Deciding Bisimilarity between BPA and BPP Processés

Petr Jan&dr Antonin Kugerd, and Faron Mollet

! Dept. of Computer Science, FEI, Technical University ofr@,
17. listopadu 15, 70833 Ostrava, Czech Republic.
<Petr.Jancar@vsb.cz>
2 Faculty of Informatics, Masaryk University,
Botanicka 68a, 60200 Brno, Czech Republic,
<tony@fi.muni.cz>
3 Dept. of Computer Science, University of Wales Swansea,
Singleton Park, Swansea SA2 8PP, Wales.
<F.G.Moller@swansea.ac.uk>

Abstract. We identify a necessary condition for when a given BPP pcas
be expressed as a BPA process. We provide an effective pnecéat testing if
this condition holds of a given BPP, and in the positive casgwvide an effec-
tive construction for a particular form of one-counter amé&on which is bisim-
ilar to the given BPP. This in turn provides the mechanismetcide bisimilarity
between a given BPP process and a given BPA process.

1 Introduction

During the last decade, a great deal of research effort hais tevoted to the study
of decidability and complexity issues for checking senm@aptjuivalences, in particu-
lar bisimilarity, between various classes of processeser& have been several surveys
presenting this work (eg, [16, 13, 12]), including a majomdbook chapter [3]. There
is even now a project devoted to maintaining an up-to-datgehensive overview of
the state-of-the-art in this dynamic research topic [19].

Example classes of processes of particular interest irsthidy are pushdown au-
tomata, Petri nets, and the process algebra PA. Some migssito the study, beginning
with the decidability of bisimilarity over normed BPA [1] dtude the undecidability of
bisimilarity over Petri nets [10]; the decidability of hisilarity over normed PA [7]; and
the decidability of bisimilarity over the class of stricttdeministic grammars (a partic-
ular formulation of deterministic pushdown automata) [2Z3jis final result reinforces
Sénizergues’ solution [18] to the long-standing equineteproblem for determinis-
tic pushdown automata. A closely related result is the dality of bisimilarity over
state-extended BPA [17, 22].

The motivation for the present study is to work towards a gaimation of the above
decidability result for normed PA to the whole class of PAqasses. The process alge-
bra PA includes operators for composing terms both secplbraind in parallel, and as

* The first two authors are supported by the Grant Agency of thecl Republic, grant No.
201/03/1161.

described by Hirshfeld and Jerrum in [7], there are sunpgigiteractions between se-
guential and parallel compositions. Indeed, one can egghessequential composition
X1-X5 of two termsX; and X, as a parallel compositioty ||Y> of two other term&;
andY; in infinitely-many ways, using terms of unbounded compiexy restricting

to normed process terms, Hirshfeld and Jerrum were ablevel@®a structural the-
ory which allowed them, in effect, to finitely characteribe tinfinite set of solutions
to the equivalenc&;-X> = Y1]|Y2, and then use this characterization to provide their
decidability result. However, it remains open as to how tieed their techniques to the
unnormed PA case.

The process class BPA represents the subset of PA involvilygsequential com-
position, while BPP represents the subset involving ontalel composition. As such,
in light of the above observations, it becomes natural tesiar the problem of com-
paring an arbitrary BPA term with an arbitrary BPP term. Dability between such a
pair of terms in the normed case of course follows from thevabiesult, though this
problem was already settled in [2, 5].

Bisimulation checking over normed process classes hasalyiproven to be far
more tractable than over unnormed processes. For exame both the BPA and
BPP process classes, unique decomposability results spihieof [15] hold over the
normed subclasses which allow for polynomial decision pdares in each case [8, 9].
Though decidability of bisimilarity in the unnormed casestibeen known for some
time, bounds on their complexity have been elusive. Regdtih problems have been
shown to be PSPACE hard [20, 21], and even more recently thteemn for BPP has
been shown to be PSPACE-complete [11]. Various novel teghas are developed in
each of the above papers which contribute towards an uraelisig of the nature of
these classes of sequential and parallel process.

In this paper we continue the exposition of these classesoaigses and consider
the problem of when an arbitrary BPP process can be exprasseBPA process term.
To this end, we identify a property of (arbitrary) procesaésch cannot be modelled
“sequentially”; essentially this property entails encagliwo distinct, unrelated and
sufficiently-large integer values. If our given BPP proceas be expressed as a BPA
term, then clearly it is necessary that the process doessseps this property. Further-
more, we demonstrate how to test if a given BPP process mess#ss property, and
in the case that it does not, we provide an effective constuiof an equivalent one-
counter automaton. As one-counter automata and BPA botstinate subclasses of
state-extended BPA, we arrive at the decidability of bikinity between BPA and BPP
processes from the afore-mentioned decidability of bisirity over state-extended
BPA.

The structure of the paper is as follows. In Section 2 we prasgious preliminary
definitions, and in Section 3 we explore the structure of BPacpsses and provide
the crucial technical result of the paper. Finally, in Sexct4 we prove our decidability
result by characterizing when a BPP process abides by thetstal restrictions of BPA
processes exposed in Section 3, and then demonstratinghi®eide equivalence to a
given BPA process in the case where this is true.

2 Preliminary Definitions and Results

2.1 Processes and Norms

Formally, aprocessds represented by (a state injadelled transition systemefined as
follows.

Definition 1. A labelled transition system (LTS a triple S = (S, Act,—) whereS
is a set ofstates Act is a finite set ofactions and— C S x Act x S is atransition
relation

We write s % 5 instead of(s, a, 5) € — and we extend this notation to elements of
Act* in the natural way. We also use— 5 to means - 5 for somea € Act. A state
5 is reachablefrom a states if s —* 3, that is, ifs - 5 for somew € Act*.

The notion of “behavioural sameness” between two processebe formally cap-
tured in many different ways (see, e.g., [6] for an overviedwhong those behavioural
equivalencesjisimulation equivalencenjoys special attention. Its formal definition is
as follows.

Definition 2. LetS = (S, Act,—s) andT = (T, Act, —7) be transition systems de-
fined over the same action sdtt. A binary relationR C S x T is a bisimulation
relationiff whenever(s, t) € R, we have that

— for each transitions % 5 there is a transitiort % f such that(s, #) € R; and
— for each transitiont % # there is a transitions % 5 such that(s, f) € R.

Processes andt are bisimulation equivalent (bisimilay)written s ~ ¢, iff they are
related by some bisimulation.

An important subclass of processes arertbemedprocesses, which are those for
which from any state there is a sequence of transitionsgatti a state having no
transitions leading out of it; theorm of a process state is then traditionally defined to
be the length of a shortest sequence of transitions leadisgah a deadlocked state.
We can generalize the notion of a norm as follows. (WaNet {0, 1,2, ...} represent
the set of natural numberfy,, = N U {w}, andIN,, _; = INU {w, -1}, where
wtw=wtk=w—-k=w—-—w=w,andk < w,w < w foreveryk e WU {-1}.)

Definition 3. LetS = (S, Act,—) be a transition system, antl: S — IN,, a function.
We say thatl is anormiff for all s € S we have the following:

— If s — &', thend(s’") > d(s)—1; and
— If 0 < d(s) < w, thenthere is — s’ such thatd(s’) = d(s)—1.

In the latter clause, we call such a transitionfereducing transition

It is possible to construct new norms out of already existings; for example, if
d andd’ are norms, then so isin(d, d'). For our purposes, the following construction
is particularly important. Firstly, for alf, s’ € S we define thalistancefrom s to ¢/,

denoteddist (s, s’), to be the length of a shortest sequence of transitionsrigdddm
states to states’:

dist(s,s') = min { length(w) : s = s’ }.

Adhering to the convention thatin) = w, we note thatlist(s, s') = w when there is
no such sequence.

Given a tuple of normsF = (dy,...,d), each transitiors 2 ¢ determines a
uniquechangeof F, denoted” (s % s'), which is ak-tuple of values fromN,, _;
defined bys” (s = s') = (di(s')—di(s), ..., dy(s")—dx(s)). For each tripléa, F, §),
wherea € Act, F = (dy,...,d;) is a tuple of norms, and € IN* |, we define the
functiondd, r 5y : S — IN,, to be the distance to a state for which all normsFodire
finite, and for which there is ne-transition with the changé&

ddq, 7 5)(s) = min { dist(s,s") : d;(s') # w forall 4, and
67 (s L ") £ o forall ' % s .

Obviously, each suclid ,, = 5) is a norm.

Some norms are not semantically relevant in the sense #iatilzrity does not nec-
essarily preserve them. In this paper we are mainly intedastbisimulation-invariant
norms.

Definition 4. We say that a given normi is bisimulation-invariantf s ~ s’ implies
d(s) =d(s).

A simple example of a bisimulation-invariantnorm is thedtiondd,, (wherea € Act)
defined as follows:

dd,(s) = min { dist(s,s’) : s’ £ }.
Definition 5. The set oDD-functionsis defined inductively as follows:

— dd, is a DD-function for every. € Act;
—if F = (d1,---,ds) is a tuple of DD-functionsj € IN}, _,, anda € Act, then
dd,,rs) is also a DD-function.

A simple observationis thatif;, - - -, dj, are bisimulation-invariantnorms, théd,, r s

is also a bisimulation-invariant norm for each trigte 7, §). This in turn implies that
all DD-functions are bisimulation-invariant. For each Dctiond we further define
the setsD(d) andC(d) of all DD-functions and changes which are employed durieg th
construction ofl:

— D(dd,) = C(dd,) = () for every actiom;

— if d = dd(q, 7 5), WhereF = (di,-- -, dy), then
e D(d)=D(d1)U---UD(dy) U{dy,---,dx},
e C(d) =C(d1)U---UC(dr) U{d}.

2.2 BPA, BPP, Petri Nets and One Counter Automata

A BPA process is defined by a context-free grammar in Greibacmal form. Formally
this is given by a triple7 = (V, A, I'), whereV is a finite set oivariables(nonterminal
symbol}, A is a finite set oflabels (terminal symbols andI” C V x A x V* is a
finite set ofrewrite rules(productions; it is assumed that every variable has at least
one associated rewrite rule. Such a grammar gives rise i8S = (V*, A, —) in
which the states are sequences of variables, the actiotisealabels, and the transition
relation is given by the rewrite rules extended byphefix rewriting rule if (X, a,«) €
I'thenXg3 % ap for all 3 € V*. In this way, concatenation of variables naturally
represents sequential composition.

A BPP process is defined in exactly the same fashion from sgchramar. How-
ever, in this case elements B are read modulo commutativity of concatenation, so
that concatenation is interpretted as parallel compesitither than sequential compo-
sition. The states of the BPP process associated with a gaa@m® thus given not by
sequences of variables but rather by multisets of variables

In either case, BPA or BPP, the usual notion oftleemof a stater € V*, denoted
|, is the length of a shortest path to the empty proeeds| = dist(a,e). If all
variables of the underlying grammar have finite norm, thengfocess is said to be
normed otherwise it isunnormed

As an example, Figure 1 depicts the (normed) BPA and BPP gsesalefined by

|
A % AB - ABBS> .- A%AB%ABB% P a @
I % 15 15 I e EZIE
e £ B L. e £ B <& gt ¢ b

Fig. 1. BPA and BPP processes defined by the gramiab AB, A = ¢, B LA g, along with
a BPP net equivalent to the BPP. |

the same grammar given by the three rules> AB, A 5 ¢ andB b e ltcan easily
be shown [3] that the BPA process cannot be expressed by dnpRieess, and equally
the BPP process cannot be expressed by any BPA processe Rigurthe other hand

AL BA ASBBA AS A P%5PQ PSPR PSP
B“BB B“BBB BSB e RLESs ste
Bia
a a a & a P a R b S
\ \ X
c‘ c‘ c‘ b c b

R = {(PQ'R'S*,B""**A) : i j k > 0} is a bisimulation showing tha® ~ A.

Fig. 2. A BPA process, and an equivalent BPP process with its agedd&PP net. |

depicts an example of an (unnormed) process which is deéreith as a BPA process
and as a BPP process.

An equivalent formulation of BPP, and one which we adopt tbimidistinguishing
between BPA and BPP processes, is as labelled Petri netséh adich transition has a
unique input place. Formally, a labelled Petri net is a tugle= (P, T, F, A, ¢) where
P andT are finite and disjoint sets pfacesandtransitions respectivelyF' : (PxT U
TxP) — IN is aflow function A is a set oflabels and? : T — A is alabelling. A
markingis a functionM : P — IN which associates to each place a finite number of
tokens A transitiont is enabledat a markingM if M (p) > F(p,t) for each place.

If ¢ is enabled af\/, it can befired from M, producing a new marking/’ defined by
M'(p) = M(p)—F(p,t)+ F(t,p). This is written as\/ L, M. To every labelled Petri
net\ we associate a transition system where the set of states settof all markings,
Ais the set of all labels, andif % M iff there is transitiont such that/(t) = a and
M5 M

Petri nets are often depicted as graphs with two kinds of ei¢cerresponding to
places and transitions) where the flow function is indicdtedmultiple) arcs between
places and transitions. BPP netis a Petri net where for evettyc T there is exactly
one placePre(t) such thatF'(Pre(t),t) = 1 and F(p,t) = 0 for every other place.
The equivalence of these BPP nets to BPP is easily seen feoRetni net presented in
Figures 1 and 2.

We shall find the following Petri net concepts useful.

Definition 6. For a set@ of places of a Petri net, we definRM(Q)(M) to be the
length of a shortest sequence of transitions fiobhwhich leaves all of the places ¢f
empty:

NORM(Q)(M) = min { dist(M,M’) : M'(p) = 0 for everyp € Q }.

We may readily observe that for every sgtof places,NORM(Q) is a norm in the
sense of Definition 3. In the case of BPP natsRrM(Q) (M) is just a weighted sum of
tokens in}M; that is, to each plagewe can effectively associate somec IN,, (which
depends only o)) so thatNoRM(Q) (M) = > p ¢, - M (p) for every marking)/.

Definition 7. A set@ of places of a Petri net is calledtaapiff for all transitionst we
have thatify_ o F(p,t) > 0then)_ _, F(t,p) > 0.

Thus a “marked” trap, that is, a trap containing at least aken, can never become
unmarked. This then implies that for any t@pNORM(Q)(M) is either0 or w.

We can note thdt is a trap, and that the union of traps is again a trap. Thiffipst
the following definition.

Definition 8. MAXTRAP () denotes the maximal trap contained in the set of plages
Finally, we shall have cause to consider the following ctdsme-counter automata.

Definition 9. Aone-counter automaton with res@@CR) is atuple®? = (Q, A, I, Z,)
where(is a finite set ofcontrol statesA is a finiteinput alphabet/ and Z are counter
symbolsand/ is a finite set ofruleswhich are of one of the following three forms:

- pZ % qI*Z wherep, q € Q, a € A, andk € IN; these rules are callederorules.

—pl % qI* wherep,q € Q, a € A, andk € IN; these rules are calleghositive
rules.

— pI 5 qZ wherep, ¢ € Q anda € A; these rules are callecesets

Hence,Z acts as a bottom symbol (which cannot be removed), and théauafI’'s
which are stored in the stack above the topmost occurrengeefpresents the counter
value. The reset (i.e., setting the counter back to zerahjfddmented by pushing the
symbolZ onto the stack.

To the OCRP we associate the transition systéin where@ x {I, Z}* is the set
of states A is the set of actions, and the transition relation is deteeahby

pXa S qfa iff pX L ¢B €6.

3 Prefix-Encoded Norms over BPA

In this section we demonstrate that large values of DD-fonstare represented by
large (normed) prefixes of BPA states. This will provide agssary condition for when
a BPP process can be bisimilar to a BPA process.

Definition 10. We define th@seudo-nornfor prefix-nornm) pn(«) of a BPA process:
as follows:

pn(a) =max { |B] : a = By and|f] <w }.
We call the transitionX 3 % ~/3 a pn-reducing stefiff |y| = | X| — 1 < w.

Note thatpn is nota norm in the sense of Definition 3, and that a sk&p — ~/3 such
thatpn(y5) = pn(X3) — 1is not necessarilpn-reducing.

Definition 11. We say that a normd is prefix-encodedor a given BPA proces§ iff
there is a constant’ € IN such that for every processof G with C' < d(«) < w, the
d-reducing steps from: are exactly theon-reducing steps from. In this case, we say
thatd is prefix-encoded abow@.

Given a BPA process, we define the valuexsSTEP as the maximal valugg| — | X |
whereX % fis a rule with| 3] < w. For any normi we easily observe the following.

Proposition 12.

(@) d(ap) < |a| +d(B).

(b) Ifd(af) < |a| + d(B) thena —* o’ withd(a/3) = 0.

(c) If d is prefix-encoded abow€ andd(af) > |a| + C thend(af) = |a| + d(0) ;
and ifa — o with |o/| < wthend(af) — 1 < d(o/B) < d(af) + MAXSTEP.

(d) If d(Xa) < w and there is a transition fronX o which is d-reducing or pn-
reducing but not both, then there is a maximal sequeXiee = (3 of d-reducing

transitions such thatX 5 ~ with v # ¢; this implies thatXa - ~a and
d(ya) =0.

Lemma 13. For any BPA process, each DD-function is prefix-encoded.

Proof. We assume a given BPA process, and show the claim by corticadiVe first
define some technical notions. For a DD-functipmwe say that two states, anda, are
(d, C)-diff-large (for C' € IN) iff for eachd’ € {d} U D(d) such thadd'(ay) # d’'(az)
we have the following inequalities:

C < d(ay) < w;
C<d(ay) <w;, and |d'(as)—d ()| >C.

We say that the states anda, ared-badiff for some~y # e:

0 =d(yoq) < d(yag) or
0 =d(vyag) < d(yaq).

Claim 1.If d is not prefix-encoded, then for arfy € IN there are states; andas
which are(d, C)-diff-large andd-bad.

Proof of Claim 1.If d is not prefix-encoded, then there is a sequence of states

B, B2, B3, ... with d(51) < d(B2) < d(Bs) < --- such that eacl; can make a
step which isi-reducing ompn-reducing but not both.

Using the pigeonhole principle, we can assume (i.e., ekxftagubsequence)
B1 = Xai, B2 = Xag, B3 = Xas, ... for a variableX (obviously|X| < w).
We can furthermore assume (by repeated subsequence iextsd¢hat for each
d € {d} U D(d) we have eitherd'(a;) = d'(a2) = d'(a3) = ---, or else
d(og) <d(a) <d(as) <---.

Hence, for any gived' there are < j such thaty; anda; are(d, C)-diff-large.
From Proposition 12(d), and the fact thi{fX «;) < d(X), we easily derive that
a; anda; ared-bad. (O)

We now letd be a hon-prefix-encoded DD-function on a minimal level. Glego € IN
so that:

— eachd’ € D(d) is prefix-encoded abo\&' — zy), wherez is the maximum of the
finite components of changesdd);

— C > MAXSTEP; and

— C > d'(p) wheneverd’ € D(d) andX — g with d'(5) <w = |5].

We taked; € {d} UD(d) on a minimal level such that we can choeseandas
which are(d;, C)-diff-large andd; -bad (as guaranteed by Claim 1). Assume that
dq (’}/041) <di (’}/042). If d’('yag) = w for somed’ € D(dl), thend’(ag) =w = d'(al).
Sinced’(ya1) < w, there is somé such that) = d’(Say) < d'(Baz); but this means
thata; andas ared’-bad, which contradicts the level-minimality 1.

Thus for somel’ € D(d;) andz being a component of a changedfy) there is a
stepy — +' such that

d(yar)+z#d(Yar) and d'(yaz) +2 = d'(yas). (1)

Claim 2.There is¢ such thal’ (£a1) # d'(Eas), and eithed’ (Ea) < |€] + d'(aq) O
d'(§az) < [¢] + d'(az).

Proof of Claim 2.Suppose that none of theand+’ from Equation (1) satisfies
the claim. Since we cannot have that + d' (o) + 2z # || + d'(o1) and|y| +
d'(a2) + z = |¥/| + d'(ag), itis sufficient to consider only the following cases:
(@) d'(yan) = d'(yaz) andd' (/o) # d'(v'az);

(b) d'(yan) # d'(yaz) andd' (v'ar) = d'(v'as) .

For case (a)d'(v'an) = || +d'(a1) # || + d'(a2) = d'(7/a2) andd (vay) =
d' (yag) = d'(y'a2) — z (note thatz < w). By Proposition 12(c) we get that
d' (v «1) andd’ (v'a) can differ by at mostAxsTEP+1, which is a contradiction.
For case (b)d'(vau) = |y|+ d'(cn) # |v|+ d'(a2) = d'(yaz). Proposition 12(c)
implies that we cannot havB(y'«a;) = d'(y'a2) unless the step — +' is due to
aruleX — g with || = w. ButC was chosen bigger thak(3). (0)

Finally we show that the existence ofd, C)-diff-large paira; andas, together with
a ¢ satisfying Claim 2 contradicts the assumption ttiats prefix-encoded abov€;
this will finish the proof of the Lemma.

Without loss of generality, assundgéa;) < d'(ae). If d'(Eaq1) < |€] + d' (1)
then there i€’ such thath = d'(¢'a1) < d'(¢'az), meaninge; andas ared’-bad,
which is a contradiction.

It remains to consided’ (Ea1) = |€] + d'(a1) < d'(aa) < |€] + d'(az). Since
necessarilyl’ (o) < d'(az), we haved' (Eaz) > |£| + C, so by Proposition 12(c),
d'(Eas) = |€| 4+ d'(a2), which again is a contradiction. O

4 Bisimilarity is decidable on the union of BPA and BPP

In this section we show that we can decide whether a given BB€eps\/, satisfies a
necessary condition for being bisimilar to some unspecBiedl process. In the positive
case we can (effectively) construct an OCR process whiclsimitar to M. So the
decidability of the question whethéd, ~ «y (whereqg is a BPA process) follows
from the results of [17, 22].

We first recall some useful results from [11] which clarifiettbisimilarity state
space” for BPP processes; Firstly, by inspection of [11] ee confirm the following.

Lemma 14. For each BPP nel we can effectively construct a sequeige. . ., Q..
of sets of places which amportantin the sense that their norms capture bisimilarity:

VM, M': M ~ M iff Vi:NORM(Q;)(M) = NORM(Q;)(M").

In fact, the collection of alNORM(Q;), 1 < i < m, is exactly the set of all DD-
functions over the state-space /8t More precisely, for every DD-functiodi there is

someQ); such thatd(M) = NORM(Q;)(M) for every marking\/ of . Conversely, to
every(Q; one can associate a DD-functieh so that all elements dP(d;) are among

the functions associated @, ...,Q;_1.

We now explore further related technical notions. Mebe a labelled Petri net with
initial marking M,. Givenc € IN,,, we say that places andq of A/ arec-dependent
(for M,) if for every reachable marking/ we have that it < M (p) andc < M (q),

then M (p) = M(q). Note thatp andq are trivially w-dependent (for every/y). The
dependence levef p, ¢ (for M) is the least € IN,, such thap andq arec-dependent
for M.

Lemma 15. Let A/ be a Petri net, M, a marking of A/, andp, ¢ places of\. The
dependence level pf ¢ for M, is effectively computable.

Proof. The dependence level @f ¢ can be computed, e.g., by employing a slightly
modified version of the algorithm for constructing the calslity tree forM, [14]. We
briefly sketch the construction, emphasizing the diffeesinam the standard algorithm.

An extended markings a functionM : P — IN,. All notions introduced for
“ordinary” markings also apply to extended markings by ewyjrlg the standard-
conventions introduced in Section 2.1. The goal is to compufinite tree where nodes
are labelled by extended markings such that the dependeweledf p, ¢ for M, can
be “read” from the tree. It is also possible that the algoniterminates earlier (without
constructing the whole tree) and outputsThis happens if the part of the tree con-
structed so far exhibits a “pumpable” sequence of tramsitisitnessing the infinity of
the dependence level. To simplify our notation, we intralthe following notion: Let
n,n’ be nodes of the tree labelled By, M’ such thatn’ is a descendant of. We
say that a place is pumpedat»n’ from n by k, where0 < k < w, iff M’ > M and
M'(s) — M(s) = k. Furthermores is pumpableatrn’ iff s is pumped at’ from some
predecessor of’ by some (positive) value.

Initially, we put M, to be the (label of the) root of the tree. Then, for every node
labelled byM which has not yet been processed we do the following: If the ton-
tains a processed node with the same label, then themaienmediately declared as
processed. Otherwise, for every transitiomhich is enabled at/ we do the following:

— If M(p) = M(q) = wandF(t,p)—F(p,t) # F(t,q)—F(q,t), then the algorithm
halts and outputs. Otherwise, a new successdrof n with a temporary labed’
(whereM 4 M) is created.

— We check whether the following two conditions hold for evergdecessan’ of
n'. If not, the algorithm halts and outputs

e If pis pumped at’ fromn” by k, thenM’(q) # w andgq is either not pumpable
atn/, oritis pumped at’ from n” by the samé:.

o If gis pumped at’ fromn” by k, thenM'(p) # w andp is either not pumpable
atn/, oritis pumped at’ from n” by the samé:.

— If the algorithm does not terminate in the previous point,regefineM’(r) = w
for every placer pumpable at'.

If the algorithm terminates by processing all nodes, it atgghe maximal finite value
¢ for which there is a node labelled byA/ in the constructed tree such that(p) #
M(q), andM (p) = cor M(q) = c. O

Now let N' be a BPP net with initial marking/y, and letQQ andQ’ be important
sets of places afV. We say that) andQ’ are c-dependenfor a givenc € IN, if
for every reachable marking/ we have that ifc < NORM(Q)(M) < w andc <
NORM(Q")(M) < w, thenNORM(Q)(M) = NORM(Q')(M). Thedependence levef
Q, Q' is the least € IN,, such that) andQ’ arec-dependent.

Lemma 16. LetQ and Q' be important sets of places of a BPP nét and letM, be
a marking of\. The dependence level @f Q' is effectively computable.

Proof. First we extend the net’ by two fresh places andg. Then we remove all tran-
sitions which put a token tMAXTRAP(Q) or to MAXTRAP(Q’), and modify the other
transitions so that for every reachable markidgve have thanorRM(Q) (M) = M (p)
andNORM(Q')(M) = M(q) (i.e., we “count’NORM(Q) in p andNORM(Q’) in q).
This is easy becauseorM(Q) (M) andNORM(Q')(M) are just weighted sums of to-
kens inM (cf. the remarks after Definition 6). Note that the resultiPgjri net is not
necessarily a BPP net. Initially,andq containNORM(Q)(My) andNORM(Q") (M)
tokens, respectively. Obviously, the dependence levé),@’ in N equals to the de-
pendence level op, ¢ in the modified net, and thus it is effectively computable by
Lemma 15. O

The usefulness of the above explorations now becomes aypare

Lemma 17. Let M, be a marking of a BPP neY. If Q and Q' are important sets of
places with dependence levelthen is not bisimilar to any BPA process.

For example, the set§P} and {@Q} are important for the BPP net of Figure 1; the
associated DD-functions (referring to Lemma 14) dile and dd,, respectively. As
these sets have a dependence level,dhis Lemma demonstrates that there is no BPA
process which is bisimilar t&.

Proof. Let Q1, ..., Q,, be the important sets of places associated to the BPR/net
and letd,,...,d,, be the associated DD-functions in the sense of Lemma 14. Now
suppose that there are important gtand@’ whose dependence level fdf, equals

w, and that there is a BPA procesg such thatMy ~ «g. By Lemma 1345, ...,d,,

are prefix-encoded on (any) BPA. Let

C =max{Cy, : 1 <i<m}

whereCy, is the constant of Definition 11 chosen fhrand the underlying BPA process
of ag. We also letk be the number of places &f.

Since the dependence level@f Q’ for M, equalsv, there is a reachable marking
M such that

C+k<NORM(Q)(M) <w and C+k < NORM(Q')(M) < w,

andNORM(Q)(M) # NORM(Q')(M). Letd andd’ be the DD-functions associated to
Q and@)’, respectively. Sincé/ is reachable) ~ « for somea reachable fronay.
As DD-functions are bisimulation invariant, we get that

C+k<dM)=da)<w and C+k<d(M)=d(a) <w.

Due to the choice of’, we know that for every sequence of (at mdstyansitions, if
each transition ig-reducing then each is alsb-reducing, and vice versa.
Certainly@ # Q' as otherwise we could not haMmeRrM(Q) (M) # NORM(Q')(M).

Hence, there is somee (Q\ Q')U(Q'\ Q). Suppose, e.gp, € (Q\ Q). If M(p) > 1,

we are done immediately, as then there ig-@ducing transitiom/ % M’, where
d = NORM(Q), which takes the token away from and therefore it does not decrease
NORM(Q') = d’'. The bisimilar BPA process cannot match this transition.

If for everyp € (Q \ Q") U (Q" \ Q) we have thaiM/ (p) = 0, we argue as follows:
Let us assume that, e.gipRM(Q)(M) < NORM(Q')(M). Then there must be some
q € QN Q' such thatM (¢) > 1, and each sequence éfreducing transitions, where
d = NORM(Q), which removes the token ig out of @ (that is, the total effect of
the sequence on placesdhis that the token iy disappears) must temporarily mark
some place in Q" which is not inQ. Otherwise, we would immediately obtain that
NORM(Q") (M) < NORM(Q)(M). Now we can change the order of these transitions so
thatp is marked after at mogk—1) d-reducing transitions. (Here we rely on a folklore
result about BPP processes. Also note that any performabheutation of a sequence
of d-reducing transitions also consistsdfeducing transitions). Now we can use the
same argument as in the previous paragraph. O

Lemma 18. Let M, be a marking of a BPP neV. If for all important sets of places
Q@ and @’ we have that the dependence levelpf)’ is finite, then we can effectively
construct an OCR process which is bisimilarif,.

Proof. Let Q4,...,Q,, be the important sets of places constructed for the BPP net
N, and letF = (di,...,dy) be the (tuple of the) associated DD-functions as in
Lemma 14. Furthermore, let

C =max{dl(Q;,Q;) : 1 <1i,j <m}

wheredl(Q;, Q;) is the dependence level 6f;, ;. Note thatC' is effectively com-
putable due to Lemma 16. For every reachable marRih@ll normsNORM(Q;) (M)
which are finite and larger thati keep to coincide. More precisely, if

C < NORM(Q;)(M) <w and C < NORM(Q;)(M) < w

wherel < i, j < m, thenNORM(Q;)(M) = NORM(Q;)(M).

So we can construct an OCQR with the initial state bisimilar td/,, which mimics
the behaviour of markings df in the following way: Instead of (the current marking)
M, the OCRP records in the finite control state unit:

— for which sets); the valueNorM(Q;) (M) equalsv (now and forever);

— for which sets); the valueNoRrRM(Q;)(M) is “small”, i.e., no greater tha€'; the
precise values of these norms are also recorded in the fomiteat; and

— for which sets); the valueNorRM(Q;)(M) is larger tharC'.

Since the valueslorM(Q;)(M) in the last collection must be the same, i.e., equal to
somev, P can recordv—C') in the counter.

Note that the configuration dP associated tal/ does not contain the “full” in-
formation aboutM in the sense that the exact distribution of tokengdncannot be
reconstructed from the recorded norms. It can happen tFetetit markingsM, M’
have the propertworM(Q;)(M) = NORM(Q;)(M’) for everyl < i < m, and then
(and only then) they are represented by the same confignrati®. However, if M

and M’ coincide on everyNORM(Q;), then (and only then) they are bisimilar—see
Lemma 14.

It remains to explain howp performs its transitions. First, for every marking we
define the set

fire(M) = {(a,0) : 3IM % M’ such that” (M % M') = §}.

Note that if M ~ M’, thenfire(M) = fire(M'). Hence, for every configuratigny of
P we can defingire(pa) = fire(M) whereM is a marking to whiclpa is associated.
(If there is no such/, fire(pc) is undefined.) Next we show that for every for which
fire(pa) is defined, the sefire(pa) is effectively computable just from the information
stored in the control state (hence, we can denofée(pa) just by fire(p)). It clearly
suffices for our purposes, because then we can compute thgrséf) for all control
statesy and “implement” each paif, §) in a givenfire(q) in the straightforward way;
in particular, if all “large” norms are set to, then the control state is updated and the
counter is reset to zero. One can also readily verify thatyewearking M is bisimilar
to its associated configuration Bf

Let ¢ be a transition of\. In each markingy/ wheret is enabled, the (firing of)
causes some change®f(i.e., of(NORM(Q1), - - -, NORM(Q,))); we define

5 (M) =67 (M 5 M.

In general, the same transition can cause different changierent markings\/, M.
The (only) reason why this can happen is that seimeMm(Q;) which is finite forA can
bew for M, and vice versa (note thatiforRM(Q;)(M) = w, thend,(M); = w). So,
8:(M) is (completely and effectively) determined by the struetaf A/ and themode

of M, i.e., the set of alf);’s for whichNORM(Q;) (M) < w. Hence, for a given a mode
M (i.e., a subset of Q1, - - -, Q. } Whose norms are to be finite) we can effectively
partition the transitions ol into classed?, - - -, T} so that transitions in the sarfig
have the same label and the same change at every marking adtm. Thus, to each
T; we can associate a pdir;, §;). Note that

ﬁre(M) c {(alaél)v) (akvék)}

for every markingV/ with mode M. Now we show that for each; one can effectively
construct an important s€};, such that for every marking/ with modeM we have
that

(ai, 6;) € fire(M) iff NORM(Q;,)(M) > 0. 2)

Actually, it suffices to put
Q.= | Pre(t)u | mAXTRAP(Q).
teT; QEM

Clearly,NORM(Q);,) is a bisimulation-invariant norm; and it follows from therstruc-
tion of the important set§)1, - - -, Q. presented in [11] thaf);, appears in the se-
quencel, - - -, Q. It remains to verify that Equation (2) indeed holds. So Metbe

a marking with modeM. If (a;,d;) € fire(M), some of the transitions i, are en-
abled atM, and hencelorRM(Q;,) (M) > 0. Conversely, iNORM(Q;,) (M) > 0, the
places ofUQeM MAXTRAP(Q) are surely not marked (otherwise, we would have that
NORM(Q)(M) = w for someQ in M which is a contradiction). Hence, sonfee(t),
wheret € T;, must be marked at/ which means thatis enabled af\/.

Since control states @ carry the information about the current mode and currently
positiveNORM(Q;)’s, we are done. O

The previous lemmata allow us to conclude the following:
Theorem 19. Bisimilarity between BPA and BPP processes is decidable.

Proof. We first check if there are important sefsand Q' whose dependence level
equalswv (this is decidable by Lemmas 14 and 16). If this is the caga A, cannot be
bisimilar to any BPA process. Otherwise, we can effectiwelgstruct an OCR process
pa which is bisimilar toM, (Lemma 18). We can then check bisimilarity between
and the given BPA process (using, e.g., the algorithm of 227),. a

As a final remark, we note that a more detailed analysis of tbpesties of BPP
processes which are bisimilar to BPA processes would admiimement of the result
of Lemma 18: the OCR must be special in the sense that the rinssition which
increments the counter (since the last reset) “selectstdmrol statey to which the
machine must switch by the first decrement operation. The possibility of how to
change; to some other state is to perform a reset. We conjecture tichta behaviour
can be matched by an effectively constructible BPA procésis being the case, we
could then use the bisimilarity-checking algorithm for Bpocesses [4] instead of the
one for PDA processes, which would yield an elementary uppeplexity bound for
bisimilarity between BPA and BPP.

References

[1] J.C.M. Baeten, J.A. Bergstra and J.W. Klop. Decidapitif bisimulation equivalence for
processes generating context-free languagmsanal of the ACMA((3):653-682, 1993.

[2] J. Blanco. Normed BPP and BPA. Proceedings of ACP’'94pages 242-251, Springer
1995.

[3] O. Burkart, D. Caucal, F. Moller and B. Steffen. Verifigat on infinite structures. In
J. Bergstra, A. Ponse and S. Smolka (editorgndbook of Process Algehrahapter 9,
pages 545-623. Elsevier Science, 2001.

[4] O. Burkart, D. Caucal and B. Steffen. An elementary decigprocedure for arbitrary
context-free processes. Rroceedings of MFCS'93.NCS969, pages 423-433. Springer,
1995.

[5] I. Cerna, M. Kfetinsky and A. Kutera. Comparing exprieitisy of normed BPA and
normed BPP processeicta Informatica36:233—-256, 1999.

[6] R. Glabbeek. The linear time — branching time spectruifihle semantics of concrete se-
guential processes. In J. Bergstra, A. Ponse and S. Smalkarg),Handbook of Process
Algebrg chapter 1, pages 3-99. Elsevier Science, 2001.

[7] Y. Hirshfeld and M. Jerrum. Bisimulation equivalencedscidable for normed process
algebra. InProceedings of ICALP'99 NCS1644, pages 412-421. Springer, 1999.

[8] Y. Hirshfeld, M. Jerrum and F. Moller. A polynomial algtrm for deciding bisimilarity of
normed context-free process&heoretical Computer Sciend®8143-159, 1996.

[9] Y. Hirshfeld, M. Jerrum and F. Moller. A polynomial-timegorithm for deciding bisimu-
lation equivalence of normed basic parallel proces¥msnal of Mathematical Structures
in Computer Scienc@251-259, 1996.

[10] P. Jantar. Undecidability of bisimilarity for Petrets and some related probleriifieoret-
ical Computer Scienc#482):281-301, 1995.

[11] P.Jancar. Strong bisimilarity on basic parallel psses is PSPACE-complete Rroceed-
ings of LICS’03to appear, 2002.

[12] P.Jantar and A. Kucera. Equivalence-checking wifimite-state systems: Techniques and
results. InProceedings of SOFSEM'ORNCS2540, pages 41-73. Springer, 2002.

[13] P. Jancar and F. Moller. Techniques for decidabilitgl andecidability of bisimilarity. In
Proceedings of CONCUR’'92NCS1664, pages 30-45. Springer, 1999.

[14] R.M. Karp and R.E. Miller. Parallel Program Schemaagarnal of Computer and Systems
Sciences:147-195, 1969.

[15] R. Milner and F. Moller. Unique decomposition of proses.Theoretical Computer Sci-
encel07:357-363, 1993.

[16] F. Moller. Infinite results. InProceedings of CONCUR'9&NCS 1119, pages 195-216.
Springer, 1996.

[17] G. Sénizergues. Decidability of bisimulation equiérece for equational graphs of finite
out-degree. IrProceedings of FOCS'9%ages 120-129. IEEE Computer Society Press,
2001.

[18] G. Sénizergues. L(A)=L(B)? decidability resultsrincomplete formal system¥$heoreti-
cal Computer Scienc251(1-2):1-166, 2001.

[19] J. Srba. Roadmap of Infinite Results. http://mwww.bidés srba/roadmap.

[20] J. Srba. Strong bisimilarity and regularity of basiogess algebra is PSPACE-hard. In
Proceedings of ICALP’0A.NCS2380, pages 716—727. Springer, 2002.

[21] J. Srba. Strong bisimilarity and regularity of basicalkel processes is PSPACE-hard. In
Proceedings of STACS'OPNCS2285, pages 535-546. Springer, 2002.

[22] C. stirling. Decidability of bisimulation equivaleacfor pushdown processes. Research
Report No. EDI-INF-RR-0005, School of Informatics, Edingla University. January 2000.

[23] C. Stirling. Decidability of DPDA equivelanc&heoretical Computer Scien@851-2):1—
31, 2001.

