
Deciding Bisimilarity between BPA and BPP Processes⋆

Petr Jančar1, Antonı́n Kučera2, and Faron Moller3

1 Dept. of Computer Science, FEI, Technical University of Ostrava,
17. listopadu 15, 70833 Ostrava, Czech Republic.

<Petr.Jancar@vsb.cz>
2 Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic,

<tony@fi.muni.cz>
3 Dept. of Computer Science, University of Wales Swansea,

Singleton Park, Swansea SA2 8PP, Wales.
<F.G.Moller@swansea.ac.uk>

Abstract. We identify a necessary condition for when a given BPP process can
be expressed as a BPA process. We provide an effective procedure for testing if
this condition holds of a given BPP, and in the positive case we provide an effec-
tive construction for a particular form of one-counter automaton which is bisim-
ilar to the given BPP. This in turn provides the mechanism to decide bisimilarity
between a given BPP process and a given BPA process.

1 Introduction

During the last decade, a great deal of research effort has been devoted to the study
of decidability and complexity issues for checking semantic equivalences, in particu-
lar bisimilarity, between various classes of processes. There have been several surveys
presenting this work (eg, [16, 13, 12]), including a major Handbook chapter [3]. There
is even now a project devoted to maintaining an up-to-date comprehensive overview of
the state-of-the-art in this dynamic research topic [19].

Example classes of processes of particular interest in thisstudy are pushdown au-
tomata, Petri nets, and the process algebra PA. Some milestones in the study, beginning
with the decidability of bisimilarity over normed BPA [1] include the undecidability of
bisimilarity over Petri nets [10]; the decidability of bisimilarity over normed PA [7]; and
the decidability of bisimilarity over the class of strict deterministic grammars (a partic-
ular formulation of deterministic pushdown automata) [23]. This final result reinforces
Sénizergues’ solution [18] to the long-standing equivalence problem for determinis-
tic pushdown automata. A closely related result is the decidability of bisimilarity over
state-extended BPA [17, 22].

The motivation for the present study is to work towards a generalization of the above
decidability result for normed PA to the whole class of PA processes. The process alge-
bra PA includes operators for composing terms both sequentially and in parallel, and as

⋆ The first two authors are supported by the Grant Agency of the Czech Republic, grant No.
201/03/1161.

described by Hirshfeld and Jerrum in [7], there are surprising interactions between se-
quential and parallel compositions. Indeed, one can express the sequential composition
X1·X2 of two termsX1 andX2 as a parallel compositionY1||Y2 of two other termsY1

andY2 in infinitely-many ways, using terms of unbounded complexity. By restricting
to normed process terms, Hirshfeld and Jerrum were able to develop a structural the-
ory which allowed them, in effect, to finitely characterize the infinite set of solutions
to the equivalenceX1·X2 = Y1||Y2, and then use this characterization to provide their
decidability result. However, it remains open as to how to extend their techniques to the
unnormed PA case.

The process class BPA represents the subset of PA involving only sequential com-
position, while BPP represents the subset involving only parallel composition. As such,
in light of the above observations, it becomes natural to consider the problem of com-
paring an arbitrary BPA term with an arbitrary BPP term. Decidability between such a
pair of terms in the normed case of course follows from the above result, though this
problem was already settled in [2, 5].

Bisimulation checking over normed process classes has typically proven to be far
more tractable than over unnormed processes. For example, over both the BPA and
BPP process classes, unique decomposability results in thespirit of [15] hold over the
normed subclasses which allow for polynomial decision procedures in each case [8, 9].
Though decidability of bisimilarity in the unnormed cases has been known for some
time, bounds on their complexity have been elusive. Recently both problems have been
shown to be PSPACE hard [20, 21], and even more recently the problem for BPP has
been shown to be PSPACE-complete [11]. Various novel techniques are developed in
each of the above papers which contribute towards an understanding of the nature of
these classes of sequential and parallel process.

In this paper we continue the exposition of these classes of processes and consider
the problem of when an arbitrary BPP process can be expressedas a BPA process term.
To this end, we identify a property of (arbitrary) processeswhich cannot be modelled
“sequentially”; essentially this property entails encoding two distinct, unrelated and
sufficiently-large integer values. If our given BPP processcan be expressed as a BPA
term, then clearly it is necessary that the process does not possess this property. Further-
more, we demonstrate how to test if a given BPP process possesses this property, and
in the case that it does not, we provide an effective construction of an equivalent one-
counter automaton. As one-counter automata and BPA both constitute subclasses of
state-extended BPA, we arrive at the decidability of bisimilarity between BPA and BPP
processes from the afore-mentioned decidability of bisimilarity over state-extended
BPA.

The structure of the paper is as follows. In Section 2 we present various preliminary
definitions, and in Section 3 we explore the structure of BPA processes and provide
the crucial technical result of the paper. Finally, in Section 4 we prove our decidability
result by characterizing when a BPP process abides by the structural restrictions of BPA
processes exposed in Section 3, and then demonstrating how to decide equivalence to a
given BPA process in the case where this is true.

2 Preliminary Definitions and Results

2.1 Processes and Norms

Formally, aprocessis represented by (a state in) alabelled transition systemdefined as
follows.

Definition 1. A labelled transition system (LTS)is a tripleS = (S,Act ,→) whereS

is a set ofstates, Act is a finite set ofactions, and→ ⊆ S × Act × S is a transition
relation.

We write s
a
→ s̄ instead of(s, a, s̄) ∈ → and we extend this notation to elements of

Act∗ in the natural way. We also uses → s̄ to means
a
→ s̄ for somea ∈ Act . A state

s̄ is reachablefrom a states if s →∗ s̄, that is, ifs
w
→ s̄ for somew ∈ Act∗.

The notion of “behavioural sameness” between two processescan be formally cap-
tured in many different ways (see, e.g., [6] for an overview). Among those behavioural
equivalences,bisimulation equivalenceenjoys special attention. Its formal definition is
as follows.

Definition 2. LetS = (S,Act ,→S) andT = (T,Act,→T) be transition systems de-
fined over the same action setAct . A binary relationR ⊆ S × T is a bisimulation
relationiff whenever(s, t) ∈ R, we have that

– for each transitions
a
→S s̄ there is a transitiont

a
→T t̄ such that(s̄, t̄) ∈ R; and

– for each transitiont
a
→T t̄ there is a transitions

a
→S s̄ such that(s̄, t̄) ∈ R.

Processess and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they are
related by some bisimulation.

An important subclass of processes are thenormedprocesses, which are those for
which from any state there is a sequence of transitions leading to a state having no
transitions leading out of it; thenormof a process state is then traditionally defined to
be the length of a shortest sequence of transitions leading to such a deadlocked state.
We can generalize the notion of a norm as follows. (We letIN = {0, 1, 2, . . .} represent
the set of natural numbers,INω = IN ∪ {ω}, and INω,−1 = IN ∪ {ω,−1}, where
ω + ω = ω + k = ω − k = ω − ω = ω, andk < ω, ω ≤ ω for everyk ∈ IN ∪ {−1}.)

Definition 3. LetS = (S,Act ,→) be a transition system, andd : S → INω a function.
We say thatd is anormiff for all s ∈ S we have the following:

– If s → s′, thend(s′) ≥ d(s)−1; and
– If 0 < d(s) < ω, then there iss → s′ such thatd(s′) = d(s)−1.

In the latter clause, we call such a transition ad-reducing transition.

It is possible to construct new norms out of already existingones; for example, if
d andd′ are norms, then so ismin(d, d′). For our purposes, the following construction
is particularly important. Firstly, for alls, s′ ∈ S we define thedistancefrom s to s′,

denoteddist(s, s′), to be the length of a shortest sequence of transitions leading from
states to states′:

dist(s, s′) = min
{

length(w) : s
w
→ s′

}

.

Adhering to the convention thatmin ∅ = ω, we note thatdist(s, s′) = ω when there is
no such sequence.

Given a tuple of normsF = (d1, . . . , dk), each transitions
a
→ s′ determines a

uniquechangeof F , denotedδF(s
a
→ s′), which is ak-tuple of values fromINω,−1

defined byδF (s
a
→ s′) =

(

d1(s
′)−d1(s), . . . , dk(s′)−dk(s)

)

. For each triple(a,F , δ),
wherea ∈ Act , F = (d1, . . . , dk) is a tuple of norms, andδ ∈ INk

ω,−1, we define the
functiondd(a,F ,δ) : S → INω to be the distance to a state for which all norms ofF are
finite, and for which there is noa-transition with the changeδ:

dd(a,F ,δ)(s) = min
{

dist(s, s′) : di(s
′) 6= ω for all i, and

δF(s′
a
→ s′′) 6= δ for all s′

a
→ s′′

}

.

Obviously, each suchdd(a,F ,δ) is a norm.
Some norms are not semantically relevant in the sense that bisimilarity does not nec-

essarily preserve them. In this paper we are mainly interested inbisimulation-invariant
norms.

Definition 4. We say that a given normd is bisimulation-invariantif s ∼ s′ implies
d(s) = d(s′).

A simple example of a bisimulation-invariant norm is the functiondda (wherea ∈ Act)
defined as follows:

dda(s) = min
{

dist(s, s′) : s′ 6
a
→

}

.

Definition 5. The set ofDD-functionsis defined inductively as follows:

– dda is a DD-function for everya ∈ Act ;
– if F = (d1, · · · , dk) is a tuple of DD-functions,δ ∈ INk

ω,−1, anda ∈ Act , then
dd(a,F ,δ) is also a DD-function.

A simple observation is that ifd1, · · · , dk are bisimulation-invariantnorms, thendd(a,F ,δ)

is also a bisimulation-invariant norm for each triple(a,F , δ). This in turn implies that
all DD-functions are bisimulation-invariant. For each DD-functiond we further define
the setsD(d) andC(d) of all DD-functions and changes which are employed during the
construction ofd:

– D(dda) = C(dda) = ∅ for every actiona;
– if d = dd(a,F ,δ), whereF = (d1, · · · , dk), then

• D(d) = D(d1) ∪ · · · ∪ D(dk) ∪ {d1, · · · , dk},
• C(d) = C(d1) ∪ · · · ∪ C(dk) ∪ {δ}.

2.2 BPA, BPP, Petri Nets and One Counter Automata

A BPA process is defined by a context-free grammar in Greibachnormal form. Formally
this is given by a tripleG = (V, A, Γ), whereV is a finite set ofvariables(nonterminal
symbols), A is a finite set oflabels (terminal symbols), andΓ ⊆ V × A × V ∗ is a
finite set ofrewrite rules(productions); it is assumed that every variable has at least
one associated rewrite rule. Such a grammar gives rise to theLTS SG = (V ∗, A,→) in
which the states are sequences of variables, the actions arethe labels, and the transition
relation is given by the rewrite rules extended by theprefix rewriting rule: if (X, a, α) ∈

Γ thenXβ
a
→ αβ for all β ∈ V ∗. In this way, concatenation of variables naturally

represents sequential composition.
A BPP process is defined in exactly the same fashion from such agrammar. How-

ever, in this case elements ofV ∗ are read modulo commutativity of concatenation, so
that concatenation is interpretted as parallel composition rather than sequential compo-
sition. The states of the BPP process associated with a grammar are thus given not by
sequences of variables but rather by multisets of variables.

In either case, BPA or BPP, the usual notion of thenormof a stateα ∈ V ∗, denoted
|α|, is the length of a shortest path to the empty processε: |α| = dist(α, ε). If all
variables of the underlying grammar have finite norm, then the process is said to be
normed; otherwise it isunnormed.

As an example, Figure 1 depicts the (normed) BPA and BPP processes defined by

ε

A

B

AB

BB

ABB- - -

� � �
? ? ?

a a a

b b b

c c c

···

···

ε

A

B

AB

BB

ABB
- - -� � �

� � �
? ? ?

a a a

b b b

b b b

c c c

···

···
•

P a Q
-

� -

?c ?b

Fig. 1.BPA and BPP processes defined by the grammarA
a
→ AB, A

c
→ ε, B

b
→ ε, along with

a BPP net equivalent to the BPP.

the same grammar given by the three rulesA
a
→ AB, A

c
→ ε andB

b
→ ε. It can easily

be shown [3] that the BPA process cannot be expressed by any BPP process, and equally
the BPP process cannot be expressed by any BPA process. Figure 2 on the other hand

A
a
→ BA A

a
→ BBA A

c
→ A

B
a
→ BB B

a
→ BBB B

c
→ B

B
b
→ ε

A BA BBA ···- - -� � �a a a

b b b

w
a

w
a

w
a

oc oc oc

P
a
→ PQ P

a
→ PR P

c
→ P

Q
b
→ ε R

b
→ S S

b
→ ε

� -
� -

•

Q a P a R b S

� - - -

?b ?6
c ?b

R =
{

(PQiRjSk, Bi+2j+kA) : i, j, k ≥ 0
}

is a bisimulation showing thatP ∼ A.

Fig. 2.A BPA process, and an equivalent BPP process with its associated BPP net.

depicts an example of an (unnormed) process which is definable both as a BPA process
and as a BPP process.

An equivalent formulation of BPP, and one which we adopt to aid in distinguishing
between BPA and BPP processes, is as labelled Petri nets in which each transition has a
unique input place. Formally, a labelled Petri net is a tupleN = (P, T, F, A, ℓ) where
P andT are finite and disjoint sets ofplacesandtransitions, respectively,F : (P×T ∪
T×P) → IN is aflow function, A is a set oflabels, andℓ : T → A is a labelling. A
markingis a functionM : P → IN which associates to each place a finite number of
tokens. A transitiont is enabledat a markingM if M(p) ≥ F (p, t) for each placep.
If t is enabled atM , it can befired from M , producing a new markingM ′ defined by

M ′(p) = M(p)−F (p, t)+F (t, p). This is written asM
t
→ M ′. To every labelled Petri

netN we associate a transition system where the set of states is the set of all markings,
A is the set of all labels, andM

a
→ M ′ iff there is transitiont such thatℓ(t) = a and

M
t
→ M ′.
Petri nets are often depicted as graphs with two kinds of nodes (corresponding to

places and transitions) where the flow function is indicatedby (multiple) arcs between
places and transitions. ABPP netis a Petri net where for everyt ∈ T there is exactly
one placePre(t) such thatF (Pre(t), t) = 1 andF (p, t) = 0 for every other placep.
The equivalence of these BPP nets to BPP is easily seen from the Petri net presented in
Figures 1 and 2.

We shall find the following Petri net concepts useful.

Definition 6. For a setQ of places of a Petri net, we defineNORM(Q)(M) to be the
length of a shortest sequence of transitions fromM which leaves all of the places ofQ

empty:

NORM(Q)(M) = min
{

dist(M, M ′) : M ′(p) = 0 for everyp ∈ Q
}

.

We may readily observe that for every setQ of places,NORM(Q) is a norm in the
sense of Definition 3. In the case of BPP nets,NORM(Q)(M) is just a weighted sum of
tokens inM ; that is, to each placep we can effectively associate somecp ∈ INω (which
depends only onQ) so thatNORM(Q)(M) =

∑

p∈P cp · M(p) for every markingM .

Definition 7. A setQ of places of a Petri net is called atrap iff for all transitionst we
have that if

∑

p∈Q F (p, t) > 0 then
∑

p∈Q F (t, p) > 0.

Thus a “marked” trap, that is, a trap containing at least one token, can never become
unmarked. This then implies that for any trapQ, NORM(Q)(M) is either0 or ω.

We can note that∅ is a trap, and that the union of traps is again a trap. This justifies
the following definition.

Definition 8. MAXTRAP(Q) denotes the maximal trap contained in the set of placesQ.

Finally, we shall have cause to consider the following classof one-counter automata.

Definition 9. A one-counter automaton with resets(OCR) is a tupleP = (Q, A, I, Z, δ)
whereQ is a finite set ofcontrol states, A is a finiteinput alphabet, I andZ arecounter
symbolsandδ is a finite set ofruleswhich are of one of the following three forms:

– pZ
a
→ qIkZ wherep, q ∈ Q, a ∈ A, andk ∈ IN; these rules are calledzerorules.

– pI
a
→ qIk wherep, q ∈ Q, a ∈ A, andk ∈ IN; these rules are calledpositive

rules.
– pI

a
→ qZ wherep, q ∈ Q anda ∈ A; these rules are calledresets.

Hence,Z acts as a bottom symbol (which cannot be removed), and the number ofI ’s
which are stored in the stack above the topmost occurrence ofZ represents the counter
value. The reset (i.e., setting the counter back to zero) is implemented by pushing the
symbolZ onto the stack.

To the OCRP we associate the transition systemSP whereQ × {I, Z}∗ is the set
of states,A is the set of actions, and the transition relation is determined by

pXα
a
→ qβα iff pX

a
→ qβ ∈ δ.

3 Prefix-Encoded Norms over BPA

In this section we demonstrate that large values of DD-functions are represented by
large (normed) prefixes of BPA states. This will provide a necessary condition for when
a BPP process can be bisimilar to a BPA process.

Definition 10. We define thepseudo-norm(or prefix-norm) pn(α) of a BPA processα
as follows:

pn(α) = max
{

|β| : α = βγ and|β| < ω
}

.

We call the transitionXβ
a
→ γβ a pn-reducing stepiff |γ| = |X | − 1 < ω.

Note thatpn is not a norm in the sense of Definition 3, and that a stepXβ
a
→ γβ such

thatpn(γβ) = pn(Xβ) − 1 is not necessarilypn-reducing.

Definition 11. We say that a normd is prefix-encodedfor a given BPA processG iff
there is a constantC ∈ IN such that for every processα of G with C < d(α) < ω, the
d-reducing steps fromα are exactly thepn-reducing steps fromα. In this case, we say
thatd is prefix-encoded aboveC.

Given a BPA process, we define the valueMAXSTEP as the maximal value|β|−|X |

whereX
a
→ β is a rule with|β| < ω. For any normd we easily observe the following.

Proposition 12.

(a) d(αβ) ≤ |α| + d(β) .

(b) If d(αβ) < |α| + d(β) thenα →∗ α′ with d(α′β) = 0 .

(c) If d is prefix-encoded aboveC andd(αβ) ≥ |α| + C thend(αβ) = |α| + d(β) ;
and ifα → α′ with |α′| < ω thend(αβ) − 1 ≤ d(α′β) ≤ d(αβ) + MAXSTEP .

(d) If d(Xα) < ω and there is a transition fromXα which is d-reducing orpn-
reducing but not both, then there is a maximal sequenceXα

w
→ β of d-reducing

transitions such thatX
w
→ γ with γ 6= ε; this implies thatXα

w
→ γα and

d(γα) = 0 .

Lemma 13. For any BPA process, each DD-function is prefix-encoded.

Proof. We assume a given BPA process, and show the claim by contradiction. We first
define some technical notions. For a DD-functiond, we say that two statesα1 andα2 are
(d, C)-diff-large (for C ∈ IN) iff for eachd′ ∈ {d} ∪ D(d) such thatd′(α1) 6= d′(α2)
we have the following inequalities:

C < d′(α1) < ω;
C < d′(α2) < ω; and |d′(α2) − d′(α1)| > C.

We say that the statesα1 andα2 ared-bad iff for someγ 6= ε:

0 = d(γα1) < d(γα2) or
0 = d(γα2) < d(γα1).

Claim 1. If d is not prefix-encoded, then for anyC ∈ IN there are statesα1 andα2

which are(d, C)-diff-large andd-bad.

Proof of Claim 1.If d is not prefix-encoded, then there is a sequence of states
β1, β2, β3, . . . with d(β1) < d(β2) < d(β3) < · · · such that eachβi can make a
step which isd-reducing orpn-reducing but not both.

Using the pigeonhole principle, we can assume (i.e., extract a subsequence)
β1 = Xα1, β2 = Xα2, β3 = Xα3, . . . for a variableX (obviously|X | < ω).
We can furthermore assume (by repeated subsequence extractions) that for each
d′ ∈ {d} ∪ D(d) we have either d′(α1) = d′(α2) = d′(α3) = · · · , or else
d′(α1) < d′(α2) < d′(α3) < · · · .

Hence, for any givenC there arei < j such thatαi andαj are(d, C)-diff-large.
From Proposition 12(d), and the fact thatd(Xαi) < d(Xαj), we easily derive that
αi andαj ared-bad. (2)

We now letd be a non-prefix-encoded DD-function on a minimal level. ChooseC ∈ IN
so that:

– eachd′ ∈ D(d) is prefix-encoded above(C − z0), wherez0 is the maximum of the
finite components of changes inC(d);

– C > MAXSTEP; and
– C > d′(β) wheneverd′ ∈ D(d) andX → β with d′(β) < ω = |β|.

We taked1 ∈ {d} ∪ D(d) on a minimal level such that we can chooseα1 andα2

which are(d1, C)-diff-large andd1-bad (as guaranteed by Claim 1). Assume that0 =
d1(γα1) < d1(γα2). If d′(γα2) = ω for somed′ ∈ D(d1), thend′(α2) = ω = d′(α1).
Sinced′(γα1) < ω, there is someβ such that0 = d′(βα1) < d′(βα2); but this means
thatα1 andα2 ared′-bad, which contradicts the level-minimality ofd1.

Thus for somed′ ∈ D(d1) andz being a component of a change inC(d) there is a
stepγ → γ′ such that

d′(γα1) + z 6= d′(γ′α1) and d′(γα2) + z = d′(γ′α2) . (1)

Claim 2.There isξ such thatd′(ξα1) 6= d′(ξα2), and eitherd′(ξα1) < |ξ| + d′(α1) or
d′(ξα2) < |ξ| + d′(α2).

Proof of Claim 2.Suppose that none of theγ andγ′ from Equation (1) satisfies
the claim. Since we cannot have that|γ| + d′(α1) + z 6= |γ′| + d′(α1) and|γ| +
d′(α2) + z = |γ′| + d′(α2), it is sufficient to consider only the following cases:
(a) d′(γα1) = d′(γα2) andd′(γ′α1) 6= d′(γ′α2) ;
(b) d′(γα1) 6= d′(γα2) andd′(γ′α1) = d′(γ′α2) .
For case (a):d′(γ′α1) = |γ′|+ d′(α1) 6= |γ′|+ d′(α2) = d′(γ′α2) andd′(γα1) =
d′(γα2) = d′(γ′α2) − z (note thatz < ω). By Proposition 12(c) we get that
d′(γ′α1) andd′(γ′α2) can differ by at mostMAXSTEP+1, which is a contradiction.
For case (b):d′(γα1) = |γ|+ d′(α1) 6= |γ|+ d′(α2) = d′(γα2). Proposition 12(c)
implies that we cannot haved′(γ′α1) = d′(γ′α2) unless the stepγ → γ′ is due to
a ruleX → β with |β| = ω. But C was chosen bigger thand′(β). (2)

Finally we show that the existence of a(d′, C)-diff-large pairα1 andα2, together with
a ξ satisfying Claim 2 contradicts the assumption thatd′ is prefix-encoded aboveC;
this will finish the proof of the Lemma.

Without loss of generality, assumed′(ξα1) < d′(ξα2). If d′(ξα1) < |ξ| + d′(α1)
then there isξ′ such that0 = d′(ξ′α1) < d′(ξ′α2), meaningα1 andα2 ared′-bad,
which is a contradiction.

It remains to considerd′(ξα1) = |ξ| + d′(α1) < d′(ξα2) < |ξ| + d′(α2). Since
necessarilyd′(α1) < d′(α2), we haved′(ξα2) > |ξ| + C, so by Proposition 12(c),
d′(ξα2) = |ξ| + d′(α2), which again is a contradiction. ⊓⊔

4 Bisimilarity is decidable on the union of BPA and BPP

In this section we show that we can decide whether a given BPP processM0 satisfies a
necessary condition for being bisimilar to some unspecifiedBPA process. In the positive
case we can (effectively) construct an OCR process which is bisimilar to M0. So the
decidability of the question whetherM0 ∼ α0 (whereα0 is a BPA process) follows
from the results of [17, 22].

We first recall some useful results from [11] which clarify the “bisimilarity state
space” for BPP processes; Firstly, by inspection of [11] we can confirm the following.

Lemma 14. For each BPP netN we can effectively construct a sequenceQ1, . . . , Qm

of sets of places which areimportantin the sense that their norms capture bisimilarity:

∀M, M ′ : M ∼ M ′ iff ∀i : NORM(Qi)(M) = NORM(Qi)(M
′).

In fact, the collection of allNORM(Qi), 1 ≤ i ≤ m, is exactly the set of all DD-
functions over the state-space ofN . More precisely, for every DD-functiond there is
someQi such thatd(M) = NORM(Qi)(M) for every markingM ofN . Conversely, to
everyQi one can associate a DD-functiondi so that all elements ofD(di) are among
the functions associated toQ1, . . . , Qi−1.

We now explore further related technical notions. LetN be a labelled Petri net with
initial markingM0. Givenc ∈ INω, we say that placesp andq of N arec-dependent
(for M0) if for every reachable markingM we have that ifc < M(p) andc < M(q),

thenM(p) = M(q). Note thatp andq are trivially ω-dependent (for everyM0). The
dependence levelof p, q (for M0) is the leastc ∈ INω such thatp andq arec-dependent
for M0.

Lemma 15. Let N be a Petri net,M0 a marking ofN , and p, q places ofN . The
dependence level ofp, q for M0 is effectively computable.

Proof. The dependence level ofp, q can be computed, e.g., by employing a slightly
modified version of the algorithm for constructing the coverability tree forM0 [14]. We
briefly sketch the construction, emphasizing the difference from the standard algorithm.

An extended markingis a functionM : P → INω. All notions introduced for
“ordinary” markings also apply to extended markings by employing the standardω-
conventions introduced in Section 2.1. The goal is to compute a finite tree where nodes
are labelled by extended markings such that the dependence level of p, q for M0 can
be “read” from the tree. It is also possible that the algorithm terminates earlier (without
constructing the whole tree) and outputsω. This happens if the part of the tree con-
structed so far exhibits a “pumpable” sequence of transitions witnessing the infinity of
the dependence level. To simplify our notation, we introduce the following notion: Let
n, n′ be nodes of the tree labelled byM, M ′ such thatn′ is a descendant ofn. We
say that a places is pumpedat n′ from n by k, where0 < k < ω, iff M ′ ≥ M and
M ′(s) − M(s) = k. Furthermore,s is pumpableatn′ iff s is pumped atn′ from some
predecessor ofn′ by some (positive) value.

Initially, we putM0 to be the (label of the) root of the tree. Then, for every noden

labelled byM which has not yet been processed we do the following: If the tree con-
tains a processed node with the same label, then the noden is immediately declared as
processed. Otherwise, for every transitiont which is enabled atM we do the following:

– If M(p) = M(q) = ω andF (t, p)−F (p, t) 6= F (t, q)−F (q, t), then the algorithm
halts and outputsω. Otherwise, a new successorn′ of n with a temporary labelM ′

(whereM
t
→ M ′) is created.

– We check whether the following two conditions hold for everypredecessorn′′ of
n′. If not, the algorithm halts and outputsω.
• If p is pumped atn′ fromn′′ byk, thenM ′(q) 6= ω andq is either not pumpable

atn′, or it is pumped atn′ from n′′ by the samek.
• If q is pumped atn′ fromn′′ byk, thenM ′(p) 6= ω andp is either not pumpable

atn′, or it is pumped atn′ from n′′ by the samek.
– If the algorithm does not terminate in the previous point, weredefineM ′(r) = ω

for every placer pumpable atn′.

If the algorithm terminates by processing all nodes, it outputs the maximal finite value
c for which there is a noden labelled byM in the constructed tree such thatM(p) 6=
M(q), andM(p) = c or M(q) = c. ⊓⊔

Now let N be a BPP net with initial markingM0, and letQ andQ′ be important
sets of places ofN . We say thatQ andQ′ are c-dependentfor a givenc ∈ INω if
for every reachable markingM we have that ifc < NORM(Q)(M) < ω and c <

NORM(Q′)(M) < ω, thenNORM(Q)(M) = NORM(Q′)(M). Thedependence levelof
Q, Q′ is the leastc ∈ INω such thatQ andQ′ arec-dependent.

Lemma 16. Let Q andQ′ be important sets of places of a BPP netN , and letM0 be
a marking ofN . The dependence level ofQ, Q′ is effectively computable.

Proof. First we extend the netN by two fresh placesp andq. Then we remove all tran-
sitions which put a token toMAXTRAP(Q) or to MAXTRAP(Q′), and modify the other
transitions so that for every reachable markingM we have thatNORM(Q)(M) = M(p)
and NORM(Q′)(M) = M(q) (i.e., we “count”NORM(Q) in p and NORM(Q′) in q).
This is easy becauseNORM(Q)(M) andNORM(Q′)(M) are just weighted sums of to-
kens inM (cf. the remarks after Definition 6). Note that the resultingPetri net is not
necessarily a BPP net. Initially,p andq containNORM(Q)(M0) andNORM(Q′)(M0)
tokens, respectively. Obviously, the dependence level ofQ, Q′ in N equals to the de-
pendence level ofp, q in the modified net, and thus it is effectively computable by
Lemma 15. ⊓⊔

The usefulness of the above explorations now becomes apparent.

Lemma 17. Let M0 be a marking of a BPP netN . If Q andQ′ are important sets of
places with dependence levelω, thenM0 is not bisimilar to any BPA process.

For example, the sets{P} and {Q} are important for the BPP net of Figure 1; the
associated DD-functions (referring to Lemma 14) aredda and ddb, respectively. As
these sets have a dependence level ofω, this Lemma demonstrates that there is no BPA
process which is bisimilar toP .

Proof. Let Q1, . . . , Qm be the important sets of places associated to the BPP netN ,
and letd1, . . . , dm be the associated DD-functions in the sense of Lemma 14. Now
suppose that there are important setsQ andQ′ whose dependence level forM0 equals
ω, and that there is a BPA processα0 such thatM0 ∼ α0. By Lemma 13,d1, . . . , dm

are prefix-encoded on (any) BPA. Let

C = max{Cdi
: 1 ≤ i ≤ m}

whereCdi
is the constant of Definition 11 chosen fordi and the underlying BPA process

of α0. We also letk be the number of places ofN .
Since the dependence level ofQ, Q′ for M0 equalsω, there is a reachable marking

M such that

C + k < NORM(Q)(M) < ω and C + k < NORM(Q′)(M) < ω,

andNORM(Q)(M) 6= NORM(Q′)(M). Let d andd′ be the DD-functions associated to
Q andQ′, respectively. SinceM is reachable,M ∼ α for someα reachable fromα0.
As DD-functions are bisimulation invariant, we get that

C + k < d(M) = d(α) < ω and C + k < d′(M) = d′(α) < ω .

Due to the choice ofC, we know that for every sequence of (at most)k transitions, if
each transition isd-reducing then each is alsod′-reducing, and vice versa.

CertainlyQ 6= Q′ as otherwise we could not haveNORM(Q)(M) 6= NORM(Q′)(M).
Hence, there is somep ∈ (Q\Q′)∪(Q′\Q). Suppose, e.g.,p ∈ (Q\Q′). If M(p) ≥ 1,

we are done immediately, as then there is ad-reducing transitionM
a
→ M ′, where

d = NORM(Q), which takes the token away fromp, and therefore it does not decrease
NORM(Q′) = d′. The bisimilar BPA processα cannot match this transition.

If for everyp ∈ (Q \ Q′) ∪ (Q′ \ Q) we have thatM(p) = 0, we argue as follows:
Let us assume that, e.g.,NORM(Q)(M) < NORM(Q′)(M). Then there must be some
q ∈ Q ∩ Q′ such thatM(q) ≥ 1, and each sequence ofd-reducing transitions, where
d = NORM(Q), which removes the token inq out of Q (that is, the total effect of
the sequence on places inQ is that the token inq disappears) must temporarily mark
some placep in Q′ which is not inQ. Otherwise, we would immediately obtain that
NORM(Q′)(M) ≤ NORM(Q)(M). Now we can change the order of these transitions so
thatp is marked after at most(k−1) d-reducing transitions. (Here we rely on a folklore
result about BPP processes. Also note that any performable permutation of a sequence
of d-reducing transitions also consists ofd-reducing transitions). Now we can use the
same argument as in the previous paragraph. ⊓⊔

Lemma 18. Let M0 be a marking of a BPP netN . If for all important sets of places
Q andQ′ we have that the dependence level ofQ, Q′ is finite, then we can effectively
construct an OCR process which is bisimilar toM0.

Proof. Let Q1, . . . , Qm be the important sets of places constructed for the BPP net
N , and letF = (d1, . . . , dm) be the (tuple of the) associated DD-functions as in
Lemma 14. Furthermore, let

C = max{dl(Qi, Qj) : 1 ≤ i, j ≤ m}

wheredl(Qi, Qj) is the dependence level ofQi, Qj. Note thatC is effectively com-
putable due to Lemma 16. For every reachable markingM , all normsNORM(Qi)(M)
which are finite and larger thanC keep to coincide. More precisely, if

C < NORM(Qi)(M) < ω and C < NORM(Qj)(M) < ω

where1 ≤ i, j ≤ m, thenNORM(Qi)(M) = NORM(Qj)(M).
So we can construct an OCRP , with the initial state bisimilar toM0, which mimics

the behaviour of markings ofN in the following way: Instead of (the current marking)
M , the OCRP records in the finite control state unit:

– for which setsQi the valueNORM(Qi)(M) equalsω (now and forever);
– for which setsQi the valueNORM(Qi)(M) is “small”, i.e., no greater thanC; the

precise values of these norms are also recorded in the finite control; and
– for which setsQi the valueNORM(Qi)(M) is larger thanC.

Since the valuesNORM(Qi)(M) in the last collection must be the same, i.e., equal to
somev, P can record(v−C) in the counter.

Note that the configuration ofP associated toM does not contain the “full” in-
formation aboutM in the sense that the exact distribution of tokens inM cannot be
reconstructed from the recorded norms. It can happen that different markingsM, M ′

have the propertyNORM(Qi)(M) = NORM(Qj)(M
′) for every1 ≤ i ≤ m, and then

(and only then) they are represented by the same configuration of P . However, ifM

andM ′ coincide on everyNORM(Qi), then (and only then) they are bisimilar—see
Lemma 14.

It remains to explain howP performs its transitions. First, for every markingM we
define the set

fire(M) = {(a, δ) : ∃M
a
→ M ′ such thatδF (M

a
→ M ′) = δ}.

Note that ifM ∼ M ′, thenfire(M) = fire(M ′). Hence, for every configurationpα of
P we can definefire(pα) = fire(M) whereM is a marking to whichpα is associated.
(If there is no suchM , fire(pα) is undefined.) Next we show that for everypα for which
fire(pα) is defined, the setfire(pα) is effectively computable just from the information
stored in the control statep (hence, we can denotefire(pα) just byfire(p)). It clearly
suffices for our purposes, because then we can compute the sets fire(q) for all control
statesq and “implement” each pair(a, δ) in a givenfire(q) in the straightforward way;
in particular, if all “large” norms are set toω, then the control state is updated and the
counter is reset to zero. One can also readily verify that every markingM is bisimilar
to its associated configuration ofP .

Let t be a transition ofN . In each markingM wheret is enabled, the (firing of)t
causes some change ofF (i.e., of(NORM(Q1), · · · , NORM(Qm))); we define

δt(M) = δF (M
t
→ M ′).

In general, the same transition can cause different changesin different markingsM, M̄ .
The (only) reason why this can happen is that someNORM(Qi) which is finite forM can
beω for M̄ , and vice versa (note that ifNORM(Qi)(M) = ω, thenδt(M)i = ω). So,
δt(M) is (completely and effectively) determined by the structure ofN and themode
of M , i.e., the set of allQi’s for whichNORM(Qi)(M) < ω. Hence, for a given a mode
M (i.e., a subset of{Q1, · · · , Qm} whose norms are to be finite) we can effectively
partition the transitions ofN into classesT1, · · · , Tk so that transitions in the sameTi

have the same label and the same change at every marking with modeM. Thus, to each
Ti we can associate a pair(ai, δi). Note that

fire(M) ⊆
{

(a1, δ1), · · · , (ak, δk)
}

for every markingM with modeM. Now we show that for eachTi one can effectively
construct an important setQji

such that for every markingM with modeM we have
that

(ai, δi) ∈ fire(M) iff NORM(Qji
)(M) > 0. (2)

Actually, it suffices to put

Qji
=

⋃

t∈Ti

Pre(t) ∪
⋃

Q∈M

MAXTRAP(Q).

Clearly,NORM(Qji
) is a bisimulation-invariant norm; and it follows from the construc-

tion of the important setsQ1, · · · , Qm presented in [11] thatQji
appears in the se-

quenceQ1, · · · , Qm. It remains to verify that Equation (2) indeed holds. So, letM be

a marking with modeM. If (ai, δi) ∈ fire(M), some of the transitions inTi are en-
abled atM , and henceNORM(Qji

)(M) > 0. Conversely, ifNORM(Qji
)(M) > 0, the

places of
⋃

Q∈M
MAXTRAP(Q) are surely not marked (otherwise, we would have that

NORM(Q)(M) = ω for someQ in M which is a contradiction). Hence, somePre(t),
wheret ∈ Ti, must be marked atM which means thatt is enabled atM .

Since control states ofP carry the information about the current mode and currently
positiveNORM(Qi)’s, we are done. ⊓⊔

The previous lemmata allow us to conclude the following:

Theorem 19. Bisimilarity between BPA and BPP processes is decidable.

Proof. We first check if there are important setsQ andQ′ whose dependence level
equalsω (this is decidable by Lemmas 14 and 16). If this is the case, thenM0 cannot be
bisimilar to any BPA process. Otherwise, we can effectivelyconstruct an OCR process
pα which is bisimilar toM0 (Lemma 18). We can then check bisimilarity betweenpα

and the given BPA process (using, e.g., the algorithm of [17,22]). ⊓⊔

As a final remark, we note that a more detailed analysis of the properties of BPP
processes which are bisimilar to BPA processes would admit arefinement of the result
of Lemma 18: the OCR must be special in the sense that the first transition which
increments the counter (since the last reset) “selects” thecontrol stateq to which the
machine must switch by the first decrement operation. The only possibility of how to
changeq to some other state is to perform a reset. We conjecture that such a behaviour
can be matched by an effectively constructible BPA process.This being the case, we
could then use the bisimilarity-checking algorithm for BPAprocesses [4] instead of the
one for PDA processes, which would yield an elementary uppercomplexity bound for
bisimilarity between BPA and BPP.

References

[1] J.C.M. Baeten, J.A. Bergstra and J.W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages.Journal of the ACM40(3):653–682, 1993.

[2] J. Blanco. Normed BPP and BPA. InProceedings of ACP’94, pages 242–251, Springer
1995.

[3] O. Burkart, D. Caucal, F. Moller and B. Steffen. Verification on infinite structures. In
J. Bergstra, A. Ponse and S. Smolka (editors),Handbook of Process Algebra, chapter 9,
pages 545–623. Elsevier Science, 2001.

[4] O. Burkart, D. Caucal and B. Steffen. An elementary decision procedure for arbitrary
context-free processes. InProceedings of MFCS’95, LNCS969, pages 423–433. Springer,
1995.

[5] I. Černá, M. Křetı́nský and A. Kučera. Comparing expressibility of normed BPA and
normed BPP processes.Acta Informatica36:233–256, 1999.

[6] R. Glabbeek. The linear time – branching time spectrum I:The semantics of concrete se-
quential processes. In J. Bergstra, A. Ponse and S. Smolka (editors),Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier Science, 2001.

[7] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence isdecidable for normed process
algebra. InProceedings of ICALP’99, LNCS1644, pages 412–421. Springer, 1999.

[8] Y. Hirshfeld, M. Jerrum and F. Moller. A polynomial algorithm for deciding bisimilarity of
normed context-free processes.Theoretical Computer Science158:143–159, 1996.

[9] Y. Hirshfeld, M. Jerrum and F. Moller. A polynomial-timealgorithm for deciding bisimu-
lation equivalence of normed basic parallel processes.Journal of Mathematical Structures
in Computer Science6:251–259, 1996.

[10] P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems.Theoret-
ical Computer Science148(2):281–301, 1995.

[11] P. Jančar. Strong bisimilarity on basic parallel processes is PSPACE-complete. InProceed-
ings of LICS’03, to appear, 2002.

[12] P. Jančar and A. Kučera. Equivalence-checking with infinite-state systems: Techniques and
results. InProceedings of SOFSEM’02, LNCS2540, pages 41–73. Springer, 2002.

[13] P. Jančar and F. Moller. Techniques for decidability and undecidability of bisimilarity. In
Proceedings of CONCUR’99, LNCS1664, pages 30–45. Springer, 1999.

[14] R.M. Karp and R.E. Miller. Parallel Program SchemataJournal of Computer and Systems
Sciences3:147–195, 1969.

[15] R. Milner and F. Moller. Unique decomposition of processes.Theoretical Computer Sci-
ence107:357–363, 1993.

[16] F. Moller. Infinite results. InProceedings of CONCUR’96, LNCS1119, pages 195–216.
Springer, 1996.

[17] G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite
out-degree. InProceedings of FOCS’98, pages 120–129. IEEE Computer Society Press,
2001.

[18] G. Sénizergues. L(A)=L(B)? decidability results from complete formal systems.Theoreti-
cal Computer Science251(1-2):1–166, 2001.

[19] J. Srba. Roadmap of Infinite Results. http://www.brics.dk/~srba/roadmap.
[20] J. Srba. Strong bisimilarity and regularity of basic process algebra is PSPACE-hard. In

Proceedings of ICALP’02, LNCS2380, pages 716–727. Springer, 2002.
[21] J. Srba. Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In

Proceedings of STACS’02, LNCS2285, pages 535–546. Springer, 2002.
[22] C. Stirling. Decidability of bisimulation equivalence for pushdown processes. Research

Report No. EDI-INF-RR-0005, School of Informatics, Edinburgh University. January 2000.
[23] C. Stirling. Decidability of DPDA equivelance.Theoretical Computer Science255(1-2):1–

31, 2001.

