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each normed process has a unique decomposition into primes up to bisimilarity.However, the proof is non-constructive.Bisimilarity was proved to be decidable for normed BPA processes (see [1, 11,10]) and normed BPP processes (see [7, 9]). Blanco proved in [3] that bisimilarityis decidable even in the union of normed BPA and normed BPP processes. Thesame problem was independently examined by �erná, K°etínský and Ku£era in[5]. They demonstrated decidability of the problem whether for a given normedBPA (or BPP) process � there is some unspeci�ed normed BPP (or BPA)process �0 such that � � �0. If the answer is positive, then it is also possibleto construct an example of such �0. Decidability of bisimilarity in the union ofnormed BPA and normed BPP processes is an immediate consequence.Another property of normed BPA and BPP processes which is important forus is regularity. A process is regular if it is bisimilar to a process with �nitelymany states. Ku£era proved in [13] that regularity is decidable for normed BPAand normed BPP processes in polynomial time.2 PreliminariesLet Act = fa; b; c; : : :g be a countably in�nite set of atomic actions. Let Var =fX;Y; Z; : : :g be a countably in�nite set of variables such that Var \ Act = ;.The class of BPA (or BPP) expressions is composed of all terms over the sig-nature f�; a; :;+g (or f�; a; k;+g) where `�' is a constant denoting the emptyexpression, `a' is a unary operator of action pre�xing (`a' ranges over Act), and`:', `k' and `+' are binary operators of sequential composition, parallel compo-sition and nondeterministic choice, respectively. In the rest of this paper we donot distinguish between expressions related by structural congruence which isthe smallest congruence relation over BPA and BPP expressions such that thefollowing laws hold: associativity and `�' as a unit for `:', `k', `+' operators, andcommutativity for `k' and `+' operators. Moreover, we also abbreviate a� as a.As usual, we restrict our attention to guarded expressions. A BPA or BPPexpression E is guarded if every variable occurrence in E is within the scope ofan atomic action.A guarded BPA (or BPP) process is de�ned by a �nite family � of recursiveprocess equations � = fXi = Ei j 1 � i � ng where Xi are distinct elements ofVar and Ei are guarded BPA (or BPP) expressions, containing variables fromfX1; : : : ; Xng. The set of variables which appear in � is denoted by Var(�).The variable X1 plays a special role (X1 is sometimes called the leadingvariable)�it is a root of a labelled transition system, de�ned by the process �and the rules of Figure 1.Nodes of the transition system generated by� are BPA (or BPP) expressions,which are often called states of �, or just �states� when � is understood fromthe context. We also de�ne the relation w!* , where w 2 Act�, as the re�exiveand transitive closure of a! (we often write E !� F instead of E w!* F if w isirrelevant). Given two states E;F , we say that F is reachable from E, if E !� F .States of � which are reachable from X1 are said to be reachable.



aE a! E E a! E0E:F a! E0:F E a! E0E + F a! E0 F a! F 0E + F a! F 0E a! E0EkF a! E0kF F a! F 0EkF a! EkF 0 E a! E0X a! E0 (X = E 2 �)Fig. 1. SOS rulesRemark1. Processes are often identi�ed with their leading variables. Further-more, if we assume �xed processes �1; �2 such that Var(�1) \ Var(�2) = ;,then we can view any process expression E (not necessarily guarded) whosevariables are de�ned in �1; �2 as a process too�if we denote this process by�, then the leading equation of � is X = E0, where X 62 Var(�1) [ Var(�2)and E0 is a process expression which is obtained from E by substituting eachvariable in E with the right-hand side of its corresponding de�ning equation in�1 or �2 (E0 must be guarded now). Moreover, def. equations from �1; �2 areadded to �. All notions originally de�ned for processes can be used for processexpressions in this sense too.Bisimulation The equivalence between process expressions (states) we areinterested in here is bisimilarity [16], de�ned as follows: A binary relation Rover process expressions is a bisimulation if whenever (E;F ) 2 R then for eacha 2 Act� if E a! E0, then F a! F 0 for some F 0 such that (E0; F 0) 2 R� if F a! F 0, then E a! E0 for some E0 such that (E0; F 0) 2 RProcesses � and �0 are bisimilar, written � � �0, if their leading variables arerelated by some bisimulation.Normed processes An important subclass of BPA and BPP processes canbe obtained by an extra restriction of normedness. A variable X 2 Var(�) isnormed if there is w 2 Act� such that X w!* �. In that case we de�ne the norm ofX , written jX j, to be the length of the shortest such w. A process � is normedif all variables of Var(�) are normed. The norm of � is then de�ned to bethe norm of X1. Note that bisimilar normed processes must have the same normwhich is easily computed by the following rules: jaj = 1, jE+F j = minfjEj; jF jg,jE:F j = jEj+jF j, jEkF j = jEj+jF j and if Xi = Ei and jEij = n, then jXij = n.Greibach normal form Any BPA or BPP process � can be e�ectively pre-sented in a special normal form which is called 3-Greibach normal form by anal-ogy with CF grammars (see [1] and [6]). Before the de�nition we need to intro-duce the set Var(�)� of all �nite sequences of variables from Var(�), and the setVar(�)
 of all �nite multisets over Var(�). Each multiset of Var(�)
 denotesa BPP expression by combining its elements in parallel using the `k' operator.



A BPA (or BPP) process � is said to be in Greibach normal form (GNF)if all its equations are of the form X = Pnj=1 aj�j where n 2 N , aj 2 Actand �j 2 Var(�)� (or �j 2 Var(�)
). We also require that each Y 2 Var(�)appears in some reachable state of �. If length(�j) � 2 (or card(�j) � 2) foreach j; 1 � j � n, then � is said to be in 3-GNF.From now on we assume that all BPA and BPP processes we are workingwith are presented in GNF. This justi�es also the assumption that all reachablestates of a BPA process � are elements of Var(�)� and all reachable states of aBPP process �0 are elements of Var(�0)
.Regular processes A process � is regular if there is a process �0 with �nitelymany states such that � � �0. A regular process � is said to be in normal formif all its equations are of the form X = Pnj=1 ajXj where n 2 N , aj 2 Act andXj 2 Var(�).It is easy to see that a process is regular i� it can reach only �nitely manystates up to bisimilarity. In [14] it is shown, that regular processes can be repre-sented in the normal form just de�ned. Thus a process � is regular i� there isa regular process �0 in normal form such that � � �0. A proof of the followingproposition can be found in [13].Proposition2. Let � be a normed BPA or BPP process. The problem whether� is regular is decidable in polynomial time. Moreover, if � is regular then a reg-ular process �0 in normal form such that � � �0 can be e�ectively constructed.Special notation Here we summarize special notation used in this paper.� nBPA and nBPP are abbreviations for normed BPA and normed BPP,respectively.� if � is a state of a nBPA or nBPP process such that � is regular (see Re-mark 1), then �R(�) denotes a bisimilar regular process in normal form,which can be e�ectively constructed due to Proposition 2. Furthermore, wealways assume that �R(�) contains completely fresh variables which are notcontained in any other process we deal with.� the class of all processes for which there is a bisimilar nBPA (or nBPP)process is denoted S(nBPA) (or S(nBPP)).� if �1; : : : ; �n are processes from nBPA[nBPP and Xi is the leading variableof �i for 1 � i � n, then �1k � � � k�n denotes the process X1k � � � kXn in thesense of Remark 1.� square brackets `[' and `]' indicate optional occurrence�if we say that someexpression is of the form a[A][B], we mean that this expression is either a,aA, aB or aAB.� upper indexes are used heavily; they appear in two forms:�i = �k � � � k�| {z }i �.i = �: � � � :�| {z }i



Decidability of bisimilarity in nBPA [ nBPP Bisimilarity is known to bedecidable for nBPA (see [1, 11, 10]) and nBPP (see [7, 9]) processes. The followingresult due to �erná, K°etínský and Ku£era (see [5]) says that bisimilarity isdecidable even in the union of nBPA and nBPP processes.Proposition3. Let � be a nBPA (or nBPP) process. It is decidable, whether� 2 S(nBPP) (or whether � 2 S(nBPA)) and if the answer is positive, then abisimilar nBPP (or nBPA) process can be e�ectively constructed.Decomposability, prime processes Let nil be a special name for the processwhich cannot emit any action (i.e., nil � �). A nBPA or nBPP process � isprime if � 6� nil and whenever � � �1k�2 we have that either �1 � nil or�2 � nil .Natural questions are, what processes have a decomposition into a �nite par-allel product of primes and whether this decomposition is unique. This problemwas �rst examined by Milner and Moller in [15]. They proved that each normed�nite-state process has a unique decomposition up to bisimilarity. A more gen-eral result is due to Christensen, Hirshfeld and Moller�they proved the followingproposition (see [8]):Proposition4. Each nBPP process has a unique decomposition into a parallelproduct of primes (up to bisimilarity).Remark5. Proposition 4 holds for any normed process in fact (namely fornBPA). The proof is independent of a concrete syntax�it could be easily for-mulated in terms of normed transition systems. This proposition thus says thateach normed process can be parallelized in the �best� way and that this way isin some sense unique. However, this nice theoretical result is non-constructive.3 Decomposability of nBPP processesEach nBPP processes � can be easily decomposed into a parallel product ofprimes�all what has to be done is a construction of a bisimilar canonical process(see [6]).Theorem6. Let � be a nBPP process. It is decidable whether � is prime andif not, its decomposition into primes can be e�ectively constructed.Proof. By induction on n = j�j:� n=1: each nBPP process whose norm is 1 is prime.� Induction step: Suppose � � �1k�2. As �1; �2 are reachable states of�1k�2, there are �1; �2 2 Var(�)
 such that �1 � �1 and �2 � �2, thus� � �1k�2. Furthermore, j�j = j�1j + j�2j. We show that there are only�nitely many candidates for �1; �2. First, there are only �nitely many pairs[k1; k2] 2 N�N such that k1+k2 = j�j. For each such pair [k1; k2] there are



only �nitely many pairs [�1; �2] such that �1; �2 2 Var(�)
, j�1j = k1 andj�2j = k2. It is obvious that the set M of all such pairs can be e�ectivelyconstructed. For each element [�1; �2] ofM we check whether � � �1k�2 (itcan be done because bisimilarity is decidable for nBPP processes). If there isno such pair then � is prime. Otherwise, we check whether �1; �2 are primes(it is possible by ind. hypothesis) and construct their decompositions. If wecombine these decompositions in parallel, we get a decomposition of �. utAs each normed regular process in normal form can be seen as a nBPP processin GNF, Theorem 6 (and especially its constructive proof) can be also used forregular nBPA processes (see Proposition 2). In the next section we can thusconcentrate on non-regular nBPA processes.4 Decomposability of nBPA processesIt this section we give an exact characterization of non-prime nBPA processes.We design special normal forms which allow us to characterize all non-primenBPA processes together with their decompositions (up to bisimilarity). Ourresults bring also interesting consequences�we obtain a re�nement of the resultachieved in [4] (see Remark 18) and we also show that any nBPA process canbe decomposed into prime processes e�ectively. Further positive decidabilityresults are discussed in the end of the second subsection. Finally, we demonstratedecidability of bisimilarity in a natural subclass of normed PA processes.4.1 Normal forms for non-prime nBPA processesIn this subsection we design the promised normal forms for non-prime nBPA pro-cesses and for prime processes which appear in corresponding decompositions.As we already know from the previous section, the problem of possible decompo-sition of a nBPA process into a parallel product of primes is actually interestingonly for non-regular nBPA processes, hence the main characterization theoremdoes not concern regular nBPA processes.The layout of this subsection is as follows: �rst we present two technicallemmas (Lemma 7 and 8). Then we consider the following problem: if � is anon-regular nBPA process such that � � �1k�2, where �1; �2 are some (un-speci�ed) processes, how do the processes �;�1; �2 look like? It is clear that�1; �2 2 S(nBPA), hence the assumption that �1; �2 are nBPA processes canbe used w.l.o.g. This problem is solved by Proposition 11 and 16 with a help ofseveral de�nitions. Having this, the proof of Theorem 21 is easy to complete.Lemma7. Let � be a nBPA process. Let �; 
 2 Var(�)+, Q;C 2 Var(�) suchthat jQj = jCj = 1 and �kQ � C:
. Then � � Qj�j.Proof. We prove that for each 1 � i � j�j there is � 2 Var(�)� such that�kQi � C:
. This is clearly su�cient, because then �kQ � C:
 � Qj�j+1 andthus � � Qj�j. We proceed by induction on i.



� i=1: choose � = �.� Induction step: Let �kQi � C:
. As jCj = 1, all states which are reachablefrom �kQi in one norm-decreasing step are bisimilar. As� is normed, there is�0 2 Var(�)� such that � a! �0 where j�j = j�0j+1. Hence �kQi�1 � �0kQiand by substitution we obtain �kQi � �0kQi+1. utLemma8. Let � be a nBPA process, �; �; 
 2 Var(�)� such that � is non-regular and �k� � 
. Let � !� Q where jQj = 1. Then � � Qj�j.The proof of Lemma 8 is omitted due to the lack of space (it is rather technical).It can be found in [12].De�nition 9 (simple processes). A nBPA process� is simple if Var(�) con-tains just one variable, i.e., card(Var(�)) = 1.We will often identify simple processes with their leading (and only) variablesin the rest of this paper. Moreover, it is easy to see that a simple process Q isnon-regular i� the def. equation for Q contains a summand of the form aQ.kwhere a 2 Act and k � 2. The norm of Q is one, because Q could not be normedotherwise. Another important property of simple processes is presented in theremark below:Remark10. Each simple nBPA process Q belongs to S(nBPP)�a bisimilarnBPP process can be obtained just by replacing the `:' operator with the `k'operator in the def. equation for Q. Consequently, any process expressions builtover k copies of Q using `:' and `k' operators are bisimilar (e.g., (Q:(QkQ))kQ �(QkQ):(QkQ)).Proposition11. Let �1; �2 be non-regular nBPA processes. Then �1k�2 2S(nBPA) i� �1 � Qj�1j and �2 � Qj�2j for some non-regular simple process Q.Proof.�(� Easy�see Remark 10.�)� Assume there is some nBPA process � such that �1k�2 � �. Then thereare �1; �2 2 Var(�)� such that �1 � �1 and �2 � �2. Thus �1k�2 � �and as �1; �2 are non-regular, we can use Lemma 8 and conclude that thereare Q1; Q2 2 Var(�) such that jQ1j = jQ2j = 1, �1 !� Q1, �2 !� Q2 and�1 � Qj�1j1 , �2 � Qj�2j2 . First we prove that Q1 � Q for some simple process Q.To do this, it su�ces to prove that if a
 is a summand in the def. equation forQ1, then 
 � Qj
j1 (if this is the case, then also 
 � Q.j
j1 � see Remark 10). As�1k�2 !� Q1k�2 a! 
k�2, the process 
k�2 belongs to S(nBPA). Let 
 !� Rwhere jRj = 1. Then 
 � Rj
j (due to Lemma 8) and as �1 !� 
 !� R, we alsohave �1 � Rj�1j. Hence R � Q1 and 
 � Qj
j1 .To �nish the proof we need to show that Q1 � Q2. Let m = maxfjX j; X 2Var(�)g. As �1 is non-regular, it can reach a state of an arbitrary norm�let�1 !� �01 where j�01j = m. Then �01kQ2 � � for some � 2 Var(�)� whose length



is at least two�� = A:B:�0. Clearly �01 � Qj�01j1 (we can use the same argumentas in the �rst part of this proof�Q2 is non-regular and �0 plays the role of 
),hence Qj�01j1 kQ2 � A:B:�0. As Qj�01j�jAj1 kQ2 � B:�0 and Qj�01j�jAj+11 � B:�0, wehave Qj�01j�jAj1 kQ2 � Qj�01j�jAj+11 by transitivity and thus Q1 � Q2. utProposition 11 in fact says that if � is a non-regular nBPA process such that� � �1k�2, where �1; �2 are non-regular processes, then each of those threeprocesses can be equivalently represented as a power of some non-regular simpleprocess. This representation is very special and can be seen as normal form.If � is a non-regular nBPA process such that � � �1k�2, it is also possiblethat �1 is non-regular and �2 regular. Before we start to examine this sub-case,we introduce a special normal form for nBPA processes (as we shall see, � and�1 can be represented in this normal form):De�nition 12 (DNF(Q)). Let � be a non-regular nBPA process in GNF, Q 2Var(�). We say that � is in DNF (Q) if all summands in all de�ning equationsfrom � are of the form a([Y ]:[Q.i]), where Y 2 Var(�), i 2 N and a 2 Act .Furthermore, all summands in the def. equation for Q must be of the form a[Q],where a 2 Act .Example13. The following process is in DNF (Q):X = a(Y:Q:Q) + bX + a(Q:Q:Q) + cY = bQ+ cX + c(Y:Q) + bQ = aQ+ bQ+ a+ cRemark14. Reachable states of a process� in DNF (Q) are of the form [Y ]:[Q.i]where Y 2 Var(�) and i 2 N [f0g. As � is non-regular, the state Q.k is reach-able for each k 2 N .Note that the variable Q itself is a regular simple process. The next lemma saysthat if � is a process in DNF (Q), then the variable Q is in some sense unique:Lemma15. Let � and �0 be processes in DNF (Q) and DNF (R), respectively.If � � �0, then Q � R.Proposition16. Let �1; �2 be nBPA processes such that �1 is non-regular and�2 is regular. Then �1k�2 2 S(nBPA) i� there is a process �01 in DNF (Q)such that �1 � �01 and �2 � Qj�2j.Proof.�)� Let �2 !� Q0 where Q0 2 Var(�2), jQ0j = 1. Using the same kind ofargument as in the proof of Proposition 11 we obtain that Q0 � Q for someregular simple process Q such that �2 � Qj�2j. It remains to prove that thereis a process �01 in DNF (Q) such that �1 � �01. We show that each summand ofeach de�ning equation from �1 can be transformed to a form which is admittedby DNF (Q). First, let us realize two facts about summands�if a� is a summandin a def. equation from �1, then



1. If � = �:Y:
 where Y is a non-regular variable, then each variable P of 
 isbisimilar to QjP j.2. � contains at most one non-regular variable.The �rst fact is a consequence of Lemma 7�let � be a nBPA process such that�1k�2 � �. As �1 is normed, �1 !� Y:
:� for some � 2 Var(�1)�. As Y isnon-regular, it can reach a state of an arbitrary length�let m = maxfjX j; X 2Var(�1)g and let Y !� ! where length(!) = m. As �1k�2 !� !:
:�kQ0,there is ' 2 Var(�)� such that !:
:�kQ0 � '. Let ' = C:'0 and let s be anorm-decreasing sequence of actions such that length(s) = jCj � 1 and ! s!* !0.Then !0:
:�kQ0 � C 0:'0 where jC 0j = 1 and due to Lemma 7 (and the fact thatQ0 � Q) we have !0:
:� � Qj!0:
:�j, hence 
 � Qj
j and P � QjP j for eachvariable P which appears in 
.The second fact is a consequence of the �rst one�assume that � = �:Y:
:Z:�where Y; Z are non-regular. Then Z � QjZj and as Q is regular, QjZj is regulartoo. Hence Z is regular and we have a contradiction.Now we can describe the promised transformation of �1 to �01: if X =Pni=1 ai�i is a def. equation in �1, then X = Pni=1 aiT (�i) is a def. equation in�01, where T is de�ned as follows:� If �i does not contain any non-regular variable, then T (�i) = A, where A isthe leading variable of �R(�i). Moreover, de�ning equations of �R(�i) areadded to �01.� If �i = �:Y:
 where Y is a non-regular variable, then T (�i) = A, where Ais the leading variable of the process �0 which is obtained by the followingmodi�cation of the process �R(�): each summand in each def. equation of�R(�) which is of the form b, where b 2 Act , is replaced with b(Y:Q.j
j) �remember 
 � Qj
j � Q.j
j. Moreover, def. equations of �0 are added to �01.The de�ning equation for Q is also added to �01. The resulting process is inDNF (Q) and as T preserves bisimilarity, �1 � �01.�(�We show how to construct a nBPA process�which is bisimilar to�01kQj�2j.Let k = j�2j. The set of variables of � looks as follows:Var(�) = fQg [ fYi; Y 2 Var(�01); Y 6= Q and i 2 f0; : : : ; kggDe�ning equations of � are constructed using the following rules:� the def. equation for Q is the same as in �01� if a(Y:Q.j), where j 2 N [ f0g, Y 6= Q, is a summand in the def. equationfor Z 2 Var(�01), then a(Yi:Q.j) is a summand in the def. equation for Zifor each i 2 f0; : : : ; kg� if a(Q.j) where j 2 N [ f0g is a summand in the def. equation for Z 2Var(�01), then a(Q.j+i) is a summand in the def. equation for Zi for eachi 2 f0; : : : ; kg� if aQ is a summand in the def. equation for Q and Z 2 Var(�01), Z 6= Q,then aZi is a summand in the def. equation for Zi for each i 2 f1; : : : ; kg



� if a is a summand in the def. equation for Q and Z 2 Var(�01), Z 6= Q, thenaZi�1 is a summand in the def. equation for Zi for each i 2 f1; : : : ; kgThe intuition which stands behind this construction is that lower indexes ofvariables indicate how many copies of Q in Qj�2j have not disappeared yet. Thefact �01kQj�2j � � is easy to check. utExample17. If we apply the algorithm presented in the �(� part of the proofof Proposition 16 to the process XkQ2, where X;Q are variables of the processpresented in Example 13, we obtain the following output:X2 = a(Y2:Q:Q) + bX2 + a(Q:Q:Q:Q:Q) + c(Q:Q) + aX2 + bX2 + aX1 + cX1X1 = a(Y1:Q:Q) + bX1 + a(Q:Q:Q:Q) + cQ+ aX1 + bX1 + aX0 + cX0X0 = a(Y0:Q:Q) + bX0 + a(Q:Q:Q) + cY2 = b(Q:Q:Q) + cX2 + c(Y2:Q) + b(Q:Q) + aY2 + bY2 + aY1 + cY1Y1 = b(Q:Q) + cX1 + c(Y1:Q) + bQ+ aY1 + bY1 + aY0 + cY0Y0 = bQ+ cX0 + c(Y0:Q) + bQ = aQ+ bQ+ a+ cRemark18. Proposition 16 can also be seen as a re�nement of the result pre-sented in [4]�Burkart and Ste�en proved that PDA processes are closed underparallel composition with �nite-state processes, while BPA processes lack thisproperty. Proposition 16 says precisely, which nBPA processes can remain nBPAif they are combined in parallel with a regular process. Moreover, it also charac-terizes all such regular processes.It is easy to see that the algorithm from the proof of Proposition 16 alwaysoutputs a process in DNF (Q) (see Example 17). Moreover, the structure of thisprocess is very speci�c; we can observe that each variable belongs to a special�level�. This intuition is formally expressed by the following de�nition (it is alittle complicated�but it pays because we will be able to characterize all non-prime nBPA processes):De�nition 19. Let � be a nBPA process in DNF (Q). The level of �, denotedLevel(�), is the maximal l 2 N such that the set Var(�) � fQg can be di-vided into l disjoint linearly ordered subsets L1; : : : ; Ll of the same cardinalityk. Moreover, the following conditions must be true (the jth element of Li isdenoted Ai;j):� Al;1 is the leading variable of �.� De�ning equations for variables of L1 contain only variables from L1 [ fQg� The de�ning equation for Ai;j , where i � 2, 1 � j � k, contains exactlythose summands which can be derived by one of the following rules:1. If aQ is a summand in the de�ning equation for Q, then aAi;j is asummand in the de�ning equation for Ai;j for each 2 � i � l, 1 � j � k.2. If a is a summand in the de�ning equation for Q, then aAi�1;j is asummand in the de�ning equation for Ai;j for each 2 � i � l, 1 � j � k.



3. If a(A1;m:Q.n) is a summand in the de�ning equation for A1;j such thatA1;m 6= Q, then a(Ai;m:Q.n) is a summand in the de�ning equation forAi;j for each 2 � i � l.4. If aQ.n is a summand in the de�ning equation for A1;j , then aQ.(n+i�1)is a summand in the de�ning equation for Ai;j , where 2 � i � l.Example20. The process of Example 17 has the level 3; L1 = fX0; Y0g, L2 =fX1; Y1g and L3 = fX2; Y2g.Now we can present the �rst main theorem of this paper:Theorem21. Let � be a non-regular nBPA process and let � � �1k � � � k�n,where n � 2, �i is a prime process for each 1 � i � n and �1 is non-regular.Then one of the following possibilities holds:� There is a non-regular simple process Q such that � � Q.j�j and �i � Qfor each 1 � i � n.� There are nBPA processes �0; �01 in DNF (Q) such that � � �0, �1 � �01,Level (�0) = n, Level(�01) = 1 and �i � Q for each 2 � i � n.Proof. By a straightforward induction on n�see [12]. ut4.2 Decidability resultsIn this subsection we present several positive decidability results. We show that itis decidable whether a given nBPA process is prime and if the answer is negative,then its decomposition into primes can be e�ectively constructed. There arealso other decidable properties which are summarized in Theorem 26. Finally,we demonstrate decidability of bisimilarity in a natural subclass of normed PAprocesses.Lemma22. Let � be a nBPA process. It is decidable whether there is a nBPAprocess �0 in DNF (Q) such that � � �0. Moreover, if the answer to the previousquestion is positive, then the process �0 can be e�ectively constructed.Proof. We can assume (w.l.o.g.) that � is in 3-GNF. If there is a process �0 inDNF (Q) such that � � �0, then there is R 2 Var(�) such that R � Q, becauseQ is a reachable state of �0. As Q is a regular simple process, each summand inthe def. equation for R must be of the form a[P ], where R � P . As bisimilarityis decidable for nBPA processes, we can construct the set M of all variables ofVar(�) with this property. Each variable from this set is a potential candidatefor the variable which is bisimilar to Q (if the set M is empty, then � cannotbe bisimilar to any process in DNF (Q)).For each variable V 2M we now modify the process � slightly�we replaceeach summand of the form aP in the def. equation for V with aV . The resultingprocess is denoted �V (clearly � � �V ). For each �V we check whether �Vcan be transformed to a process in DNF (V ). To do this, we �rst need to realize



the following fact: if there is �0V in DNF (V ) such that �V � �0V and a(A:B)is a summand in a def. equation from �V such that A is non-regular, thenB � V .jBj. It is easy to prove by the technique we already used many timesin this paper�as A is non-regular, it can reach a state of an arbitrary norm.Furthermore, there is a reachable state of �V which is of the form A:B:
 where
 2 Var(�V )�. We choose su�ciently large � such that A!� � and �:B:
 mustbe bisimilar to a state of �0V which is of the form [Y ]:V .i where i � jB:
j. Fromthis we get B � V .jBj.Now we can describe the promised transformation T of �V to a process �0Vin DNF (V ). If this transformation fails, then there is no process in DNF (V )bisimilar to �V . T is invoked on each summand of each def. equation from �Vand works as follows:� T (a) = a� T (aA) = aA� T (a(A:B)) = aN if A is regular. The variable N is the leading variableof �R(A), whose def. equations are also added to �0V after the followingmodi�cation: each summand in each def. equation of �R(A) which is of theform b where b 2 Act is replaced with bB.� T (a(A:B)) = a(A:V .jBj) if A is non-regular and B � V .jBj. If A is non-regular and B 6� V .jBj, then T fails.If there is V 2 M such that T succeeds for �V , then the process �0V � � is theprocess we are looking for. Otherwise, there is no process in DNF (Q) bisimilarto �. utProposition23. Let �1; : : : ; �n, n � 2 be nBPA processes. It is decidablewhether �1k � � � k�n 2 S(nBPA). Moreover, if the answer to the previous ques-tion is positive, then a nBPA process � such that �1k � � � k�n � � can bee�ectively constructed.Proof. By induction on n:� n=2: we distinguish three possibilities (it is decidable which one actuallyholds�see Proposition 2):1. �1 and �2 are regular. Then �1k�2 2 S(nBPA) and a bisimilar regularprocess � in normal form can be easily constructed.2. �1 and �2 are non-regular. Proposition 11 says that there is a non-regular simple process Q such that �1 � Qj�1j � Q.j�1j and �2 �Qj�2j � Q.j�2j. As Q is a reachable state of Q.j�2j, there is R 2 Var(�1)such that Q � R. As reachable states of Q are of the form Q.i wherei 2 N[f0g, each summand a� in the def. equation for R has the property� � R.j�j. As bisimilarity is decidable for nBPA processes, we can �ndall variables of Var(�) having this property�we obtain a set of possiblecandidates for R (if this set is empty, then �1k�2 62 S(nBPA)). Now wecheck whether the constructed set of candidates contains a variable Rsuch that �1 � R.j�1j. If not, then �1k�2 62 S(nBPA). Otherwise wehave R which is bisimilar to Q.



The same procedure is now applied to �2. If it succeeds, it outputs someS 2 Var(�). Now we check whether R � S. If not, then �1k�2 62S(nBPA). Otherwise �1k�2 2 S(nBPA) and �1k�2 � R.j�1j+j�2j.3. �1 is non-regular and �2 is regular (or �1 is regular and �2 is non-regular�this is symmetric). Due to Proposition 16 we know that thereis a regular simple process Q and a nBPA process �01 in DNF (Q) suchthat �1 � �01 and �2 � Qj�2j � Q.j�2j. An existence of �01 can bechecked e�ectively (see Lemma 22). If it does not exist, then �1k�2 62S(nBPA). If it exists, it can be also constructed and thus the only thingwhich remains is to test whether �2 � Q.j�2j. If this test succeeds,then �1k�2 2 S(nBPA) and we invoke the algorithm from the proofof Proposition 16 with �01kQj�2j on input�it outputs a nBPA processwhich is bisimilar to �1k�2.� Induction step: if �1k � � � k�n 2 S(nBPA), then also �1k � � � k�n�1 2S(nBPA) and this is decidable by induction hypothesis�if the answer isnegative, then �1k � � � k�n 62 S(nBPA) and if it is positive, then we canconstruct a nBPA process �0 such that �1k � � � k�n�1 � �0. Now we checkwhether �0k�n 2 S(nBPA) and construct a bisimilar nBPA process �. utAs an immediate consequence of Proposition 23 we get:Proposition24. Let �;�1; : : : ; �n be nBPA processes. It is decidable whether� � �1k � � � k�n.Theorem25. Let � be a nBPA process. It is decidable whether � is prime andif not, its decomposition into primes can be e�ectively constructed.Proof. The technique is the same as in the proof of Theorem 6. We can almostcopy the whole proof�the crucial result which allows us to do so is Proposi-tion 24. utDecidability results which were proved in this subsection are summarized by thefollowing theorem:Theorem26. Let �;�1; : : : ; �n be nBPA processes. The following problems aredecidable:� Is � prime? (If not, its decomposition can be e�ectively constructed)� Is � bisimilar to �1k � � � k�n?� Does the process �1k � � � k�n belong to S(nBPA)?� Is there any process �0 such that �k�0 2 S(nBPA)? (if so, an example ofsuch a process can be e�ectively constructed).� Is there any process �0 such that � � �1k � � � k�nk�0? (if so, �0 can bee�ectively constructed).A �structural� way how to construct new processes from older ones is to combinethem in parallel. If we do this with nBPA and nBPP processes, we obtain anatural subclass of normed PA processes denoted sPA (simple PA processes).



De�nition 27 (sPA processes). The class of sPA processes is de�ned as fol-lows: sPA = f�1k � � � k�n j n 2 N; �i 2 nBPA [ nBPP for each 1 � i � ngThe class sPA is strictly greater than the union of nBPA and nBPP processes;it su�ces to take a parallel composition of two �normed counters� speci�ed bynBPA processes. The resulting sPA process is not bisimilar to any nBPA ornBPP process. It can be easily proved with the help of pumping lemmas for CFlanguages and for languages generated by nBPP processes�see [6].Theorem28. Let � = '1k � � � k'n, 	 =  1k � � � k m be sPA processes. It isdecidable whether � � 	 .Proof. As each 'i, 1 � i � n and  j , 1 � j � m can be e�ectively decomposedinto a parallel product of primes, we can also construct the decompositions of �and 	 . If � � 	 , then these decompositions must be the same up to bisimilarity(see Remark 5). In other words, there must be a one-to-one mapping betweenprimes forming the two decompostions which preserves bisimilarity. An existenceof such a mapping can be checked e�ectively, because bisimilarity is decidablein the union of nBPA and nBPP processes (see Proposition 3). ut5 Conclusions, future workThe main characterization theorem (Theorem 21) says that non-regular nBPAprocesses which are not prime can be divided into two groups:1. processes which are bisimilar to a power of some non-regular simple pro-cess. It is obvious that each such nBPA process belongs to S(nBPP)�seeRemark 10.2. processes which are bisimilar to some process in DNF (Q). It can be proved(with the help of results achieved in [5]) that each such process does notbelong to S(nBPP).From this we can observe that our division based on normal forms correspondsto the membership to S(nBPP).We have also shown that the decomposition of non-prime nBPA processes canbe e�ectively constructed. This algorithm can be interpreted as a constructionof the �most parallel� version of a given sequential program. Finally, we provedthat bisimilarity is decidable for sPA processes. (see De�nition 27).The �rst possible generalization of our results could be the replacement ofthe `k' operator with the parallel operator of CCS which allows synchronizationson complementary actions. This should not be hard, but we can expect morecomplicated normal forms. Decidability results should be the same.A natural question is whether our results can be extended to the class of all(not necessarily normed) BPA processes. The answer is no, because there arequite primitive BPA processes which do not have any decomposition at all�asimple example is the process X = aX .
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