Minimizing Running Costs in Consumption Systems*

Tomas Brazdil, David Klaska, Antonin Kucera, and Petr Novotny

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. A standard approach to optimizing long-run running costs of dis-
crete systems is based on minimizing the mean-payoff, i.e., the long-run average
amount of resources (“energy”’) consumed per transition. However, this approach
inherently assumes that the energy source has an unbounded capacity, which is
not always realistic. For example, an autonomous robotic device has a battery
of finite capacity that has to be recharged periodically, and the total amount of
energy consumed between two successive charging cycles is bounded by the ca-
pacity. Hence, a controller minimizing the mean-payoff must obey this restriction.
In this paper we study the controller synthesis problem for consumption systems
with a finite battery capacity, where the task of the controller is to minimize the
mean-payoff while preserving the functionality of the system encoded by a given
linear-time property. We show that an optimal controller always exists, and it
may either need only finite memory or require infinite memory (it is decidable in
polynomial time which of the two cases holds). Further, we show how to compute
an effective description of an optimal controller in polynomial time. Finally, we
consider the limit values achievable by larger and larger battery capacity, show
that these values are computable in polynomial time, and we also analyze the
corresponding rate of convergence. To the best of our knowledge, these are the
first results about optimizing the long-run running costs in systems with bounded
energy stores.

1 Introduction

A standard tool for modelling and analyzing the long-run average running costs in dis-
crete systems is mean-payoff, i.e., the average amount of resources (or “energy”) con-
sumed per transition. More precisely, a system is modeled as a finite directed graph C,
where the set of states S corresponds to configurations, and transitions model the dis-
crete computational steps. Each transition is labeled by a non-negative integer specify-
ing the amount of energy consumed by a given transition. Then, to every run o in C one
can assign the associated mean-payoff, which is the limit of average energy consump-
tion per transition computed for longer and longer prefixes of o. A basic algorithmic
task is to find a suitable controller for a given system which minimizes the mean-payoft.
Recently, the problem has been generalized by requiring that the controller should also
achieve a given linear time property ¢, i.e., the run produced by a controller should
satisfy ¢ while minimizing the mean-payoff (see, e.g., [15]). This is motivated by the
fact that the system is usually required to achieve some functionality, and not just “run”
with minimal average costs.

* The authors are supported by the Czech Science Foundation, grant No P202/10/1469.

Note that in the above approach, it is inherently assumed that all transitions are al-
ways enabled, i.e., the amount of energy consumed by a transition is always available.
In this paper, we study the long-run average running costs in systems where the energy
stores (“tanks” or “batteries”) have a finite capacity cap € N. As before, the energy
stored in the battery is consumed by performing transitions, but if the amount of en-
ergy currently stored in the battery is smaller than the amount of energy required by a
given transition, then the transition is disabled. From time to time, the battery must be
reloaded, which is possible only in certain situations (e.g., when visiting a petrol sta-
tion). These restrictions are directly reflected in our model, where some states of C are
declared as reload states, and the run produced by a controller must be cap-bounded,
i.e., the total amount of energy consumed between two successive visits to reload states
cannot exceed cap.

The main results of this paper can be summarized as follows. Let C be a system
(with a given subset of reload states) and ¢ a linear-time property encoded as a non-
deterministic Biichi automaton.

(A) We show that for a given capacity cap € N and a given state s of C, there exists
a controller u optimal for s which produces a cap-bounded run satisfying ¢ while
minimizing the mean payoff. Further, we prove that there is a dichotomy in the
structural complexity of y, i.e., one of the following possibilities holds:

e The controller i can be constructed so that it has finitely many memory ele-
ments and can be compactly represented as a counting controller xk which is
computable in time polynomial in the size of C and cap (all integer constants
are encoded in binary).

e The controller u requires infinite memory (i.e., every optimal controller has
infinite memory) and there exists an optimal advancing controller m which
admits a finite description computable in time polynomial in the size of C and
cap.

Further, we show that it is decidable in polynomial time which of the two possibil-
ities holds.

(B) For every state s of C, we consider its limit value, which is the inf of all mean-
payoffs achievable by controllers for larger and larger battery capacity. We show
that the limit value is computable in polynomial time. Further, we show that the
problem whether the limit value is achievable by some fixed finite battery capacity
is decidable in polynomial time. If it is the case, we give an explicit upper bound
for cap; and if not, we give an upper bound for the difference between the limit
value and the best mean-payoff achievable for a given capacity cap.

Technically, the most difficult part is (A), where we need to analyze the structure of
optimal controllers and invent some tricks that allow for compact representation and
computation of optimal controllers. Note that all constants are encoded in binary, and
hence we cannot afford to construct any “unfoldings” of C where the current battery
status (i.e., an integer between O and cap) is explicitly represented, because such an
unfolding is exponentially larger than the problem instance. This is overcome by non-
trivial insights into the structure of optimal controllers.

Previous and related work. A combination of mean-payoff and linear-time (parity)
objectives has been first studied in [15] for 2-player games. It has been shown that op-
timal strategies exist in such games, but they may require infinite memory. Further, the
values can be computed in time which is pseudo-polynomial in the size of the game
and exponential in the number of priorities. Another closely related formalisms are
energy games and one-counter games, where each transition can both increase and de-
crease the amount of energy, and the basic task of the controller is to avoid the situation
when the battery is empty. Energy games with parity objectives have been considered
in [11]. In these games, the controller also needs to satisfy a given parity condition
apart of avoiding zero. Polynomial-time algorithms for certain subclasses of “pure” en-
ergy games (with zero avoidance objective only) have recently been designed in [14].
Energy games with capacity constraints were studied in [18]. Here it was shown, that
deciding whether a given one-player energy game admits a run along which the accu-
mulated reward stays between 0 and a given positive capacity is already an NP-hard
problem. One-counter Markov decision processes and one-counter stochastic games,
where the counter may change at most by one in each transition, have been studied in
[6, 5] for the objective of zero reachability, which is dual to zero avoidance. It has been
shown that for one-counter MDPs (both maximizing and minimizing), the existence of
a controller that reaches zero with probability one is in P. If such a controller exists,
it is computable in polynomial time. For one-counter stochastic games, it was shown
that the same problem is in NP N co-NP. In [10], it was shown how to compute an
g-optimal controller minimizing the expected number of transitions needed to visit zero
in one-counter MDPs. Another related model with only one counter are energy Markov
decision processes [12], where the counter updates are arbitrary integers encoded in bi-
nary, and the controller aims at maximizing the probability of all runs that avoid visiting
zero and satisfy a given parity condition. The main result of [12] says that the existence
of a controller such that the probability of all runs satisfying the above condition is equal
to one for a sufficiently large initial counter value is in NP N co-NP. Yet another related
model are solvency games [3], which can be seen as rather special one-counter Markov
decision processes (with counter updates encoded in binary). The questions studied in
[3] concern the structure of an optimal controller for maximizing the probability of all
runs that avoid visiting negative values, which is closely related to zero avoidance.

There are also results about systems with more than one counter (resource). Exam-
ples include games over vector addition systems with states [8], multiweighted energy
games [18,4], generalized energy games [13], consumption games [7], etc. We refer to
[19] for a more detailed overview.

2 Preliminaries

The sets of all integers, positive integers, and non-negative integers are denoted by Z,
N, and Ny, respectively. Given a set A, we use |A| to denote the cardinality of A. The
encoding size of a given object B is denoted by ||B||. In particular, all integer numbers
are encoded in binary, unless otherwise stated.

A labelled graph is a tuple G = (V, —,L,{) where V is a non-empty finite set of
vertices, — C V X V is a set of edges, L is a non-empty finite set of labels, and € is a

function which to every edge assigns a label of L. We write s -5 ¢ if s — ¢ and a is the
label of (s,).

A finite path in G of length n € Ny is a finite sequence @ = vy ...v, of vertices
such that v; = v;;; for all 0 < i < n. The length of « is denoted by len(), and the label
of v; = v;; is denoted by a;. An infinite path (or run) in G is an infinite sequence of
vertices o such that every finite prefix of o is a finite path in G. Finite paths and runs
in G are also written as sequences of the form vy =3 v; 51, % ... Given a finite or
infinite path 0 = vy v; ... and i € Ny, we use o(i) to denote the i-th vertex v; of o, and
©<i to denote the prefix vy ... v; of o of length i.

A finite path @ = vg...v, in G is a cycle if n > 1 and vy = v,,, and a simple cycle if
itisacycleand v; # v; forall 0 < i < j < n. Given a finite path @ = vy ... v, and a finite
or infinite path 0 = ug u; ... such that v, = ug, we use « - o to denote the concatenation
of @ and g, i.e., the path vy ... v, uj uy ... Further, if @ is a cycle, we denote by a® the
infinite patha - - a - - -.

In our next definition, we introduce consumption systems that have been informally
described in Section 1. Recall that an optimal controller for a consumption system
should minimize the mean-payoff of a cap-bounded run and satisfy a given linear-
time property ¢ (encoded by a non-deterministic Biichi automaton 8). For technical
convenience, we assume that 8 has already been multiplied with the considered con-
sumption system (i.e., the synchronized product has already been constructed'). Tech-
nically, we declare some states in consumption systems as accepting and require that a
cap-bounded run visits an accepting state infinitely often.

Definition 1. A consumption system is a tuple C = (S, —,¢, R, F) where S is a finite
non-empty set of states, — C S X S is a transition relation, c¢ is a function assigning a
non-negative integer cost to every transition, R C S is a set of reload states, and F C S
a non-empty set of accepting states. We assume that — is total, i.e., for every s € §
there is some t € S such that s — t.

The encoding size of C is denoted by ||C]| (transition costs are encoded in binary). All
notions defined for labelled graphs naturally extend to consumption systems.

The total cost of a given finite path @ = 593 5, % -+ S 5,,, is defined as c(@) =
2 ci» and the mean cost of & as MC(a) = c(a)/(n+1). Further, we define the end cost
of « as the total cost of the longest suffix s; Sy oo 5 5,0 of @such that sy, ..., Sy €
R (intuitively, the end cost of « is the total amount of resources consumed since the last
reload, or since the start if no reload happened on).

Let cap € N. We say that a finite or infinite path 0 = so-3s5; 55,3 --- is
cap-bounded if the end cost of every finite prefix of o is bounded by cap. Intuitively,
this means that the total amount of resources consumed between two consecutive visits
to reload states in o is bounded by cap (we assume that initially the battery is loaded to
a full capacity). Further, we say a run ¢ in C is accepting if o(i) € F for infinitely many
i € N. For every run o in C we define

cap limsup;_,., MC(o<;) if o is cap-bounded and accepting;
Val," (o) = -

otherwise.

!' Tt will become clear later that 8 being non-deterministic is not an obstacle here, since we work
in a non-stochastic one-player setting.

Fig. 1: An optimal controller may require memory of exponential size. Here R = {u} and F = S.

The cap-value of a given state s € S is defined by

Vall(s) = inf Val'?
“ c (S) ge}?rblm(s) “ Y (Q)
where Run(s) is the set of all runs in C initiated in s. Intuitively, Valg'p () is the minimal

mean cost of a cap-bounded accepting run initiated in s. The limit value of s is defined
by Valc(s) = limegyeo Valy" (s).

Definition 2. Let C = (S, —, ¢, R, F) be a consumption system. A controller for C is a
tuple u = (M, oy, 0, my) where M is a set of memory elements, 0, : S XM — S isa
next function satisfying s — o,(s,m) for every (s,m) € S XM, o, : S XM — M is an
update function, and my is an initial memory element. If M is finite, we say that u is a
finite-memory controller (FMC).

For every finite path @« = s¢...s, in C, we use &,(a) to denote the unique mem-
ory element “entered” by u after reading . Formally, 6, (@) is defined inductively by
Gu(so) = o,(sg,mp), and G, (sg ... Sps1) = Tu(Sns1,Fu(so ... s,)). Observe that for ev-
ery so € S, the controller u determines a unique run run(u, so) defined as follows: the
initial state of run(u, so) is so, and if s¢ . .. s, is a prefix of run(u, s¢), then the next state
is 07, (8, 04 (So - . . 8)). The size of a given FMC u is denoted by ||| (in particular, note
that [|ull > [M]).

Definition 3. Let C be a consumption system, u a controller for C, and cap € N. We
say that p is cap-optimal for a given state s of C if Val” (run(u, 5)) = Val" (s).

As we shall see, a cap-optimal controller for s always exists, but it may require infi-
nite memory. Further, even if there is a FMC for s, it may require exponentially many
memory elements. To see this, consider the simple consumption system of Fig. 1. An
optimal controller for s has to (repeatedly) perform cap — 10 visits to t and then one
visit to the only reload state u, which requires cap — 10 memory elements (recall that
cap is encoded in binary). Further examples of a non-trivial optimal behaviour can be
found in the full version of this paper [9].

To overcome these difficulties, we introduce a special type of finite-memory con-
trollers called counting controllers, and a special type of infinite memory controllers
called advancing controllers.

Intuitively, memory elements of a counting controller are pairs of the form (r,d)
where r ranges over a finite set Mem and d is a non-negative integer of a bounded
size. The next and update functions depend only on r and the information whether d
is zero or positive. The update function may change (r, d) to some (', d’) where d’ is

obtained from d by performing a counter action, i.e., an instruction of the form dec
(decrement), noc (no change), or reset(n) where n € N (reset the value to n). Hence,
counting controllers admit a compact representation which utilizes the special structure
of memory elements and the mentioned restrictions.

Definition 4. Let C = (S, —, ¢, R, F) be a consumption system. A counting controller

for Cis a tuple k = (Mem, o, 09, Act, ot, 00, ro) where

— Mem is a finite set of basic memory elements,

- 05,00 : S XxMem — S are positive and zero next functions satisfying s — o (s, r)
and s — (s, r) for every (s,r) € S X Mem, respectively,

— Act is a finite set of counter actions (note that Act may contain instructions of the
form reset(n) for different constants n);

- o 18§ X Mem — Mem X Act is a positive update function,

- 0'2 : S X Mem — Mem X (Act \ {dec}) is a zero update function,

— 1o € Mem is an initial basic memory element.

The encoding size of a counting controller « is denoted by ||«||, where all constants used
in counter actions are encoded in binary.

The functionality of a counting controller x = (Mem, o, 0, Act, ot, 00, rp) is de-
termined by its associated finite-memory controller u, = (M, o,, 07, Mmy) Where

M = Mem x {0,..., ky,} where k., is the largest n such that reset(n) € Act (or 0

if no such n exists);

— (s, (r,d)) = 09(s,r), where O is either + or 0 depending on whether d > 0 or
d = 0, respectively;

— ou(s, (r,d)) = (*',d’), where 1’ is the first component of o>(s, r), and d’ is either d,
d — 1, or n, depending on whether the counter action in the second component of
o9(s, r) is noc, dec, or reset(n), respectively (again, © is either + or 0 depending on
whether d > 0 or d = 0);

- my = (7‘0,0).

Observe that ||«|| can be exponentially smaller than ||u,||. Slightly abusing our notation,
we write run(k, so) instead of run(uy, o).

A counting controller « can be seen as a program for a computational device with
O(||Mem||) control states and log(k,,4) bits of memory needed to represent the bounded
counter. This device “implements” the functionality of .

Definition 5. Let C = (S, —, ¢, R, F) be a consumption system and s € S. An advanc-
ing controller for C and s is a controller nt for C such that run(n, s) takes the form

a-B-y-B2oy-By B2 where B0) # B(i) for all 0 < i < len(B).

The encoding size of an advancing controller &, denoted by ||]|, is given by the total
encoding size of a, B, and y. Typically, @ and y will be of polynomial length, but the
length of S is sometimes exponential and in this case we use a counting controller to
represent 8 compactly. Formally, we say that ||7|| is polynomial in ||C|| and ||cap|| if «
and y are of polynomial length and there exists a counting controller x[S] such that
run(x[B], 8(0)) = B¢ and ||| is polynomial in ||C]| and ||capl||.

An advancing controller 7 can be seen as a program for a computational device
equipped with two unbounded counters (the first counter maintains the current i and the
other counter is used to count from 2/ to zero; if the device cannot implement the ‘2%’
function directly, an auxiliary third counter may be needed). Also note that the device
can use the program of «[] as a subroutine to produce the finite path 8 (and hence also
finite paths of the form 8%). Since 8(0) # B(i) for all 0 < i < len(B), the device simply
simulates «[8] until revisiting 8(0).

3 The Results

In this section, we present the main results of our paper. Our first theorem concerns the
existence and computability of values and optimal controllers in consumption systems.

Theorem 6. Let C be a consumption system, cap € N, and s a state of C. Then Val," (s)
is computable in polynomial time (i.e., in time polynomial in ||C|| and ||cap||, where cap
is encoded in binary). Further, there exists an optimal controller for s. The existence
of an optimal finite memory controller for s is decidable in polynomial time. If there
exists an optimal FMC for s, then there also exists an optimal counting controller for s
computable in polynomial time. Otherwise, there exists an optimal advancing controller
for s computable in polynomial time.

Our second theorem concerns the limit values, achievability of limit values, and the rate
of convergence to limit values.

Theorem 7. Let C be a consumption system and s a state of C. Then Valc(s) can be
computed in polynomial time (i.e., in time polynomial in ||C||).

Further, the problem whether Valc(s) = Valg,” (s) for some sufficiently large cap € N
is decidable in polynomial time. If the answer is positive, then Valc(s) = Valéap (s)
for every cap = 3 - |S| : Cmax, Where cmax 1S the maximal cost of a transition in
C. Otherwise, for every cap > 4 - |S| - cmax we have that Val,"(s) — Valc(s) <
(B 1S|- cmax)/(cap — 4 - |S| - cmax)-

The next subsections are devoted to the proofs of Theorems 6 and 7. Due to space
constrains, some proofs and algorithms have been omitted. They can be found in [9].

3.1 A Proof of Theorem 6

For the rest of this section, we fix a consumption system C = (S, —, ¢, R, F'), a capacity
cap € N, and an initial state s € S.

An admissibility witness for a state ¢ € S is a cycle 7 initiated in g such that y
contains an accepting state and there is a cap-bounded run initiated in s of the form
a-y”. We say that g € S is admissible if there is at least one admissibility witness for g.

Observe that if y is an admissibility witness for a reload state g, then y can be freely
“inserted” into any cap-bounded run of the form & - § where 6(0) = ¢ so that the run
& -y - 6 is again cap-bounded. Such simple observations about admissibility witnesses
are frequently used in our proof of Theorem 6, which is obtained in several steps:

(1) We show how to compute all states € S such that Val;”(r) = co. Note that if
Val;" (1) = oo, then every controller is optimal in z. Hence, if Val;"(s) = co, we are
done. Otherwise, we remove all states with infinite value from C together with their
adjacent transitions.

(2) We compute and remove all states ¢+ € S that are not reachable from s via a
cap-bounded finite path. This “cleaning” procedure simplifies our considerations
and it can be performed in polynomial time.

(3) We show that Val;”(s) = 0 iff C contains a simple cycle with zero total cost ini-
tiated in an admissible state (such a cycle is called a zero-cost cycle). Next, we
show that if there is a zero-cost cycle 8 containing an accepting state, then there
is an optimal FMC u for s of polynomial size such that run(u, s) = a - . Oth-
erwise, every optimal controller for s has infinite memory, and we show how to
compute finite paths «,y of polynomial length such that the (cap-bounded) run
osa-B-y-p*-y-B---y-p* - initiated in s satisfies Val,"(0) = 0. Thus, the
finite paths @, 8 (which is a simple cycle), and vy represent an optimal advancing
controller of polynomial size.

The existence of a zero-cost cycle (and the existence of a zero-cost cycle that con-
tains an accepting state) is decidable in polynomial time. If a zero-cost cycle exists,
we are done. Otherwise, we proceed to the next step.

(4) Now we assume that C does not contain a zero-cost cycle. We show that there exist

e a cap-bounded cycle S initiated in an admissible state such that 8 is reload-
short (i.e., it contains at most |R| occurrences of a reload state), MC(B) < MC(5)
for every cap-bounded cycle ¢ initiated in an admissible state, and 8(0) # B(i)
for all 0 < i < len(B);

e a reload-short cap-bounded cycle 8 containing an accepting state such that
MC(B) < MC(8) for every cap-bounded cycle 6 containing an accepting state.

We prove that Val;”(s) = MC(B). Further, we show the following:

e If MC(3) = MC(B), then there exists an optimal FMC u for s such that
run(u, s) = a - B¢, where « is a finite path of polynomial length. In gen-
eral, len(B) (and hence also ||ul|) is exponential in ||C|| and ||cap||. However,
we show that there is always /3 of a special structure for which we can compute
(in polynomial time) a counting controller k[B] of polynomial size such that
run(x[f3], B(0)) = 3. Since @ can be computed in polynomial time, it follows
that we can obtain, in polynomial time, a counting controller k of polynomial
size such that run(k, s) = run(u, s), i.e., « is cap-optimal in s.

e If MC(B8) < MC(B), then every cap-optimal controller for s has infinite memory.
Again, we show that there is always B of a special structure, for which we
can efficiently compute finite paths @,y of polynomial length and a counting
controller «[S] of polynomial size such that run(x[g],5(0)) = B and the run
o=a-B-y-pr-y-pt---y-p* - initiated in s satisfies Val,” (0) = Val"(s).
Thus, we obtain a cap-optimal advancing controller 7 for s of polynomial size.

We start with step (1).

Lemma 8. Lett € S. The problem whether Valccap (t) = oo is decidable in polynomial
time.

The next lemma implements step (2).

Lemma9. Lett € S. The existence of a cap-bounded path from s to t is decidable in
polynomial time. Further, an example of a cap-bounded path from s to t (if it exists) of
length at most |S|? is computable in polynomial time.

We also need the following lemma which says that for every admissible state, there is
an efficiently computable admissibility witness.

Lemma 10. The problem whether a given q € S is admissible is decidable in poly-
nomial time. Further, if q is admissible, then there are finite paths «,y computable in
polynomial time such that « - y* is a cap-bounded run initiated in s and vy is an admis-
sibility witness for q of length at most 6 - |S|%.

As we already indicated in the description of step (2), from now on we assume that all
states of C have a finite value and are reachable from s via a cap-bounded finite path.
Recall that a zero-cost cycle is a cycle in C initiated in an admissible state with zero
total cost. Now we proceed to step (3).

Lemma 11. We have that Val,” (s) = 0 iff there exists a zero-cost cycle. Further, the
following holds:

1. Ifthere is a zero-cost cycle B containing an accepting state, then the run o = a - 3%,
where a is any cap-bounded finite path from s to B(0), satisfies Val," (0) = Val," (s).
Hence, there is a FMC p optimal for s where ||u|| is polynomial in ||C|| and ||capl|.

2. If there is a zero-cost cycle 8 but no zero-cost cycle contains an accepting state,
then every cap-optimal controller for s has infinite memory. Further, for a given
zero-cost cycle B there exist finite paths a and 'y computable in polynomial time
such that the runo = a-B-y-B*---y-B* --- satisfies Valglp(g) = Valgap(s). Hence,
there exists an advancing controller it optimal for s where ||n|| is polynomial in ||C||
and ||capl|.

In the next lemma we show how to decide the existence of a zero-cost cycle efficiently,
and how to construct an example of a zero-cost cycle if it exists. The same is achieved
for zero-cost cycles containing an accepting state. Thus, we finish step (3).

Lemma 12. The existence of a zero-cost cycle is decidable in polynomial time, and an
example of a zero-cost cycle B (if it exists) is computable in polynomial time. The same
holds for zero-cost cycles containing an accepting state.

It remains to complete step (4), which is the most technical part of our proof. From now
on we assume that C does not contain any zero-cost cycles.

We say that a cycle g8 in C is reload-short, if S contains at most |R| occurrences of
a reload state. Further, we say that a cycle g is T-visiting, where T C S, if B is a cap-
bounded reload-short cycle initiated in an admissible reload state such that 8 contains
a state of 7 and S(0) # B(i) for all 0 < i < len(B). We say that g is an optimal T-
visiting cycle if MC(B) < MC(9) for every T-visiting cycle 6. Note that every state of a
T-visiting cycle 8 is admissible.

Lemma 13. If C does not contain any zero-cost cycle, then it contains an optimal
F-visiting cycle and an optimal S -visiting cycle.

Proof. We give an explicit proof just for F-visiting cycles (the argument for S -visiting
cycles is very similar). First, we show that there is at least one F-visiting cycle, and
then we prove that every F-visiting cycle has a bounded length. Thus, the set of all
F-visiting cycles is finite, which implies the existence of an optimal one.

Since Valé’f’p (s8) < oo, there is a cap-bounded accepting run o initiated in s. Note that
if o contained only finitely many occurrences of reload states, it would have to contain
zero-cost cycle, which contradicts our assumption. Hence, o contains infinitely many
occurrences of a reload state and infinitely many occurrences of an accepting state. Let
o’ be a suffix of o such that every state that appears in ¢’ appears infinitely often in o’
(hence, all states that appear in o’ are admissible). We say that a subpath o’(i)...0'(j)
of o’ is useless if o’ (i) = 0’(j) € R and no accepting state is visited along this subpath.
Let ¢ be a run obtained from o’ by removing all useless subpaths (observe that g is still
a cap-bounded accepting run). Then, there must be a subpath g(i) . . . 9(j) of o such that
the length of this subpath is positive, 0(i) = 0(j) € R, the subpath visits an accepting
state, and no reload state is visited more than once along 9(i)...0(j—1). Hence, this
subpath is an F-visiting cycle.

Now let 8 be an F-visiting cycle. Then every state on 8 is admissible, which means
that every simple cycle ¢ that is a subpath of 5 has positive cost, otherwise § would be
a zero-cost cycle. This implies that a maximal length of a subpath of 8 which does not
contain any reload state is (|S| + 1) - (cap + 1) (because 8 is cap-bounded). From the
reload-shortness of 8 we get that len(B8) < |R|- (S| + 1) - (cap + 1). a

We use MCF and MCS to denote the mean cost of an optimal F-visiting cycle and the
mean cost of an optimal S -visiting cycle, respectively. Now we prove the following:

Lemma 14. Suppose that C does not contain any zero-cost cycle. Then Valglp (s) =
MCS < MCF. Moreover, the following holds:

1. If MCF = MCS, then for every optimal F-visiting cycle B and every cap-bounded
path a from s to B(0) we have that the run ¢ = a - B satisfies Val," (0) = Val," (s).
Hence, there exists an optimal FMC for s.

2. If MCS < MCEF, then every cap-optimal controller for s has infinite memory. Fur-
ther, for a given optimal S -visiting cycle 8 there exist finite paths a and y com-
putable in polynomial time such that the runo =« -8 -y -8%---v -2 --- satisfies
Val;" (o) = Val;"(s). Hence, there exists an optimal advancing controller for s.

Proof. Clearly, MCS < MCF, because every F-visiting cycle is also §-visiting. Now
we show that for every run ¢ we have Val,"(0) = MCS. This clearly holds for all non-
accepting runs. Every accepting run o must contain infinitely many occurrences of a
reload state, otherwise it would contain a zero-cost cycle as a subpath, which contradicts
our assumption. Let o’ be a suffix of o initiated in a reload state such that every state
which appears in o’ appears infinitely often in ¢’. Then o’ takes the form By - 81 -2 - - -,
where for every i > 0, the subpath ; is a cycle initiated in a reload state. Every ; can be
decomposed into reload-short cycles S;1,Bi2, - . ., Bi;, that are initiated in reload states

10

(here the decomposition is meant in a graph-theoretical sense, i.e., a transition appears
b times on §; if and only if b = by +- - - +b,,, where b; is a number of occurrences of this
transition on g; ;). Each of these cycles is an S -visiting cycle (since every state on o’
is admissible) and clearly MC(o) = MC(¢’) > infiz; MC(B;) > infis01<j<i, MC(B; ;) >
MCS.

Now let us consider the case when MCF = MCS, i.e., for every optimal F-visiting
cycle 8 we have that MC(B) = MCS. If @ is a cap-bounded path from s to (0), then we
have that the run o = « - 8 satisfies Val,” (@ - B*) = MCS = Val;,” (s), and hence there
exists an optimal FMC for s.

If MCS < MCF, consider an optimal S -visiting cycle 8. Since 8(0) is admissible,
there is a cap-bounded run « - y initiated in s where y is an admissibility witness for
B(0) and « and y are computable in polynomial time (see Lemma 10). Further, the run
o=a-B-y-B>---y-B¥ - is accepting and cap-bounded, and one can easily show
that Val," (0) = MC(B) = MCS = Val,"(s). Hence, there exists an optimal advancing
controller for s. It remains to show that there is no optimal finite memory controller
for s. For every FMC u we can write run(u, s) = & - 3¢, where f3 is a cycle on a reload
state containing an accepting state. Further, Val" (1) = MC(B). The cycle 3 can be
decomposed, using the same technique as in the first paragraph of this proof, into finitely
many reload-short cycles on reloading states, whose mean cost is at least MCS. At least
one of these cycles is F-visiting. Since MC(B) is a convex combination of the mean-
costs of these cycles and MCF > MCS, we obtain MC([?) > MCS. O

Note that Lemma 14 does not specify any bound on the length of 8 and in general,
this length can be exponential. Now we show that an optimal F-visiting cycle and an
optimal S -visiting cycle can be represented by a counting controller constructible in
polynomial time. This is the technical core of our construction which completes the
proof of Theorem 6.

Lemma 15. Suppose that C does not contain any zero-cost cycle, and let T be either
S or R. Then there exist a counting controller x and a reload state r computable in
polynomial time such that run(k, r) = “ where 8 is an optimal T-visiting cycle.

3.2 A Proof of Lemma 15

We start by refining the notion of an optimal T-visiting cycle and identifying those
cycles that can be represented by counting controllers of polynomial size.

A segment of a path S is a finite subpath 7 of 5 such that the first and the last state of
n are reload states and n7 does not contain any other occurrence of a reload state. Note
that every reload-short cycle is composed of at most |R| segments. Furthermore, we say
that a finite path is compact, if it is a cap-bounded path of the form y - 6* - v/, where y
and y’ are finite paths satisfying len(y) + len(y’) < 5|SP, § is either a cycle of length
at most |S| or a path of length O (i.e., a state), and k < cap. A compact segment is a
compact path that is also a segment.

Later we show that there is an optimal 7-visiting cycle 8 such that every segment
of 8 is a compact segment. Intuitively, such a cycle can be produced by a counting
controller of polynomial size which has at most |R| reset actions. However, this does not

11

yet imply that such a counting controller can be efficiently constructed, because there
are exponentially many possible compact segments. Hence, we need to show that we
can restrict our attention to some set of compact segments of polynomial size.

We say that a compact segment y - 6 -y has a characteristic (r, g, t,m, n, b), where
r,teR,geS,mneNaresuchthat 0 <m < 5P and 0 < n <|S|, and b € {0, 1}, if
the following holds:

- ¥(0) = r, last(y) = y'(0) = q, last(y’) = t, and len(y - y') = m;

- 0(0) = q, len(0) = n;

— we either have thatn = O and k = 1, or n > 0 and then ¢(6) > 0 and & is the maximal
number such that y - & - y is a cap-bounded path;

— if b =1, then y - 7’ contains a state of T;

— if 0 contains a state of T, then y - y’ also contains a state of 7.

Note that for a given consumption system there are at most polynomially many distinct
characteristics of compact segments. Also note that not all compact segments have a
characteristic (because of the third and the fifth condition in the above definition), and
conversely, some compact segments may have multiple characteristics (e.g., if a com-
pact segment has a characteristic where b = 1, then it also has one where b = 0). Finally,
note that for any compact segment y - 6% -y” with a characteristic (, ¢, ¢, m, n, b), the path
v -y is a compact segment with the characteristic (r, g, t, m, 0, b).

A characteristic y of a compact segment y - §* -y’ imposes certain restrictions on the
form of y - " and 6. Such a compact segment is optimal for y if y - ' and § are paths
of minimal cost among those that meet this restriction. Formally, a compact segment
v - 8% -y with a characteristic y = (v, g, t, m, n, b) is optimal for y if

— c(y - ¥’) is minimal among the costs of all segments with the characteristic
(r,q,t,m,0,b), and

— ¢(0) is minimal among the costs of all cycles of length n and positive cost, that are
initiated in ¢, and that do not contain any reload state with a possible exception of
q (if n = 0, we consider this condition to be satisfied trivially).

Lemma 16. Ifthere is at least one compact segment with a given characteristic y, then
there is also an optimal compact segment for . Moreover, all compact segments optimal
for a given characteristic have the same total cost and length.

Hence, to each of the polynomially many characteristics y we can assign a segment
optimal for y and thus form a polynomial-sized candidate set of compact segments. The
following lemma, which is perhaps the most intricate step in the proof of Lemma 15,
shows that there is an optimal T-visiting cycle 8 such that every segment of 8 belongs
to the aforementioned candidate set.

Lemma 17. There is an optimal T-visiting cycle 8 whose every segment is a compact
segment optimal for some characteristic.

Given a characteristic y, it is easy to compute a succinct representation of some compact
segment optimal for y, as the next lemma shows.

12

Lemma 18. Given a characteristic y, the problem whether the set of all compact seg-
ments with the characteristic y is non-empty is decidable in polynomial time. Further,
if the set is non-empty, then a tuple (y,y’', 6, k) such thaty - 6" -y’ is a compact segment
optimal for y is computable in polynomial time.

For a given characteristic y, we denote by CTuple(y) the tuple (y,?y’, 6, k) returned for
x by the algorithm of Lemma 18 (if an optimal compact segment for y does not exist,
we put CTuple(y) = 1), and by CPath(y) the corresponding compact segment 7y - 6* -y’
@if CTuple(y) = L, we put CPath(y) = L1). The next lemma is a simple corollary to
Lemma 16 and Lemma 17.

Lemma 19. There is an optimal T-visiting cycle 8 such that every segment of B is of the
form CPath(y) for some characteristic y.

Now we can easily prove the existence of a polynomial-sized counting controller
representing some optimal 7-visiting cycle 8. According to Lemma 19, there is a
sequence Xo,X1,...,x; of at most |R| characteristics such that § = CPath(xo) -
CPath(y) - - - CPath(y;) is an optimal T-visiting cycle. To iterate the cycle § forever
(starting in $(0)), a counting controller requires at most |R| - n basic memory elements,
where n is the maximal number of basic memory elements needed to produce a compact
segment CPath(y;), for 0 < i < j. So, consider a compact segment CPath(y;) = y-6-y’.
Note that k < cap since CPath(y;) has a characteristic and thus ¢(é) > 0. To produce
CPath(y;), the controller requires at most 5|S] basic memory elements to produce the
prefix y and the suffix y’ of CPath(y;), and at most |S| basic memory elements to iterate
the cycle § (whose length is at most |S|) exactly k times. The latter task also requires
counting down from k < cap to 0. Overall, the counting controller producing 5“ needs
a polynomial number of basic memory elements, and requires at most |R| reset ac-
tions parameterized by numbers of encoding size at most log(cap). To compute such a
counting controller, it clearly suffices to compute the corresponding sequence of tuples
CTuple(xy), - -+ , CTuple(y).

Now we can present the algorithm promised in Proposition 15. In the following, we
use X to denote the set of all possible characteristics of compact segments in C, X, to
denote the set of all characteristics of the form (r, g, t, m, n, b) for some g, m, n, b, and X, r'!t
to denote the set of all characteristics in X, where the last component is equal to 1. The
algorithm first computes the set R” C R of all admissible reload states (see Lemma 10).
Note that R’ is non-empty because there exists at least one 7-visiting cycle. The idea
now is to compute, for every § € R’, a polynomial-sized labelled graph G; such that
cycles in this graph correspond to T-visiting cycles in C that are initiated in § and that
can be decomposed into segments of the form CPath(y). An optimal T-visiting cycle is
then found via a suitable analysis of the constructed graphs.

Formally, for a given g € R” we construct a labelled graph G, = (V, =, L, {), where
LcC Ng, and where:

- V=R U{CTuple(y) | x € X}) x{0,...,IS]}.

— For every 0 < i < |S|, every pair of states r,# € R’ such that r # ¢, and
every characteristic y € X,, there is an edge ((r,i), (CTuple(y),i)) labelled by
(c(CPath(y)), len(CPath(y))) and an edge ((CTuple(y), i), (¢, i+1)) labelled by (0, 0).

13

— For every state t+ € R’ and every characteristic y € X{;J there is an
edge ((4,0), (CTuple(x), 0)) labelled by (c(CPath(y)), len(CPath(y))) and an edge
((CTuple(y),0), (¢, 1)) labelled by (0, 0).

— Forevery 1 <i <|S| there is an edge ((g, i), (¢, 0)) labelled by (0, 0).

— There are no other edges.

The labelling function of G, can be computed in polynomial time, because given a
characteristic y, we can compute CTuple(y) = (y,7’,d,k) using Lemma 18. Then,
len(CPath(y)) = len(y) + len(y’) + k - len(6), and similarly for c¢(CPath(y)). Note that
every cycle in G, contains the vertex (g, 0). Some of the constructed graphs G; may not
contain a cycle (the out-degree of (g, 0) may be equal to 0), but, as we shall see, at least
one of them does.

The ratio of a cycle 8 = vy (o), gy, L Cpdin g Gy is the value rat(B) =
(co+ci+ - +cp1)/(dy + dy + - dy—1) (the denominator is positive due to the con-
struction of G3). Now let § € R’ be arbitrary. Every cycle §; in G; (we can assume
that it is initiated in (g, 0)) uniquely determines a T-visiting cycle ¥(8;) in C that is
initiated in ¢ and whose every segment has the form CPathy for some y. To see this,
note that every second vertex on ; is a 4-tuple of the form CTuple(y) for some y, so
if CTuple(xy), CTuple(x1), ..., CTuple(y) is the sequence of these 4-tuples in order in
which they appear in §;, then we put ¥(8;) = CPath(yo) - CPath(x)-- - CPath(y ;).
Clearly MC(¥(B;)) = rat(3;). Moreover, it is easy to see that ¥ is a bijection between
the set of all cycles that appear in some G; and the set of all T-visiting cycles in C
whose segments are all of the form CPath(y) for some y (by Lemma 13, the latter of
these sets — and thus both of them — must be non-empty). Thus, in order to find an
optimal T-visiting cycle, the algorithm finds, for every g € R’, a simple cycle §; of min-
imal ratio among all cycles in G; (this is done using a polynomial-time algorithm for
a well-studied problem of minimum cycle ratio, see, e.g., [16, 17]), then simply picks
7 € R’ such that the ratio of B; is minimal and computes ¥(83;). The fact that ¥(8;) is
an optimal T-visiting cycle follows from the above observations and from Lemma 19.

3.3 Proof of Theorem 7

For the rest of this section we fix a consumption system C = (S, —,c,R, F) and an
initial state s € §. Intuitively, the controller can approach the limit value of s by inter-
leaving a large number of iterations of some “cheap” cycle with visits to an accepting
state. This motivates our definitions of safe and strongly safe cycles. Intuitively, a cycle
is safe if, assuming unbounded battery capacity, the controller can interleave an arbi-
trary finite number of iterations of this cycle with visits to an accepting state. A cycle is
strongly safe if the same behaviour is achievable for some finite (though possibly large)
capacity.

Formally, we say that two states g,t € S are inter-reachable if there is a path from
q to t and a path from ¢ to g. We say that a cycle § of length at most |S| and with 5(0)
reachable from s is safe, if one of the following conditions holds:

— ¢(B) = 0 and S8 contains an accepting state,
— B(0) is inter-reachable with a reload state and an accepting state,

14

A cycle B reachable from s with len(B) < |S| is strongly safe, if one of the following
holds:

— ¢(B) = 0 and B contains an accepting state,
— ¢(B) = 0 and B(0) is inter-reachable with a reload state and an accepting state,
— [contains a reload state and S(0) is inter-reachable with an accepting state.

The following lemma characterizes the limit value of s.

Lemma 20. Valc(s) is finite iff there is a safe cycle, in which case Valg(s)
min{MC(B) | B is a safe cycle}. Further, there is a finite cap € Ny such that Valg’p (s)
Valo(s) iff either Valo(s) = oo, or there is a strongly safe cycle B such that MC(B) =
Vale(s). In such a case Val," (s) = Valc(s) for every cap = 3 - |S| - Cmax, Where cimax is
the maximal cost of a transition in C.

So, in order to compute the limit value and to decide whether it can be achieved with
some finite capacity, we need to compute a safe and a strongly safe cycle of minimal
mean cost.

Lemma 21. The existence of a safe (or strongly safe) cycle is decidable in polynomial
time. Further, if a safe (or strongly safe) cycle exists, then there is a safe (or strongly
safe) cycle B computable in polynomial time such that MC(B) < MC(B') for every safe
(or strongly safe) cycle 3'.

Now we can prove the computation-related statements of Theorem 7.

To compute the limit value of s, we use the algorithm of Lemma 21 to obtain a safe
cycle 8 of minimal mean cost. If no such cycle exists, we have Valg(s) = oo, otherwise
Valc(s) = MC(B). To decide whether Valc(s) can be achieved with some finite capacity,
we again use the algorithm of Lemma 21 to compute a strongly safe cycle 3 of minimal
mean cost. If such a cycle exists and MC([%) = MC(B), then Valc(s) can be achieved
with some finite capacity, otherwise not. The correctness of this approach follows from
Lemma 20.

It remains to bound the rate of convergence to the limit value in case when no finite
capacity suffices to realize it. This is achieved in the following lemma.

Lemma 22. Let ciax be the maximal cost of a transition in C. For every cap > 4-|S|-Cmax
we have that 3,05

. -1S]- ¢

Vali (s) = Val, < —— "
e (s) ale(s) cap — 4 -S|+ cmax

4 Future work

We have shown that an optimal controller for a given consumption system always exists
and can be efficiently computed. We have also exactly classified the structural complex-
ity of optimal controllers and analyzed the limit values achievable by larger and larger
battery capacity.

The concept of cap-bounded mean-payoff is natural and generic, and we believe
it deserves a deeper study. Since mean-payoff has been widely studied (and applied)
in the context of Markov decision processes, a natural question is whether our results
can be extended to MDPs. Some of our methods are surely applicable, but the question
appears challenging.

15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Proceedings of FST&TCS 2010, volume 8 of Leibniz International Proceedings in Informat-
ics. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2010.

Proceedings of ICALP 2010, Part 11, volume 6199 of Lecture Notes in Computer Science.
Springer, 2010.

. N. Berger, N. Kapur, L.J. Schulman, and V. Vazirani. Solvency Games. In Proceedings of

FST&TCS 2008, volume 2 of Leibniz International Proceedings in Informatics, pages 61-72.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2008.

. P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba. Infinite Runs in Weighted

Timed Automata with Energy Constraints. In Proceedings of FORMATS 2008, volume 5215
of Lecture Notes in Computer Science, pages 33—47. Springer, 2008.

. T. Brazdil, V. BroZek, and K. Etessami. One-Counter Stochastic Games. In Proceedings of

FST&TCS 2010 [1], pages 108-119.

. T. Brazdil, V. Brozek, K. Etessami, A. Kucera, and D. Wojtczak. One-Counter Markov

Decision Processes. In Proceedings of SODA 2010, pages 863-874. SIAM, 2010.

. T. Brazdil, K. Chatterjee, A. Kucera, and P. Novotny. Efficient Controller Synthesis for

Consumption Games with Multiple Resource Types. In Proceedings of CAV 2012, volume
7358 of Lecture Notes in Computer Science, pages 23-38. Springer, 2012.

. T. Brazdil, P. Jancar, and A. Kucera. Reachability Games on Extended Vector Addition

Systems with States. In Proceedings of ICALP 2010, Part II [2], pages 478-489.

. T. Brazdil, D. Klaska, A. Kucera, and P. Novotny. Minimizing Running Costs in Consump-

tion Systems. Technical report. Available at http://arxiv.org/abs/1402.4995.

T. Brazdil, A. Kucera, P. Novotny, and D. Wojtczak. Minimizing Expected Termination Time
in One-Counter Markov Decision Processes. In Proceedings of ICALP 2012, Part II, volume
7392 of Lecture Notes in Computer Science, pages 141-152. Springer, 2012.

K. Chatterjee and L. Doyen. Energy Parity Games. In Proceedings of ICALP 2010, Part 11
[2], pages 599-610.

K. Chatterjee and L. Doyen. Energy and Mean-Payoff Parity Markov Decision Processes.
In Proceedings of MFCS 2011, volume 6907 of Lecture Notes in Computer Science, pages
206-218. Springer, 2011.

K. Chatterjee, L. Doyen, T. Henzinger, and J.-F. Raskin. Generalized Mean-payoff and En-
ergy Games. In Proceedings of FST&ETCS 2010 [1], pages 505-516.

K. Chatterjee, M. Henzinger, S. Krinninger, and D. Nanongkai. Polynomial-Time Algo-
rithms for Energy Games with Special Weight Structures. In Proceedings of ESA 2012,
volume 7501 of Lecture Notes in Computer Science, pages 301-312. Springer, 2012.

K. Chatterjee, T. Henzinger, and M. Jurdzifiski. Mean-Payoff Parity Games. In Proceedings
of LICS 2005, pages 178-187. IEEE Computer Society Press, 2005.

B. Dantzig, W. Blattner, and M. R. Rao. Finding a cycle in a graph with minimum cost to
times ratio with applications to a ship routing problem. In P. Rosenstiehl, editor, Theory of
Graphs, pages 77-84. Gordon and Breach, 1967.

A. Dasdan, S.S. Irani, and R.K. Gupta. Efficient algorithms for optimum cycle mean and
optimum cost to time ratio problems. In Design Automation Conference, 1999. Proceedings.
36th, pages 37-42, 1999.

U. Fahrenberg, L. Juhl, K. Larsen, and J. Srba. Energy Games in Multiweighted Automata.
In Proceedings of the 8th International Colloquium on Theoretical Aspects of Computing
(ICTAC’11), volume 6916 of Lecture Notes in Computer Science, pages 95—115. Springer,
2011.

A. Kucera. Playing Games with Counter Automata. In Reachability Problems, volume 7550
of Lecture Notes in Computer Science, pages 29-41. Springer, 2012.

16

