
Equivalence-Checking with One-Counter Automata:
A Generic Method for Proving Lower Bounds?

Petr Jančar1, Antonı́n Kučera2, Faron Moller3, and Zdeněk Sawa11 Dept. of Computer Science, FEI, Technical University of Ostrava, 17. listopadu 15,
CZ-708 33 Ostrava, Czech RepublicfPetr.Janar,Zdenek.Sawag�vsb.z2 Faculty of Informatics, Masaryk University, Botanická 68a,

CZ-602 00 Brno, Czech Republictony�fi.muni.z3 Dept. of Computer Science, University of Wales Swansea, Singleton Park,
Swansea SA2 8PP, WalesF.G.Moller�swansea.a.uk

Abstract. We present a general method for provingDP-hardness of equivalence-
checking problems on one-counter automata. For this we showa reduction of the
SAT-UNSAT problem to the truth problem for a fragment of (Presburger) arith-
metic. The fragment contains only special formulas with onefree variable, and is
particularly apt for transforming to simulation-like equivalences on one-counter
automata. In this way we show that the membership problem forany relation sub-
suming bisimilarity and subsumed by simulation preorder isDP-hard (even) for
one-counternets(where the counter cannot be tested for zero). We also showDP-
hardness for deciding simulation between one-counter automata and finite-state
systems (in both directions).

1 Introduction

In concurrency theory, aprocessis typically defined to be a state in atransition system,
which is a tripleT = (S;�;!) whereS is a set ofstates, � is a set ofactionsand! � S � � � S is a transition relation. We writes a! t instead of(s; a; t) 2 !,
and we extend this notation in the natural way to elements of��. A statet is reachable
from a states, writtens!� t, iff s w! t for somew 2 ��.

In this paper, we consider such processes generated byone-counter automata, non-
deterministic finite-state automata operating on a single counter variable which takes
values from the setN = f0; 1; 2; : : :g. Formally this is a tupleA = (Q;�; Æ=; Æ>; q0)
whereQ is a finite set ofcontrol states,� is a finite set ofactions,Æ= : Q�� ! P(Q� f0; 1g) andÆ> : Q�� ! P(Q� f�1; 0; 1g)
are transition functions(whereP(M) denotes the power-set ofM), andq0 2 Q is a
distinguishedinitial control state.Æ= represents the transitions which are enabled when
the counter value is zero, andÆ> represents the transitions which are enabled when the
counter value is positive.A is aone-counter netif and only if for all pairs(q; a) 2 Q��
we have thatÆ=(q; a) � Æ>(q; a).? This work was supported by the Grant Agency of the Czech Republic, Grant No. 201/00/0400.

To the one-counter automatonAwe associate the transition systemTA = (S;�;!),
whereS = fp(n) : p 2 Q;n 2 Ng and! is defined as follows:p(n) a! q(n+ i) iff

(n = 0; and(q; i) 2 Æ=(p; a); orn > 0; and(q; i) 2 Æ>(p; a):
Note that any transition increments, decrements, or leavesunchanged the counter value;
and a decrementing transition is only possible if the counter value is positive. Also
observe that whenn > 0 the transitions ofp(n) do not depend on the actual value ofn.
Finally note that a one-counternetcan in a sense test if its counter is nonzero (that is,
it can perform some transitions only on the proviso that its counter is nonzero), but it
cannot test in any sense if its counter is zero. For ease of presentation, we understand
finite-statesystems (corresponding to transition systems with finitelymany states) to be
one-counter nets whereÆ= = Æ> and the counter is never changed. Thus, the parts ofTA reachable fromp(i) andp(j) are isomorphic and finite for allp 2 Q andi; j 2 N.

Remark.Let us mention that the class of transition systems generated by one-counter
nets is the same (up to isomorphism) as that generated by the class of labelled Petri
nets with (at most) one unbounded place. The class of transition systems generated by
one-counter automata is the same (up to isomorphism) as thatgenerated by the class
of realtime pushdown automata (i.e. pushdown automata without "-transitions) with a
single stack symbol (apart from a special bottom-of-stack marker).

Theequivalence-checkingapproach to the formal verification of concurrent systems
is based on the following scheme: the specificationS (i.e., the intended behaviour) and
the actual implementationI of a system are defined as states in transition systems,
and then it is shown thatS andI areequivalent. There are many ways to capture the
notion of process equivalence (see, e.g., [15]); however,simulationandbisimulation
equivalence [12, 14] are of special importance, as their accompanying theory has found
its way into many practical applications.

Given a transition systemT = (S;�;!), a simulationis a binary relationR �S � S satisfying the following property: whenever(s; t) 2 R,

if s a! s0 thent a! t0 for somet0 with (s0; t0) 2 R.s is simulatedby t, written s v t, iff (s; t) 2 R for some simulationR; ands andt
aresimulation equivalent, writtens ' t, iff s v t andt v s. The union of a family of
simulation relations is clearly itself a simulation relation; hence, the relationv, being
the union of all simulation relations, is in fact the maximalsimulation relation, and is
referred to as thesimulation preorder. A characteristic property is thats v t iff the
following holds: if s a! s0 thent a! t0 for somet0 with s0 v t0.

A bisimulation is a symmetric simulation relation, ands and t are bisimulation
equivalent, or bisimilar, writtens � t, if they are related by a bisimulation.

Simulations and bisimulations can also be used to relate states ofdifferenttransition
systems; formally, we can consider two transition systems to be a single one by taking
the disjoint union of their state sets.

Let A andB be classes of processes. The problem of deciding whether a given
processs of A is simulated by a given processt of B is denoted byA v B; similarly,

the problem of deciding ifs andt are simulation equivalent (or bisimilar) is denoted byA ' B (orA � B, respectively). The classes of all one-counter automata, one-counter
nets, and finite-state systems are denoted OCA, OCN, and FS, respectively.

The state of the art:The OCN v OCN problem was first considered in [1], where
it was shown that if two OCN processes are related bysomesimulation, then they
are also related by a semilinear simulation (i.e. a simulation definable in Presburger
arithmetic), which suffices for semidecidability (and thusdecidability) of the positive
subcase. (The negative subcase is semidecidable by standard arguments.) A simpler
proof was given later in [7] by employing certain “geometric” techniques, which allow
you to conclude that the simulation preorder (over a given one-counter net) is itself
semilinear. Moreover, it was shown there that the OCA v OCA problem is undecidable.
The decidability of the OCA � OCA problem was demonstrated in [4] by showing
that the greatest bisimulation relation over states of a given one-counter automaton is
also semilinear. The relationship between simulation and bisimulation problems for
processes of one-counter automata has been studied in [6] where it was shown that one
can effectively reduce certain simulation problems to their bisimulation counterparts by
applying a technique proposed in [10]. The complexity of bisimilarity-checking with
one-counter automata was studied in [8], where the problem OCN � OCN (as well as
the problem ofweakbisimilarity [12] between OCN and FS processes) was shown to
beDP-hard; however, the problem OCA � FS was shown to be solvable in polynomial
time. Complexity bounds for simulation-checking were given in [9], where it was shown
that the problems OCN v FS and FSv OCN (and thus also OCN ' FS) are inP,
while OCA v FS and OCA ' FS arecoNP-hard.

Our contribution: In this paper we generalize the techniques used in [8, 9] for
establishing lower complexity bounds for certain equivalence-checking problems, and
present a general method for showingDP-hardness of problems for one-counter au-
tomata. (The classDP [13] consists of those languages which are expressible as a dif-
ference of two languages fromNP, and is generally believed to be larger than the union
of NP andcoNP. Section 2.2 contains further comments onDP.) The “generic part” of
the method is presented in Section 2 , where we define a simple fragment of Presburger
arithmetic, denoted OCP, which is

– sufficiently powerful so that satisfiability and unsatisfiability of boolean formulas
are both polynomially reducible to the problem of deciding the truth of formulas of
OCP, which implies that this latter problem isDP-hard (Theorem 2); yet

– sufficiently simple so that the problem of deciding the truthof OCP formulas is
polynomially reducible to various equivalence-checking problems (thus providing
the “application part” of the proposed method). The reduction is typically con-
structed inductively on the structure of OCP formulas, thusmaking the proofs
readable and easily verified.

In Section 3.1 we apply the method to the OCN $ OCN problem where$ is any
relation which subsumes bisimilarity and is subsumed by simulation preorder (thus, be-
sides bisimilarity and simulation equivalence also, e.g.,ready simulation equivalence
or 2-nested simulation equivalence), showingDP-hardness of these problems (Theo-
rem 5). In Section 3.2 we concentrate on simulation problemsbetween one-counter and
finite-state automata, and prove that OCA v FS, FSv OCA, and OCA ' FS are

all DP-hard (Theorem 7), thus improving on the bounds presented in[8, 9]. Finally, in
Section 4 we draw some conclusions and present a detailed summary of known results.

2 The OCP Fragment of Arithmetic

In this section, we introduce a fragment of (Presburger) arithmetic, denoted OCP (which
can be read as “One-Counter Properties”). We then show how toencode the problems
of satisfiability and unsatisfiability of boolean formulas in OCP, and thus deduceDP-
hardness of the truth problem for (closed formulas of) OCP. (The name of the language
is motivated by a relationship to one-counter automata which will be explored in the
next section.)

2.1 Definition of OCP

OCP can be viewed as a certain set of first-order arithmetic formulas. We shall briefly
give the syntax of these formulas; the semantics will be obvious. Since we only consider
the interpretation of OCP formulas in the standard structure of natural numbersN, the
problem of deciding the truth of a closed OCP formula is well defined:

Problem: TRUTHOCP
INSTANCE: A closed formulaQ 2 OCP.
QUESTION: IsQ true ?

Let x andy range over (first-order)variables. A formulaQ 2 OCP can have at
most one free variablex (i.e., outside the scope of quantifiers); we shall writeQ(x) to
indicate the free variable (if there is one) ofQ; that is,Q(x) either has the one free
variablex, or no free variables at all. For a numberk 2 N, dke stands for a special term
denotingk; we can think ofdke asSS : : : S0, i.e., the successor functionS appliedk times to 0. We stipulate thatsize(dke) = k+1 (which corresponds to representing
numbers in unary).

The formulasQ of OCP are defined inductively as follows; at the same time we
inductively define their size (keeping in mind the unary representation ofdke):

(a) x = 0 size(Q) = 1
(b) dke jx (“k dividesx”; k>0) size(Q) = k+1
(c) dke -x (“k does not dividex”; k>0) size(Q) = k+1
(d) Q1(x) ^Q2(x) size(Q) = size(Q1) + size(Q2) + 1
(e) Q1(x) _Q2(x) size(Q) = size(Q1) + size(Q2) + 1
(f) 9y � x : Q0(y) (x andy distinct) size(Q) = size(Q0) + 1
(g) 8x : Q0(x) size(Q) = size(Q0) + 1
We shall need to consider the truth value of a formulaQ(x) in a valuation assigning

a numbern 2 N to the (possibly) free variablex; this is given by the formulaQ[n=x℄
obtained by replacing each free occurrence of the variablex in Q by n. Slightly abus-
ing notation, we shall denote this byQ(n). (Symbols likei; j; k; n range over natural

numbers, not variables.) For example, ifQ(x) is the formula9y � x : ((3 j y)^(2 - y)),
thenQ(5) is true whileQ(2) is false; and ifQ(x) is a closed formula, then the truth
value ofQ(n) is independent ofn.

2.2 DP-hardness of TRUTH OCP

Recall the following problem:

Problem: SAT-UNSAT

INSTANCE: A pair (';) of boolean formulas in conjunctive normal form (CNF).
QUESTION: Is it the case that' is satisfiable and is unsatisfiable ?

This problem isDP-complete, which corresponds to an intermediate level in the poly-
nomial hierarchy, harder than both�p1 and�p1 but still contained in�p2 and�P2 (cf.,
e.g., [13]). Our aim here is to show that SAT-UNSAT is polynomial-time reducible to
TRUTHOCP. In particular, we show how, given a boolean formula' in CNF, we can in
polynomial time construct a (closed) formula of OCP which claims that' is satisfiable,
and also a formula of OCP which claims that' is unsatisfiable (Theorem 2).

First we introduce some notation. LetVar(') = fx1; : : : ; xmg denote the set of
(boolean) variables in'. Further let�j (for j�1) denote thejth prime number. For
everyn 2 N define the assignment�n : Var(') ! ftrue; falseg by�n(xj) = � true; if �j jn;false ; otherwise.

Note that for an arbitrary assignment� there isn 2 N such that�n = �; it suffices to
taken = �f�j : 1�j�m and�(xj)=true g. By k'k� we denote the truth value of'
under the assignment�.

Lemma 1. There is a polynomial-time algorithm which, given a booleanformula '
in CNF, constructsOCP-formulasQ'(x) andQ'(x) such that bothsize(Q') andsize(Q') are inO(j'j3), and such that for everyn 2 NQ'(n) is true iff Q'(n) is false iff k'k�n = true.

Proof. Let Var(') = fx1; : : : ; xmg. Given a literal` (that is, a variablexj or its
negationxj), define the OCP-formulaQ`(x) as follows:Qxj (x) = d�je jx and Qxj (x) = d�je -x.

Clearly,Q`(n) is true iff Q`(n) is false iff k`k�n = true.

– FormulaQ'(x) is obtained from' by replacing each literal̀withQ`(x). It is clear
thatQ'(n) is true iff k'k�n = true.

– FormulaQ'(x) is obtained from' by replacing eacĥ , _, and` with _, ^, andQ`(x), respectively. It is readily seen thatQ'(n) is true iff k'k�n = false .

It remains to evaluate the size ofQ' andQ'. Here we use a well-known fact from num-
ber theory (cf, e.g., [2]) which says that�m is inO(m2). Hencesize(Q`) is inO(j'j2)
for every literal̀ of '. As there areO(j'j) literal occurrences andO(j'j) boolean con-
nectives in', we can see thatsize(Q') andsize(Q') are indeed inO(j'j3). ut

We now come to the main result of the section.

Theorem 2. Problem SAT-UNSAT is reducible in polynomial time toTRUTHOCP.
Therefore,TRUTHOCPis DP-hard.

Proof. We give a polynomial-time algorithm which, given an instance (';) of SAT-
UNSAT, constructs a closed OCP-formulaQ, with size(Q) inO(j'j3+ j j3), such thatQ is true iff' is satisfiable and is unsatisfiable.

Expressing the unsatisfiability of is straightforward: by Lemma 1, is unsatisfi-
able iff the OCP-formula8x : Q (x)
is true. Thus, letQ2 be this formula.

Expressing the satisfiability of' is rather more involved. Letg = �1�2 : : : �m,
whereVar(') = fx1; : : : ; xmg. Clearly' is satisfiable iff there is somen � g such
thatk'k�n = true. Hence' is satisfiable iff

the OCP-formula9y � x : Q'(y) is true for any valuation assigningi � g to x.

As it stands, it is unclear how this might be expressed; however, we can observe that
the equivalence still holds if we replace the condition “i � g” with “ i is a multiple ofg”. In other words,' is satisfiable iff for everyi 2 N we have that eitheri = 0, or g - i,
or there is somen � i such thatQ'(n) is true. This can be written as8x : x = 0 _ (d�1e -x _ � � � _ d�me -x) _ 9y � x : Q'(y)
We thus letQ1 be this formula.

Hence,(';) is a positive instance of the SAT-UNSAT problem iff the formulaQ = Q1 ^Q2
is true. To finish the proof, we observe thatsize(Q) is indeed inO(j'j3 + j j3). ut
2.3 TRUTH OCP is in�p2
The conclusions we draw for our verification problems are that they areDP-hard, as
we reduce theDP-hard problem TRUTHOCP to them. We cannot improve this lower
bound by much using the reduction from TRUTHOCP, as TRUTHOCP is in�p2 . In this
section we sketch the proof of this fact.

Proposition 3. TRUTHOCPis in�p2 .

Proof. We start by first proving that for every formulaQ(x) of OCP there is ad with0 < d � 2size(Q) such thatQ(i) = Q(i� d) for everyi > 2size(Q). Hence,8x : Q(x)
holds iff 8x � 2size(Q) : Q(x) holds. (Note that8x � 2size(Q) : Q(x) is not a formula
of OCP.)

We prove the existence ofd for every formulaQ(x) by induction on the structure
of Q(x). If Q(x) is x = 0 then we can taked = 1; and ifQ(x) is dke jx or dke -x then
we can taked = k.

If Q(x) isQ1(x)^Q2(x) orQ1(x)_Q2(x), then we may assume by the induction
hypothesis the existence of the relevantd1 for Q1 andd2 for Q2. We can then taked = d1d2 to give the desired property thatQ(i) = Q(i� d) for everyi > 2size(Q).

If Q(x) is 9y � x : Q0(y) (x andy distinct) then by the induction hypothesis there
is ad0 with 0 < d0 � 2size(Q0) such thatQ0(i) = Q0(i � d0) for everyi > 2size(Q0). It
follows that ifQ0(i) is true for somei, then it is true for somei � 2size(Q0) < 2size(Q).
Furthermore, ifQ0(i) is true for somei thenQ(j) is true for everyj � i; on the other
hand, ifQ0(i) is false for everyi, thenQ(j) is false for everyj. Thus we can taked = 1.

If Q(x) is 8y : Q0(y), thenx is not free inQ0(y), so the truth value ofQ(i) does
not depend oni and we can taked = 1.

Next we note that every OCP-formulaQ(x) can be transformed into a formulabQ(x)
(which need not be in OCP) in (pseudo-)prenex form(8x1 � 2size(Q1)) � � � (8xk � 2size(Qk))(9y1 � z1) � � � (9y` � z`)F(x1; : : : ; xk; y1; : : : ; y`)
where

– 8xi : Qi(xi) is a subformula ofQ(x);
– eachzi 2 fx1; : : : ; xk; y1; : : : ; yi�1g; and
– F(x1; : : : ; xk; y1; : : : ; y`) is a^;_-combination of atomic subformulas ofQ(x).

This can be proved by induction on the structure ofQ(x). The only case requiring some
care is the case whenQ(x) is of the form9y � x : Q0(y), because9y8z : P (y; z)
and8z9y : P (y; z) are not equivalent in general, but they are in our case, asz never
depends ony due to restrictions in OCP. Note that the size ofbQ(x) is polynomial insize(Q) (assuming that2size(Q1); : : : ; 2size(Qk) are encoded in binary).

We can construct an alternating Turing machine which first uses its universal states
to assign all possible values (bounded as mentioned above) to x1; : : : ; xk, then uses its
existential states to assign all possible values toy1; : : : ; y`, and finally evaluates (de-
terministically) the formulaF(x1; : : : ; xk ; y1; : : : ; y`). It is clear that this alternating
Turing machine can be constructed so that it works in time which is polynomial insize(Q). This implies the membership of TRUTHOCP in�p2 . ut
3 Application to One-Counter Automata Problems

As we mentioned above, the language OCP was designed with one-counter automata
in mind. The problem TRUTHOCP can be relatively smoothly reduced to various ver-
ification problems for such automata, by providing relevantconstructions (“implemen-
tations”) for the cases (a)-(g) of the OCP definition, and thus it constitutes a useful

tool for proving lower complexity bounds (DP-hardness) for these problems. We shall
demonstrate this for the OCN $ OCN problem, where$ is any relation satisfying that� �$ � v, and then also for the OCA v FS, FSv OCA, and OCA ' FS problems.

For the purposes of our proofs, we adopt a “graphical” representation of one-counter
automata as finite graphs with two kinds of edges (solid and dashed ones) which are la-
belled by pairs of the form(a; i) 2 � � f�1; 0; 1g; instead of(a;�1), (a; 1), and(a; 0) we write simply�a, +a, anda, respectively. Asolid edge fromp to q labelled
by (a; i) indicates that the represented one-counter automaton can make a transitionp(k) a! q(k + i) wheneveri � 0 or k > 0. A dashededge fromp to q labelled by(a; i) (whereimust not be�1) represents a zero-transitionp(0) a! q(i). Hence, graphs
representing one-counter nets do not contain any dashed edges, and graphs correspond-
ing to finite-state systems use only labels of the form(a; 0) (remember that finite-state
systems are formally understood as special one-counter nets). Also observe that the
graphs cannot represent non-decrementing transitions which are enabledonly for pos-
itive counter values; this does not matter since we do not need such transitions in our
proofs. The distinguished initial control state(s) is (are) indicated by a black circle.

3.1 Results for One-Counter Nets

In this section we show that, for any relation$ satisfying� � $ � v, the problem of
deciding whether two (states of) one-counter nets are in$ is DP-hard. We first state an
important technical result, but defer its proof until afterwe derive the desired theorem
as a corollary.

Proposition 4. There is an algorithm which, given a formulaQ = Q(x) 2 OCPas in-
put, halts afterO(size(Q)) steps and outputs a one-counter net with two distinguished
control statesp andp0 such that for everyk 2 N we have:

– if Q(k) is true then p(k) � p0(k);
– if Q(k) is false then p(k) 6v p0(k).

(Note that ifQ is a closed formula, then this implies thatp(0) � p0(0) if Q is true, andp(0) 6v p0(0) if Q is false.)

Theorem 5. For any relation$ such that� � $ � v, the following problem is
DP-hard:

INSTANCE: A one-counter net with two distinguished control statesp andp0.
QUESTION: Is p(0) $ p0(0) ?

Proof. Given an instance of TRUTHOCP, i.e., aclosedformulaQ 2 OCP, we use
the (polynomial) algorithm of Proposition 4 to construct a one-counter net with the
two distinguished control statesp andp0. If Q is true, thenp(0) � p0(0), and hencep(0)$ p0(0); and ifQ is false, thenp(0) 6v p0(0), and hencep(0) 6$ p0(0). ut
Proof of Proposition 4:We proceed by induction on the structure ofQ. For each case,
we show animplementation, i.e., the corresponding one-counter netNQ with two dis-
tinguished control statesp andp0. Constructions are sketched by figures which use our
notational conventions; the distinguished control statesare denoted by black dots (the
left onep, the right onep0). It is worth noting that we only use two actions,a andb.

(a) Q(x) = (x = 0): A suitable (and easily verifiable) implementation looks asfol-
lows:

−a

p p0
(b,c) Q(x) = dke jx or Q(x) = dke -x, wherek>0: GivenJ � f 0; 1; 2; : : : ; k�1 g,

letRJ (x) = (xmod k) 2 J . We shall show that this formula can be implemented
in our sense; takingJ = f0g then gives us the construction for case (b), and takingJ = f1; : : : ; k�1g gives us the construction for case (c).

An implementation ofRJ (x), where1; 2 2 J but0; 3; k�1 62 J , looks as follows:

b

−a p
−b

b

−b
−b

−a

−a−a

−a −a

b

q0 = p0 q1q2q3
qk�1

In this picture, each nodeqi has an outgoing edge going to a “dead” state; this edge
is labelledb if i 2 J and labelled�b if i 62 J . It is straightforward to check that the
proposed implementation ofRJ (x) is indeed correct.

(d) Q(x) = Q1(x) ^Q2(x): We can assume (by induction) that implementationsNQ1
ofQ1(x) andNQ2 ofQ2(x) have been constructed.NQ is constructed, usingNQ1
andNQ2 , as follows:

a a bb

p p0pQ1 pQ2p0Q1 p0Q2NQ1 NQ2
The dotted rectangles represent the graphs associated toNQ1 andNQ2 (where the
only depicted control states are the distinguished ones). Verifying the correctness
of this construction is straightforward.

(e) Q(x) = Q1(x) _Q2(x): As in case (d), the construction uses the implementations
of Q1(x) andQ2(x); but the situation is slightly more involved in this case:

a

a

b

b

a

a

aa
a

a b

p p0p1 p2 p3pQ1 pQ2p0Q1 p0Q2
To verify correctness, we first consider the case whenQ(k) is true. By induction,
eitherpQ1(k) � p0Q1(k) or pQ2(k) � p0Q2(k). In the first case,pQ1(k) � p0Q1(k)
implies thatp1(k) � p2(k), which in turn implies thatp(k) � p0(k); similarly, in
the second case,pQ2(k) � p0Q2(k) implies thatp1(k) � p3(k), which also implies
thatp(k) � p0(k). Hence in either casep(k) � p0(k).
Now consider the case whenQ(k) is false. By induction,pQ1(k) 6v p0Q1(k) andpQ2(k) 6v p0Q2(k). Obviously,pQ1(k) 6v p0Q1(k) implies thatp1(k) 6v p2(k), andpQ2(k) 6v p0Q2(k) implies thatp1(k) 6v p3(k). From this we havep(k) 6v p0(k).

(f) Q(x) = 9y � x : Q1(y) (wherex; y are distinct): We use the following construc-
tion:

a a a

b+bb

−a
−a

−a
a

−a

p p0p1 p2 p3pQ1 p0Q1
To verify correctness, we first consider the case whenQ(k) is true. This means thatQ1(i) is true for somei�k, which by induction implies thatpQ1(i) � p0Q1(i) for
this i�k. Our result, thatp(k) � p0(k), follows immediately from the following:

Claim: For allk, if pQ1(i) � p0Q1(i) for somei�k, thenp(k) � p0(k).
Proof of Claim.By induction onk. For the base case (k=0), if pQ1(i) � p0Q1(i)
for somei�0, thenpQ1(0) � p0Q1(0), which implies thatp1(0) � p3(0), and
hence thatp(0) � p0(0). For the induction step (k>0), if pQ1(i) � p0Q1(i)
for somei�k, then eitherpQ1(k) � p0Q1(k), which implies thatp1(k) �p3(k) which in turn implies thatp(k) � p0(k); or pQ1(i) � p0Q1(i) for some

i�k�1, which by induction implies thatp(k�1) � p0(k�1), which implies
thatp1(k) � p2(k�1), which in turn implies thatp(k) � p0(k).

Next, we consider that case whenQ(k) is false. This means thatQ1(i) is false for
all i�k, which by induction implies thatpQ1(i) 6v p0Q1(i) for all i�k. Our result,
thatp(k) 6v p0(k), follows immediately from the following:

Claim: For allk, if p(k) v p0(k) thenpQ1(i) v p0Q1(i) for somei�k.

Proof of Claim. By induction onk. For the base case (k=0), if p(0) v p0(0)
thenp1(0) v p3(0), which in turn implies thatpQ1(0) v p0Q1(0). For the in-
duction step (k>0), if p(k) v p0(k) then eitherp1(k) v p2(k�1) or p1(k) vp3(k). In the first case,p1(k) v p2(k�1) implies thatp(k�1) v p0(k�1),
which by induction implies thatpQ1(i) v p0Q1(i) for somei�k�1 and hence
for somei�k; and in the second case,p1(k) v p3(k) implies thatpQ1(k) vp0Q1(k).

(g) Q = 8x : Q1(x): The implementation in the following figure can be easily verified.

−a −a

b b

b b

+a +ap p0
pQ1 p0Q1

For anyQ 2 OCP, the described construction terminates afterO(size(Q)) steps, be-
cause we add only a constant number of new nodes in each subcase except for (b) and
(c), where we addO(k) new nodes (recall that the size ofdke is k + 1). ut
3.2 Simulation Problems for One-Counter Automata and Finite-State Systems

Now we establishDP-hardness of the OCA v FS, FSv OCA, and OCA ' FS
problems. Again, we use the (inductively defined) reductionfrom TRUTHOCP; only
the particular constructions are now slightly different.

By animplementationwe now mean a 4-tuple(A;F ;F 0;A0) whereA;A0 are one-
counter automata, andF ;F 0 are finite-state systems; the role of distinguished states is
now played by the initial states, denotedq for A, f for F , f 0 for F 0, andq0 for A0. We
again first state an important technical result, and again defer its proof until after we
derive the desired theorem as a corollary.

Proposition 6. There is an algorithm which, givenQ = Q(x) 2 OCPas input, halts
afterO(size(Q)) steps and outputs an implementation(A;F ;F 0;A0) (whereq, f , f 0
andq0 are the initial control states ofA,F ,F 0 andA0, respectively) such that for everyk 2 N we have:

Q(k) is true iff q(k) v f iff f 0 v q0(k).
(Note that ifQ is a closed formula, then this implies thatQ is true iff q(0) v f ifff 0 v q0(0).)
Theorem 7. ProblemsOCA v FS, FSv OCA, andOCA ' FSareDP-hard.

Proof. Recalling that TRUTHOCP isDP-hard,DP-hardness of the first two problems
readily follows from Proposition 6.

DP-hardness of the third problem follows from a simple (general) reduction of
OCA v FS to OCA ' FS: given a one-counter automatonA with initial stateq,
and a finite-state systemF with initial statef , we first transformF to F1 by adding
a new statef1 and transitionf1 a! f , and then createA1 by taking (disjoint) union
of A, F1 and addingf1 a! q, wheref1 is the copy off1 in A1. Clearlyq(k) v f ifff1(k) ' f1. ut
Proof of Proposition 6:We proceed by induction on the structure ofQ. In the construc-
tions we use only two actions,a andb; this also means that a state with non-decreasinga andb loops isuniversal, i.e, it can simulate “everything”.

(a) Q = (x = 0): A straightforward implementation looks as follows:

−a

q f
aa

f 0
a

q0
A F F 0 A0

(b,c) Q = dke jx or Q = dke -x, wherek>0: Given J � f 0; 1; 2; : : : ; k�1 g, letRJ (x) = (xmod k) 2 J . We shall show that this formula can be implemented in
our sense; takingJ = f0g then gives us the construction for case (b), and takingJ = f1; : : : ; k�1g gives us the construction for case (c).

An implementation ofRJ (x), where1; 2 2 J but0; 3; k�1 62 J , looks as follows:

b

−a q b

b

a

a

a a

a

f0 = f f1f2f3
fk�1

a f 0 −a

−a−a

−a −a

a

a
a

q0 = q0 q1q2q3
qk�1

A F F 0 A0

In this picture, nodefi has ab-loop in F , and nodeqi has an outgoing dasheda-edge inA0, iff i 2 J . It is straightforward to check that the proposed implemen-
tation ofRJ(x) is indeed correct.

(d) Q(x) = Q1(x) ^Q2(x): The members of the implementation(AQ;FQ;F 0Q;A0Q)
for Q can be constructed from the respective members of the implementations forQ1,Q2 (assumed by induction):AQ fromAQ1 andAQ2 ; FQ fromFQ1 andFQ2 ;F 0Q from F 0Q1 andF 0Q2 ; andA0Q from A0Q1 andA0Q2 . All these cases follow the
schema depicted in the following figure:

a bQ1 Q2
Correctness is easily verifiable.

(e) Q(x) = Q1(x)_Q2(x): We give constructions just forA andF (the constructions
for F 0 andA0 are almost identical):

ba

aQ1 Q2
qq1qQ1 qQ2 b

a a

a ba

a,bQ1 Q2
qq1qQ1qQ2 ff1 f2fQ1 fQ2u

For anyk, Q(k) is true iff Q1(k) is true orQ2(k) is true, which by induction
is true iff qQ1(k) v fQ1 or qQ2(k) v fQ2 , which is true iff q1(k) v f1 orq1(k) v f2, which in turn is true iff q(k) v f .

(f) Q(x) = 9y � x : Q1(y) (wherex; y are distinct): We use the following construc-
tions:

−a

b

a a bQ1
q

a

b b

a

a

a,b

a Q1
f

a

b

a Q1
f 0f 01f 0Q1 a

b b

a

a

a,b

−a Q1
q0q01 q02q0Q1uA F F 0 A0

We prove that the construction is correct forF 0 andA0 (the other case being sim-
ilar). Q(k) is true iff Q1(i) is true for somei�k, which by induction is true

iff f 0Q1 v q0Q1(i) for somei�k, which in turn is true ifff 01 v q02(i) for somei�k.
Our result, that this is true ifff 0 v q0(k), follows immediately from the following:

Claim: For allk, f 0 v q0(k) iff f 01 v q02(i) for somei�k.

Proof of Claim. By induction onk. For the base case (k=0), the result is
immediate. For the induction step (k>0), first note thatf 01 v q01(k�1) iff f 0 vq0(k�1), which by induction is true iff f 01 v q02(i) for somei�k�1. Thusf 0 v q0(k) iff f 01 v q02(k) or f 01 v q01(k�1), which is true iff f 01 v q02(k)
or f 01 v q02(i) for somei�k�1, which in turn is true iff f 01 v q02(i) for somei�k.

(g) Q = 8x : Q1(x): It is easy to show the correctness of the implementation in the
following figure.

−a

b

b

+a q
qQ1 b

b

a

a

f
fQ1 b

b

a

a

f 0
f 0Q1 −a

b

b

+a

a

a,b

q0 uq0Q1A F F 0 A0
For anyQ 2 OCP, the described construction terminates afterO(size(Q)) steps, be-
cause we add only a constant number of new nodes in each subcase except for (b) and
(c), where we addO(k) new nodes. ut
4 Conclusions

Intuitively, the reason why we could not lift theDP lower bound to some higher com-
plexity class (e.g.,PSPACE) is that there is no apparent way to implement a “step-wise
guessing” of assignments which would allow us to encode, e.g., the QBF problem. The
difficulty is that if we modify the counter value, we were not able to find a way to check
that the old and new values encode “compatible” assignmentswhich agree on a certain
subset of propositional constants. Each such attempt resulted in an exponential blow-up
in the number of control states.

A summary of known results about equivalence-checking withone-counter au-
tomata is given below (where� denotes weak bisimilarity).

– OCN � OCN and OCA � OCA remain open.
– OCA v OCA and OCA ' OCA are undecidable.
– OCA � OCA, OCN � OCN, OCN v OCN and OCN ' OCN are decidable and

DP-hard, but without any known upper bound.

– OCA � FS, OCN � FS, OCA v FS, FSv OCA and OCA ' FS are decidable,
DP-hard, and inEXPTIME . TheEXPTIME upper bound is due to the fact that all
of the mentioned problems can be easily reduced to the model-checking problem
with pushdown systems (see, e.g., [5, 10, 9]) and the modal�-calculus which is
EXPTIME -complete [16].

– OCA � FS, OCN � FS, OCN v FS, FSv OCN and OCN ' FS are inP.

To complete the picture, let us also mention that the model-checking problem with a
fixed formula�[a℄�[b℄false of a simple branching-time logic EF (which can be seen
as a natural fragment of CTL [3]) isNP-hard for OCN processes, which also means
that model-checking with�hai�hbitrue (which is the negation of the above given
formula) is coNP-hard [9]. From this one can readily see that model-checkingwith[℄�[a℄�[b℄false^hdi�hai�hbitrue is in factDP-hard for OCN processes. It is quite
interesting that model checking with Hennessy-Milner logic [12] is still polynomial
even for OCA processes (this problem isPSPACE-hard for related models like BPA or
BPP [11]).

References

[1] P. Abdulla and K.Čer āns. Simulation is decidable for one-counter nets. InProceedings of
CONCUR’98, volume 1466 ofLNCS, pages 253–268. Springer, 1998.

[2] E. Bach and J. Shallit.Algorithmic Number Theory. Vol. 1, Efficient Algorithms. The MIT
Press, 1996.

[3] E. Emerson. Temporal and modal logic.Handbook of Theoretical Computer Science, B,
1991.

[4] P. Jančar. Decidability of bisimilarity for one-counter processes.Information and Compu-
tation, 158(1):1–17, 2000.

[5] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state
processes.Theoretical Computer Science, 258(1–2):409–433, 2001.

[6] P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over one-counter pro-
cesses. InProceedings of STACS 2000, volume 1770 ofLNCS, pages 334–345. Springer,
2000.

[7] P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines. In
Proceedings of SOFSEM’99, volume 1725 ofLNCS, pages 404–413. Springer, 1999.

[8] A. Kučera. Efficient verification algorithms for one-counter processes. InProceedings of
ICALP 2000, volume 1853 ofLNCS, pages 317–328. Springer, 2000.

[9] A. Kučera. On simulation-checking with sequential systems. InProceedings of ASIAN
2000, volume 1961 ofLNCS, pages 133–148. Springer, 2000.

[10] A. Kučera and R. Mayr. Simulation preorder on simple process algebras. InProceedings
of ICALP’99, volume 1644 ofLNCS, pages 503–512. Springer, 1999.

[11] R. Mayr. Strict lower bounds for model checking BPA.Electronic Notes in Theoretical
Computer Science, 18, 1998.

[12] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[13] C. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.
[14] D. Park. Concurrency and automata on infinite sequences. In Proceedings5th GI Confer-

ence, volume 104 ofLNCS, pages 167–183. Springer, 1981.
[15] R. van Glabeek. The linear time - branching time spectrum I. In J. Bergstra, A. Ponse, and

S. Smolka, editors,Handbook of Process Algebra, pages 3–99. Elsevier, 2001.
[16] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Com-

putation, 164(2):234–263, 2001.

