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Abstract will eventually be granted i”, etc. Model-checking al-
gorithms for these logics have been developed mainly for

We introduce a family of long-run average properties of finite-state Markov chains and finite-state Markov decision
Markov chains that are useful for purposes of performance processes [14, 31, 25, 13, 15]. This is certainly a limita-
and reliability analysis, and show that these properties ca tion, because many implementations use unbounded data
effectively be checked for a subclass of infinite-state Blark  structures (counters, queues, stacks, etc.) that cannot al
chains generated by probabilistic programs with recursive ways be faithfully abstracted into finite-state models. The
procedures. We also show how to predict these propertiesquestion whether one can go beyond this limit has been
by analyzing finite prefixes of runs, and present an efficientrapidly gaining importance and attention in recent years.
prediction algorithm for the mentioned subclass of Markov Positive results exist mainly for probabilistic lossy chan
chains. nel systems [6, 9, 26, 28, 2]. Examples of more generic re-
sults are [1, 29]. Very recently, probabilistic aspectsesf r
cursive sequential programs have also been taken into ac-
count [18, 11, 23, 21, 19, 22, 24]. In the non-probabilistic
setting, the literature offers two natural models for su p
grams:

1. Introduction

Probabilistic methods are widely used in the design, analy-
sis, and verification of computer systems that exhibit some e pushdown automata (PDAgee e.g. [17, 20, 32, 5], where
kind of “quantified uncertainty” such as coin-tossing intan  the stack symbols correspond to individual procedures
domized algorithms, subsystem failures (caused, e.g., by and their local data, and the global data is modeled in the
communication errors or bit flips with an empirically eval- finite-state control,

uated probability), or underspecification in some compo- e recursive state machines (RSMge e.g. [4, 3], where the
nents of the system [27]. The underlying semantic model behavior of each procedure is specified by a finite-state
are Markov chains or Markov decision processes, depend- automaton which can possibly invoke the computation of
ing mainly on whether the systems under consideration are another automaton in a recursive fashion.

sequential or parallel. Properties of such systems can for-
mally be specified as formulae of suitable temporal log-
ics such as LTL, PCTL, or PCTL[25]. In these logics,
one can express properties like “the probability of termi-

nation is at leas93%"”, “the probability that each request

Since PDA and RSM are fully equivalent (in a well-defined
sense) and there are linear-time translations between, them
the results achieved for one model immediately apply to the
other. A practical impact of these results can be documented
by successful applications of software tools [7, 8].
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In [18], it was shown that the generalized random walk time, and the probability that a service takes longer than a
problem for Markov chains generated by probabilistic PDA given bound. To formulate such properties, we introduce a
(pPDA for short) is decidable, and that the quantitative family of random variables that capture certain limit vaue
model-checking problem for deterministic Bichi specifi- of runs, and use these variables to define a familyuat
cations is also decidable. This study was continued inindicators A run-indicator classifies each run as “good” or
[11], where the result about deterministic Buchi automata “bad” according to these limit values, and one can thus for-
was extended to deterministic Miller automata (and hencemulate questions about the probability of good/bad behav-
to all w-regular properties). Moreover, it was shown that ior. For example, one can formally express questions like
the model checking problem for the branching-time logic
PCTL is already undecidable, while model-checking the
qualitative fragment of the logic PECTLlis decidable. The
complexity and other algorithmic aspects of the reachabil-
ity problem for probabilistic RSM were studied in greater
detail in [23]. In particular, it was shown that the qualitat
reachability problem (i.e., the question whether the proba
bility of reaching a given configuration from another given
configuration is equal ta) for one-exit probabilistic RSM
is in P. The complexity of the model-checking problem Actually, our treatment is generic in the sense that we use
for probabilistic RSM and.-regular properties was studied general reward functions to assign numeric values to indi-
in [21, 22]. In [19], it was shown how to compute the ex- vidual services. These reward functions can also take nega-
pected value and variance of the reward accumulated alongijve values, and thus we can model arbitrary gains and costs
a path between two configurations, and how to compute the(not only time). For pPDA, we restrict ourselves to non-
average reward per transition for infinite paths. negative reward functions whose values depend both on the
Our Contribution. In this paper we focus on a differ- current control state and the current stack content of angive

ent class of properties of probabilistic sequential progra PDA conﬂguratlon (some of our res_ults also "_Vo”f f(_)r re-
which has not yet been considered in previous works. we Ward fu_nctlons that may take_negatlve values; this is dis-
are interested ifimit propertiesof runs related to service cussed in greater detail In Section 4). We show that the prob-

cycles, and ways to efficientigredictthem after perform- lem .vvhfatherP(Izl) ~ o wherel is one of th? '”tf‘?d‘%‘:ed
ing (and observing) a bounded initial prefix of a run. run—mdlca_ltors??(_lzl) is the probability thaf is satisfied,

An important source of initial inspiration for this study ¢ € [02 l]isa rat!onal constant, and_e {<,5,>,2, :}.'
was [16], where de Alfaro convincingly argues that conven- IS d_emdable. Th's allows to approximaR{/=1) by arbi-
tional temporal logics cannot express important propertie trarily close ratlona[ '°W.er and upper bounds (as we shall
of the long-run average behavior of probabilistic systems. see,P(I=1) can be irrational).
To get some intuition, consider a system which repeatedly  Another issue addressed in this paper isgieslictionof
services certain requests, like a www server, an answeringhe aforementioned limit values. To the best of our knowl-
machine, or a telephone switchboard. Typical performanceedge, this problem has not yet been studied, and there-
or reliability questions like “What is the average time of fore we explain the underlying intuition in greater detail.
servicing a request?” or “What is the probability that a re- In ergodic Markov chains, our limit random variables usu-
quest will be serviced withi seconds?” are not directly ally take just one value with probability one, regardless of
expressible in conventional temporal logics. In [16], each the initial state of the run. For example, the average ser-
run of the system is assigned the average service time device time is the same for “almost all” runs, and hence it
fined adim, (> ., 7(i))/n, whereT (i) is the service ~ does not make much sense to predict it because its value
time for thei™* request which appears along the run. Then, a is determined from the very beginning. (One can still ask
special state predicate is introduced which holds in a given“how fast” a run approaches this limit, but this is a differen
state iff the total probability of all runs where the average question not addressed in this paper.) However, in general
service time is bounded by a given constant is equdl. to Markov chains the average service time can take infinitely
This predicate is then “plugged” into the syntax of tempo- many values with a positive probability, and the probabil-
ral logics such as PCTL or PCTLand a model-checking ity that the average service time stays within given bounds
algorithm for finite-state Markov decision processes is pre changes along the execution of a run. Hence, one can ask
sented. whether it is possible to “predict” the future behavior just

Various important reliability and performance properties by inspecting a bounded prefix of a run. Of course, the an-
cannot be deduced just from the average service time. Ex-swer is negative in general. However, we show that for the
amples are the average deviation from the average servicesubclass of Markov chains that are definable by probabilis-

e What is the probability that the average service time of a
run is betweerd0 and32 seconds?

e What is the probability of those runs where the average
service time is betwees and32 seconds, and the aver-
age deviation fron31 seconds is at mostseconds?

e What is the probability of all runs satisfying the previ-
ous condition and the condition that the percentage of ser-
vices longer thaB7 seconds is at mo&0%?



tic PDA, such predictionare possible, even though these runs of M are denoted’'Path and Run, respectively. Sim-
chains are infinite-state and non-ergodic. In fact, one canilarly, the sets of all finite paths and runs that start with a
efficientlypredict quite complicated run-indicators up to an givenw € FPath are denoted’Path(w) and Run(w), re-
arbitrarily small given errod (the smalle® we choose, the  spectively. In particularRun(s), wheres € S, is the set of
longer prefix of a run must be examined). We refer to Sec- all runs initiated ins.

tion 3 for precise definitions. In this paper we are interested in probabilities of certain

Finally, we study the decidability of the model-checking events that are associated with runs. To evegyS we as-
problem for temporal logics extended with state-predigate sociate the probabilistic spa¢®un(s), F, P) whereF is
based on the limit features introduced in this paper. We the o-field generated by albbasic cylindersRun(w) where
prove that the model-checking problem remains decidablew € FPath(s), andP : F — [0, 1] is the unique prob-
if we only use qualitative variants of these predicates, andability function such tha?(Run(w)) = II/“;'z; where
derive an undecidability result for general predicates. W = S0, -+, 5y, ands; — s;4, for every0 < i < m (if

In this paper we rely on the results of [18, 23, 19]. Due m, = 0, we putP(Run(w)) = 1).
to the lack of space, most results are stated without a proof.
The proofs can be found in [10].

The paper is organized as follows. Section 2 contains
preliminary definitions and some background information.
In Section 3 we introduce a family of random variables
that formally capture certain long-run average properties Definition 2.2. A probabilistic PDA (pPDA)is a tuple
of Markov chains, and define the associated family of run- A = (Q, T, 6, Prob) whereQ is a finite set otontrol states
indicators. We also formalize the notion of prediction. In T'is afinitestack alphabet C QxI'x @ xI"* is atransition
Section 4 we concentrate on probabilistic PDA and show relationsuch that whenevep, X, ¢, «) € 4, then|a| < 2,
how to compute and predict the properties introduced in and Prob is a function which to each transitionX — q«
Section 3. We also show how to handle the associated stat@ssigns a rational probabilityProb(pX — qa) € (0,1]

Probabilistic PDA. In this part we introduce probabilistic
PDA, explain their basic features, and show how to over-
come some of the fundamental difficulties of performing
their quantitative analysis.

predicates. so that for allp € @ and X € T we have that
ZpXan PTOb(pX - qa) =1L
2. Preliminaries In the rest of this paper we adopt a more intuitive nota-

tion, writing pX — g« instead of(p, X,q,«) € 4, and
X 5 gainstead ofProb(pX — qa) = z. The selQ x T'*

of all configurations oA is denoted by’ (A). Given a con-

figurationp X o, we callp X theheadand« thetail of p X «.

To A we associate the Markov chaifia whereC(A)

is the set of states and the transitions are determined-as fol

Markov chains. The underlying semantics of probabilistic lows:

seqyential systems is defined in terms of discrete Markov pe N pe foreachp € Q (here= denotes the empty stack):

chains. e pX 3 5 gafis atransition of\/4 iff pX = gais atran-

Definition 2.1. A (discrete)Markov chainis a triple M/ = sition of A.

(S, —, Prob) whereS is a finite or countably infinite setof Asa working example, we use a simple meNith two

states— C S x S is atransition relationand Prob is a control states, p, three stack symbolg D, Z, and the fol-

function which to each transition — ¢ of M assigns its  lowing transitions:

robability Prob(s — t) € (0,1] so that for everg € S - . . 5
5 P e

pD 25 p1, pD 25 pDD, pzZ L pz

In the paper we us® andR™ to denote the sets of real
numbers and non-negative real numbers, respectively. Wi
also useR 1, to denoteR U {—oo, oo}, andRY, to denote
R* U {oo}. The symbols-co, oo are treated according to
the standard conventions.

s—t

In the rest of this paper we also write > ¢ instead of

Prob(s — t) = x. A pathin M is a finite or infinite se-  The underlying Markov chain ofA is shown in Figure 1
guencew = sg, s1,--- Of states such that; — s;41 for (only the states reachable fros are drawn). Despite the
everyi. Thelengthof a given pathw is the number of tran-  simplicity of A, even basic questions about its behavior re-
sitions inw. In particular, the length of an infinite path is quire a non-trivial attention. For example, one can ask what
o0, and the length of a path wheres € S, is zero. We also  is the probability of reaching the “terminated” staté from

usew(i) to denote the state; of w (by writing w(i) = s the “initial” statesZ (formally, this probability is defined as
we implicitly impose the condition that the length ofis P({w € Run(sZ) | w(i) = pZ for somei € Ny})). In this
at leasti). The prefixso, ..., s; of w is denoted byw'. A particular case, we can rely on standard results about one-

run is an infinite path. The sets of all finite paths and all dimensional random walks and answer that this probabil-



and the number of strongly connected components can be

0.75 COSZO'QS 0.5 0.5 0.5 infinite (even if M is strongly connected, all states can be
\ transient or null). For finite-state systems, the probleoms c
0.5 0.5 0.5 0.5 05 sidered in this paper could be solved relatively easily by em
1 CO plZ pDZ pIDZ pDDZ ploying known techniques for finite-state ergodic Markov
pZ chains. Our solution for pPDA is based on abstracting the
Figure 1. The Markov chain Mz Markov chainM into a finite-state Markov chaiX A so

that certain properties @/ o can be determined by examin-
ing the corresponding properties &f . The definition and

ity is equal to(v/5 — 1)/2 (the “golden ratio”). This shows further discussion is postponed to Section 4.
that the quantities of our interest can take irrational @alu

Let pa and ¢ be configurations of some pPDA, 3. Long-Run Properties of Markov Chains
and letP(pa —* ¢0) be the probability of reachingg
from pa. In [18, 23], the reachability problem was solved In this section we introduce a family of long-run average
by showing thatP(pa —* ¢p) is effectively express- properties of Markov chains. We show how to use these
ible in (R, +,*, <). More precisely, there effectively ex- properties in performance analysis, and we also explain
ists a formula® of first order arithmetic of reals such whatis meant by a faithful and efficient prediction of these
that ® has one free variable and ®[c¢/z] holds iff ¢ = properties.
P(pa —* ¢B). Since(R, +, x, <) is decidable [30], the For the rest of this section, let us fix a Markov chain
problem whetherP(pa —* ¢8) ~ p, where~ € M = (S,—, Prob) and an initial statesy, € S. We also
{<,<,=,>,>} andy is a rational constant, is decidable fix a reward functionf : S — R. The reward associated
as well—it suffices to check whether the (closed) formula with a given state may correspond to, e.g., the time spent
Jz.(® Azx~yp) is valid or invalid. HenceP (pa —* ¢) can in the state, certain costs or gains collected by visitirgy th
also be effectively approximated—for an arbitrarily small state (note that the reward can also be negative), or a ¢ne-bi
d > 0 one can effectively compute rationdlsU such that  marker specifying whether the state is “important” or not.

L <P(pa—"qBf) <U andU — L < ¢. Since the for- The request-service cycles are modeled as follows. Let
mula® can be constructed so that the existential/universal F C S be a subset afiggers Letw € Run(so) be a run
quantifiers are not alternateddnand the size of is poly- with infinitely many triggersu (i1 ), w(iz), ..., and letw]j]
nomial in the size opa, ¢3, andA, one can apply the pow-  denote the subword(i;_1 + 1),--- ,w(i;) of w, where
erful result of [12] and conclude that the problem whether i, = 0. Hence,wlj] is the subword ofv consisting of all
P(pa —* gB) ~ oisin PSPACE states in between thg-1*" trigger (not included) and the

Observe that once a certain number (such as thej* trigger (included). Intuitivelyw[j] corresponds to the
probability of termination) is effectively expressible in j* service. According to our definition, a new service starts
(R, +, %, <) in the sense explained above, it can be used asimmediately after finishing the previous service. (Thisas n
a “known constant” in other first-order expressions which a real restriction because the reward function can be set up
define other numbers. As long as these expressions contaiso that the states visited before the actual start of the ser-
just multiplication, addition, and inequality over realsey vice are ignored, i.e., have zero reward.) Slightly abusing
can again be encoded inf&, +, , <). Since nothingisac-  notation, we usef(w[j]) to denote the total reward accu-
tually evaluatedduring this process, there is no loss of pre- mulated inwlj], i.e., f (w(j]) = sz:ij,lﬂ fw(k)).
cision and the newly expressed numbers enjoy essentially The properties of runs we are interested in here are for-
the same features as the “old” ones. In particular, they canmally defined asndicators An indicator is a random vari-
be used as known constants when expressing other numable I : Run(sg) — {1,0} which classifies the runs as
bers, and their values can be effectively approximateds Thi “good” or “bad” according to some criterion. For example,
approach has been used in [19] to express the conditionathe following simple indicator, is obviously relevant in
expected number of transitions needed to reach a configOur setting:
urationge from pX under the condition thaje is indeed
reached fronpX. In this case, the “known” numbers are Iing(w) = {
certain probabilities of the for®(rZ —* te).

The previous two paragraphs indicate how to overcomeWe are primarily interested in those runs where
the problem that numerical features of our interest canI;,;(w) = 1, because only then the limit features in-
take irrational values. Another fundamental difficultyhisit troduced below make a good sense. The runs for which
Markov chains generated by pPDA are not necessarily er-I,,; equals0 are those where the service cycle is either
godic. In fact, they are generally not strongly connected, eventually terminated, or the last service is never finished

1 if w(s) € F for infinitely manyi’s;
0 otherwise.



Since this can be seen as an er®(/[;,;=1) is an im-
portant quantitative information about the behaviorsgf

In general,P(I;,;=1 A V=_1), whereV is one of the
random variables introduced above, can be positive. How-

For example, the quantitative model-checking problem for ever, as a byproduct of our results we obtain that this can-

linear-time properties definable via deterministic Bl
tomata is obviously reducible to the problem of computing

P(Iins=1) in any class of models that is closed under syn-

chronized product with a deterministic finite-state autema
ton (probabilistic PDA form such a class). The decidabil-
ity of the model-checking problem for deterministic Biichi

automata and pPDA has been shown in [18] by employ-

ing non-trivial methods. Hence, even computii/;,,; =1)
can be a difficult problem in general.

Before introducing other indicators, let us explain what
is meant by “predictability” of an indicator.

Definition 3.1. Let I be an indicator. We say that is

well-predictable (oveRun(sg)) if for eachd > 0 there

effectively exismn € N and an indicatorG™ such that
P(G™#£I) < §, and the value ofs™ (w) is effectively com-
putable from the prefix ab of lengthn.!

Hence,G" efficiently “guesses” the value dfafter seeing
the firstn states of a run, and the “quality” of that guess is
measured by.

In general, indicators are rarely well-predictable. An im-

portant outcome of our work is that a large class of prac-

tically relevant indicators is well-predicable in the dasf

not happen for Markov chains generated by pPDA satisfy-
ing the condition of Section 4.

Let V be one of the above defined variables, and let
¢, u € Ri. TheindicatorI [V, ¢, u] is defined as follows:

1 ifV(w)# Landl < V(w) <wu;
IV, ¢ ul(w) *{ 0 otherwise.

We also consider “Boolean combinations” of the indicators

above (wherd and0 are interpreted asue andfalse re-
spectively). Thus, we obtain a familyy consisting ofl;,;,

all I[V, ¢, u], and their Boolean combinations. To show the
relevance of Boolean combinations, let us formalize the
properties mentioned in Section 1 (assume that the reward
function corresponds to the time spent in a given state).

e I[A, 30, 32] defines all runs where the average service
time is betweers0 and32.

e I[A,30,32] AI[D[31],0, 5] defines all runs where the av-
erage service time is betwe8f and32, and the average
deviation of service time frorf1 is at most.

e I[A,30,32] A I[D[31],0,5] A I[R[37, 0], 0,0.2] defines
all runs satisfying the previous condition and the condi-
tion that the percentage of services longer tBarns at

Markov chains generated by pPDA (at least, forthose pPDA  most20%.

that satisfy a mild and effectively checkable condition for
mulated in Section 4).

Let I € Z. We study three basic algorithmic problems:

Now we define other random variables and the asso- e ComputeP(I=1). SinceP(I=1) can be irrational for

ciated indicators. Letk € R, \,v € Ri., and let
B(w[j], A,7) return eitherl or 0 depending on whether
A < f(w[j]) < « or not, respectively. We define the ran-
dom variables

Alw) = nlLH;QM
Dlx)(w) = lim 21 |f(:[]])—n|
n B(wl[j], A,
RXAA(w) = Tim_ 2 (n UL A

If the corresponding limit does not exist f,; (w) = 0, the
above variables take the value

The variableA returns the average reward per service in
agiven run. The variabl®|x] returns the average deviation
of the reward per service from a given centein a given
run. Finally, the variable?[)\, 7] returns the percentage of
services whose rewards are within the bouhds.

1 Due to the Markov property, the last state of the prefix dosta com-
plete information that is relevant for predicting the fetursehavior;
one cannot learn anything “fundamentally new” by inspegtime pre-
vious states in the prefix. However, this inspection can ntag&epre-
diction moreefficient as we shall see in Section 4.

pPDA, we can only hope to solve this problemin the same

way as the reachability problem was solved in [18, 23]

(see Section 2). That s, the task is to show Pat=1) is

effectively expressible ifR, +, %, <). From this we ob-
tain the decidability of the problem whethB(I=1) ~ o
for a given rationab and~ € {<,<,>,> =}. In par-
ticular,P(I=1) can be effectively approximated up to an
arbitrarily small error (e.g., by a simple binary search).

o If I is well-predictable, design a suitalii&’. The indica-
tor G™ should satisfy the “efficiency” requirements dis-
cussed after Definition 3.1.

e Since the predicat®(/=1) ~ o is either valid or in-
valid in each states € S, it can be “plugged” into
state-based temporal logics such as LTL, PCTL, or
PCTL* in the style of [16] (the state predicate which
has been introduced and studied in [16] corresponds to
P(I[A, £,u]=1) = 1). The question is whether there is a
model-checking algorithm for these extended logics.

Note that the conditional probabilitP(I=1 | I;=1)
(which is relevant in situations whe®(l;,;=1)<1) is
expressible from the probabilitieB(I=1 A I;,;=1) and
P(Img=1). Hence, if we manage to solve the three prob-
lems above, our results apply alscROI=1 | I;,;=1).



4. Results for pPDA cannot be modeled as a single pPDA transition—the pre-
viously pushed symbols must be removed one by one. The
In this section we examine and solve the three problemsartificially-added intermediate configurations can infloen
given at the end of Section 3 for pPDA and a general classthe properties of our interest, and hence the obtainedtsesul
of reward functions that take into account both the current can become irrelevant. However, usihgone can “switch
control state and the current stack content. All these re-off” the intermediate configurations so that they do not con-
sults work under a mild and effectively checkable condi- tribute to the accumulated reward.
tion, which is formulated and explained at the beginning of  As already mentioned in Section 2, Markov chains gen-

the next subsection. erated by pPDA are not necessarily ergodic. Nevertheless,
For the rest of this section we fix a pPDA = guestions about long-run average behavior are inherestly r
(Q,T, 6, Prob) and a subsef C Q of control states. Acon-  lated to concepts of ergodic chains (in particular, statign
figurationpa € C(A) is atrigger iff p € F. The notionsin-  distributions would be very useful in here). Fortunatetgo
troduced in Section 3 can now be applied to the chidix. can establish a surprisingly powerful link to this theory by

Since the problems formulated at the end of Section 3 areabstracting the Markov chaifi/ into anotheffinite-state
obviously undecidable for general reward functions, we re- Markov chainXa. The chainXa has originally been intro-

strict ourselves to the following subclass: duced in [18]. Here we work with a slightly modified ver-
sion of XA which better suits our purposes, and present a

Definition 4.1. A reward functionf : C(A) — R is well- collection of new results abou€ » which are then used to

definedif there areg,h: Q — R* andc:T — R* such  golve the problems of our interest. The definition'f is

that f(par) = g(p) + h(p) - (Xyerc(Y) - #y(a)) for all given in the next subsection.

pa € C(A), where#y («) denotes the number of occur- ) ) )

rences ofY in a. We say thatf is simple (or lineay) iff The Markov chain Xa. Let pZa be a configuration of

h(p) = 0 (or h(p) = 1, resp.) for allp € Q. A, whereZ € I' anda € I'*. We say that a rumv <

Run(pZ«) is cleanif all configurations inw are of the form

In the rest of this paper we use(a) to denote ¢S, where3 e I't. In other wordsg is never accessed in
> yercY) - #vy(a). Sometimes we abuse our notation by a clean run opZa. In the rest of this section we study only
consideringy andh as standalone simple reward functions. properties of clean runs (we ugéean (pZa) to denote the

In fact, for certain indicators in our famil§ (see Sec-  set of all clean runs oRun(pZ«a) when defining certain
tion 3) we can handle even more general reward functionsconditional probabilities). This is no restriction, besawve
whereg and h can also take negative values. To simplify are actually interested in properties of runs from a given
our presentation, we restrict ourselves only to thgsad initial configurationgeZy, which corresponds to the start-
h that are non-negative. In the proof of Theorem 4.2 we ex- ing point of a given recursive sequential program. Since we
plain in greater detail where and under what conditions we can safely assume tha, is a special bottom-of-the-stack
can deal with genergl andh. marker which cannot be removed, all runsRén(qoZ)

Simple reward functions can model gains and costs are clean and our results apply.
which do not depend on the history of activation records  For our purposes it suffices to consider clean runs
(i.e., the stack of procedure calls that have not terminatedinitiated in configurations of the formpZ. Let w =
yet). A simple example is execution time—one can reason-poag, p1a - - be a clean run oRun(pZ) (i.e., poog =
ably assume that the time spent in a given procedure forpZ). A configurationp;«; of w, wherei > 0, is minimalif
given input data does not depend on the current stack of ac{a;| < |ay| for all j > i. Thek-th minimumof w, denoted
tivation records. On the other hand, if one is interested in miny (w), is thek-th minimal configuration ofv. Theindex
e.g. memory consumptions, then the total amount of allo- of the k-th minimum, denotednd (w), is thei such that
cated memory in a given configuration does depend on thew(7) is thek-th minimum ofw. We say thatning (w) isin-
amount of memory allocated in the individual procedures creasingf & > 1 and the stack length efiin (w) is strictly
stored in the stack, and here one can use linear reward funclarger than the one ahin_; (w). Otherwise ming(w) is
tions. The reason why we also introduced the funcfion non-increasing
in Definition 4.1 is that in certain situations we wish not Intuitively, the minimal configurations of a given run are
to “count” some configurations. For example, if we want exactly the positions where one can forget about the stack
to model an unbounded integer variable which is used in content below the top-of-the-stack symbol, because these
a given procedure, we might encode its value in unary by symbols are never accessed in the future. This intuition is
pushing a special symbol to the stack. Bounded changedormally captured in our next definitions.
to the variable (such as increment or decrement) can eas- For allp,q € Q andZ € T, we use[pZq| to abbrevi-
ily be implemented as single pPDA transitions. However, ateP(pZ —" ¢e), and[pZ1] to abbreviatd -3, [pZ].
unbounded changes such as setting the variable batk to Hence[pZ1]is the probability that the stack never becomes



whose footprints ar@ot paths in Xa. For example, the

5= £ 20-5 Vi1 £ 23_4\/5 run sZ,sZ,sZ,--- of Run(sZ) in A has the footprint
52,0 I+ ) > (sZ,0),(sZ2,0),(sZ,0),--- whichis nota path ifX 5. Let

pD,0
A V5—1 A
V5 s sl los 1 sl s-vs BSCC  be the set of all bottom strongly connected com-
R il \/5[1 Ty ponents ofX A (a BSCC is a nonempty subs@tof states
< ( suchthatforalk, t € C we have that —* ¢, and whenever
pZ70 pI,O \/5_1 pD7+ .
| - I 05 s —* u, thenu € C). To eachC' € BSCC o we associate
4 ' the setRun(pZ, C) consisting of alw € Clean(pZ) such
Figure 2. The Markov chain X5 that the footprint ofw is a path inX A which hits the com-

ponentC. We also define a random variabt#try which

for everyw € Run(pZ) returns eithetw(ind;(w)) where

j € Nis the least number such th&t; (w) € C for some

C € BSCCp, or L ifthere is no such. In other words, if

w is a clean run whose footprint hits a BSCCXf, then
Entry(w) is the configuration which “enters” this BSCC.
(¢Y,m), whereqY is the head ofnin;(w), andm is ei- Note that since XA has finitely many states,
ther + or 0 depending on whethemin;(w) is increas-  © (Bun(pZ, C)) is effectively expressible iR, +, x, <)

ing or non-increasing, respectively. By adapting the proof By employing standard methods for finite-state Markov
technique of [18], one can easily show that for every chains (transition probabilities of o can be handled fully

empty along a run oRun(pZ). Equivalently, one can also
say thafpZ1] is the probability ofClean (pZ).

For every configurationpZ and everyi € N we de-
fine a random variableX; over Run(pZ) as follows: if
w is not clean, thenX; = 1. Otherwise,X;(w) =

n > 2 and all (¢Ys,m1), -, (gnY,,mn) such that symbolically, there is no need to evaluate them). More-
7’(/\?:_11 Xz:(qui,mi)) ~ 0 we have that the probabil- over, it can easily be shown that
ity - Z P(Run(pZ,C) | Clean(pZ)) =1
P(Xn=(gnYn,ma) | )\ Xi=(a:Y:,m:)) cepseca
=1 ConsequentlyP(Entry=_L | Clean(pZ)) = 0.
is equal either to 3 _lanYnll g , , ,
" [gn—1Yn—1T] Solving the problems of Section 3 for pPDA.In this sub-
tn-1¥n—1"0n¥n 2 section we still work with the pPDA which has been fixed

> x[rZqn]lgnYnT] ) [gnYn 1] at the beginning of Section 4. However, we need to adopt

1Yo 1 B 2Y, [gn—1¥n-11] tn 1Yo 1 Bgn ¥ [gn—1Yn—11T] one additional assumption abofit which is crucial in al-

depending on whethen,, is equal to+ or to 0, respec- most all proofs:

tively. In particular, observe that this probability is sd ~ “Forall p,¢ € @ andX € T, the conditional expected
pendent of the values ok7,..., X,,_» and the value of number of transitions needed to reaghfrompX, under

n. Moreover, it is also independent of the initial config- the condition thage is indeed reached fromX,, is finite”
uration pZ. Hence, we can define a finite-state Markov Formally, we define a random variab$eps which to ev-
chainX A whose states are pairs of the fofgY, m), where ery w € Run(pX) assigns either the leagtsuch that
[¢Y 1] > 0, and the probability of¢Y, m) — (¢'Y’,m’) is w(j) = ge, or L if there is no sucly. Our assumption says
given by the above term whetg _1Y,,_1, ¢,Y,, andm,, that E(Steps | Steps#.1) is finite for all p, ¢, and X . Us-

are substituted witlyY", ¢'Y”’, andm/, respectively. More  ing the results of [19], one can effectively check in poly-
precisely,(¢Y,m) — (¢'Y’,m') is a transition inX 5 iff nomial space whether this assumption is satisfied or not for
the above term makes sense and produces a positive valua given pPDA. In terms of recursive sequential programs,
which then defines the probability of this transition. Since the assumption corresponds to the requirement that if we
this term contains only summation, multiplication, diisj restrict ourselves to terminating computations, then the e
and probabilities of the fornipX¢] and [pX 1] which are pected termination time of each procedure is finite. From a
known to be effectively expressible (R, +, x, <) (see Sec-  practical point of view, this assumption is harmless beeaus
tion 2), we can conclude that the transition probabilities o its violation indicates a severe design error anyway. From

X are also effectively expressible (R, +, *, <). a theoretical point of view, this assumption allows to estab
As an example, consider again the pPDAdefined in lish useful connections between the propertied£§ and

Section 2. The probabilitypIp] is equal to(v/5 — 1)/2, Xa, as we shall see in the forthcoming theorems.

which means thap/1] = (3 — v/5)/2. The Markov chain To simplify our notation, for the rest of this section we

X i is depicted in Figure 2 (only the states reachable from fix a well-defined reward functiofi and a distinguisheithi-

(sZ,0) are drawn). tial configurationgy Z, of A such that the symbdf, cannot
To each cleanw € Run(pZ) we associate itoot- be removed from the stack (this assumption is not restectiv

print X5 (w), Xa(w), - - - . Note that there can be clean runs because one can always add a special bottom-of-the stack



symbol without influencing the behavior of a given pPDA).
Hence, all runs ofjyZ, are clean. Some of our results are
formulated for configurations of the forp¥ (which means

Itis easy to see that for almost all cleanc Run(pX) we
have thatl’ (w) = £(3, C), whereV (w) is computed with
respect to the new reward functigh Now it suffices to ap-

that they hold generally), and some of them are formulatedply the results of the previous paragraph.

for the distinguished initial configuratiap Z,.

Let us defineL¢ to be the set of alB € I'* such that

We start by presenting a crucial result which says that¢ < £(C,3) < w. It follows from our discussion that

the (in)validity of all indicators in our familyZ for a given

w € Run(pZ) is essentially determined only by the BSCC
of X hit by w, and by the stack content in the configu-
ration which enters this component. To formulate this pre-
cisely, we need to introduce another indicattit[ L], where

L C T"* is aregular language:

1
0

Hit[L](w) = { if Entry(w) =pXpandg € L;
otherwise.

Theorem 4.2. Let] € 7 be an indicator anghZ a configu-

ration of A. For everyC € BSCC  there effectively exists

a regular languagel~ C I'* such thatP(I = Hit[L¢] |

Run(pZ,C)) 1. Moreover, if the considered reward

functionf is simple, therL < equals eithel™ or (.

Proof sketch.Obviously, it suffices to consider indicators of
the form I,y andI[V, ¢, u] (Boolean connectives are then
no problem, because these can be implemented just by pe
forming an appropriate operation on the constructed regula
languages).

First, let us consider the indicatdy,. It can be proved
(by adapting the methods of [19]) that the indicalgy re-
turns the same value for almost all runs Btn(pZ, C),
and that this value is expressible. Hence, the language
is equal either t&™* or to (.

Let us consider an indicator of the forfV, £, u]. The
argument can be split into two parts. First, we consider
the special case when the Markov chain is ergodic.
We show that then there is a consténe R express-
ible in (R, +, %, <) such that for almost all clean rumsof
Run(pZ) we have thaV’(w) = 6. This is the most involved
construction in this paper. It requires specific technidaes
each of the three variables D[x], andR[\, v]. In the case
of A we can also handle well-defined reward functighs
where the underlying andh may takenegativevalues (un-

der some additional assumptions, which are satisfied, e.g.

for all simple reward functions). However, we did not man-
age to extend this result tB[x] and R[\, v], and therefore
we adopted the simplified setting in Definition 4.1.

Then, we consider the general case. Since each BSCC
of X is an ergodic Markov chain and since the value of

V does not depend on a finite prefix of a run, we have that

V returns the same valyés, C) for almost all runs whose
footprints enter the componett with a given stack con-
tentss. Moreover£ (3, C) is expressible as follows. We de-
fine a new reward functiofi’ by putting f'(pa) = (g9(p) +
h(p)-¢(8))+h(p)-c(cr). Hence f' (pa) = f(paf). Now we
choose an arbitranyX such tha{p X, m) € C for somem.

P(I = Hit[Lc] | Run(qoZo,C)) = 1. We prove that the
languagel - is regular. The proof is based on the follow-
ing observation: One can show that there effectively exists
n € N such that for all3,v € T'"* wherec¢(8) > n and
c(v) > n we have thap € L¢ iff v € L. The proof is
obtained by considering the variablds D[], andR[\, 7]
separately, the argument is not generic.

Let Teso = {Z € T | ¢(Z) > 0} be the set
of c-important symbols. Observe that for eagh € T,
the value ofc(3) depends only on the subsequence of
c-important symbols contained i, which we call the
c-spanof . For a giveny € '}, let L(~y) be the set of all
[ € T'* whosec-span isy. Obviously, each.() is a regu-
lar language. Moreover, we either have thét) C L¢, or
L(v) N Le = 0. Due to the observation formulated in the
previous paragraph, we see that there is an effectively com-

r;_:)utable constant’ such that the union of all.(y"), where

the length ofy’ is larger thann/, either forms a subset of
L¢, oris disjoint with L. Now it is easy to see thdts is
effectively regular. O

Theorem 4.3. Let L C TI'* be a regular language,
pZ a configuration of A, and C € BSCCA. Then

P(Hit|L|=1| Run(pZ,C)) is effectively expressible in
(R, +, *, <).

Proof sketch.We construct another pPDA’ which has the
same stack alphabet @s and a special control stateicc
such thatP(Hit[L]=1 | Run(pZ,(C)) is equal to the con-
ditional probability of reaching a configuration of the form
suce ain A’, wherea € L, under the condition that a con-
figuration with the control stateucc is reached. Sincé

is regular, this conditional probability can be expressed u
ing the results about random walks presented in [18]00

As a corollary to Theorem 4.2 and Theorem 4.3 we obtain
the following (wheregy Zy plays the role of initial configu-
ration):

Theorem 4.4. Let I € 7 be an indicator. The probability
P(I=1) is effectively expressible (iR, +, x, <). Moreover,
if the considered reward functiofiis simple, then the size
of the resulting formula is polynomial in the sizeff and
the alternation depth of quantifiers is fixed.

Proof sketch.Due to Theorem 4.2, Theorem 4.3, and the
fact that all runs ofRun(q9Z,) are clean we obtain that
P(I=1) equals

> P(Hit[Le]=1 | Run(qoZo,C)) - P(Run(go Zo, C))

CeBSCC A



where the probabilitie (Hit[Lo]=1 | Run(qoZo,C)) the simple formulaQ>°(check A P=/2(I=1)) becomes
and P(Run(qoZo,C)) are expressible in(R,+, *, <). undecidable (the formula says “there is a reachable state
Hence P(I=1) is also expressible. The result about simple satisfying the predicatesheck and P='/2(I1=1)"). Ob-
reward functions follows by a detailed analysis of the con- serve that the undecidability result doest hold for all
structions employed in Theorem 4.2 and Theorem 4.3 1 € Z, because some of these indicators are trivial (for
example,/[A,10,11] A I[A, 12,13] is equivalent tdfalse
which makes the considered temporal formula unsatisfiable
and hence trivially decidable). We say tliat 7 is nontriv-

ial if there is a pPDAA; and configurationsY’, fY such
thattY = P=1(I=1) andfY | P=°(I=1). For techni-

cal convenience, we also require that?] = [fY1] = 1.

Consequently, the problem whethB({I=1) ~ p, where

o a rational constant and € {<, <, >,>, =}, is decid-
able. Moreover, for simple reward functions we obtain an
EXPTIME upper bound. Theorem 4.2 can also be used to
prove the following:

;:‘;?reg ;)1'5' Bach I € T is well-predictable (over Theorem 4.6. Let I € 7 be a nontrivial indicator. Then
d0<0))- the model-checking problem for pPDA and the formula
Proof sketch.Let§ > 0. Due to Theorem 4.2, it suffices to ~ ¢~°(check A P=1/2(I=1)) is undecidable.

compute a sufficiently large satisfying the following prop-
erty: the probability of allv € Run(qoZy) such that the po-
sition of Entry(w) in w is beyond the prefix of length, is
bounded by. The value ofG™(w) is then defined as fol-
lows: we take the first, configurations ofw and identify

the “developing minimal configurations”, i.e., those con-
figurations which become minimal configurationsofin-

der the assumption that the stack length in all configura-
tions w(n), w(n+1),... is not smaller than inv(n—1).
Thus, we also construct the “developing footprint” of the
run. Then we simply check whether this developing foot-
print hits a BSCC ofX a. If not, G™(w) returns0. Other-
wise, we identify theFntry configurationpX 8 and check
whetherg € L, where(C' is the corresponding BSCC. If

B € Lc, thenG™(w) = 1. Otherwise G" (w) = 0. O

Proof sketch.We reduce (a slightly modified version of) the
PCP problem: An instance are two sequenees. ., z,
andys,...,y, of words over the alphab& = {a,b, e}
such thafx;| = |y;| for eachl < i < k. The question is
whether there is a finite sequenge-: - - , i), of indexes such
thatz;, - - - x;, andy;, - - -y;, arethe same words after eras-
ing all occurrences ofs”.

For a given instance of PCP, we construct a pPDRA
and its configurationyZ such thatgZ = (>°(check A
P=1/2(I=1)) iff the PCP instance has a solution. The
pPDA A is obtained by extending the pPD&; which wit-
nesses the non-triviality of. The considered reward func-
tion does not count the newly-added stack symbols, which
means thatY 3 = P=1(I=1) andfY 3 | P=°(I=1) for
an arbitrary sequence of the newly-added stack symbols
Observe that the algorithm for computitg (w) for given (here we use the assumption thaf(] = [fY1] = 1).

n andw is rather efficient, because the developing minima  From the (new) initial configurationZ, the automaton
are identified just by comparing the stack length in configu- A tries to “guess” a solution to our instance of PCP by stor-
rationsw(0), . .., w(n—1). Of course, we also need to com- Ng Pairs of wordg(z;, ;) successively to the stack. Since
pute the transitions ok o (which can be done in polyno- i @ndy; have the same length, this is implemented by push-

: . : ) . ing pairs of letters fronk. For example, ifr; = aab and
mial space in the size ah), but this expensive computa-

L . . y; = bae, then the pair(x;,y;) is stored as a sequence
tion is performed just once and can be done before startingos three stack symboléz, b), (a, a), (b, ). After storing a

the on-line analysis of a run initiated 4 Zo. chosen pair of words, the automaton can either go on with
Model-checking temporal logics with state predicates. ~ 9uessing another pair of words, or entest@ckingconfig-

Let M be a Markov chain/ € Z an indicator, andf a uration. This is done by changing the control state fripm
ovard o, For vy © (= <) g ey (0 The predestetl s st oxacty ol ceck
rational constang we define atate predicaté®~¢(I=1) as 9 9 | P

. i DD ; ter here, they can have arbitrarily non-zero values. The cru
follows: a states of M satisfiesP™¢(I=1) iff P(I=1) ~ ¢ cial part of the construction is the next phase where we ver-

(hereP(I=1) is considered in the probabilistic space over jfy that the guess was correct, i.e., that the words stored in

Run(s)). State predicates can be plugged into state-basedhe first and the second component of stack symbols are the

temporal logics (such as LTL, PCTL, or PCT)lin the style same (whene” is disregarded). For this we use the follow-

of [16], and thus one can combine the expressive powering transitions (since the probability distribution is alye

of state predicates with temporal operators. As we alreadyuniform, we do not write the transition probabilities expli

mentioned in Section 1, the model-checking problem with itly; the symbol {” separates alternatives):

pPDA is decidable fow-regular properties [18, 11, 21] and

the qualitative fragment of PECTL11]. (2) — fY | ve, ©(z,b) — 1Y | b,
First we show that if these logics are extended with pred- ,2) — ve, (2, 8) — ve,

icates of the formP=1/2(I=1), then even model checking vZ —tY | fY, 0 > tY | fY

cX - vX |0X, v(a,z) —tY |ve, 0(z,a) — fY | e,

1

(a
(b
(o

1



Herez ranges ovel:, and X ranges over the stack alpha-
bet. We claim that the checking configuration satisfies the
predicateP="/2(1=1) iff the previous guess was correct.
To see this, realize that the checking configuration satis-
fiesP=1/2(I=1) iff the probability of reaching a configu-
ration havingtY” as its head is exactly To reveal the sub-
tlety of the construction, let us evaluate this probabfiity
e.g., a configuration(a, a)(a, ¢)(e,a)(b, b)Z. By inspect-

ing the above rules, one can easily confirm that the proba- ;]
bility is equal to

El

[10]

[11]

[13]
1 1 1 1 1 1 1 1 1
5 <(1~§+1-§+0-§+1-2—4)+(0~§+0-2—2+1-§+1~2—4))

[14]
Hence, this probability is equal %)(0.1101 +0.0011). The
binary numberg).1101 and 0.0011 are “complementary”
and their sum is equal to. It is easy to verify that this
“complementarity” breaks down iff the words stored in the
first and the second component of stack symbolsiatéhe

same, in which case the probability is different frém O

[15]
[16]

[17]

Now we prove that if we only allow qualitative predicates

18
of the formP=1(I=1), the situation becomes different: 18]

Theorem 4.7. The model-checking problem for pPDA and
w-regular properties as well as qualitative PECTformu-

lae extended with qualitative state predicates of the form
P=1(I=1), wherel € Z, is decidable.

[19]

[20]

In particular, Theorem 4.7 applies to the predicate
P=Y(I[A, £,u]=1) which has been considered in [16] for
finite-state Markov decision processes.

—
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