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Abstract. We present a general method for proviDB-hardness of equivalence-
checking problems on one-counter automata. For this we sheduction of the
SAT-UNSAT problem to the truth problem for a fragment of (Presburgetha
metic. The fragment contains only special formulas with fvee variable, and is
particularly apt for transforming to simulation-like egalences on one-counter
automata. In this way we show that the membership problemrfprelation sub-
suming bisimilarity and subsumed by simulation preordédishard (even) for
one-countenets(where the counter cannot be tested for zero). We also Sidw
hardness for deciding simulation between one-countemaatio and finite-state
systems (in both directions).

1 Introduction

In concurrency theory, processs typically defined to be a state irti@nsition system
which is a tripleT = (S, X, —) whereS is a set ofstates X is a set ofactionsand
— C S x ¥ x S is atransition relation We write s % ¢ instead of(s, a,t) € —,

and we extend this notation in the natural way to elemenfs*ofA statet is reachable
from a states, writtens —* ¢, iff s = ¢ for somew € X*.

In this paper, we consider such processes generateddsgounter automataon-
deterministic finite-state automata operating on a singlenter variable which takes
values from the séff = {0,1,2,...}. Formally this is a tupled = (Q, ¥, 6=,5”, qo)
where() is a finite set otontrol statesX is a finite set ofactions

T:Qx XY —->P(@x{0,1}) and
5 :Qx X - P(Qx{-1,0,1})

aretransition functiongwhereP (M) denotes the power-set @f), andgy € Q is a
distinguishednitial control stated= represents the transitions which are enabled when
the counter value is zero, aid represents the transitions which are enabled when the
counter value is positived is aone-counter neaf and only if for all pairs(q, a) € Q@ x X

we have that=(q,a) C 6~ (q, a).

* This work was supported by the Grant Agency of the Czech Rep@rant No. 201/00/0400.



To the one-counter automateiwe associate the transition syst@m = (S, X, —),
whereS = {p(n) : p € @Q,n € N} and— is defined as follows:

" o n =0, and(q,7) € 6= (p,a); or
p(n) = q(n+1i) iff .
n >0, and(q,i) € 6 (p, a).

Note that any transition increments, decrements, or leavelsanged the counter value;
and a decrementing transition is only possible if the caumddue is positive. Also
observe that when > 0 the transitions op(n) do not depend on the actual valueof
Finally note that a one-countaetcan in a sense test if its counter is nonzero (that is,
it can perform some transitions only on the proviso that dsrter is nonzero), but it
cannot test in any sense if its counter is zero. For ease eéptation, we understand
finite-statesystems (corresponding to transition systems with finitedyy states) to be
one-counter nets whebe = 6~ and the counter is never changed. Thus, the parts of
T4 reachable fronp(i) andp(j) are isomorphic and finite for afl € Q andi,j € N.

Remark Let us mention that the class of transition systems gerettat@ne-counter
nets is the same (up to isomorphism) as that generated byabe @f labelled Petri
nets with (at most) one unbounded place. The class of transiystems generated by
one-counter automata is the same (up to isomorphism) agénatrated by the class
of realtime pushdown automata (i.e. pushdown automatsowitixtransitions) with a
single stack symbol (apart from a special bottom-of-staakker).

Theequivalence-checkirgpproach to the formal verification of concurrent systems
is based on the following scheme: the specificaigine., the intended behaviour) and
the actual implementatioh of a system are defined as states in transition systems,
and then it is shown thaf and areequivalent There are many ways to capture the
notion of process equivalence (see, e.g., [15]); howemrlationand bisimulation
equivalence [12, 14] are of special importance, as thewmapanying theory has found
its way into many practical applications.

Given a transition systei = (S, ¥, —), asimulationis a binary relatiorR C
S x S satisfying the following property: whenever, t) € R,

if s % s’ thent = t' for somet’ with (s, t') € R.

s is simulatedby ¢, written s C ¢, iff (s,t) € R for some simulatioR; ands and¢
aresimulation equivalentwritten s ~ ¢, iff s C t andt C s. The union of a family of
simulation relations is clearly itself a simulation retatj hence, the relatiol, being
the union of all simulation relations, is in fact the maximsahulation relation, and is
referred to as theimulation preorder A characteristic property is that C ¢ iff the
following holds: if s = s’ thent = t' for somet’ with s’ C t'.

A bisimulationis a symmetric simulation relation, andand ¢ are bisimulation
equivalentor bisimilar, written s ~ ¢, if they are related by a bisimulation.

Simulations and bisimulations can also be used to relatesstédifferenttransition
systems; formally, we can consider two transition systeniseta single one by taking
the disjoint union of their state sets.

Let A and B be classes of processes. The problem of deciding whetherea gi
processs of A is simulated by a given proces®sf B is denoted byd T B; similarly,



the problem of deciding if andt are simulation equivalent (or bisimilar) is denoted by
A ~ B (or A ~ B, respectively). The classes of all one-counter automatcounter
nets, and finite-state systems are denoted Q@CN, and FS, respectively.

The state of the art: The OO\ C OCN problem was first considered in [1], where
it was shown that if two O® processes are related Bpmesimulation, then they
are also related by a semilinear simulation (i.e. a simutatiefinable in Presburger
arithmetic), which suffices for semidecidability (and thdecidability) of the positive
subcase. (The negative subcase is semidecidable by sfaadaments.) A simpler
proof was given later in [7] by employing certain “geométtiechniques, which allow
you to conclude that the simulation preorder (over a givee-ocounter net) is itself
semilinear. Moreover, it was shown there that theAOIC O CA problem is undecidable.
The decidability of the O& ~ OCa problem was demonstrated in [4] by showing
that the greatest bisimulation relation over states of amgime-counter automaton is
also semilinear. The relationship between simulation aistnbillation problems for
processes of one-counter automata has been studied in §8gvttwas shown that one
can effectively reduce certain simulation problems torthisimulation counterparts by
applying a technique proposed in [10]. The complexity ofrhikrity-checking with
one-counter automata was studied in [8], where the probl&r @ OCN (as well as
the problem ofveakbisimilarity [12] between O® and FS processes) was shown to
beDP-hard; however, the problem @C~ FS was shown to be solvable in polynomial
time. Complexity bounds for simulation-checking were giug[9], where it was shown
that the problems O€ C FS and FSC OCN (and thus also O€ ~ FS) are inP,
while OCA C FS and OG ~ FS arecoNP-hard.

Our contribution: In this paper we generalize the techniques used in [8, 9] for
establishing lower complexity bounds for certain equinakechecking problems, and
present a general method for showiD-hardness of problems for one-counter au-
tomata. (The clasBP [13] consists of those languages which are expressible #s a d
ference of two languages frolP, and is generally believed to be larger than the union
of NP andcoNP. Section 2.2 contains further comments@mn.) The “generic part” of
the method is presented in Section 2 , where we define a simggment of Presburger
arithmetic, denoted OCP, which is

— sufficiently powerful so that satisfiability and unsatisfidy of boolean formulas
are both polynomially reducible to the problem of deciding truth of formulas of
OCP, which implies that this latter problemD#>-hard (Theorem 2); yet

— sufficiently simple so that the problem of deciding the trafhrOCP formulas is
polynomially reducible to various equivalence-checkinglppems (thus providing
the “application part” of the proposed method). The redurcis typically con-
structed inductively on the structure of OCP formulas, tmeking the proofs
readable and easily verified.

In Section 3.1 we apply the method to the @G> OCN problem where~ is any
relation which subsumes bisimilarity and is subsumed byikition preorder (thus, be-
sides bisimilarity and simulation equivalence also, egpdy simulation equivalence
or 2-nested simulation equivalence), showbB-hardness of these problems (Theo-
rem 5). In Section 3.2 we concentrate on simulation probleetsween one-counter and
finite-state automata, and prove that ®C FS, FSC OCa, and OQ\ ~ FS are



all DP-hard (Theorem 7), thus improving on the bounds presentgg] 8. Finally, in
Section 4 we draw some conclusions and present a detailethanof known results.

2 The OCP Fragment of Arithmetic

In this section, we introduce a fragment of (Presburgethamétic, denoted OCP (which
can be read as “One-Counter Properties”). We then show h@ndode the problems
of satisfiability and unsatisfiability of boolean formulas®@CP, and thus dedudP-
hardness of the truth problem for (closed formulas of) OQRe(hame of the language
is motivated by a relationship to one-counter automata lwhiitl be explored in the
next section.)

2.1 Definition of OCP

OCP can be viewed as a certain set of first-order arithmetiniditas. We shall briefly
give the syntax of these formulas; the semantics will be@lwi Since we only consider
the interpretation of OCP formulas in the standard strectdimatural numberX, the
problem of deciding the truth of a closed OCP formula is wefinkd:

Problem: TRUTHOCP
INSTANCE: A closed formula) € OCP.
QUESTION: Is @ true ?

Let z andy range over (first-ordenariables A formula@ € OCP can have at
most one free variable (i.e., outside the scope of quantifiers); we shall wéjter) to
indicate the free variable (if there is one) @f that is,Q(z) either has the one free
variablez, or no free variables at all. For a numidee N, [k] stands for a special term
denotingk; we can think of[k] asSS... S0, i.e., the successor functioh applied
k times to 0. We stipulate thatze([k]) = k+1 (which corresponds to representing
numbers in unary).

The formulasi) of OCP are defined inductively as follows; at the same time we
inductively define their size (keeping in mind the unary esgntation of £1):

(@2x=0 size(Q) =1

(b) [k] |z (“kdividesz”; k>0) size(Q) = k+1

(c) [k]tx (“k doesnotdivide:”; k>0) size(Q) = k+1

(d) Q1(z) A Qa(x) size(Q) = size(Q1) + size(Q2) + 1
(€) Qi(z) vV Q2(z) size(Q) = size(Q1) + size(Q2) + 1
() Jy <z:Q'(y) (xandy distinct) size(Q) = size(Q') + 1

(9) Vz : Q'(x) size(Q) = size(Q') + 1

We shall need to consider the truth value of a form@{a) in a valuation assigning
a numbem € N to the (possibly) free variable; this is given by the formul§)[n/z]
obtained by replacing each free occurrence of the varialite@) by n. Slightly abus-
ing notation, we shall denote this I6y(n). (Symbols likei, j, k, n range over natural



numbers, not variables.) For exampleifz) is the formulady < z : ((3]|y) A (21y)),
then@(5) is true whileQ(2) is false; and ifQ(z) is a closed formula, then the truth
value of@(n) is independent of.

2.2 DP-hardness of RUTHOCP

Recall the following problem:

Problem: SAT-UNSAT
INSTANCE: A pair (¢, 1) of boolean formulas in conjunctive normal form (CNF).
QUESTION: Is it the case thap is satisfiable and is unsatisfiable ?

This problem isDP-complete, which corresponds to an intermediate levelénpibly-
nomial hierarchy, harder than bot{’ and 777 but still contained in~} and 75 (cf.,
e.g., [13]). Our aim here is to show thahSUNSAT is polynomial-time reducible to
TRUTHOCP. In particular, we show how, given a boolean formula CNF, we can in
polynomial time construct a (closed) formula of OCP whidirmis thaty is satisfiable,
and also a formula of OCP which claims thais unsatisfiable (Theorem 2).

First we introduce some notation. L&ur(p) = {z,...,x, } denote the set of
(boolean) variables igp. Further letr; (for j>1) denote thejt" prime number. For
everyn € N define the assignment, : Var(p) — {true, false} by

vn(z;) = true, if m;|n,
"I false, otherwise.

Note that for an arbitrary assignmenthere isn € N such that,, = v; it suffices to
taken = IT{m; : 1<j<m andv(z;)=true }. By ||¢||, we denote the truth value ¢f
under the assignment

Lemma 1. There is a polynomial-time algorithm which, given a booléarmula ¢
in CNF, constructsOCPformulas @, (») and Q,(z) such that bothsize(Q,) and

size(Q),,) are inO(|¢|*), and such that for every € N
Q,(n) istrue iff Q,(n) isfalse iff ¢, = true.

Proof. Let Var(y) = {z1,...,2,}. Given a literall (that is, a variablez; or its
negatiori;), define the OCP-formul@,(z) as follows:

Q%(m) = |-7rj_| ‘ZIZ and Qf](w) = |-7r]'-|+$'
Clearly,Q¢(n) is true iff Q(n) is false iff ||¢||,, = true.

— FormulaQ, () is obtained fronp by replacing each literdlwith Q,(x). Itis clear
thatQ, (n) is true iff ||¢||,,, = true.

— Formula@,,(z) is obtained fromy by replacing each, v, and/ with v, A, and
Qy(x), respectively. It is readily seen th@t, (n) is true iff |||, = false.



It remains to evaluate the size@f, and@w. Here we use a well-known fact from num-
ber theory (cf, e.g., [2]) which says tha, is in O(m?). Hencesize(Q,) is in O(|p|?)
for every literall of . As there aré(|y|) literal occurrences an@(|¢|) boolean con-
nectives inp, we can see thatize(Q,,) andsize(Q,,) are indeed irO(|¢|?). O

We now come to the main result of the section.

Theorem 2. Problem SAT-UNSAT is reducible in polynomial time t&RUTHOCP.
Therefore,TRUTHOCPIs DP-hard.

Proof. We give a polynomial-time algorithm which, given an instarig, ¢)) of SAT-
UNSAT, constructs a closed OCP-formuawith size(Q) in O(|p|? + |+]?), such that
Q is true iff  is satisfiable ang is unsatisfiable.

Expressing the unsatisfiability @f is straightforward: by Lemma 1 is unsatisfi-
able iff the OCP-formula

Va2 Qy(x)

is true. Thus, let), be this formula.

Expressing the satisfiability of is rather more involved. Lej = w7y ... T,
where Var(p) = {z1,...,zn}. Clearlyy is satisfiable iff there is some < g such
that||||,, = true. Henceyp is satisfiable iff

the OCP-formuldy < z : Q,(y) is true for any valuation assignirig> g to .

As it stands, it is unclear how this might be expressed; heweve can observe that
the equivalence still holds if we replace the conditiern> g” with “ i is a multiple of
g". In other wordsyp is satisfiable iff for every € N we have that either= 0, or g11,
or there is some < i such that),(n) is true. This can be written as

Ve : 2=0V ([m]tz V-V [m,]tz) V Jy <z :Qu(y)

We thus let); be this formula.
Hence (¢, v) is a positive instance of thea8-UNSAT problem iff the formula

Q=01NQ>

is true. To finish the proof, we observe thate(Q) is indeed inO (|| + []?). O

2.3 TRUTHOCPIsin IT%

The conclusions we draw for our verification problems aré thay areDP-hard, as
we reduce théP-hard problem RuTHOCP to them. We cannot improve this lower
bound by much using the reduction frolrITHOCP, as RUTHOCP is inI75. In this
section we sketch the proof of this fact.

Proposition 3. TRUTHOCPIs in IT}.



Proof. We start by first proving that for every formui@(z) of OCP there is @ with
0 < d < 252¢(Q) such thatQ (i) = Q(i — d) for everyi > 252¢(Q) HenceY¥z : Q(x)
holds iff V < 2°2¢(9) : Q(z) holds. (Note thatz < 2¢(?) : Q(z) is not a formula
of OCP.)

We prove the existence dffor every formula@)(x) by induction on the structure
of Q(z). If Q(z) isz = 0then we can také = 1; and if Q(z) is [k] |z or [k] z then
we can takel = k.

If Q(z)isQ1(x) AQ2(z) orQq1(x)V Q2(x), then we may assume by the induction
hypothesis the existence of the relevdntfor ¢); andd, for ). We can then take
d = d, d, to give the desired property th@t(i) = Q(i — d) for everyi > 2%12¢(@),

If Q(z)is3y < z: Q'(y) (z andy distinct) then by the induction hypothesis there
is ad’ with 0 < d' < 22¢(Q) such thatQ' (i) = Q'(i — d') for every; > 2¢12¢(@") |t
follows that if Q' (i) is true for some, then it is true for some < 28i¢(Q") < 9size(Q),
Furthermore, ifQ’ (i) is true for some thenQ(j) is true for everyj > i; on the other
hand, ifQ)’' (i) is false for every, then(j) is false for everyj. Thus we can také = 1.

If Q(z)isVy : Q'(y), thenzx is not free inQ'(y), so the truth value of)(i) does
not depend om and we can takd = 1. ~

Next we note that every OCP-formulz) can be transformed into a formul¥ z)
(which need not be in OCP) in (pseudo-)prenex form

(Vo < 25ize(Q1)) (Vg < 25ize(Qk))
Gy <z1)--Qye < z) F(xa, - By Y1, - -5 Yp)
where

— Va; : Qi(x;) is a subformula of) (z);
— eachz; € {z1,..., 2k, ¥1,...,yi—1}; and
- F(x1,..., 2k, y1,---,y¢) iS @A, V-combination of atomic subformulas f(z).

This can be proved by induction on the structur€)¢f). The only case requiring some
care is the case whef)(z) is of the form3dy < z : Q'(y), becausélyVz : P(y, z)
andVz3dy : P(y, z) are not equivalent in general, but they are in our case, resver
depends ory due to restrictions in OCP. Note that the size@ﬁr) is polynomial in
size(Q) (assuming tha@*=¢(@1) . 2%12¢(@x) gre encoded in binary).

We can construct an alternating Turing machine which firesuts universal states
to assign all possible values (bounded as mentioned abmye) t. . , zx, then uses its
existential states to assign all possible valuegito. ., y¢, and finally evaluates (de-
terministically) the formulaF(z1,...,zx, y1,...,y¢). It is clear that this alternating
Turing machine can be constructed so that it works in timectvlis polynomial in
size(Q). This implies the membership ofRUTHOCP inI15. O

3 Application to One-Counter Automata Problems

As we mentioned above, the language OCP was designed withaumger automata
in mind. The problem RuTHOCP can be relatively smoothly reduced to various ver-
ification problems for such automata, by providing relevanistructions (“implemen-
tations”) for the cases (a)-(g) of the OCP definition, andsthiLconstitutes a useful



tool for proving lower complexity bound®P-hardness) for these problems. We shall
demonstrate this for the OC«+ OCN problem, where- is any relation satisfying that
~ C «» C C, and then also for the OCC FS, FSC OCa, and OQ\ ~ FS problems.
For the purposes of our proofs, we adopt a “graphical” repridion of one-counter
automata as finite graphs with two kinds of edges (solid astiethones) which are la-
belled by pairs of the fornfa,i) € ¥ x {-1,0,1}; instead of(a, —1), (a,1), and
(a,0) we write simply—a, +a, anda, respectively. Asolid edge fromp to ¢ labelled
by (a,7) indicates that the represented one-counter automaton eée entransition
p(k) = q(k + i) wheneveri > 0 or k > 0. A dashededge fromp to ¢ labelled by
(a,i) (Wherei must not be-1) represents a zero-transitip(0) - ¢(i). Hence, graphs
representing one-counter nets do not contain any dashes ealgd graphs correspond-
ing to finite-state systems use only labels of the f¢uy0) (remember that finite-state
systems are formally understood as special one-counts). #dso observe that the
graphs cannot represent non-decrementing transitionshvelie enablednly for pos-
itive counter values; this does not matter since we do nadl seeh transitions in our
proofs. The distinguished initial control state(s) is Janelicated by a black circle.

3.1 Results for One-Counter Nets

In this section we show that, for any relatiensatisfying~ C « C C, the problem of
deciding whether two (states of) one-counter nets are is DP-hard. We first state an
important technical result, but defer its proof until aftez derive the desired theorem
as a corollary.

Proposition 4. There is an algorithm which, given a formula= Q(z) € OCPas in-
put, halts afterO(size(Q)) steps and outputs a one-counter net with two distinguished
control stateg andp’ such that for every € N we have:

—if Q(k)istrue then p(k) ~ p'(k);

—if Q(k)isfalse thenp(k) Z p'(k).

(Note that ifQ is a closed formula, then this implies tha0) ~ p'(0) if Q is true, and
p(0) Z p'(0) if Q is false.)

Theorem 5. For any relation+ such that~ C < C L, the following problem is
DP-hard:

INSTANCE: A one-counter net with two distinguished control staiesdp’.
QUESTION: Isp(0) « p'(0) ?

Proof. Given an instance of RUTHOCP, i.e., closedformulal) € OCP, we use
the (polynomial) algorithm of Proposition 4 to construct meecounter net with the
two distinguished control statgsandp’. If @ is true, therp(0) ~ p’(0), and hence
p(0) + p'(0); and ifQ is false, therp(0) Z p'(0), and hence(0) ¢ p'(0). O

Proof of Proposition 4\We proceed by induction on the structure(pfFor each case,
we show arimplementationi.e., the corresponding one-counter A} with two dis-
tinguished control statgsandp’. Constructions are sketched by figures which use our
notational conventions; the distinguished control staresdenoted by black dots (the
left onep, the right ongy’). It is worth noting that we only use two actionsandb.



(@) Q(x) = (= = 0): A suitable (and easily verifiable) implementation looks@s
lows:

p o

(b,c) Q(z) = [k] |z or Q(z) = [k]{z, wherek>0: GivenJ C {0,1,2,...,k—1},
let Rj(z) = (zmod k) € J. We shall show that this formula can be implemented
in our sense; taking = {0} then gives us the construction for case (b), and taking
J =1{1,...,k—1} gives us the construction for case (c).

An implementation of?; (x), wherel, 2 € J but0, 3,k—1 ¢ J, looks as follows:

In this picture, each nodg has an outgoing edge going to a “dead” state; this edge
is labelledb if ¢ € J and labelled-bif i ¢ J. Itis straightforward to check that the
proposed implementation & (z) is indeed correct.

(d) Q(z) = Q1(z) A Q2(x): We can assume (by induction) that implementatiaias
of Q1(z) andNg, of Q2 (z) have been constructeliy, is constructed, using/o,
and\,, as follows:

ol

Ng, ;_le p/Q1 ;_sz pIQQ ;NQz

The dotted rectangles represent the graphs associatégd,tand N, (where the
only depicted control states are the distinguished onesjfyihg the correctness
of this construction is straightforward.



(e) Q(z) = Q1(z) V Q2(x): As in case (d), the construction uses the implementations
of Q1 (z) and@.(z); but the situation is slightly more involved in this case:

To verify correctness, we first consider the case wiy¢h) is true. By induction,
eitherpg, (k) ~ pg, (k) or pg, (k) ~ pg, (k). In the first casepq, (k) ~ py, (k)
implies thatp; (k) ~ p2(k), which in turn implies thap(k) ~ p'(k); similarly, in
the second casgq, (k) ~ pg, (k) implies thatp, (k) ~ p3(k), which also implies
thatp(k) ~ p'(k). Hence in either cagg(k) ~ p' (k).

Now consider the case whep(k) is false. By inductionpg, (k) Z pg, (k) and
pa, (k) Z 1y, (k). Obviously,pg, (k) Z ply, (k) implies thatp, (k) Z pa(k), and
P (k) £ py, (k) implies thatp, (k) Z ps (k). From this we have(k) IZ p'(k).

() Q(z) =3y < z:Q1(y) (wherez,y are distinct): We use the following construc-
tion:

To verify correctness, we first consider the case wijéh) is true. This means that
Q_l(z') is true for some <k, which by inductio_n impli_es thatg, (i) ~ p’Ql(z’)_ for
thisi<k. Our result, thap(k) ~ p'(k), follows immediately from the following:

Claim: Forallk, if pg, (i) ~ pg, (i) for somei<k, thenp(k) ~ p'(k).

Proof of Claim. By induction onk. For the base cas&+0), if pg, (i) ~ pp, (i)
for somei<0, thenpg, (0) ~ pg, (0), which implies thap; (0) ~ p3(0), and
hence thap(0) ~ p'(0). For the induction stepk(0), if po, (i) ~ pp, (1)
for somei<k, then eithempq, (k) ~ pg, (k), which implies thatp; (k) ~
p3(k) which in turn implies thap(k) ~ p'(k); or pg, (i) ~ pg, (i) for some



i<k—1, which by induction implies thap(k—1) ~ p'(k—1), which implies
thatp; (k) ~ p2(k—1), which in turn implies thap(k) ~ p'(k).

Next, we consider that case whéXik) is false. This means th&}, (i) is false for
all i<k, which by induction implies thatq, (i) IZ pg, (i) for all i<k. Our result,
thatp(k) IZ p'(k), follows immediately from the following:

Claim: Forallk, if p(k) C p'(k) thenpg, (i) C pg, (i) for somei<k.

Proof of Claim. By induction onk. For the base cas&+0), if p(0) C p'(0)
thenp, (0) C p3(0), which in turn implies thapg, (0) C p,, (0). For the in-
duction step £>0), if p(k) C p'(k) then eithemp, (k) C pa(k—1) orp, (k) C
ps(k). In the first casep, (k) C pa(k—1) implies thatp(k—1) C p'(k—1),
which by induction implies thatq, (i) C pp,, (i) for somei<k—1 and hence
for somei<k; and in the second casg,(k) C ps(k) implies thatpg, (k) C

o, (k).

(9) Q =Vz: Qi (x): Theimplementation in the following figure can be easilyified.

For any@ € OCP, the described construction terminates aftésize(())) steps, be-
cause we add only a constant number of new nodes in each subazept for (b) and
(c), where we add (k) new nodes (recall that the size [df] is k + 1). |

3.2 Simulation Problems for One-Counter Automata and Finie-State Systems

Now we establistDP-hardness of the OC C FS, FSC OCA, and OQ2 ~ FS
problems. Again, we use the (inductively defined) reducfrom TRUTHOCP; only
the particular constructions are now slightly different.

By animplementatiorwe now mean a 4-tupled, 7, 7', A') whereA, A’ are one-
counter automata, anél, 7' are finite-state systems; the role of distinguished states i
now played by the initial states, denotgtbr A, f for F, f' for F', andq’ for A’. We
again first state an important technical result, and agdfierdis proof until after we
derive the desired theorem as a corollary.

Proposition 6. There is an algorithm which, give = Q(z) € OCPas input, halts
after O(size(Q)) steps and outputs an implementatioh, 7, 7', A’") (wheregq, f, f'
andq’ are the initial control states ofl, 7, 7' and.A’, respectively) such that for every
k € N we have:



Q(k) istrue iff gq(k) C f iff f'C q'(k).

(Note that if@ is a closed formula, then this implies tha® is true iff ¢(0) C f iff
f E4(0))

Theorem 7. ProblemsOCA C FS, FSC OCa, andOCA ~ FSare DP-hard.

Proof. Recalling that RUTHOCP isDP-hard,DP-hardness of the first two problems
readily follows from Proposition 6.

DP-hardness of the third problem follows from a simple (gehemeduction of
OCaA C FS to O ~ FS: given a one-counter automatghwith initial stategq,
and a finite-state systetA with initial state f, we first transformF to F, by adding
a new statef; and transitionf; — f, and then createl; by taking (disjoint) union
of A, 71 and addingf; = ¢, wheref; is the copy off; in A;. Clearlyq(k) C f iff

fi(k) ~ fi. 0

Proof of Proposition 6We proceed by induction on the structureidfin the construc-
tions we use only two actions,andb; this also means that a state with non-decreasing
a andb loops isuniversal i.e, it can simulate “everything”.

(a) @ = (z = 0): A straightforward implementation looks as follows:

q .f f ,q
-a a a E
o

A F F A

(bc) @ = [k] |z or Q = [k]{z, wherek>0: GivenJ C {0,1,2,...,k—1}, let
Rj(z) = (xmod k) € J. We shall show that this formula can be implemented in
our sense; taking = {0} then gives us the construction for case (b), and taking
J ={1,...,k—1} gives us the construction for case (c).

An implementation of?; (x), wherel, 2 € J but0, 3,k—1 ¢ J, looks as follows:

fo=1Ff q =1¢

F Al



In this picture, nodef; has ab-loop in F, and nodeg; has an outgoing dashed
a-edge in4', iff 1 € J. Itis straightforward to check that the proposed implemen-
tation of R () is indeed correct.

(d) Q(z) = Q1(z) A Q2(x): The members of the implementatiodg, o, g, Ap)
for @ can be constructed from the respective members of the inguitations for
@1, @2 (assumed by induction¥g from Ag, andAg,; Fg from Fg, andFg,;
Fg from Fp and Fp,,; and Af, from A, and A, . All these cases follow the
schema depicted in the following figure:

Correctness is easily verifiable.

(e) Q(z) = Q1(z) vV Q2(z): We give constructions just fod andF (the constructions
for 7' and.A’ are almost identical):

For anyk, Q(k) is true iff Qi(k) is true or@.(k) is true, which by induction
is true iff gg, (k) C fo, orqg,(k) T fo,, which is true iff ¢, (k) C f; or
¢1(k) C fo, whichin turn is true iffg(k) C f.

) Q(z) =3y < z:Q1(y) (wherez,y are distinct): We use the following construc-
tions:

We prove that the construction is correct f6f and.A’ (the other case being sim-
ilar). Q(k) is true iff Qi(7) is true for somei<k, which by induction is true



iff fo, C qg, (1) for somei<k, which in turniis true iff f; T g5 (i) for somei<k.
Our result, that this is true ifff’ C ¢'(k), follows immediately from the following:

Claim: Forallk, f' C ¢'(k) iff f| C ¢4(i) for somei<k.

Proof of Claim. By induction onk. For the base casé&+0), the result is
immediate. For the induction step0), first note thaif{ C ¢{ (k—1) iff f'C

q'(k—1), which by induction is true iff f{ C ¢}(i) for somei<k—1. Thus
f/Cq'(k) iff f T g(k) or fi T gj(k—1), which is true iff f{ C q(k)

or f| E ¢4(i) for somei<k—1, which in turn is true iff f{ C ¢} () for some
i<k.

(9) Q@ = Vz : Qi(x): Itis easy to show the correctness of the implementatioheén t
following figure.

For any@ € OCP, the described construction terminates aftesize(Q)) steps, be-
cause we add only a constant number of new nodes in each subazept for (b) and
(c), where we add@ (k) new nodes. O

4 Conclusions

Intuitively, the reason why we could not lift tH2P lower bound to some higher com-
plexity class (e.gPSPACE) is that there is no apparent way to implement a “step-wise
guessing” of assignments which would allow us to encode, g (BF problem. The
difficulty is that if we modify the counter value, we were nbtato find a way to check
that the old and new values encode “compatible” assignnvemith agree on a certain
subset of propositional constants. Each such attemptegsinlan exponential blow-up
in the number of control states.

A summary of known results about equivalence-checking witle-counter au-
tomata is given below (where denotes weak bisimilarity).

— OCN &~ OCN and OQx ~ OCA remain open.

— OCA C OCa and OQx ~ OCa are undecidable.

— OCA ~ OCaA, OCN ~ OCN, OCN C OCN and OQv ~ OCN are decidable and
DP-hard, but without any known upper bound.



— OCA ~ FS, O\~ FS,OCQ\ C FS, FSC OCA and OQ: ~ FS are decidable,
DP-hard, and irEXPTIME . TheEXPTIME upper bound is due to the fact that all
of the mentioned problems can be easily reduced to the nubaelking problem
with pushdown systems (see, e.g., [5, 10, 9]) and the madzaiculus which is
EXPTIME -complete [16].

— OCA~FS,ON~FS,ONC FS, FSC OCN and O\ ~ FS are inP.

To complete the picture, let us also mention that the mobletking problem with a
fixed formula®[a]O[b)false of a simple branching-time logic EF (which can be seen
as a natural fragment of CTL [3]) iNP-hard for OQu processes, which also means
that model-checking wittd(a)O(b)true (which is the negation of the above given
formula) is coNP-hard [9]. From this one can readily see that model-chechiitly
[c]0]a]O[b]false A (d)T{a)(b)true is in factDP-hard for OG\ processes. It is quite
interesting that model checking with Hennessy-Milner tofi2] is still polynomial
even for OQ\ processes (this problemBSPACE-hard for related models like BPA or
BPP [11]).
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