
Analysis and Prediction of the Long-Run Behavior of Probabilistic
Sequential Programs with Recursion

(Extended Abstract)

Tomáš Brázdil1,∗ Javier Esparza2,† Antonı́n Kučera1,‡

1Faculty of Informatics, Masaryk University in Brno,
Botanická 68a, 60200 Brno, Czech Republic.{brazdil,kucera}@fi.muni.cz

2Institute for Formal Methods in Computer Science, University of Stuttgart,
Universität str. 38, 70569 Stuttgart, Germany.esparza@informatik.uni-stuttgart.de

Abstract

We introduce a family of long-run average properties of
Markov chains that are useful for purposes of performance
and reliability analysis, and show that these properties can
effectively be checked for a subclass of infinite-state Markov
chains generated by probabilistic programs with recursive
procedures. We also show how to predict these properties
by analyzing finite prefixes of runs, and present an efficient
prediction algorithm for the mentioned subclass of Markov
chains.

1. Introduction

Probabilistic methods are widely used in the design, analy-
sis, and verification of computer systems that exhibit some
kind of “quantified uncertainty” such as coin-tossing in ran-
domized algorithms, subsystem failures (caused, e.g., by
communication errors or bit flips with an empirically eval-
uated probability), or underspecification in some compo-
nents of the system [27]. The underlying semantic model
are Markov chains or Markov decision processes, depend-
ing mainly on whether the systems under consideration are
sequential or parallel. Properties of such systems can for-
mally be specified as formulae of suitable temporal log-
ics such as LTL, PCTL, or PCTL∗ [25]. In these logics,
one can express properties like “the probability of termi-
nation is at least98%”, “the probability that each request

∗ Supported by the Czech Science Foundation, grant No. 201/03/1161.
† Partially supported by the EPSRC Grant “An Automata-theoretic Ap-

proach to Software Model Checking” and the DFG project “Algo-
rithms for Software Model Checking”.

‡ Supported by the Alexander von Humboldt Foundation and by the re-
search center Institute for Theoretical Computer Science (ITI), project
No. 1M0021620808.

will eventually be granted is1”, etc. Model-checking al-
gorithms for these logics have been developed mainly for
finite-state Markov chains and finite-state Markov decision
processes [14, 31, 25, 13, 15]. This is certainly a limita-
tion, because many implementations use unbounded data
structures (counters, queues, stacks, etc.) that cannot al-
ways be faithfully abstracted into finite-state models. The
question whether one can go beyond this limit has been
rapidly gaining importance and attention in recent years.
Positive results exist mainly for probabilistic lossy chan-
nel systems [6, 9, 26, 28, 2]. Examples of more generic re-
sults are [1, 29]. Very recently, probabilistic aspects of re-
cursive sequential programs have also been taken into ac-
count [18, 11, 23, 21, 19, 22, 24]. In the non-probabilistic
setting, the literature offers two natural models for such pro-
grams:

• pushdown automata (PDA), see e.g. [17, 20, 32, 5], where
the stack symbols correspond to individual procedures
and their local data, and the global data is modeled in the
finite-state control;

• recursive state machines (RSM), see e.g. [4, 3], where the
behavior of each procedure is specified by a finite-state
automaton which can possibly invoke the computation of
another automaton in a recursive fashion.

Since PDA and RSM are fully equivalent (in a well-defined
sense) and there are linear-time translations between them,
the results achieved for one model immediately apply to the
other. A practical impact of these results can be documented
by successful applications of software tools [7, 8].

Formal models for probabilistic recursive programs are
obtained as probabilistic variants of PDA and RSM. The un-
derlying semantics is given in terms of infinite-state Markov
chains, and the two models are again equivalent with re-
spect to this semantics. The existing results are describedin
greater detail in the following paragraph.

In [18], it was shown that the generalized random walk
problem for Markov chains generated by probabilistic PDA
(pPDA for short) is decidable, and that the quantitative
model-checking problem for deterministic Büchi specifi-
cations is also decidable. This study was continued in
[11], where the result about deterministic Büchi automata
was extended to deterministic Müller automata (and hence
to all ω-regular properties). Moreover, it was shown that
the model checking problem for the branching-time logic
PCTL is already undecidable, while model-checking the
qualitative fragment of the logic PECTL∗ is decidable. The
complexity and other algorithmic aspects of the reachabil-
ity problem for probabilistic RSM were studied in greater
detail in [23]. In particular, it was shown that the qualitative
reachability problem (i.e., the question whether the proba-
bility of reaching a given configuration from another given
configuration is equal to1) for one-exit probabilistic RSM
is in P. The complexity of the model-checking problem
for probabilistic RSM andω-regular properties was studied
in [21, 22]. In [19], it was shown how to compute the ex-
pected value and variance of the reward accumulated along
a path between two configurations, and how to compute the
average reward per transition for infinite paths.

Our Contribution. In this paper we focus on a differ-
ent class of properties of probabilistic sequential programs
which has not yet been considered in previous works. We
are interested inlimit propertiesof runs related to service
cycles, and ways to efficientlypredict them after perform-
ing (and observing) a bounded initial prefix of a run.

An important source of initial inspiration for this study
was [16], where de Alfaro convincingly argues that conven-
tional temporal logics cannot express important properties
of the long-run average behavior of probabilistic systems.
To get some intuition, consider a system which repeatedly
services certain requests, like a www server, an answering
machine, or a telephone switchboard. Typical performance
or reliability questions like “What is the average time of
servicing a request?” or “What is the probability that a re-
quest will be serviced within3 seconds?” are not directly
expressible in conventional temporal logics. In [16], each
run of the system is assigned the average service time de-
fined aslimn→∞(

∑n
i=1

T (i))/n, whereT (i) is the service
time for theith request which appears along the run. Then, a
special state predicate is introduced which holds in a given
state iff the total probability of all runs where the average
service time is bounded by a given constant is equal to1.
This predicate is then “plugged” into the syntax of tempo-
ral logics such as PCTL or PCTL∗, and a model-checking
algorithm for finite-state Markov decision processes is pre-
sented.

Various important reliability and performance properties
cannot be deduced just from the average service time. Ex-
amples are the average deviation from the average service

time, and the probability that a service takes longer than a
given bound. To formulate such properties, we introduce a
family of random variables that capture certain limit values
of runs, and use these variables to define a family ofrun-
indicators. A run-indicator classifies each run as “good” or
“bad” according to these limit values, and one can thus for-
mulate questions about the probability of good/bad behav-
ior. For example, one can formally express questions like

• What is the probability that the average service time of a
run is between30 and32 seconds?

• What is the probability of those runs where the average
service time is between30 and32 seconds, and the aver-
age deviation from31 seconds is at most5 seconds?

• What is the probability of all runs satisfying the previ-
ous condition and the condition that the percentage of ser-
vices longer than37 seconds is at most20%?

Actually, our treatment is generic in the sense that we use
general reward functions to assign numeric values to indi-
vidual services. These reward functions can also take nega-
tive values, and thus we can model arbitrary gains and costs
(not only time). For pPDA, we restrict ourselves to non-
negative reward functions whose values depend both on the
current control state and the current stack content of a given
PDA configuration (some of our results also work for re-
ward functions that may take negative values; this is dis-
cussed in greater detail in Section 4). We show that the prob-
lem whetherP(I=1) ∼ ̺, whereI is one of the introduced
run-indicators,P(I=1) is the probability thatI is satisfied,
̺ ∈ [0, 1] is a rational constant, and∼ ∈ {<,≤, >,≥, =},
is decidable. This allows to approximateP(I=1) by arbi-
trarily close rational lower and upper bounds (as we shall
see,P(I=1) can be irrational).

Another issue addressed in this paper is thepredictionof
the aforementioned limit values. To the best of our knowl-
edge, this problem has not yet been studied, and there-
fore we explain the underlying intuition in greater detail.
In ergodic Markov chains, our limit random variables usu-
ally take just one value with probability one, regardless of
the initial state of the run. For example, the average ser-
vice time is the same for “almost all” runs, and hence it
does not make much sense to predict it because its value
is determined from the very beginning. (One can still ask
“how fast” a run approaches this limit, but this is a different
question not addressed in this paper.) However, in general
Markov chains the average service time can take infinitely
many values with a positive probability, and the probabil-
ity that the average service time stays within given bounds
changes along the execution of a run. Hence, one can ask
whether it is possible to “predict” the future behavior just
by inspecting a bounded prefix of a run. Of course, the an-
swer is negative in general. However, we show that for the
subclass of Markov chains that are definable by probabilis-

tic PDA, such predictionsare possible, even though these
chains are infinite-state and non-ergodic. In fact, one can
efficientlypredict quite complicated run-indicators up to an
arbitrarily small given errorδ (the smallerδ we choose, the
longer prefix of a run must be examined). We refer to Sec-
tion 3 for precise definitions.

Finally, we study the decidability of the model-checking
problem for temporal logics extended with state-predicates
based on the limit features introduced in this paper. We
prove that the model-checking problem remains decidable
if we only use qualitative variants of these predicates, and
derive an undecidability result for general predicates.

In this paper we rely on the results of [18, 23, 19]. Due
to the lack of space, most results are stated without a proof.
The proofs can be found in [10].

The paper is organized as follows. Section 2 contains
preliminary definitions and some background information.
In Section 3 we introduce a family of random variables
that formally capture certain long-run average properties
of Markov chains, and define the associated family of run-
indicators. We also formalize the notion of prediction. In
Section 4 we concentrate on probabilistic PDA and show
how to compute and predict the properties introduced in
Section 3. We also show how to handle the associated state
predicates.

2. Preliminaries

In the paper we useR andR
+ to denote the sets of real

numbers and non-negative real numbers, respectively. We
also useR±∞ to denoteR ∪ {−∞,∞}, andR

+
∞ to denote

R
+ ∪ {∞}. The symbols−∞,∞ are treated according to

the standard conventions.

Markov chains. The underlying semantics of probabilistic
sequential systems is defined in terms of discrete Markov
chains.

Definition 2.1. A (discrete)Markov chainis a triple M =
(S,→,Prob) whereS is a finite or countably infinite set of
states, → ⊆ S × S is a transition relation, andProb is a
function which to each transitions → t of M assigns its
probability Prob(s → t) ∈ (0, 1] so that for everys ∈ S
we have

∑

s→t Prob(s → t) = 1.

In the rest of this paper we also writes
x→ t instead of

Prob(s → t) = x. A path in M is a finite or infinite se-
quencew = s0, s1, · · · of states such thatsi → si+1 for
everyi. Thelengthof a given pathw is the number of tran-
sitions inw. In particular, the length of an infinite path is
∞, and the length of a paths, wheres ∈ S, is zero. We also
usew(i) to denote the statesi of w (by writing w(i) = s
we implicitly impose the condition that the length ofw is
at leasti). The prefixs0, . . . , si of w is denoted bywi. A
run is an infinite path. The sets of all finite paths and all

runs ofM are denotedFPath andRun, respectively. Sim-
ilarly, the sets of all finite paths and runs that start with a
givenw ∈ FPath are denotedFPath(w) andRun(w), re-
spectively. In particular,Run(s), wheres ∈ S, is the set of
all runs initiated ins.

In this paper we are interested in probabilities of certain
events that are associated with runs. To everys ∈ S we as-
sociate the probabilistic space(Run(s),F ,P) whereF is
theσ-field generated by allbasic cylindersRun(w) where
w ∈ FPath(s), andP : F → [0, 1] is the unique prob-
ability function such thatP(Run(w)) = Πm−1

i=0 xi where
w = s0, · · · , sm andsi

xi→ si+1 for every0 ≤ i < m (if
m = 0, we putP(Run(w)) = 1).

Probabilistic PDA. In this part we introduce probabilistic
PDA, explain their basic features, and show how to over-
come some of the fundamental difficulties of performing
their quantitative analysis.

Definition 2.2. A probabilistic PDA (pPDA)is a tuple
∆ = (Q, Γ, δ,Prob) whereQ is a finite set ofcontrol states,
Γ is a finitestack alphabet, δ ⊆ Q×Γ×Q×Γ∗ is a transition
relationsuch that whenever(p, X, q, α) ∈ δ, then|α| ≤ 2,
andProb is a function which to each transitionpX → qα
assigns a rational probabilityProb(pX → qα) ∈ (0, 1]
so that for all p ∈ Q and X ∈ Γ we have that
∑

pX→qα Prob(pX → qα) = 1.

In the rest of this paper we adopt a more intuitive nota-
tion, writing pX → qα instead of(p, X, q, α) ∈ δ, and
pX

x→ qα instead ofProb(pX → qα) = x. The setQ×Γ∗

of all configurations of∆ is denoted byC(∆). Given a con-
figurationpXα, we callpX theheadandα thetail of pXα.

To ∆ we associate the Markov chainM∆ whereC(∆)
is the set of states and the transitions are determined as fol-
lows:

• pε
1→ pε for eachp ∈ Q (hereε denotes the empty stack);

• pXβ
x→ qαβ is a transition ofM∆ iff pX

x→ qα is a tran-
sition of∆.

As a working example, we use a simple pPDA∆̄ with two
control statess, p, three stack symbolsI, D, Z, and the fol-
lowing transitions:

sZ
0.75
−→ sZ, sZ

0.25
−→ pIZ, pI

0.5
−→ pID, pI

0.5
−→ pε,

pD
0.5
−→ pI, pD

0.5
−→ pDD, pZ

1
−→ pZ

The underlying Markov chain of̄∆ is shown in Figure 1
(only the states reachable fromsZ are drawn). Despite the
simplicity of ∆̄, even basic questions about its behavior re-
quire a non-trivial attention. For example, one can ask what
is the probability of reaching the “terminated” statepZ from
the “initial” statesZ (formally, this probability is defined as
P({w ∈ Run(sZ) | w(i) = pZ for somei ∈ N0})). In this
particular case, we can rely on standard results about one-
dimensional random walks and answer that this probabil-

0.50.50.5

0.50.5 0.50.50.5

0.250.75

1
pZ

sZ

pIZ pDZ pIDZ pDDZ

Figure 1. The Markov chain M∆̄

ity is equal to(
√

5 − 1)/2 (the “golden ratio”). This shows
that the quantities of our interest can take irrational values.

Let pα and qβ be configurations of some pPDA∆,
and letP(pα →∗ qβ) be the probability of reachingqβ
from pα. In [18, 23], the reachability problem was solved
by showing thatP(pα →∗ qβ) is effectively express-
ible in (R, +, ∗,≤). More precisely, there effectively ex-
ists a formulaΦ of first order arithmetic of reals such
that Φ has one free variablex and Φ[c/x] holds iff c =
P(pα →∗ qβ). Since(R, +, ∗,≤) is decidable [30], the
problem whetherP(pα →∗ qβ) ∼ ̺, where ∼ ∈
{<,≤, =, >,≥} and̺ is a rational constant, is decidable
as well—it suffices to check whether the (closed) formula
∃x.(Φ∧x∼̺) is valid or invalid. Hence,P(pα →∗ qβ) can
also be effectively approximated—for an arbitrarily small
δ > 0 one can effectively compute rationalsL, U such that
L ≤ P(pα →∗ qβ) ≤ U and U − L < δ. Since the for-
mulaΦ can be constructed so that the existential/universal
quantifiers are not alternated inΦ and the size ofΦ is poly-
nomial in the size ofpα, qβ, and∆, one can apply the pow-
erful result of [12] and conclude that the problem whether
P(pα →∗ qβ) ∼ ̺ is in PSPACE.

Observe that once a certain number (such as the
probability of termination) is effectively expressible in
(R, +, ∗,≤) in the sense explained above, it can be used as
a “known constant” in other first-order expressions which
define other numbers. As long as these expressions contain
just multiplication, addition, and inequality over reals,they
can again be encoded into(R, +, ∗,≤). Since nothing is ac-
tually evaluatedduring this process, there is no loss of pre-
cision and the newly expressed numbers enjoy essentially
the same features as the “old” ones. In particular, they can
be used as known constants when expressing other num-
bers, and their values can be effectively approximated. This
approach has been used in [19] to express the conditional
expected number of transitions needed to reach a config-
urationqε from pX under the condition thatqε is indeed
reached frompX . In this case, the “known” numbers are
certain probabilities of the formP(rZ →∗ tε).

The previous two paragraphs indicate how to overcome
the problem that numerical features of our interest can
take irrational values. Another fundamental difficulty is that
Markov chains generated by pPDA are not necessarily er-
godic. In fact, they are generally not strongly connected,

and the number of strongly connected components can be
infinite (even ifM∆ is strongly connected, all states can be
transient or null). For finite-state systems, the problems con-
sidered in this paper could be solved relatively easily by em-
ploying known techniques for finite-state ergodic Markov
chains. Our solution for pPDA is based on abstracting the
Markov chainM∆ into a finite-state Markov chainX∆ so
that certain properties ofM∆ can be determined by examin-
ing the corresponding properties ofX∆. The definition and
further discussion is postponed to Section 4.

3. Long-Run Properties of Markov Chains

In this section we introduce a family of long-run average
properties of Markov chains. We show how to use these
properties in performance analysis, and we also explain
what is meant by a faithful and efficient prediction of these
properties.

For the rest of this section, let us fix a Markov chain
M = (S,→,Prob) and an initial states0 ∈ S. We also
fix a reward functionf : S → R. The reward associated
with a given state may correspond to, e.g., the time spent
in the state, certain costs or gains collected by visiting the
state (note that the reward can also be negative), or a one-bit
marker specifying whether the state is “important” or not.

The request-service cycles are modeled as follows. Let
F ⊆ S be a subset oftriggers. Let w ∈ Run(s0) be a run
with infinitely many triggersw(i1), w(i2), . . . , and letw[j]
denote the subwordw(ij−1 + 1), · · · , w(ij) of w, where
i0 = 0. Hence,w[j] is the subword ofw consisting of all
states in between thej−1th trigger (not included) and the
jth trigger (included). Intuitively,w[j] corresponds to the
jth service. According to our definition, a new service starts
immediately after finishing the previous service. (This is not
a real restriction because the reward function can be set up
so that the states visited before the actual start of the ser-
vice are ignored, i.e., have zero reward.) Slightly abusing
notation, we usef(w[j]) to denote the total reward accu-
mulated inw[j], i.e.,f(w[j]) =

∑ij

k=ij−1+1
f(w(k)).

The properties of runs we are interested in here are for-
mally defined asindicators. An indicator is a random vari-
able I : Run(s0) → {1, 0} which classifies the runs as
“good” or “bad” according to some criterion. For example,
the following simple indicatorIinf is obviously relevant in
our setting:

Iinf (w) =



1 if w(i) ∈ F for infinitely manyi’s;
0 otherwise.

We are primarily interested in those runsw where
Iinf (w) = 1, because only then the limit features in-
troduced below make a good sense. The runs for which
Iinf equals0 are those where the service cycle is either
eventually terminated, or the last service is never finished.

Since this can be seen as an error,P(Iinf =1) is an im-
portant quantitative information about the behavior ofs0.
For example, the quantitative model-checking problem for
linear-time properties definable via deterministic Büchiau-
tomata is obviously reducible to the problem of computing
P(Iinf =1) in any class of models that is closed under syn-
chronized product with a deterministic finite-state automa-
ton (probabilistic PDA form such a class). The decidabil-
ity of the model-checking problem for deterministic Büchi
automata and pPDA has been shown in [18] by employ-
ing non-trivial methods. Hence, even computingP(Iinf =1)
can be a difficult problem in general.

Before introducing other indicators, let us explain what
is meant by “predictability” of an indicator.

Definition 3.1. Let I be an indicator. We say thatI is
well-predictable (overRun(s0)) if for each δ > 0 there
effectively existn ∈ N and an indicatorGn such that
P(Gn 6=I) ≤ δ, and the value ofGn(w) is effectively com-
putable from the prefix ofw of lengthn.1

Hence,Gn efficiently “guesses” the value ofI after seeing
the firstn states of a run, and the “quality” of that guess is
measured byδ.

In general, indicators are rarely well-predictable. An im-
portant outcome of our work is that a large class of prac-
tically relevant indicators is well-predicable in the class of
Markov chains generated by pPDA (at least, for those pPDA
that satisfy a mild and effectively checkable condition for-
mulated in Section 4).

Now we define other random variables and the asso-
ciated indicators. Letκ ∈ R, λ, γ ∈ R±∞, and let
B(w[j], λ, γ) return either1 or 0 depending on whether
λ ≤ f(w[j]) ≤ γ or not, respectively. We define the ran-
dom variables

A(w) = lim
n→∞

Pn

j=1
f(w[j])

n

D[κ](w) = lim
n→∞

Pn

j=1
|f(w[j]) − κ|

n

R[λ, γ](w) = lim
n→∞

Pn

j=1
B(w[j], λ, γ)

n

If the corresponding limit does not exist orIinf (w) = 0, the
above variables take the value⊥.

The variableA returns the average reward per service in
a given run. The variableD[κ] returns the average deviation
of the reward per service from a given centerκ in a given
run. Finally, the variableR[λ, γ] returns the percentage of
services whose rewards are within the boundsλ, γ.

1 Due to the Markov property, the last state of the prefix contains a com-
plete information that is relevant for predicting the future behavior;
one cannot learn anything “fundamentally new” by inspecting the pre-
vious states in the prefix. However, this inspection can makethe pre-
diction moreefficient, as we shall see in Section 4.

In general,P(Iinf =1 ∧ V =⊥), whereV is one of the
random variables introduced above, can be positive. How-
ever, as a byproduct of our results we obtain that this can-
not happen for Markov chains generated by pPDA satisfy-
ing the condition of Section 4.

Let V be one of the above defined variables, and let
ℓ, u ∈ R±∞. The indicatorI[V, ℓ, u] is defined as follows:

I [V, ℓ, u](w) =



1 if V (w) 6= ⊥ andℓ ≤ V (w) ≤ u;
0 otherwise.

We also consider “Boolean combinations” of the indicators
above (where1 and0 are interpreted astrue andfalse, re-
spectively). Thus, we obtain a familyI consisting ofIinf ,
all I[V, ℓ, u], and their Boolean combinations. To show the
relevance of Boolean combinations, let us formalize the
properties mentioned in Section 1 (assume that the reward
function corresponds to the time spent in a given state).

• I[A, 30, 32] defines all runs where the average service
time is between30 and32.

• I[A, 30, 32]∧I[D[31], 0, 5] defines all runs where the av-
erage service time is between30 and32, and the average
deviation of service time from31 is at most5.

• I[A, 30, 32]∧ I[D[31], 0, 5]∧ I[R[37,∞], 0, 0.2] defines
all runs satisfying the previous condition and the condi-
tion that the percentage of services longer than37 is at
most20%.

Let I ∈ I. We study three basic algorithmic problems:

• ComputeP(I=1). SinceP(I=1) can be irrational for
pPDA, we can only hope to solve this problem in the same
way as the reachability problem was solved in [18, 23]
(see Section 2). That is, the task is to show thatP(I=1) is
effectively expressible in(R, +, ∗,≤). From this we ob-
tain the decidability of the problem whetherP(I=1) ∼ ̺
for a given rational̺ and∼ ∈ {<,≤, >,≥, =}. In par-
ticular,P(I=1) can be effectively approximated up to an
arbitrarily small error (e.g., by a simple binary search).

• If I is well-predictable, design a suitableGn. The indica-
tor Gn should satisfy the “efficiency” requirements dis-
cussed after Definition 3.1.

• Since the predicateP(I=1) ∼ ̺ is either valid or in-
valid in each states ∈ S, it can be “plugged” into
state-based temporal logics such as LTL, PCTL, or
PCTL∗ in the style of [16] (the state predicate which
has been introduced and studied in [16] corresponds to
P(I[A, ℓ, u]=1) = 1). The question is whether there is a
model-checking algorithm for these extended logics.

Note that the conditional probabilityP(I=1 | Iinf =1)
(which is relevant in situations whenP(Iinf =1)<1) is
expressible from the probabilitiesP(I=1 ∧ Iinf =1) and
P(Iinf =1). Hence, if we manage to solve the three prob-
lems above, our results apply also toP(I=1 | Iinf =1).

4. Results for pPDA

In this section we examine and solve the three problems
given at the end of Section 3 for pPDA and a general class
of reward functions that take into account both the current
control state and the current stack content. All these re-
sults work under a mild and effectively checkable condi-
tion, which is formulated and explained at the beginning of
the next subsection.

For the rest of this section we fix a pPDA∆ =
(Q, Γ, δ,Prob) and a subsetF ⊆ Q of control states. A con-
figurationpα ∈ C(∆) is atrigger iff p ∈ F . The notions in-
troduced in Section 3 can now be applied to the chainM∆.

Since the problems formulated at the end of Section 3 are
obviously undecidable for general reward functions, we re-
strict ourselves to the following subclass:

Definition 4.1. A reward functionf : C(∆) → R is well-
definedif there areg, h : Q → R

+ and c : Γ → R
+ such

that f(pα) = g(p) + h(p) · (∑Y ∈Γ
c(Y) · #Y (α)) for all

pα ∈ C(∆), where#Y (α) denotes the number of occur-
rences ofY in α. We say thatf is simple (or linear) iff
h(p) = 0 (or h(p) = 1, resp.) for allp ∈ Q.

In the rest of this paper we usec(α) to denote
∑

Y ∈Γ
c(Y) · #Y (α). Sometimes we abuse our notation by

consideringg andh as standalone simple reward functions.
In fact, for certain indicators in our familyI (see Sec-

tion 3) we can handle even more general reward functions
whereg andh can also take negative values. To simplify
our presentation, we restrict ourselves only to thoseg and
h that are non-negative. In the proof of Theorem 4.2 we ex-
plain in greater detail where and under what conditions we
can deal with generalg andh.

Simple reward functions can model gains and costs
which do not depend on the history of activation records
(i.e., the stack of procedure calls that have not terminated
yet). A simple example is execution time—one can reason-
ably assume that the time spent in a given procedure for
given input data does not depend on the current stack of ac-
tivation records. On the other hand, if one is interested in
e.g. memory consumptions, then the total amount of allo-
cated memory in a given configuration does depend on the
amount of memory allocated in the individual procedures
stored in the stack, and here one can use linear reward func-
tions. The reason why we also introduced the functionh
in Definition 4.1 is that in certain situations we wish not
to “count” some configurations. For example, if we want
to model an unbounded integer variable which is used in
a given procedure, we might encode its value in unary by
pushing a special symbol to the stack. Bounded changes
to the variable (such as increment or decrement) can eas-
ily be implemented as single pPDA transitions. However,
unbounded changes such as setting the variable back to1

cannot be modeled as a single pPDA transition—the pre-
viously pushed symbols must be removed one by one. The
artificially-added intermediate configurations can influence
the properties of our interest, and hence the obtained results
can become irrelevant. However, usingh one can “switch
off” the intermediate configurations so that they do not con-
tribute to the accumulated reward.

As already mentioned in Section 2, Markov chains gen-
erated by pPDA are not necessarily ergodic. Nevertheless,
questions about long-run average behavior are inherently re-
lated to concepts of ergodic chains (in particular, stationary
distributions would be very useful in here). Fortunately, one
can establish a surprisingly powerful link to this theory by
abstracting the Markov chainM∆ into anotherfinite-state
Markov chainX∆. The chainX∆ has originally been intro-
duced in [18]. Here we work with a slightly modified ver-
sion ofX∆ which better suits our purposes, and present a
collection of new results aboutX∆ which are then used to
solve the problems of our interest. The definition ofX∆ is
given in the next subsection.

The Markov chain X∆. Let pZα be a configuration of
∆, whereZ ∈ Γ and α ∈ Γ∗. We say that a runw ∈
Run(pZα) is cleanif all configurations inw are of the form
qβα, whereβ ∈ Γ+. In other words,α is never accessed in
a clean run ofpZα. In the rest of this section we study only
properties of clean runs (we useClean(pZα) to denote the
set of all clean runs ofRun(pZα) when defining certain
conditional probabilities). This is no restriction, because we
are actually interested in properties of runs from a given
initial configurationq0Z0, which corresponds to the start-
ing point of a given recursive sequential program. Since we
can safely assume thatZ0 is a special bottom-of-the-stack
marker which cannot be removed, all runs ofRun(q0Z0)
are clean and our results apply.

For our purposes it suffices to consider clean runs
initiated in configurations of the formpZ. Let w =
p0α0, p1α1 · · · be a clean run ofRun(pZ) (i.e., p0α0 =
pZ). A configurationpiαi of w, wherei ≥ 0, is minimal if
|αi| ≤ |αj | for all j > i. Thek-th minimumof w, denoted
mink(w), is thek-th minimal configuration ofw. Theindex
of the k-th minimum, denotedindk(w), is thei such that
w(i) is thek-th minimum ofw. We say thatmink(w) is in-
creasingif k > 1 and the stack length ofmink(w) is strictly
larger than the one ofmink−1(w). Otherwise,mink(w) is
non-increasing.

Intuitively, the minimal configurations of a given run are
exactly the positions where one can forget about the stack
content below the top-of-the-stack symbol, because these
symbols are never accessed in the future. This intuition is
formally captured in our next definitions.

For all p, q ∈ Q andZ ∈ Γ, we use[pZq] to abbrevi-
ateP(pZ →∗ qε), and[pZ↑] to abbreviate1−∑

r∈Q[pZr].
Hence,[pZ↑] is the probability that the stack never becomes

1 0.5

0.5

0.50.5

3−
√

5

2

√
5−1

2

3−
√

5

4

3−
√

5

4

3−
√

5

4

3−
√

5

4

√
5−1

4

√
5−1

4

√
5−1

4

√
5−1

4

pZ,0

pI,+

pI,0 pD,+

pD, 0sZ,0

Figure 2. The Markov chain X∆̄

empty along a run ofRun(pZ). Equivalently, one can also
say that[pZ↑] is the probability ofClean(pZ).

For every configurationpZ and everyi ∈ N we de-
fine a random variableXi over Run(pZ) as follows: if
w is not clean, thenXi = ⊥. Otherwise,Xi(w) =
(qY, m), whereqY is the head ofmini(w), andm is ei-
ther + or 0 depending on whethermini(w) is increas-
ing or non-increasing, respectively. By adapting the proof
technique of [18], one can easily show that for every
n ≥ 2 and all (q1Y1, m1), · · · , (qnYn, mn) such that
P

(
∧n−1

i=1
Xi=(qiYi, mi)

)

> 0 we have that the probabil-
ity

P
`

Xn=(qnYn, mn) |

n−1
^

i=1

Xi=(qiYi, mi)
´

is equal either to
X

qn−1Yn−1

x→qnYnZ

x[qnYn↑]

[qn−1Yn−1↑]
or to

X

qn−1Yn−1

x→rZYn

x[rZqn][qnYn↑]

[qn−1Yn−1↑]
+

X

qn−1Yn−1

x→qnYn

x[qnYn↑]

[qn−1Yn−1↑]

depending on whethermn is equal to+ or to 0, respec-
tively. In particular, observe that this probability is inde-
pendent of the values ofX1, . . . , Xn−2 and the value of
n. Moreover, it is also independent of the initial config-
uration pZ. Hence, we can define a finite-state Markov
chainX∆ whose states are pairs of the form(qY, m), where
[qY ↑] > 0, and the probability of(qY, m) → (q′Y ′, m′) is
given by the above term whereqn−1Yn−1, qnYn, andmn

are substituted withqY , q′Y ′, andm′, respectively. More
precisely,(qY, m) → (q′Y ′, m′) is a transition inX∆ iff
the above term makes sense and produces a positive value
which then defines the probability of this transition. Since
this term contains only summation, multiplication, division,
and probabilities of the form[pXq] and [pX↑] which are
known to be effectively expressible in(R, +, ∗,≤) (see Sec-
tion 2), we can conclude that the transition probabilities of
X∆ are also effectively expressible in(R, +, ∗,≤).

As an example, consider again the pPDA∆̄ defined in
Section 2. The probability[pIp] is equal to(

√
5 − 1)/2,

which means that[pI↑] = (3 −
√

5)/2. The Markov chain
X∆̄ is depicted in Figure 2 (only the states reachable from
(sZ, 0) are drawn).

To each cleanw ∈ Run(pZ) we associate itsfoot-
print X1(w), X2(w), · · · . Note that there can be clean runs

whose footprints arenot paths inX∆. For example, the
run sZ, sZ, sZ, · · · of Run(sZ) in ∆̄ has the footprint
(sZ, 0), (sZ, 0), (sZ, 0), · · · which is not a path inX∆̄. Let
BSCC∆ be the set of all bottom strongly connected com-
ponents ofX∆ (a BSCC is a nonempty subsetC of states
such that for alls, t ∈ C we have thats →∗ t, and whenever
s →∗ u, thenu ∈ C). To eachC ∈ BSCC∆ we associate
the setRun(pZ, C) consisting of allw ∈ Clean(pZ) such
that the footprint ofw is a path inX∆ which hits the com-
ponentC. We also define a random variableEntry which
for everyw ∈ Run(pZ) returns eitherw(ind j(w)) where
j ∈ N is the least number such thatXj(w) ∈ C for some
C ∈ BSCC∆, or⊥ if there is no suchj. In other words, if
w is a clean run whose footprint hits a BSCC ofX∆, then
Entry(w) is the configuration which “enters” this BSCC.

Note that since X∆ has finitely many states,
P(Run(pZ, C)) is effectively expressible in(R, +, ∗,≤)
by employing standard methods for finite-state Markov
chains (transition probabilities ofX∆ can be handled fully
symbolically, there is no need to evaluate them). More-
over, it can easily be shown that

X

C∈BSCC∆

P(Run(pZ, C) | Clean(pZ)) = 1

Consequently,P(Entry=⊥ | Clean(pZ)) = 0.

Solving the problems of Section 3 for pPDA.In this sub-
section we still work with the pPDA∆ which has been fixed
at the beginning of Section 4. However, we need to adopt
one additional assumption about∆, which is crucial in al-
most all proofs:

“For all p, q ∈ Q andX ∈ Γ, the conditional expected
number of transitions needed to reachqε frompX , under
the condition thatqε is indeed reached frompX , is finite.”

Formally, we define a random variableSteps which to ev-
ery w ∈ Run(pX) assigns either the leastj such that
w(j) = qε, or⊥ if there is no suchj. Our assumption says
thatE(Steps | Steps 6=⊥) is finite for all p, q, andX . Us-
ing the results of [19], one can effectively check in poly-
nomial space whether this assumption is satisfied or not for
a given pPDA. In terms of recursive sequential programs,
the assumption corresponds to the requirement that if we
restrict ourselves to terminating computations, then the ex-
pected termination time of each procedure is finite. From a
practical point of view, this assumption is harmless because
its violation indicates a severe design error anyway. From
a theoretical point of view, this assumption allows to estab-
lish useful connections between the properties ofM∆ and
X∆, as we shall see in the forthcoming theorems.

To simplify our notation, for the rest of this section we
fix a well-defined reward functionf and a distinguishedini-
tial configurationq0Z0 of ∆ such that the symbolZ0 cannot
be removed from the stack (this assumption is not restrictive
because one can always add a special bottom-of-the stack

symbol without influencing the behavior of a given pPDA).
Hence, all runs ofq0Z0 are clean. Some of our results are
formulated for configurations of the formpZ (which means
that they hold generally), and some of them are formulated
for the distinguished initial configurationq0Z0.

We start by presenting a crucial result which says that
the (in)validity of all indicators in our familyI for a given
w ∈ Run(pZ) is essentially determined only by the BSCC
of X∆ hit by w, and by the stack content in the configu-
ration which enters this component. To formulate this pre-
cisely, we need to introduce another indicatorHit [L], where
L ⊆ Γ∗ is a regular language:

Hit [L](w) =



1 if Entry(w) = pXβ andβ ∈ L;
0 otherwise.

Theorem 4.2. LetI ∈ I be an indicator andpZ a configu-
ration of∆. For everyC ∈ BSCC∆ there effectively exists
a regular languageLC ⊆ Γ∗ such thatP(I = Hit [LC] |
Run(pZ, C)) = 1. Moreover, if the considered reward
functionf is simple, thenLC equals eitherΓ∗ or ∅.

Proof sketch.Obviously, it suffices to consider indicators of
the formIinf andI[V, ℓ, u] (Boolean connectives are then
no problem, because these can be implemented just by per-
forming an appropriate operation on the constructed regular
languages).

First, let us consider the indicatorIinf . It can be proved
(by adapting the methods of [19]) that the indicatorIinf re-
turns the same value for almost all runs ofRun(pZ, C),
and that this value is expressible. Hence, the languageLC

is equal either toΓ∗ or to∅.
Let us consider an indicator of the formI[V, ℓ, u]. The

argument can be split into two parts. First, we consider
the special case when the Markov chainX∆ is ergodic.
We show that then there is a constantθ ∈ R

+
∞ express-

ible in (R, +, ∗,≤) such that for almost all clean runsw of
Run(pZ) we have thatV (w) = θ. This is the most involved
construction in this paper. It requires specific techniquesfor
each of the three variablesA, D[κ], andR[λ, γ]. In the case
of A we can also handle well-defined reward functionsf
where the underlyingg andh may takenegativevalues (un-
der some additional assumptions, which are satisfied, e.g.,
for all simple reward functions). However, we did not man-
age to extend this result toD[κ] andR[λ, γ], and therefore
we adopted the simplified setting in Definition 4.1.

Then, we consider the general case. Since each BSCCC
of X∆ is an ergodic Markov chain and since the value of
V does not depend on a finite prefix of a run, we have that
V returns the same valueξ(β, C) for almost all runs whose
footprints enter the componentC with a given stack con-
tentsβ. Moreover,ξ(β, C) is expressible as follows. We de-
fine a new reward functionf ′ by puttingf ′(pα) = (g(p) +
h(p)·c(β))+h(p)·c(α). Hence,f ′(pα) = f(pαβ). Now we
choose an arbitrarypX such that(pX, m) ∈ C for somem.

It is easy to see that for almost all cleanw ∈ Run(pX) we
have thatV (w) = ξ(β, C), whereV (w) is computed with
respect to the new reward functionf ′. Now it suffices to ap-
ply the results of the previous paragraph.

Let us defineLC to be the set of allβ ∈ Γ∗ such that
ℓ ≤ ξ(C, β) ≤ u. It follows from our discussion that
P(I = Hit [LC] | Run(q0Z0, C)) = 1. We prove that the
languageLC is regular. The proof is based on the follow-
ing observation: One can show that there effectively exists
n ∈ N such that for allβ, γ ∈ Γ∗ wherec(β) > n and
c(γ) > n we have thatβ ∈ LC iff γ ∈ LC . The proof is
obtained by considering the variablesA, D[κ], andR[λ, γ]
separately, the argument is not generic.

Let Γc>0 = {Z ∈ Γ | c(Z) > 0} be the set
of c-important symbols. Observe that for eachβ ∈ Γ∗,
the value ofc(β) depends only on the subsequence of
c-important symbols contained inβ, which we call the
c-spanof β. For a givenγ ∈ Γ∗

c>0, let L(γ) be the set of all
β ∈ Γ∗ whosec-span isγ. Obviously, eachL(γ) is a regu-
lar language. Moreover, we either have thatL(γ) ⊆ LC , or
L(γ) ∩ LC = ∅. Due to the observation formulated in the
previous paragraph, we see that there is an effectively com-
putable constantn′ such that the union of allL(γ′), where
the length ofγ′ is larger thann′, either forms a subset of
LC , or is disjoint withLC . Now it is easy to see thatLC is
effectively regular.

Theorem 4.3. Let L ⊆ Γ∗ be a regular language,
pZ a configuration of ∆, and C ∈ BSCC∆. Then
P(Hit [L]=1 | Run(pZ, C)) is effectively expressible in
(R, +, ∗,≤).

Proof sketch.We construct another pPDA∆′ which has the
same stack alphabet as∆ and a special control statesucc

such thatP(Hit [L]=1 | Run(pZ, C)) is equal to the con-
ditional probability of reaching a configuration of the form
succ α in ∆′, whereα ∈ L, under the condition that a con-
figuration with the control statesucc is reached. SinceL
is regular, this conditional probability can be expressed us-
ing the results about random walks presented in [18].

As a corollary to Theorem 4.2 and Theorem 4.3 we obtain
the following (whereq0Z0 plays the role of initial configu-
ration):

Theorem 4.4. Let I ∈ I be an indicator. The probability
P(I=1) is effectively expressible in(R, +, ∗,≤). Moreover,
if the considered reward functionf is simple, then the size
of the resulting formula is polynomial in the size of∆, and
the alternation depth of quantifiers is fixed.

Proof sketch.Due to Theorem 4.2, Theorem 4.3, and the
fact that all runs ofRun(q0Z0) are clean we obtain that
P(I=1) equals

X

C∈BSCC∆

P(Hit [LC]=1 | Run(q0Z0, C)) · P(Run(q0Z0, C))

where the probabilitiesP(Hit [LC]=1 | Run(q0Z0, C))
and P(Run(q0Z0, C)) are expressible in(R, +, ∗,≤).
Hence,P(I=1) is also expressible. The result about simple
reward functions follows by a detailed analysis of the con-
structions employed in Theorem 4.2 and Theorem 4.3.

Consequently, the problem whetherP(I=1) ∼ ̺, where
̺ a rational constant and∼ ∈ {<,≤, >,≥, =}, is decid-
able. Moreover, for simple reward functions we obtain an
EXPTIME upper bound. Theorem 4.2 can also be used to
prove the following:

Theorem 4.5. Each I ∈ I is well-predictable (over
Run(q0Z0)).

Proof sketch.Let δ > 0. Due to Theorem 4.2, it suffices to
compute a sufficiently largen satisfying the following prop-
erty: the probability of allw ∈ Run(q0Z0) such that the po-
sition ofEntry(w) in w is beyond the prefix of lengthn, is
bounded byδ. The value ofGn(w) is then defined as fol-
lows: we take the firstn configurations ofw and identify
the “developing minimal configurations”, i.e., those con-
figurations which become minimal configurations ofw un-
der the assumption that the stack length in all configura-
tions w(n), w(n+1), . . . is not smaller than inw(n−1).
Thus, we also construct the “developing footprint” of the
run. Then we simply check whether this developing foot-
print hits a BSCC ofX∆. If not, Gn(w) returns0. Other-
wise, we identify theEntry configurationpXβ and check
whetherβ ∈ LC , whereC is the corresponding BSCC. If
β ∈ LC , thenGn(w) = 1. Otherwise,Gn(w) = 0.

Observe that the algorithm for computingGn(w) for given
n andw is rather efficient, because the developing minima
are identified just by comparing the stack length in configu-
rationsw(0), . . . , w(n−1). Of course, we also need to com-
pute the transitions ofX∆ (which can be done in polyno-
mial space in the size of∆), but this expensive computa-
tion is performed just once and can be done before starting
the on-line analysis of a run initiated inq0Z0.

Model-checking temporal logics with state predicates.
Let M be a Markov chain,I ∈ I an indicator, andf a
reward function. For every∼ ∈ {<,≤, >,≥, =} and every
rational constant̺ we define astate predicateP∼̺(I=1) as
follows: a states of M satisfiesP∼̺(I=1) iff P(I=1) ∼ ̺
(hereP(I=1) is considered in the probabilistic space over
Run(s)). State predicates can be plugged into state-based
temporal logics (such as LTL, PCTL, or PCTL∗) in the style
of [16], and thus one can combine the expressive power
of state predicates with temporal operators. As we already
mentioned in Section 1, the model-checking problem with
pPDA is decidable forω-regular properties [18, 11, 21] and
the qualitative fragment of PECTL∗ [11].

First we show that if these logics are extended with pred-
icates of the formP=1/2(I=1), then even model checking

the simple formula♦>0(check ∧ P=1/2(I=1)) becomes
undecidable (the formula says “there is a reachable state
satisfying the predicatescheck and P=1/2(I=1)”). Ob-
serve that the undecidability result doesnot hold for all
I ∈ I, because some of these indicators are trivial (for
example,I[A, 10, 11] ∧ I[A, 12, 13] is equivalent tofalse,
which makes the considered temporal formula unsatisfiable
and hence trivially decidable). We say thatI ∈ I is nontriv-
ial if there is a pPDA∆I and configurationstY, fY such
that tY |= P=1(I=1) andfY |= P=0(I=1). For techni-
cal convenience, we also require that[tY ↑] = [fY ↑] = 1.

Theorem 4.6. Let I ∈ I be a nontrivial indicator. Then
the model-checking problem for pPDA and the formula
♦>0(check ∧ P=1/2(I=1)) is undecidable.

Proof sketch.We reduce (a slightly modified version of) the
PCP problem: An instance are two sequencesx1, . . . , xn

andy1, . . . , yn of words over the alphabetΣ = {a, b, •}
such that|xi| = |yi| for each1 ≤ i ≤ k. The question is
whether there is a finite sequencei1, · · · , ik of indexes such
thatxi1 · · ·xik

andyi1 · · · yik
are the same words after eras-

ing all occurrences of “•”.
For a given instance of PCP, we construct a pPDA∆

and its configurationgZ such thatgZ |= ♦>0(check ∧
P=1/2(I=1)) iff the PCP instance has a solution. The
pPDA∆ is obtained by extending the pPDA∆I which wit-
nesses the non-triviality ofI. The considered reward func-
tion does not count the newly-added stack symbols, which
means thattY β |= P=1(I=1) andfY β |= P=0(I=1) for
an arbitrary sequenceβ of the newly-added stack symbols
(here we use the assumption that[tY ↑] = [fY ↑] = 1).

From the (new) initial configurationgZ, the automaton
∆ tries to “guess” a solution to our instance of PCP by stor-
ing pairs of words(xi, yi) successively to the stack. Since
xi andyi have the same length, this is implemented by push-
ing pairs of letters fromΣ. For example, ifxi = aab and
yi = ba•, then the pair(xi, yi) is stored as a sequence
of three stack symbols(a, b), (a, a), (b, •). After storing a
chosen pair of words, the automaton can either go on with
guessing another pair of words, or enter acheckingconfig-
uration. This is done by changing the control state fromg
to c. The predicatecheck is satisfied in exactly all check-
ing configurations. The transition probabilities do not mat-
ter here, they can have arbitrarily non-zero values. The cru-
cial part of the construction is the next phase where we ver-
ify that the guess was correct, i.e., that the words stored in
the first and the second component of stack symbols are the
same (when “•” is disregarded). For this we use the follow-
ing transitions (since the probability distribution is always
uniform, we do not write the transition probabilities explic-
itly; the symbol “|” separates alternatives):

cX → vX | v̂X, v(a, z) → tY | vε, v̂(z, a) → fY | v̂ε,

v(b, z) → fY | vε, v̂(z, b) → tY | v̂ε,

v(•, z) → vε, v̂(z, •) → v̂ε,

vZ → tY | fY, v̂Z → tY | fY

Herez ranges overΣ, andX ranges over the stack alpha-
bet. We claim that the checking configuration satisfies the
predicateP=1/2(I=1) iff the previous guess was correct.
To see this, realize that the checking configuration satis-
fiesP=1/2(I=1) iff the probability of reaching a configu-
ration havingtY as its head is exactly1

2
. To reveal the sub-

tlety of the construction, let us evaluate this probabilityfor,
e.g., a configurationg(a, a)(a, •)(•, a)(b, b)Z. By inspect-
ing the above rules, one can easily confirm that the proba-
bility is equal to

1

2

„

`

1·
1

2
+1·

1

22
+0·

1

23
+1·

1

24

´

+
`

0·
1

2
+0·

1

22
+1·

1

23
+1·

1

24

´

«

Hence, this probability is equal to1
2
(0.1101+0.0011). The

binary numbers0.1101 and 0.0011 are “complementary”
and their sum is equal to1. It is easy to verify that this
“complementarity” breaks down iff the words stored in the
first and the second component of stack symbols arenot the
same, in which case the probability is different from1

2
.

Now we prove that if we only allow qualitative predicates
of the formP=1(I=1), the situation becomes different:

Theorem 4.7. The model-checking problem for pPDA and
ω-regular properties as well as qualitative PECTL∗ formu-
lae extended with qualitative state predicates of the form
P=1(I=1), whereI ∈ I, is decidable.

In particular, Theorem 4.7 applies to the predicate
P=1(I[A, ℓ, u]=1) which has been considered in [16] for
finite-state Markov decision processes.

References

[1] P. Abdulla, N.B. Henda, and R. Mayr. Verifying infinite Markov
chains with a finite attractor or the global coarseness property. In
Proceedings of LICS 2005, pp. 127–136. IEEE, 2005.

[2] P.A. Abdulla, C. Baier, S.P. Iyer, and B. Jonsson. Reasoning about
probabilistic channel systems. InProceedings of CONCUR 2000,
vol. 1877 ofLNCS, pp. 320–330. Springer, 2000.

[3] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly
reachability and cycle detection for recursive state machines. InPro-
ceedings of TACAS 2005, vol. 3440 ofLNCS, pp. 61–76. Springer,
2005.

[4] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive
state machines. InProceedings of CAV 2001, vol. 2102 ofLNCS,
pp. 207–220. Springer, 2001.

[5] R. Alur and P. Madhusudan. Visibly pushdown languages. In Pro-
ceedings of STOC 2004, pp. 202–211. ACM Press, 2004.

[6] C. Baier and B. Engelen. Establishing qualitative properties for
probabilistic lossy channel systems: an algorithmic approach. In
Proceedings of 5th International AMAST Workshop on Real-Time
and Probabilistic Systems (ARTS’99), vol. 1601 ofLNCS, pp. 34–
52. Springer, 1999.

[7] T. Ball and S.K. Rajamani. Bebop: A symbolic model checker for
boolean programs. InSPIN 00: SPIN Workshop, vol. 1885 ofLNCS,
pp. 113–130. Springer, 2000.

[8] T. Ball and S.K. Rajamani. The SLAM project: debugging system
software via static analysis. InProceedings of POPL 2002, pp. 1–3.
ACM Press, 2002.

[9] N. Bertrand and Ph. Schnoebelen. Model checking lossy channel
systems is probably decidable. InProceedings of FoSSaCS 2003,
vol. 2620 ofLNCS, pp. 120–135. Springer, 2003.

[10] T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the
long-run behavior of probabilistic sequential programs with recur-
sion. Technical report FIMU-RS-2005-08, Faculty of Informatics,
Masaryk University, 2005.

[11] T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of tem-
poral properties of probabilistic pushdown automata. InProceedings
of STACS’2005, vol. 3404 ofLNCS, pp. 145–157. Springer, 2005.

[12] J. Canny. Some algebraic and geometric computations inPSPACE.
In Proceedings of STOC’88, pp. 460–467. ACM Press, 1988.

[13] C. Courcoubetis and M. Yannakakis. Markov decision processes and
regular events. InProceedings of ICALP’90, vol. 443 ofLNCS, pp.
336–349. Springer, 1990.

[14] C. Courcoubetis and M. Yannakakis. The complexity of probabilis-
tic verification. JACM, 42(4):857–907, 1995.

[15] L. de Alfaro. Temporal logics for the specification of performance
and reliability. InProceedings of STACS’97, vol. 1200 ofLNCS, pp.
165–176. Springer, 1997.

[16] L. de Alfaro. How to specify and verify the long-run average behav-
ior of probabilistic systems. InProceedings of LICS’98, pp. 454–
465. IEEE, 1998.

[17] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient al-
gorithms for model checking pushdown systems. InProceedings of
CAV 2000, vol. 1855 ofLNCS, pp. 232–247. Springer, 2000.

[18] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilis-
tic pushdown automata. InProceedings of LICS 2004, pp. 12–21.
IEEE, 2004.

[19] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of prob-
abilistic pushdown automata: Expectations and variances.In Pro-
ceedings of LICS 2005, pp. 117–126. IEEE, 2005.

[20] J. Esparza, A. Kučera, and S. Schwoon. Model-checkingLTL with
regular valuations for pushdown systems.I&C , 186(2):355–376,
2003.

[21] K. Etessami and M. Yannakakis. Algorithmic verification of recur-
sive probabilistic systems. InProceedings of TACAS 2005, vol. 3440
of LNCS, pp. 253–270. Springer, 2005.

[22] K. Etessami and M. Yannakakis. Checking LTL propertiesof recur-
sive Markov chains. InProceedings of 2nd Int. Conf. on Quantita-
tive Evaluation of Systems (QEST’05), 2005.

[23] K. Etessami and M. Yannakakis. Recursive Markov chains, stochas-
tic grammars, and monotone systems of non-linear equations. In
Proceedings of STACS’2005, vol. 3404 of LNCS, pp. 340–352.
Springer, 2005.

[24] K. Etessami and M. Yannakakis. Recursive Markov decision pro-
cesses and recursive stochastic games. InProceedings of ICALP
2005, LNCS. Springer, 2005.

[25] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6:512–535, 1994.

[26] S.P. Iyer and M. Narasimha. Probabilistic lossy channel systems.
In Proceedings of TAPSOFT’97, vol. 1214 ofLNCS, pp. 667–681.
Springer, 1997.

[27] M.Z. Kwiatkowska. Model checking for probability and time: from
theory to practice. InProceedings of LICS 2003, pp. 351–360. IEEE,
2003.

[28] A. Rabinovich. Quantitative analysis of probabilistic lossy chan-
nel systems. InProceedings of ICALP 2003, vol. 2719 ofLNCS, pp.
1008–1021. Springer, 2003.

[29] A. Remke, B.R. Haverkort, and L. Cloth. Model checking infinite-
state Markov chains. InProceedings of TACAS 2005, vol. 3440 of
LNCS, pp. 237–252. Springer, 2005.

[30] A. Tarski. A Decision Method for Elementary Algebra and Geome-
try. Univ. of California Press, Berkeley, 1951.

[31] M. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. InProceedings of FOCS’85, pp. 327–338. IEEE,
1985.

[32] I. Walukiewicz. Pushdown processes: Games and model-checking.
I&C , 164(2):234–263, 2001.

