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Abstract. We consider two-player turn-based games with zero-reachability and
zero-safety objectives generated by extended vector addition systems with states.
Although the problem of deciding the winner in such games in undecidable in
general, we identify several decidable and even tractable subcases of this problem
obtained by restricting the number of counters and/or the sets of target configura-
tions.

1 Introduction

Vector addition systems with states (VASS) are an abstract computational model equiv-
alent to Petri nets (see, e.g., [27, 29]) which is well suited for modelling and analysis of
distributed concurrent systems. Roughly speaking, a k-dimensional VASS, where k ≥ 1,
is a finite-state automaton with k unbounded counters which can store non-negative in-
tegers. Depending on its current control state, a VASS can choose and perform one of
the available transitions. A given transition changes the control state and updates the
vector of current counter values by adding a fixed vector of integers which labels the
transition. For simplicity, we assume that transition labels can increase/decrease each
counter by at most one. Since the counters cannot become negative, transitions which
attempt to decrease a zero counter are disabled. Configurations of a given VASS are
written as pairs pv, where p is a control state and v ∈ Nk a vector of counter values.
In this paper, we consider extended VASS games which enrich the modelling power of
VASS in two orthogonal ways.

(1) Transition labels can contain symbolic components (denoted by ω) whose intuitive
meaning is “add an arbitrarily large non-negative integer to a given counter”. For
example, a single transition p −→ q labeled by (1, ω) represents an infinite number
of “ordinary” transitions labeled by (1, 0), (1, 1), (1, 2), . . . A natural source of
motivation for introducing symbolic labels are systems with multiple resources that
can be consumed and produced simultaneously by performing a transition. The
ω components can then be conveniently used to model an unbounded “reloading”
of resources.
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(2) To model the interaction between a system and its environment, the set of control
states is split into two disjoint subsets of controllable and environmental states,
which induces the corresponding partition of configurations. Transitions from the
controllable and environmental configurations then correspond to the events gener-
ated by the system and its environment, respectively.

Hence, the semantics of a given extended VASS game M is a possibly infinitely-
branching turn-based game GM with infinitely many vertices that correspond to the
configurations of M. The game GM is initiated by putting a token on some configu-
ration pv. The token is then moved from vertex to vertex by two players, � and ^,
who select transitions in the controllable and environmental configurations according
to some strategies. Thus, they produce an infinite sequence of configurations called a
play. Desired properties of M can be formalized as objectives, i.e., admissible plays.
The central problem is the question whether player � (the system) has a winning strat-
egy which ensures that the objective is satisfied for every strategy of player ^ (the
environment). We refer to, e.g., [32, 13, 35] for more comprehensive expositions of re-
sults related to games in formal verification. In this paper, we are mainly interested in
zero-safety objectives consisting of plays where no counter is decreased to zero, i.e.,
a given system never reaches a situation when some of its resources are insufficient.
Player � always aims at satisfying a given zero-safety objective, while player ^ aims at
satisfying the dual zero-reachability objective.

As a simple example, consider a workshop which “consumes” wooden sticks,
screws, wires, etc., and produces puppets of various kinds which are then sold at the
door. From time to time, the manager may decide to issue an order for screws or other
supplies, and thus increase their number by a finite but essentially unbounded amount
Controllable states can be used to model the actions taken by workshop employees,
and environmental states model the behaviour of unpredictable customers. We wonder
whether the workshop manager has a strategy which ensures that at least one puppet of
each kind is always available for sell, regardless of what the unpredictable customers
do. Note that a winning strategy for the manager must also resolve the symbolic ω
value used to model the order of screws by specifying a concrete number of screws that
should be ordered.

Technically, we consider extended VASS games with non-selective and selec-
tive zero-reachability objectives, where the set of target configurations that should be
reached by player ^ and avoided by player � is either Z and ZC , respectively. Here, the
set Z consists of all pv such that v` = 0 for some ` (i.e., some counter is zero); and the
set ZC , where C is a subset of control states, consists of all pv ∈ Z such that p ∈ C.
Our main results can be summarized as follows:
(a) The problem of deciding the winner in k-dimensional extended VASS games

(where k ≥ 2) with Z-reachability objectives is in (k-1)-EXPTIME.
(b) A finite description of the winning region for each player (i.e., the set of all vertices

where the player wins) is computable in (k−1)-exponential time.
(c) Winning strategies for both players are finitely and effectively representable.

We note that the classical result by Lipton [24] easily implies EXPSPACE-hardness
(even in the case when player ^ has no influence). These (decidability) results are com-
plemented by noting the following straightforward undecidability:



(d) The problem of deciding the winner in 2-dimensional VASS games with “ordinary”
(non-symbolic) transitions and ZC-reachability objectives is undecidable. The same
problem for 3-dimensional extended VASS games is highly undecidable (beyond
the arithmetical hierarchy).

Further, we consider the special case of one-dimensional extended VASS games, where
we provide the following (tight) complexity results:

(e) The problem of deciding the winner in one-dimensional extended VASS games
with Z-reachability objectives is in P. Both players have “counterless” winning
strategies constructible in polynomial time.

(f) The problem of deciding the winner in one-dimensional extended VASS games
with ZC-reachability objectives is PSPACE-complete. A finite description of the
winning regions is computable in exponential time.

To the best of our knowledge, these are the first positive decidability/tractability re-
sults about a natural class of infinitely branching turn-based games, and some of the
underlying observations are perhaps of broader interest (in particular, we obtain slight
generalizations of the “classical” results about self-covering paths achieved by Rackoff

[28] and elaborated by Rosier&Yen [30]).
To build some intuition behind the technical proofs of (a)–(f), we give a brief outline

of these proofs and sketch some of the crucial insights. The details are available in [4].
A proof outline for (a)–(c). Observe that if the set of environmental states that are
controlled by player ^ is empty, then the existence of a winning strategy for player �
in pv is equivalent to the existence of a self-covering zero-avoiding path of the form
pv −→∗ qu −→+ qu′, where u ≤ u′ and the counters stay positive along the path. The
existence and the size of such paths has been studied in [28, 30] (actually, these works
mainly consider the existence of an increasing self-covering path where u′ is strictly
larger than u in at least one component, and the counters can be decreased to zero
in the intermediate configurations). One can easily generalize this observation to the
case when the set of environmental states is non-empty and show that the existence of a
winning strategy for player � in pv is equivalent to the existence of a self-covering zero-
avoiding tree initiated in pv, which is a finite tree, rooted in pv, describing a strategy
for player � where each maximal path is self-covering and zero-avoiding.

We show that the existence of a self-covering zero-avoiding tree initiated in a given
configuration of a given extended VASS is decidable, and we give some complexity
bounds. Let us note that this result is more subtle than it might seem; one can easily
show that the existence of a self-covering (but not necessarily zero-avoiding) tree for
a given configuration is already undecidable. Our algorithm constructs all minimal pv
(w.r.t. component-wise ordering) where player � has a winning strategy. Since this set
is necessarily finite, and the winning region of player � is obviously upwards-closed,
we obtain a finite description of the winning region for player �. The algorithm can be
viewed as a concrete (but not obvious) instance of a general approach, which is dealt
with, e.g., in [33, 10, 11]. First, we compute all control states p such that player � can
win in some configuration pv. Here, a crucial step is to observe that if this is not the
case, i.e., player^ can win in every pv, then player^ has a counterless winning strategy
which depends only on the current control state (since there are only finitely many



counterless strategies, they can be tried out one by one). This computation also gives an
initial bound B such that for every control state p we have that if player � wins in some
pv, then he wins in all pv′ where v′` ≥ B for all indexes (counters) ` ∈ {1, 2, . . . , k}. Then
the algorithm proceeds inductively, explores the situations where at least one counter is
less than B, computes (bigger) general bounds for the other k−1 counters, etc.

A finite description of a strategy for player � which is winning in every configura-
tion of his winning region is obtained by specifying the moves in all minimal winning
configurations (observe that in a non-minimal winning configuration p(v+u) such that
pv is minimal, player � can safely make a move p(v+u) −→ q(v′+u) where pv −→ qv′ is
the move associated to pv). Note that this also resolves the issue with ω components in
transitions performed by player �. Since the number of minimal winning configurations
is finite, there is a finite and effectively computable constant c such that player � never
needs to increase a counter by more than c when performing a transition whose label
contains a symbolic component (and we can even give a simple “recipe” which gives
an optimal choice for the ω values for every configuration separately).

The winning region of player ^ is just the complement of the winning region of
player �. Computing a finite description of a winning strategy for player ^ is somewhat
trickier and relies on some observations made in the “inductive step” discussed above
(note that for player ^ it is not sufficient to stay in his winning region; he also needs to
make some progress in approaching zero in some counter).

A proof outline for (d). The undecidability result for 2-dimensional VASS games is
obtained by a straightforward reduction from the halting problem for Minsky machines
with two counters initialized to zero, which is undecidable [26] (let us note that this
construction is essentially the same as the one for monotonic games presented in [1]).
After some minor modifications, the same construction can be also used to establish
the undecidability of other natural problems for VASS and extended VASS games, such
as boundedness or coverability. The high undecidability result for 3-dimensional ex-
tended VASS games is proven by reducing the problem whether a given nondetermin-
istic Minsky machine with two counters initialized to zero has an infinite computation
such that the initial instruction is executed infinitely often (this problem is known to be
Σ1

1 -complete [15]). This reduction is also straightforward, but at least it demonstrates
that symbolic transitions do bring some extra power (note that for “ordinary” VASS
games, a winning strategy for player ^ in a given pv can be written as a finite tree, and
hence the existence of such a strategy is semidecidable).

A proof outline for (e)–(f). The case of one-dimensional extended VASS games with
zero-reachability objectives is, of course, simpler than the general case, but our re-
sults still require some effort. In the case of Z-reachability objectives, we show that the
winning region of player ^ can be computed as the least fixed point of a monotonic
function over a finite lattice. Although the lattice has exponentially many elements, we
show that the function reaches the least fixed point only after a quadratic number of
iterations. The existence and efficient constructibility of counterless winning strategies
is immediate for player �, and we show that the same is achievable for player ^. The
results about ZC-reachability objectives are obtained by applying known results about
the emptiness problem for alternating finite automata with one letter alphabet [16] (see



also [21]) and the emptiness problem for alternating two-way parity word automata
[31], together with some additional observations.

Related work. As already mentioned, some of our results and proof techniques use and
generalize the ones from [28, 30]. VASS games can be also seen as a special case of
monotonic games considered in [1], where it is shown that the problem of deciding the
winner in monotonic games with reachability objectives is undecidable (see the proof
outline for (d) above). Let us note that the results presented in [1] mainly concern the
so-called downward-closed games, which is a model different from ours. Let us also
mention that (extended) VASS games are different from another recently studied model
of branching vector addition systems [34, 6] which has different semantics and differ-
ent algorithmic properties (for example, the coverability and boundedness problems for
branching vector addition systems are complete for 2-EXPTIME [6]). Generic proce-
dures applicable to upward-closed sets of states are studied in, e.g., [3, 12, 33, 10, 11].

Note that one-dimensional VASS games are essentially one-counter automata where
the counter cannot be tested for zero explicitly (that is, there are no transitions enabled
only when the counter reaches zero). Such one-counter automata are also called one-
counter nets because they correspond to Petri nets with just one unbounded place. The
models of one-counter automata and one-counter nets have been intensively studied
[18, 20, 22, 2, 7, 9, 19, 31, 14]. Many problems about equivalence-checking and model-
checking one-counter automata are known to be decidable, but only a few of them are
solvable efficiently. From this point of view, we find the polynomial-time result about
one-dimensional extended VASS games with Z-reachability objectives encouraging.

2 Definitions

In this paper, the sets of all integers, positive integers, and non-negative integers are
denoted by Z, N>0, and N, respectively. For every finite or countably infinite set M,
the symbol M∗ denotes the set of all finite words (i.e., finite sequences) over M. The
length of a given word w is denoted by |w|, and the individual letters in w are denoted
by w(0),w(1), . . . . The empty word is denoted by ε, where |ε| = 0. We also use M+ to
denote the set M∗ r {ε}. A path inM = (M,→), for a binary relation→ ⊆ M × M, is
a finite or infinite sequence w = w(0),w(1), . . . such that w(i) → w(i+1) for every i. A
given n ∈ M is reachable from a given m ∈ M, written m →∗ n, if there is a finite path
from m to n. A run is a maximal path (infinite, or finite which cannot be prolonged).
The sets of all finite paths and all runs in M are denoted by FPath(M) and Run(M),
respectively. Similarly, the sets of all finite paths and runs that start in a given m ∈ M
are denoted by FPath(M,m) and Run(M,m), respectively.

Definition 1. A game is a tuple G = (V, 7→, (V�,V^)) where V is a finite or countably
infinite set of vertices, 7→ ⊆ V × V is an edge relation, and (V�,V^) is a partition of V.

A game is played by two players, � and ^, who select the moves in the vertices of
V� and V^, respectively. Let � ∈ {�,^}. A strategy for player � is a (partial) function
which to each wv ∈ V∗V�, where v has at least one outgoing edge, assigns a vertex v′

such that v 7→ v′. The set of all strategies for player � and player ^ is denoted by Σ



and Π , respectively. We say that a strategy τ is memoryless if τ(wv) depends just on
the last vertex v. In the rest of this paper, we consider memoryless strategies as (partial)
functions from V� to V .

A winning objective is a set of runsW ⊆ Run(G). Every pair of strategies (σ, π) ∈
Σ ×Π and every initial vertex v ∈ V determine a unique run G(σ,π)(v) ∈ Run(G, v) which
is called a play. We say that a strategy σ ∈ Σ is W-winning for player � in a given
v ∈ V if for every π ∈ Π we have that G(σ,π)(v) ∈ W. Similarly, a strategy π ∈ Π is
W-winning for player ^ if for every σ ∈ Σ we have that G(σ,π)(v) ∈ W. The set of
all vertices where player � has a W-winning strategy is called the winning region of
player � and denoted by Win(�,W).

In this paper, we only consider reachability and safety objectives, which are spec-
ified by a subset of target vertices that should or should not be reached by a run, re-
spectively. Formally, for a given T ⊆ V we define the sets of runs R(T ) and S(T ),
where R(T ) = {w ∈ Run(G) | w(i) ∈ T for some i}, and S(T ) = Run(G) r R(T ). We
note that the games with reachability and safety objectives are determined [25], i.e.,
Win(�,S(T )) = V rWin(^,R(T )), and each player has a memoryless winning strategy
in every vertex of his winning region.

Definition 2. Let k ∈ N>0. A k-dimensional vector addition system with states (VASS)
is a tupleM = (Q,T, α, β, δ) where Q , ∅ is a finite set of control states, T , ∅ is a
finite set of transitions, α : T→Q and β : T→Q are the source and target mappings,
and δ : T→{−1, 0, 1}k is a transition displacement labeling. For technical convenience,
we assume that for every q ∈ Q there is some t ∈ T such that α(t) = q.

An extended VASS (eVASS for short) is a VASS where the transition displacement
labeling is a function δ : T→{−1, 0, 1, ω}k.

A VASS game (or eVASS game) is a tuple M = (Q, (Q�,Q^),T, α, β, δ) where
(Q,T, α, β, δ) is a VASS (or eVASS) and (Q�,Q^) is a partition of Q.

A configuration ofM is an element of Q × Nk. We write pv instead of (p, v), and the
`-th component of v is denoted by v`. For a given transition t ∈ T , we write t : p −→ q
to indicate that α(t) = p and β(t) = q, and p v

−→ q to indicate that p −→ q and δ(t) = v.
A transition t ∈ T is enabled in a configuration pv if α(t) = p and for every 1 ≤ ` ≤ k
such that δ(t)` = −1 we have v` ≥ 1.

Every k-dimensional eVASS game M = (Q, (Q�,Q^),T, α, β, δ) induces a unique
infinite-state game GM where Q×Nk is the set of vertices partitioned into Q� × Nk and
Q^ × Nk, and pv 7→ qu iff the following condition holds: There is a transition t ∈ T
enabled in pv such that β(t) = q and for every 1 ≤ ` ≤ k we have that u` − v` is either
non-negative or equal to δ(t)`, depending on whether δ(t)` = ω or not, respectively.
Note that any play can get stuck only when a counter is zero, because there is at least
one enabled transition otherwise.

In this paper, we are interested in VASS and eVASS games with non-selective and
selective zero-reachability objectives. Formally, for every C ⊆ Q we define the set
ZC = {pv ∈ Q × Nk | p ∈ C and vi = 0 for some 0 ≤ i ≤ k} and we also put Z = ZQ. Se-
lective (or non-selective) zero-reachability objectives are reachability objectives where
the set T of target configurations is equal to ZC for some C ⊆ Q (or to Z, respectively).

As we have already noted, our games with reachability objectives are memoryless
determined and this result of course applies also to eVASS games with zero-reachability



objectives. However, since eVASS games have infinitely many vertices, not all memo-
ryless strategies are finitely representable. In this paper we will often deal with a simple
form of memoryless strategies, where the decision is independent of the current counter
values; such strategies are called counterless strategies.

Definition 3. Given an eVASS M = (Q, (Q�,Q^),T, α, β, δ), a strategy τ of player
� ∈ {�,^} is counterless if it determines a (fixed) transition tp for each p ∈ Q�, together
with (fixed) values cp,` ∈ N for all those ` for which δ(tp)` = ω, so that τ(pv) is the
configuration obtained by performing tp in pv where ω’s are instantiated with cp,`.

3 VASS and eVASS games with zero-reachability objectives

In this section, we analyze VASS and eVASS games with zero-reachability objectives
(full proofs can be found in [4]). We first note that the problems of our interest are
undecidable for R(ZC) objectives; this can be shown by standard techniques.

Proposition 4. The problem of deciding the winner in 2-dimensional VASS games with
R(ZC) objectives is undecidable. For 3-dimensional eVASS games, the same problem is
highly undecidable (i.e., beyond the arithmetical hierarchy).

Let us note that Proposition 4 does not hold for one-dimensional eVASS games, which
are analyzed later in this section. Further, by some trivial modifications of the proof of
Proposition 4 we also get the undecidability of the boundedness/coverability problems
for 2-dimensional VASS games.

Now we turn our attention to R(Z) objectives. For the rest of this section, we fix
a k-dimensional eVASS game M = (Q, (Q�,Q^),T, α, β, δ). Since we are interested
only in R(Z) objectives, we may safely assume that every transition p v

−→ q ofM where
p ∈ Q^ satisfies v` , ω for every 1 ≤ ` ≤ k (if there are some ω-components in v, they
can be safely replaced with 0). We also use d to denote the branching degree ofM, i.e,
the least number such that every q ∈ Q has at most d outgoing transitions.

Let ≤ be the partial order on the set of configurations ofM defined by pu ≤ qv iff
p = q and u ≤ v (componentwise). For short, we write Win^ instead of Win(^,R(Z))
and Win� instead of Win(�,S(Z)). Obviously, if player ^ has a winning strategy in qv,
then he can use “essentially the same” strategy in qu for every u ≤ v (behaving in q′v′
as previously in q′(v′+v−u), which results in reaching 0 in some counter possibly even
earlier). Similarly, if qv ∈ Win� then qu ∈ Win� for every u ≥ v. Hence, the sets Win^
and Win� are downwards closed and upwards closed w.r.t. ≤, respectively. This means
that the set Win� is finitely representable by its subset Min� of minimal elements (note
that Min� is necessarily finite because there is no infinite subset of Nk with pairwise
incomparable elements, as Dickson’s Lemma shows). Technically, it is convenient to
consider also symbolic configurations ofM which are introduced in the next definition.

Definition 5. A symbolic configuration is a pair qv where q ∈ Q and v ∈ (N∪{ω})k. We
say that a given index ` ∈ {1, 2, . . . , k} is precise in qv if v` ∈ N, otherwise it is symbolic
in qv. The precision of qv, denoted by P(qv), is the number of indexes that are precise
in qv. We say that a configuration pu matches a symbolic configuration qv if p = q and
u` = v` for every ` precise in qv. Similarly, we say that pu matches qv above a given
bound B ∈ N if pu matches qv and u` ≥ B for every ` symbolic in qv.



We extend the set Win� by all symbolic configurations qv such that some configura-
tion matching qv belongs to Win�. Similarly, the set Win^ is extended by all symbolic
configurations qv such that all configurations matching qv belong to Win^ (note that
every symbolic configuration belongs either to Win� or to Win^). We also extend the
previously fixed ordering on configurations to symbolic configurations by stipulating
that ω ≤ ω and n < ω for all n ∈ N. Obviously, this extension does not influence the set
Min�, and the winning region Win^ can be now represented by its subset Max^ of all
maximal elements, which is necessarily finite.

Our ultimate goal is to compute the sets Min� and Max^. Since our reachability
games are determined, it actually suffices to compute just one of these sets. In the fol-
lowing we show how to compute Min�.

We start with an important observation about winning strategies for player �, which
in fact extends the “classical” observation about self-covering paths in vector addi-
tion systems presented in [28]. Let q ∈ Q be such that qv ∈ Win� for some v, i.e.,
q(ω, . . . , ω) ∈ Win�. This means that there is a strategy of player � that prevents un-
bounded decreasing of the counters; we find useful to represent the strategy by a finite
unrestricted self-covering tree for q. The word “unrestricted” reflects the fact that we
also consider configurations with negative and symbolic counter values. More precisely,
an unrestricted self-covering tree for q is a finite tree T whose nodes are labeled by the
elements of Q × (Z ∪ {ω})k satisfying the following (ω is treated in the standard way,
i.e., ω + ω = ω + c = ω for every c ∈ Z):

– The root of T is labeled by q(0, . . . , 0).
– If n is a non-leaf node of T labeled by pu, then
• if p ∈ Q�, then n has only one successor labeled by some r t such thatM has a

transition p v
−→ r where t = u + v;

• if p ∈ Q^, then there is a one-to-one correspondence between the successors
of n and transitions ofM of the form p v

−→ r. The node which corresponds to a
transition p v

−→ r is labeled by r t where t = u + v.
– If n is a leaf of T labeled by pu, then there is another node m (where m , n) on the

path from the root of T to n which is labeled by pt for some t ≤ u.

The next lemma bounds the depth of such a tree.

Lemma 6. Let q(ω, . . . , ω) ∈ Win� (i.e., qv ∈ Win� for some v). Then there is an
unrestricted self-covering tree for q of depth at most f (|Q|, d, k) = 2(d−1)·|Q| · |Q|c·k

2
,

where c is a fixed constant independent ofM, and d is the branching degree ofM.

Lemma 6 thus implies that if q(ω, . . . , ω) ∈ Win�, then qu ∈ Win� for all u with u` ≥
f (|Q|, d, k) for all ` ∈ {1, 2, . . . , k} (recall that each counter can be decreased at most
by one in a single transition). The next lemma shows that we can compute the set of
all q ∈ Q such that q(ω, . . . , ω) ∈ Win� (the lemma is formulated “dually”, i.e., for
player ^).

Lemma 7. The set of all q ∈ Q such that q(ω, . . . , ω) ∈ Win^ is computable in space
bounded by g(|Q|, d, k), where g is a polynomial in three variables.



An important observation, which is crucial in our proof of Lemma 7 and perhaps inter-
esting on its own, is that if q(ω, . . . , ω) ∈ Win^, then player ^ has a counterless strategy
which is winning in every configuration matching q(ω, . . . , ω).

To sum up, we can compute the set of all q(ω, . . . , ω) ∈ Win� and a bound B
which is “safe” for all q(ω, . . . , ω) ∈ Win� in the sense that all configurations match-
ing q(ω, . . . , ω) above B belong to Win�. Intuitively, the next step is to find out what
happens if one of the counters, say the first one, stays bounded by B. Obviously, there
is the least j ≤ B such that q( j, ω, . . . , ω) ∈ Win�, and there is a bound D > B such
that all configurations matching q( j, ω, . . . , ω) above D belong to Win�. If we manage
to compute the minimal j (also for the other counters, not just for the first one) and the
bound D, we can go on and try to bound two counters simultaneously by D, find the
corresponding minima, and construct a new “safe” bound. In this way, we eventually
bound all counters and compute the set Min�. In our next definition, we introduce some
notions that are needed to formulate the above intuition precisely. (Recall that P(qv)
gives the number of precise, i.e. non-ω, elements of v.)

Definition 8. For a given 0 ≤ j ≤ k, let SymMin j
� be the set of all minimal qv ∈ Win�

such that P(qv) = j. Further, let SymMin� =
⋃k

i=0 SymMini
�. We say that a given B ∈ N

is safe for precision j, where 0 ≤ j ≤ k, if for every qv ∈
⋃ j

i=0 SymMini
� we have that

v` ≤ B for every precise index ` in v, and every configuration matching qv above B
belongs to Win�.

Obviously, every SymMin j
� (and hence also SymMin�) is finite, and Min� = SymMink

�.
Also observe that SymMin0

� is computable in time exponential in |Q| and k by Lemma 7,
and a bound which is safe for precision 0 is computable in polynomial time by
Lemma 6. Now we design an algorithm which computes SymMin j+1

� and a bound safe
for precision j+1, assuming that SymMini

� for all i ≤ j and a bound safe for precision j
have already been computed.

Lemma 9. Let 0 ≤ j < k, and let us assume that
⋃ j

i=0 SymMini
� has already been

computed, together with some bound B ∈ N which is safe for precision j. Then
SymMin j+1

� is computable in time exponential in |Q| ·B j+1, d, and k− j−1, and the bound
B + f (|Q| · B j+1, d, k− j−1) is safe for precision j + 1 (here f is the function of Lemma 6
and d is the branching degree ofM).

Now we can easily evaluate the total complexity of computing SymMin� (and hence also
Min�). If we just examine the recurrence of Lemma 9, we obtain that the set SymMin�
is computable in k-exponential time. However, we can actually decrease the height of
the tower of exponentials by one when we incorporate the results presented later in
this section, which imply that for one-dimensional eVASS games, the depth of an unre-
stricted self-covering tree can be bounded by a polynomial in |Q| and d, and the set of all
q ∈ Q where q(ω) ∈ Win^ is computable in polynomial time. Hence, we actually need
to “nest” Lemma 9 only k−1 times. Thus, we obtain the following (where 0-exponential
time denotes polynomial time):

Theorem 10. For a given k-dimensional eVASS, the set Min� is computable in
(k−1)-exponential time.



Let us note a substantial improvement in complexity would be achieved by improving
the bound presented in Lemma 6. Actually, it is not so important what is the depth of an
unrestricted self-covering tree, but what are the minimal numbers that allow for apply-
ing the strategy described by this tree without reaching zero (i.e., what is the maximal
decrease of a counter in the tree). A more detailed complexity analysis based on the
introduced parameters reveals that if the maximal counter decrease was just polyno-
mial in the number of control states (which is our conjecture), the complexity bound of
Theorem 10 would be polynomial for every fixed dimension k (see also Section 4).

Note that after computing the set Min�, we can easily compute a finite description
of a strategy σ for player � which is winning in every configuration of Win�. For every
pv ∈ Min� such that p ∈ Q�, we put σ(pv) = qv′, where qv′ is (some) configuration
such that qv′ ≥ qt for some qt ∈ Min�. Note that there must be at least one such qv′
and it can be computed effectively. For every configuration pu such that pu ≥ pv for
some pv ∈ Min�, we put σ(pu) = q(v′+u−v) where σ(pv) = qv′ (if there are more
candidates for pv, any of them can be chosen). It is easy to see that σ is winning in
every configuration of Win�. Also observe that if we aim at constructing a winning
strategy for player � which minimizes the concrete numbers used to substitute ω’s, we
can use Min� to construct an “optimal” choice of the values which are sufficient (and
necessary) to stay in the winning region of player �.

Now we present the promised results about the special case of one-dimensional
VASS and eVASS games with zero-reachability objectives. Let us fix a one-dimensional
eVASS gameM = (Q, (Q�,Q^),T, α, β, δ) and C ⊆ Q. For every i ∈ N, let Win^(C, i) =

{p ∈ Q | p(i) ∈ Win(^,R(ZC))}. It is easy to see that if Win^(C, i) = Win^(C, j) for
some i, j ∈ N, then also Win^(C, i+1) = Win^(C, j+1). Let mC be the least i ∈ N such
that Win^(C, i) = Win^(C, j) for some j > i, and let nC be the least i > 0 such that
Win^(C,mC) = Win^(C,mC+i). Obviously, mc + nc ≤ 2|Q| and for every i ≥ mc we have
that Win^(C, i) = Win^(C,mC + ((i − mC) mod nC)). Hence, the winning regions of
both players are fully characterized by all Win^(C, i), where 0 ≤ i < mC + nC .

The selective subcase is analyzed in the next theorem. The PSPACE lower bound
is obtained by reducing the emptiness problem for alternating finite automata with one
letter alphabet, which is known to be PSPACE complete [16] (see also [21] for a sim-
pler proof). The PSPACE upper bound follows by employing the result of [31] which
says that the emptiness problem for alternating two-way parity word automata (2PWA)
is in PSPACE (we would like to thank Olivier Serre for providing us with relevant
references). The effective constructability of the winning strategies for player � and
player ^ follows by applying the results on non-selective termination presented below.

Theorem 11. The problem whether p(i) ∈ Win(^,R(ZC)) is PSPACE-complete. Fur-
ther, there is a strategy σ winning for player � in every configuration of Win(�,S(ZC))
such that for all p ∈ Q� and i ≥ mC we have that σ(p(i)) = σ(p(mC + ((i − mC)
mod nC))). The numbers mC , nC and the tuple of all Win^(C, i) and σ(p(i)), where
0 ≤ i < mC+nC and p ∈ Q�, are constructible in time exponential in |M|.

In the non-selective subcase, the situation is even better. The winning regions for both
players are monotone, which means that mQ ≤ |Q| and nQ = 1. Further, all of the
considered problems are solvable in polynomial time.



Theorem 12. The problem whether p(i) ∈ Win(^,R(Z)) is in P. Further, there are
counterless strategiesσ and π such thatσ is winning for player � in every configuration
of Win(�,S(Z)) and π is winning for player ^ in every configuration of Win(^,R(Z)).
The tuple of all Win^(Q, i), σ(p), and π(q), where 0 ≤ i ≤ mC , p ∈ Q�, and q ∈ Q^, is
constructible in time polynomial in |M|.

4 Conclusions, future work

Technically, the most involved result presented in this paper is Theorem 10. This decid-
ability result is not obvious, because most of the problems related to formal verification
of Petri nets (equivalence-checking, model-checking, etc.) are undecidable [8, 17, 23,
5]. Since the upper complexity bound given in Theorem 10 is complemented only by
the EXPSPACE lower bound, which is easily derivable from [24], there is a complexity
gap which constitutes an interesting challenge for future work.
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