY ] is finite for every Y ∈ Γ (here we use the assumption that X0 de-
pends on Y). Further, for every configuration βγ reachable from X0 we have that
E

[
Tβγ

]
= E

[
Tβ

]
+ E

[
Tγ

]
. Hence, E [Tα] < ∞ for every α ∈ Γ∗. Now observe that,

for every α ∈ Γ∗ such that α , ε, performing one transition from α decreases the
expected termination time by one on average (here we need that E [Tα] < ∞ and α
terminates with probability one). Let w ∈ Run(X0). We denote by I(w) the maximal
number j ≥ 0 such that w( j − 1) , ε. For every i ≥ 0, we put

m(i)(w) = E
[
Tw(i)

]
+ min{i, I(w)}

It is easy to see that E
[
m(i+1) | m(i)

]
= m(i), i.e., m(0),m(1), . . . is a martingale. A full proof

of this claim is given in [8].
Let Emax = maxX∈Γ E [TX], and let n ≥ 2E

[
TX0

]
. By applying Azuma’s inequality

we obtain

P(m(n)−E
[
TX0

]
≥ n−E

[
TX0

]
) ≤ exp

(
−(n − E

[
TX0

]
)2

2
∑n

k=1(2Emax)2

)
≤ exp

(
2E

[
TX0

]
− n

8E2
max

)
.

For every w ∈ Run(X0) we have that w(n) , ε implies m(n) ≥ n. It follows:

P(TX0≥n) ≤ P(m(n) ≥ n) ≤ exp
(

2E
[
TX0

]
− n

8E2
max

)
≤ exp

(
1 −

n
8E2

max

)
.



Proof sketch for the upper bound of Theorem 7(3). Assume that E
[
TX0

]
is infinite.

To give some idea of the (quite involved) proof, let us first consider a simple pBPA ∆
with Γ = {X} and the rules X 1/2

↪→ XX and X 1/2
↪→ ε. In fact, ∆ is closely related to a simple

random walk starting at 1, for which the time until it hits 0 can be exactly analyzed
(see, e.g., [27]). Clearly, we have h = |Γ| = 1 and pmin = 1/2. Theorem 7(3) implies
P(TX≥n) ∈ O(1/

√
n). Let us sketch why this upper bound holds.

Let θ > 0, define g(θ) := 1
2 · exp(−θ · (−1)) + 1

2 · exp(−θ · (+1)), and define for a run
w ∈ Run(X) the sequence

m(i)
θ (w) =

exp(−θ · |w(i)|)/g(θ)i if i = 0 or w(i − 1) , ε
m(i−1)
θ (w) otherwise.

One can show (cf. [27]) that m(0)
θ ,m

(1)
θ , . . . is a martingale, i.e., E

[
m(i)
θ | m

(i−1)
θ

]
= m(i−1)

θ

for all θ > 0. Our proof crucially depends on some analytic properties of the function
g : R→ R: It is easy to verify that 1 = g(0) < g(θ) for all θ > 0, and 0 = g′(0), and 1 =
g′′(0). One can show that Doob’s Optional-Stopping Theorem (see Theorem 10.10 (ii)
of [27]) applies, which implies m(0)

θ = E
[
m(TX )
θ

]
. It follows that for all n ∈ N and θ > 0

we have that

exp(−θ) = m(0)
θ = E

[
m(TX )
θ

]
= E

[
g(θ)−TX

]
=

∞∑
i=0

P(TX = i) · g(θ)−i

≤

n−1∑
i=0

P(TX = i) · 1 +

∞∑
i=n

P(TX = i) · g(θ)−n = 1 − P(TX ≥ n) + P(TX ≥ n) · g(θ)−n

Rearranging this inequality yields P(TX ≥ n) ≤ 1−exp(−θ)
1−g(θ)−n , from which one obtains,

setting θ := 1/
√

n, and using the mentioned properties of g and several applications of
l’Hopital’s rule, that P(TX ≥ n) ∈ O(1/

√
n).

Next we sketch how we generalize this proof to pBPA that consist of only one
SCC, but have more than one stack symbol. In this case, the term |w(i)| in the definition
of m(i)

θ (w) needs to be replaced by the sum of weights of the symbols in w(i). Each Y ∈ Γ
has a weight which is drawn from the dominant eigenvector of a certain matrix, which
is characteristic for ∆. Perron-Frobenius theory guarantees the existence of a suitable
weight vector u ∈ RΓ+. The function g consequently needs to be replaced by a function
gY for each Y ∈ Γ. We need to keep the property that g′′Y (0) > 0. Intuitively, this means
that ∆ must have, for each Y ∈ Γ, a rule Y ↪→α such that Y and α have different weights.
This can be accomplished by transforming ∆ into a certain normal form.

Finally, we sketch how the proof is generalized to pBPA with more than one SCC.
For simplicity, assume that ∆ has only two stack symbols, say X and Y , where X depends
on Y , but Y does not depend on X. Let us change the execution order of pBPA as follows:
whenever a rule with α ∈ Γ∗ on the right hand side fires, then all X-symbols in α are
added on top of the stack, but all Y-symbols are added at the bottom of the stack. This
change does not influence the termination time of pBPA, but it allows to decompose runs
into two phases: an X-phase where X-rules are executed which may produce Y-symbols
or further X-symbols; and a Y-phase where Y-rules are executed which may produce
further Y-symbols but no X-symbols, because Y does not depend on X. Arguing only



qualitatively, assume that TX is “large”. Then either (a) the X-phase is “long” or (b) the
X-phase is “short”, but the Y-phase is “long”. For the probability of event (a) one can
give an upper bound using the bound for one SCC, because the produced Y-symbols
can be ignored. For event (b), observe that if the X-phase is short, then only few Y-
symbols can be created during the X-phase. For a bound on the probability of event (b)
we need a bound on the probability that a pBPA with one SCC and a “short” initial
configuration takes a “long” time to terminate. The previously sketched proof for an
initial configuration with a single stack symbol can be suitably generalized to handle
other “short” configurations. The details can be found in [8].

Finally, the following proposition shows that the upper bound in Theorem 7 (3)
cannot be substantially tightened.

Proposition 8. Let ∆h be the pBPA with Γh = {X1, . . . , Xh} and the following rules:

Xh ↪
1/2
−−→ XhXh , Xh ↪

1/2
−−→ Xh−1 , . . . , X2 ↪

1/2
−−→ X2X2 , X2 ↪

1/2
−−→ X1 , X1 ↪

1/2
−−→ X1X1 , X1 ↪

1/2
−−→ ε

Then [Xh] = 1, E
[
TXh

]
= ∞, and there is ch > 0 with P(TXh≥n) ≥ ch ·n−1/2h

for all n ≥ 1.

4 Conclusions and Future work

We have provided a reduction from stateful to stateless pPDA which gives new insights
into the theory of pPDA and at the same time simplifies it substantially. We have used this
reduction and martingale theory to exhibit a dichotomy result that precisely characterizes
the distribution of the termination time in terms of its expected value.

Although the bounds presented in this paper are asymptotically optimal, there is still
space for improvements. We conjecture that the lower bound of Theorem 7 (3) can be
strengthened to Ω(1/

√
n). We also conjecture that our results can be extended to more

general reward-based models, where each configuration is assigned a nonnegative reward
and the total reward accumulated in a given service is considered instead of its length.
This is particularly challenging if the rewards are unbounded (for example, the reward
assigned to a given configuration may correspond to the total memory allocated by the
procedures in the current call stack). Full answers to these questions would generalize
some of the existing deep results about simpler models, and probably reveal an even
richer underlying theory of pPDA which is still undiscovered.
Acknowledgment. The authors thank Javier Esparza for useful suggestions.

References

1. D. Bini, G. Latouche, and B. Meini. Numerical methods for Structured Markov Chains.
Oxford University Press, 2005.

2. T. Brázdil. Verification of Probabilistic Recursive Sequential Programs. PhD thesis, Masaryk
University, Faculty of Informatics, 2007.

3. T. Brázdil, V. Brožek, J. Holeček, and A. Kučera. Discounted properties of probabilistic
pushdown automata. In Proceedings of LPAR 2008, volume 5330 of Lecture Notes in
Computer Science, pages 230–242. Springer, 2008.

4. T. Brázdil, V. Brožek, and K. Etessami. One-counter stochastic games. In Proceedings
of FST&TCS 2010, volume 8 of Leibniz International Proceedings in Informatics, pages
108–119. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.



5. T. Brázdil, V. Brožek, K. Etessami, A. Kučera, and D. Wojtczak. One-counter Markov
decision processes. In Proceedings of SODA 2010, pages 863–874. SIAM, 2010.

6. T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the long-run behavior
of probabilistic sequential programs with recursion. In Proceedings of FOCS 2005, pages
521–530. IEEE Computer Society Press, 2005.

7. T. Brázdil, S. Kiefer, and A. Kučera. Efficient analysis of probabilistic programs with an
unbounded counter. CoRR, abs/1102.2529, 2011.

8. T. Brázdil, S. Kiefer, A. Kučera, and I. Hutařová Vařeková. Runtime analysis of probabilistic
programs with unbounded recursion. CoRR, abs/1007.1710, 2010.

9. J. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of
STOC’88, pages 460–467. ACM Press, 1988.

10. D.P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

11. J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s method for
monotone polynomial equations. In STACS 2008, pages 289–300, 2008.

12. J. Esparza, S. Kiefer, and M. Luttenberger. Computing the least fixed point of positive
polynomial systems. SIAM Journal on Computing, 39(6):2282–2335, 2010.

13. J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown automata. In
Proceedings of LICS 2004, pages 12–21. IEEE Computer Society Press, 2004.

14. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic pushdown automata:
Expectations and variances. In Proceedings of LICS 2005, pages 117–126. IEEE Computer
Society Press, 2005.

15. K. Etessami, D. Wojtczak, and M. Yannakakis. Quasi-birth-death processes, tree-like QBDs,
probabilistic 1-counter automata, and pushdown systems. In Proceedings of 5th Int. Conf. on
Quantitative Evaluation of Systems (QEST’08). IEEE Computer Society Press, 2008.

16. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic systems.
In Proceedings of TACAS 2005, volume 3440 of Lecture Notes in Computer Science, pages
253–270. Springer, 2005.

17. K. Etessami and M. Yannakakis. Checking LTL properties of recursive Markov chains.
In Proceedings of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST’05), pages
155–165. IEEE Computer Society Press, 2005.

18. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations. Journal of the Association for Computing Machinery,
56, 2009.

19. T.E. Harris. The Theory of Branching Processes. Springer, 1963.
20. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, 1979.
21. S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for

monotone systems of polynomial equations. In STOC 2007, pages 217–226, 2007.
22. G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic

Modeling. ASA-SIAM series on statistics and applied probability, 1999.
23. C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. The

MIT Press, 1999.
24. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 2006.
25. A.G. Pakes. Some limit theorems for the total progeny of a branching process. Advances in

Applied Probability, 3(1):176–192, 1971.
26. M. P. Quine and W. Szczotka. Generalisations of the Bienayme-Galton-Watson branching

process via its representation as an embedded random walk. The Annals of Applied Probability,
4(4):1206–1222, 1994.

27. D. Williams. Probability with Martingales. Cambridge University Press, 1991.


