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Abstract. We introduce consumption games, a model for discrete interactive
system with multiple resources that are consumed or reloaded independently.
More precisely, a consumption game is a finite-state graph where each transition
is labeled by a vector of resource updates, where every update is a non-positive
number or ω. The ω updates model the reloading of a given resource. Each vertex
belongs either to player � or player ^, where the aim of player � is to play so
that the resources are never exhausted. We consider several natural algorithmic
problems about consumption games, and show that although these problems are
computationally hard in general, they are solvable in polynomial time for every
fixed number of resource types (i.e., the dimension of the update vectors) and
bounded resource updates.

1 Introduction

In this paper we introduce consumption games, a model for discrete interactive systems
with multiple resources that can be consumed and reloaded independently. We show that
consumption games, despite their rich modeling power, still admit efficient algorithmic
analysis for a “small” number of resource types. This property distinguishes consump-
tion games from other related models, such as games over vector addition systems or
multi-energy games (see below), that are notoriously intractable.

Roughly speaking, a consumption game is a finite-state directed graph where each
state belongs either to player � (controller) or player ^ (environment). Every transition
s→ t is labeled by a d-dimensional vector δ such that each component δ(i) is a non-
positive integer (encoded in binary) or ω. Intuitively, if δ(i) = −n, then the current load
of the i-th resource is decreased by n while performing s→ t, and if δ(i) = ω, then
the i-th resource can be “reloaded” to an arbitrarily high value greater than or equal to
the current load. A configuration of a consumption game is determined by the current
control state and the current load of all resources, which is a d-dimensional vector of
positive integers. A play of a consumption game is initiated in some state and some
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initial load of resources. The aim of player � is to play safely, i.e., select transitions in
his states so that the vector of current resource loads stays positive in every component
(i.e., the resources are never exhausted). Player ^ aims at the opposite.

The resources may correspond to fuel, electricity, money, or even more abstract
entities such as time or patience. To get a better intuition behind consumption games
and the abstract problems studied in this paper, let us discuss one particular example in
greater detail.

The public transport company of Brno city4 maintains the network of public trams,
buses, trolleybuses, and boats. Due to the frequent failures and breakdowns in electri-
cal wiring, rails, railroad switches, and the transport vehicles, the company has several
emergency teams which travel from one accident to another according to the directives
received from the central supervisory office. Recently, the company was considering
the possibility of replacing their old diesel vans by new cars equipped with more eco-
logical natural gas engines. The problem is that these cars have smaller range and can
be tanked only at selected gas stations. So, it is not clear whether the cars are usable at
all, i.e., whether they can always visit a gas station on time regardless where and when
an accident happens, and what are the time delays caused by detours to gas stations.
Now we indicate how to construct the associated consumption game model and how to
rephrase the above questions formally.

We start with a standard graph G representing the city road network, i.e., the nodes
of G correspond to distinguished locations (such as crossings) and the edges correspond
to the connecting roads. Then we identify the nodes corresponding to gas stations that
sell natural gas, and to each edge (road) we assign two negative numbers corresponding
to the expected time and fuel needed to pass the road. Every morning, a car leaves a
central garage (where it is fully tanked) and returns to the same place in the evening.
The maximal number of accidents serviced per day can be safely overestimated by 12.
Our consumption game C has two resource types modeling the fuel and time in the
expected way. The fuel is consumed by passing a transition (road), and can be reloaded
by the outgoing transitions of gas stations. The time is also consumed by passing the
roads, and the only node where it can be reloaded is the central garage, but only after
completing the 12 jobs. In the states of C we remember the current job number (from 1
to 12) and the current target node. At the beginning, and also after visiting the current
target node, the next target node is selected by player ^. Technically, the current target
node belongs to player ^, and there is a transition for every (potential) next target node.
Performing such a transition does not consume the resources, but the information about
the next target node is stored in the chosen state, job index is increased, and the control
over the play is given back to player � who models the driver. This goes on until the job
index reaches 12. Then, player ^ makes no further choice, but it is possible to reload
the time resource at the node corresponding to the central garage, and hence player �
aims at returning to this place as quickly as possible (without running out of gas). Note
that C has about 12 · n2 states, where n is the number of states of G.

The question whether the new cars are usable at all can now be formalized as fol-
lows: Is there is safe strategy for player � in the initial configuration such that the fuel
resource is never reloaded to a value which is higher than the tank capacity of the car?

4 DPMB, Dopravnı́ Podnik Města Brna.



In the initial configuration, the fuel resource is initialized to 1 because it can be immedi-
ately reloaded in the central garage, and the time resource is initialized to a “sufficiently
high value” which is efficiently computable due to the finite reload property formulated
in Corollary 7. Similarly, the extra time delays caused by detours to gas stations can be
estimated by computing the minimal initial credit for the time resource, i.e., the min-
imal initial value sufficient for performing a safe strategy, and comparing this number
with the minimal initial credit for the time resource in a simplified consumption game
where the fuel is not consumed at all (this corresponds to an ideal “infinite tank capac-
ity”). Similarly, one could also analyze the extra fuel costs, or model the consumption
of the material needed to perform the repairs, and many other aspects.

An important point of the above example is that the number of resources is relatively
small, but the number of states is large. This motivates the study of parameterized
complexity of basic decision/optimization problems for consumption games, where the
parameters are the following:
• d, the number of resources (or dimension);
• `, the maximal finite |δ(i)| such that 1 ≤ i ≤ d and δ is a label of some transition.

Main Results. For every state s of a consumption game C, we consider the following
sets of vectors (see Section 2 for precise definitions):
• Safe(s) consists of all vectors α of positive integers such that player � has a safe

strategy in the configuration (s, α). That is, Safe(s) consists of all vectors describing
a sufficient initial load of all resources needed to perform a safe strategy.

• Cover(s) consists of all vectors α of positive integers such that player � has a safe
strategy σ in the configuration (s, α) such that for every strategy π for player ^ and
every configuration (t, β) visited during the play determined by σ and π we have that
β ≤ α. Note that physical resources (such as fuel, water, electricity, etc.) are stored in
devices with finite capacity (tanks, batteries, etc.), and hence it is important to know
what capacities of these devices are sufficient for performing a safe strategy. These
sufficient capacities correspond to the vectors of Cover(s).

Clearly, both Safe(s) and Cover(s) are upwards closed with respect to component-wise
ordering. Hence, these sets are fully determined by their finite sets of minimal elements.
In this paper we aim at answering the very basic algorithmic problems about Safe(s) and
Cover(s), which are the following:

(A) Emptiness. For a given state s, decide whether Safe(s) = ∅ (or Cover(s) = ∅).
(B) Membership. For a given state s and a vector α, decide whether α ∈ Safe(s)

(or α ∈ Cover(s)). Further, decide whether α is a minimal vector of Safe(s) (or
Cover(s)).

(C) Compute the set of minimal vectors of Safe(s) (or Cover(s)).

Note that these problems subsume the questions of our motivating example. We show
that all of these problems are computationally hard, but solvable in polynomial time
for every fixed choice of the parameters d and ` introduced above. Since the degree of
the bounding polynomial increases with the size of the parameters, we do not provide
fixed-parameter tractability results in the usual sense of parameterized complexity (as it
is mentioned in Section 3, this would imply a solution to a long-standing open problem
in study of graph games). Still, these results clearly show that for “small” parameter



values, the above problems are practically solvable even if the underlying graph of C is
very large. More precisely, we show the following for game graphs with n states:
• The emptiness problems for Safe(s) and Cover(s) are coNP-complete, and solvable

in O(d! · nd+1) time.
• The membership problems for Safe(s) and Cover(s) are PSPACE-hard and solvable

in time |α| · (d · ` · n)O(d) and O(Λ2 · n2), respectively, where |α| is the encoding size
of α and Λ = Πd

i=1α(i).
• The set of minimal elements of Safe(s) and Cover(s) is computable in time

(d · ` · n)O(d) and (d · ` · n)O(d·d!), respectively.
Then, in Section 4, we show that the complexity of some of the above problems

can be substantially improved for two natural subclasses of one-player and decreasing
consumption games by employing special methods. A consumption game is one-player
if all states are controlled by player�, and decreasing if every resource is either reloaded
or decreased along every cycle in the graph of C. For example, the game constructed in
our motivating example is decreasing, and we give a motivating example for one-player
consumption games in Section 4. In particular, we prove that
• the emptiness problem for Safe(s) and Cover(s) is solvable in polynomial time both

for one-player and decreasing consumption games;
• the membership problem for Safe(s) is PSPACE-complete (resp. NP-complete) for

decreasing consumption games (resp. one-player consumption games).
• Furthermore, for both these subclasses we present algorithms to compute the mini-

mal elements of Safe(s) by a reduction to minimum multi-distance reachability prob-
lem, and solving the minimum multi-distance reachability problem on game graphs.
Though these algorithms do not improve the worst case complexity over general con-
sumption games, they are iterative and potentially terminate much earlier (we refer
to Section 4.3 and Section 4.4 for details).

Related Work. Our model of consumption games is related but incomparable to en-
ergy games studied in the literature. In energy games both positive and non-positive
weights are allowed, but in contrast to consumption games there are no ω-weights. En-
ergy games with single resource type were introduced in [5], and it was shown that the
minimal initial credit problem (and also the membership problem for Safe(s)) can be
solved in exponential time. Further, it follows from the results of [5] that the empti-
ness problem for Safe(s), which was shown to be equivalent to two-player mean-payoff

games [2], lies in NP ∩ coNP.
Games over extended vector addition systems with states (eVASS games), where

the weights in transition labels are in {−1, 0, 1, ω}, were introduced and studied in
[4]. In [4], it was shown that the question whether player � has a safe strategy in a
given configuration is decidable, and the winning region of player � is computable in
(d − 1)-EXPTIME, where d is the eVASS dimension, and hence the provided solution
is impractical even for very small d’s. A closely related model of energy games with
multiple resource types (or multi-energy games) was considered in [7]. The minimal
initial credit problem (and also the membership problem for Safe(s)) for multi-energy
games can be reduced to the corresponding problem over eVASS games with an expo-
nential reduction to encode the integer weights into weights {−1, 0, 1}. Thus the minimal
initial credit problem can be solved in d-EXPTIME, and the membership problem is



EXPSPACE-hard (the hardness follows from the classical result of Lipton [12]). The
emptiness problem for Safe(s) is coNP-complete for multi-energy games [7]. Thus the
complexity of the membership and the minimal initial credit problem for consump-
tion games is much better (it is in EXPTIME and PSPACE-hard and can be solved
in polynomial time for every fixed choice of the parameters) as compared to eVASS
games or multi-energy games (EXPSPACE-hard and can be solved in d-EXPTIME).
For eVASS games with fixed dimensions, the problem can be solved in polynomial time
for d = 2 (see [6]), and it is open whether the complexity can be improved for other con-
stants. Moreover, for the important subclasses of one-player and decreasing consump-
tion games we show much better bounds (polynomial time algorithms for emptiness
and optimal complexity bounds for membership in Safe(s)).

The paper is organized as follows. After presenting necessary definitions in Sec-
tion 2, we present our solution to the three algorithmic problems (A)-(C) for general
consumption games in Section 3. In Section 4, we concentrate on the two subclasses
of decreasing and one-player consumption games and give optimized solutions to some
of these problems. Finally, in Section 5 we give a short list of open problems which,
in our opinion, address some of the fundamental properties of consumption games that
deserve further attention. Due to the lack of space, the proofs are ommited. They can be
found in the full version of this paper [3].

2 Definitions

In this paper, the set of all integers is denoted by Z. For a given operatorZ ∈ {>, <,≤,≥},
we use ZZ0 to denote the set {i ∈ Z | i Z 0}, and ZωZ0 to denote the set ZZ0 ∪ {ω}, where
ω < Z is a special symbol representing an “infinite amount” with the usual conventions
(in particular, c + ω = ω + c = ω and c < ω for every c ∈ Z). For example, Z<0 is the
set of all negative integers, and Zω<0 is the set Z<0 ∪ {ω}. We use Greek letters α, β, . . . to
denote vectors over ZZ0 or ZωZ0, and 0 to denote the vector of zeros. The i-th component
of a given α is denoted by α(i). The standard component-wise ordering over vectors is
denoted by ≤, and we also write α < β to indicate that α(i) < β(i) for every i.

Let M be a finite or countably infinite alphabet. A word over M is a finite or infinite
sequence of elements of M. The empty word is denoted by ε, and the set of all finite
words over M is denoted by M∗. Sometimes we also use M+ to denote the set M∗ r {ε}.
The length of a given word w is denoted by len(w), where len(ε) = 0 and the length of
an infinite word is ∞. The individual letters in a word w are denoted by w(0),w(1), . . .,
and for every infinite word w and every i ≥ 0 we use wi to denote the infinite word
w(i),w(i+1), . . ..

A transition system is a pair T = (V, → ), where V is a finite or countably infinite
set of vertices and → ⊆ V × V a transition relation such that for every v ∈ V there is at
least one outgoing transition (i.e., a transition of the form v→ u). A path in T is a finite
or infinite word w over V such that w(i)→w(i+1) for every 0 ≤ i < len(w). We call a
finite path a history and infinite path a run. The sets of all finite paths and all runs in T
are denoted by FPath(T ) and Run(T ), respectively.

Definition 1. A (2-player) game is a triple G = (V, 7→, (V�,V^)) where (V, 7→) is a
transition system and (V�,V^) is a partition of V. If V^ = ∅, then G is a 1-player game.



A game G is played by two players, � and ^, who select transitions in the vertices of
V� and V^, respectively. Let � ∈ {�,^}. A strategy for player � is a function which
to each wv ∈ V∗V� assigns a state v′ ∈ V such that v 7→ v′. The sets of all strategies
for player � and player ^ are denoted by ΣG and ΠG (or just by Σ and Π if G is
understood), respectively. We say that a strategy τ is memoryless if τ(wv) depends just
on the last state v, for every w ∈ V∗. Strategies that are not necessarily memoryless are
called history-dependent. Note that every initial vertex v and every pair of strategies
(σ, π) ∈ Σ ×Π determine a unique infinite path in G initiated in v, which is called a play
and denoted by Playσ,π(v).

Definition 2. Let d ≥ 1. A consumption game of dimension d is a tuple C =

(S , E, (S �, S^), L) where S is a finite set of states, (S , E) is a transition system, (S �, S^)
is a partition of S , and L is labelling which to every (s, t) ∈ E assigns a vector
δ = (δ(1), . . . , δ(d)) such that δ(i) ∈ Zω

≤0 for every 1 ≤ i ≤ d. If s ∈ S^, we require
that δ(i) , ω for all 1 ≤ i ≤ d. We write s δ

→ t to indicate that (s, t) ∈ E and L(s, t) = δ.
We say that C is one-player if S^ = ∅, and decreasing if for every n ≥ 1, every

1 ≤ i ≤ d, and every path s0
δ1−→ s1

δ2−→ · · ·
δn−→ sn such that s0 = sn, there is some j ≤ n

where δ j(i) , 0.

Intuitively, if s δ
→ t, then the system modeled by C can move from the state s to the

state t so that its resources are consumed/reloaded according to δ. More precisely, if
δ(i) ≤ 0, then the current load of resource i is decreased by |δ(i)|, and if δ(i) = ω, then
the resource i can be reloaded to an arbitrarily high positive value larger than or equal to
the current load. The aim of player � is to play so that the resources are never exhausted,
i.e., the vector of current loads stays positive in every component. The aim of player ^
is to achieve the opposite.

The above intuition is formally captured by defining the associated infinite-state
game GC for C. The vertices of GC are configurations of C, i.e., the elements of S ×Zd

>0
together with a special configuration F (which stands for “fail”). The transition relation
7→ of GC is determined as follows:
• F 7→ F.
• For every configuration (s, α) and every transition s δ

→ t of C such that α(i) + δ(i) > 0
for all 1 ≤ i ≤ d, there is a transition (s, α) 7→ (t, α+γ) for every γ ∈ Zd such that
− γ(i) = δ(i) for every 1 ≤ i ≤ d where δ(i) , ω;
− γ(i) ≥ 0 for every 1 ≤ i ≤ d where δ(i) = ω.
• If (s, α) is a configuration and s δ

→ t a transition of C such that α(i) + δ(i) ≤ 0 for
some 1 ≤ i ≤ d, then there is a transition (s, α) 7→ F.

• There are no other transitions.
A strategy σ for player � in GC is safe in a configuration (s, α) iff for every strategy
π for player ^ we have that Playσ,π(s, α) does not visit the configuration F. For every
s ∈ S , we use
• Safe(s) to denote the set of all α ∈ Zd

>0 such that player � has a safe strategy in (s, α);
• Cover(s) to denote the set of all α ∈ Zd

>0 such that player � has a safe strategy σ in
(s, α) such that for every strategy π for player ^ and every configuration (t, β) visited
by Playσ,π(s, α) we have that β ≤ α.



If α ∈ Safe(s), we say that α is safe in s, and if α ∈ Cover(s), we say that α covers s.
Obviously, Cover(s) ⊆ Safe(s), and both Safe(s) and Cover(s) are upwards closed w.r.t.
component-wise ordering (i.e., if α ∈ Safe(s) and α ≤ α′, then α′ ∈ Safe(s)). This means
that Safe(s) and Cover(s) are fully described by its finitely many minimal elements.

Intuitively, Safe(s) consists of all vectors describing a sufficiently large initial
amount of all resources needed to perform a safe strategy. Note that during a play, the
resources can be reloaded to values that are larger than the initial one. Since physical
resources are stored in “tanks” with finite capacity, we need to know what capacities of
these tanks are sufficient for performing a safe strategy. These sufficient capacities are
encoded by the vectors of Cover(s).

3 Algorithms for General Consumption Games

In this section we present a general solution for the three algorithmic problems (A)-(C)
given in Section 1.

We start by a simple observation that connects the study of consumption games to a
more mature theory of Streett games. A Streett game is a tuple S = (V, 7→, (V�,V^),A),
where (V, 7→, (V�,V^)) is a 2-player game with finitely many vertices, and A =

{(G1,R1), . . . , (Gm,Rm)}, where m ≥ 1 and Gi,Ri ⊆ 7→ for all 1 ≤ i ≤ m, is a Streett
(or strong fairness) winning condition (for technical convenience, we consider Gi,Ri

as subsets of edges rather than vertices). For an infinite path w in S, let inf(w) be the
set of all edges that are executed infinitely often along w. We say that w satisfies A iff
inf(w) ∩ Gi , ∅ implies inf(w) ∩ Ri , ∅ for every 1 ≤ i ≤ m. A strategy σ ∈ ΣS is
winning in v ∈ V if for every π ∈ ΠS we have that Playσ,π(v) satisfies A. The problem
whether player � has a winning strategy in a vertex v ∈ V is coNP-complete [9], and
the problem can be solved in O(m! · |V |m+1) time [13].

For the rest of this section, we fix a consumption game C = (S , E, (S �, S^), L) of
dimension d, and we use ` to denote the maximal finite |δ(i)| such that 1 ≤ i ≤ d and δ
is a label of some transition.

Lemma 3. Let SC = (S , E, (S �, S^),A) be a Streett game where A =

{(G1,R1), . . . , (Gd,Rd)}, Gi = {(s, t) ∈ E | L(s, t)(i) < 0}, and Ri =

{(s, t) ∈ E | L(s, t)(i) = ω} for every 1 ≤ i ≤ d. Then for every s ∈ S the following
assertions hold:

1. If Safe(s) , ∅, then player � has a winning strategy in s in the Streett game SC.
2. If player � has a winning strategy in s in the Streett game SC, then

(d! · |S | · ` + 1, . . . , d! · |S | · ` + 1) ∈ Safe(s) ∩ Cover(s).

An immediate consequence of Lemma 3 is that Safe(s) = ∅ iff Cover(s) = ∅. Our next
lemma shows that the existence of a winning strategy in Streett games is polynomially
reducible to the problem whether Safe(s) = ∅ in consumption games.

Lemma 4. Let S = (V, 7→, (V�,V^),A) be a Streett game where A =

{(G1,R1), . . . , (Gm,Rm)}. Let CS = (V, 7→, (V�,V^), L) be a consumption game of di-
mension m where L(u, v)(i) is either −1, ω, or 0, depending on whether (u, v) ∈ Gi,
(u, v) ∈ Ri, or (u, v) < Gi ∪ Ri, respectively. Then for every v ∈ V we have that player �
has a winning strategy in v (in S) iff Safe(v) , ∅ (in CS).



A direct consequence of Lemma 3 and Lemma 4 is the following:

Theorem 5. The emptiness problems for Safe(s) and Cover(s) are coNP-complete and
solvable in O(d! · |S |d+1) time.

Also observe that if managed to prove that the emptiness problem for Safe(s) or
Cover(s) is fixed-parameter tractable in d for consumption games where ` is equal to
one (i.e., if we proved that the problem is solvable in time F(d) ·nO(1) where n is the size
of the game and F a computable function), then due to Lemma 4 we would immedi-
ately obtain that the problem whether player � has a winning strategy in a given Streett
game is also fixed-parameter tractable. That is, we would obtain a solution to one of the
long-standing open problems of algorithmic study of graph games.

Now we show how to compute the set of minimal elements of Safe(s). A key obser-
vation is the following lemma whose proof is non-trivial.

Lemma 6. For every s ∈ S and every minimal α ∈ Safe(s) we have that α(i) ≤ d · ` · |S |
for every 1 ≤ i ≤ d.

Observe that Lemma 6 does not follow from Lemma 3 (2.). Apart from Lemma 6 pro-
viding better bound, Lemma 3 (2.) only says that if all resources are loaded enough,
then there is a safe strategy. However, we aim at proving a substantially stronger result
saying that no resource needs to be reloaded to more than d · ` · |S | regardless how large
is the current load of other resources.

Intuitively, Lemma 6 is obtained by a somewhat tricky inductive argument where we
first consider all resources as being “sufficiently large” and then bound the components
one by one. Since a similar technique is also used to compute the minimal elements of
Cover(s), we briefly introduce the main underlying notions and ideas.

An abstract load vector µ is an element of (Zω>0)d. The precision of µ is the number
of components different from ω. The standard componentwise ordering is extended also
to abstract load vectors by stipulating that c < ω for every c ∈ Z. Given an abstract load
vector µ and a vector α ∈ (Z>0)d, we say that αmatches µ if α( j) = µ( j) for all 1 ≤ j ≤ d
such that µ( j) , ω. Finally, we say that µ is compatible with Safe(s) (or Cover(s)) if
there is some α ∈ Safe(s) (or α ∈ Cover(s)) that matches µ.

The proof of Lemma 6 is obtained by showing that for every minimal abstract load
vector µ with precision i compatible with Safe(s) we have that µ( j) ≤ i · ` · |S | for every
1 ≤ j ≤ d such that µ( j) , ω. Since the minimal elements of Safe(s) are exactly the
minimal abstract vectors of precision d compatible with Safe(s), we obtain the desired
result. The claim is proven by induction on i. In the induction step, we pick a minimal
abstract vector µwith precision i compatible with s, and choose a component j such that
µ( j) = ω. Then we show that if we replace µ( j) with some k whose value is bounded by
(i + 1) · ` · |S |, we yield a minimal compatible abstract vector with precision i + 1. The
proof of this claim is the very core of the whole argument, and it involves several subtle
observations about the structure of minimal abstract load vectors. The details are given
in [3].

An important consequence of Lemma 6 is the following:

Corollary 7 (Finite reload property). If α ∈ Safe(s) and β(i) = min{α(i), d · ` · |S |} for
every 1 ≤ i ≤ d, then β ∈ Safe(s).



Due to Corollary 7, for every minimal α ∈ Safe(s) there is a safe strategy which never
reloads any resource to more than d · ` · |S |. Thus, we can significantly improve the
bound of Lemma 3 (2.).

Corollary 8. If Safe(s) , ∅, then (d · ` · |S |, . . . , d · ` · |S |) ∈ Safe(s) ∩ Cover(s).

Another consequence of Corollary 7 is that one can reduce the problem of comput-
ing the minimal elements of Safe(s) to the problem of determining a winning set in a
finite-state 2-player safety game with at most |S | · dd · `d · |S |d + 1 vertices, which is
obtained from C by storing the vector of current resource loads explicitly in the states.
Whenever we need to reload some resource, it can be safely reloaded to d ·` · |S |, and we
simulate this reload be the corresponding transition. Since the winning set in a safety
game with n states and m edges can be computed in time linear in n + m [10, 1], we
obtain the following:

Corollary 9. The sets of all minimal elements of all Safe(s) are computable in time
(d · ` · |S |)O(d).

The complexity bounds for the algorithmic problems (B) and (C) for Safe(s) are given
in our next theorem. The proofs of the presented lower bounds are given in [3].

Theorem 10. Let α ∈ Zd
>0 and s ∈ S .

• The problem whether α ∈ Safe(s) is PSPACE-hard and solvable in time
|α| · (d · ` · |S |)O(d), where |α| is the encoding size of α.

• The problem whether α is a minimal vector of Safe(s) is PSPACE-hard and solvable
in time |α| · (d · ` · |S |)O(d), where |α| is the encoding size of α.

• The set of all minimal vectors of Safe(s) is computable in time (d · ` · |S |)O(d).

Now we provide analogous results for Cover(s). Note that deciding the membership
to Cover(s) is trivially reducible to the problem of computing the winning region in
a finite-state game obtained from C by constraining the vectors of current resource
loads by α. Computing the minimal elements of Cover(s) is more problematic. One
is tempted to conclude that all components of the minimal vectors for each Cover(s)
are bounded by a “small” number, analogously to Lemma 6. In this case, we obtained
only the following bound, which is still polynomial for every fixed d and `, but grows
double-exponentially in d. The question whether this bound can be lowered is left open,
and seems to require a deeper insight into the structure of covering vectors.

Lemma 11. For every s ∈ S and every minimal α ∈ Cover(s) we have that α(i) ≤
(d · ` · |S |)d! for every 1 ≤ i ≤ d.

The proof of Lemma 11 is given in [3]. It is based on re-using and modifying some
ideas introduced in [4] for general eVASS games. The following theorem sums up the
complexity bounds for problems (B) and (C) for Cover(s).

Theorem 12. Let α ∈ Zd
>0 and s ∈ S .

• The problem whether α ∈ Cover(s) is PSPACE-hard and solvable in O(Λ2 · |S |2)
time, where Λ = Πd

i=1α(i).
• The problem whether α is a minimal element of Cover(s) is PSPACE-hard and solv-

able in O(d · Λ2 · |S |2) time, where Λ = Πd
i=1α(i).

• The set of all minimal vectors of Cover(s) is computable in (d · ` · |S |)O(d·d!) time.



4 Algorithms for One-Player and Decreasing Consumption Games

In this section we present more efficient algorithms for the two subclasses of decreas-
ing and one-player consumption games. Observe that these special classes of games can
still retain a rich modeling power. In particular, the decreasing subclass is quite natural
as systems that do not decrease some of the resources for a long time most probably
stopped working completely (also recall that the game considered in Section 1 is de-
creasing). One-player consumption games are useful for modeling a large variety of
scheduling problems, as it is illustrated in the following example.

Consider the following (a bit idealized) problem of supplying shops with goods
such as, e.g., bottles of drinking water. This problem may be described as follows:
Imagine a map with c cities connected by roads, n of these cities contain shops to be
supplied, k cities contain warehouses with huge amounts of the goods that should be
distributed among the shops. The company distributing the goods owns d cars, each
car has a bounded capacity. The goal is to distribute the goods from warehouses to all
shops in as short time as possible. This situation can be modeled using a one-player
consumption game as follows. States would be tuples of the form (c1, . . . , cd, A) where
each ci ∈ {1, . . . , c} corresponds to the city in which the i-th car is currently located,
A ⊆ {1, . . . , n} lists the shops that have already been supplied (initially A = ∅ and the
goal is to reach A = {1, . . . , n}). Loads of individual cars and the total time would be
modelled by a vector of resources, (`(1), . . . , `(d), t), where each `(i) models the current
load of the i-th car and t models the amount of time which elapsed from the beginning
(this resource is steadily decreased until A = {1, ..., n}). Player � chooses where each car
should go next. Whenever the i-th car visits a city with a warehouse, the corresponding
resource `(i) may be reloaded. Whenever the i-th car visits a city containing a shop,
player � may choose to supply the shop, i.e. decrease the resource `(i) of the car by the
amount demanded by the shop. Now the last component of a minimal safe configuration
indicates how much time is needed to supply all shops. A cover configuration indicates
not only how much time is needed but also how large cars are needed to supply all
shops. This model can be further extended with an information about the fuel spent by
the individual cars, etc.

As in the previous section, we fix a consumption game C = (S , E, (S �, S^), L) of di-
mension d, and we use ` to denote the maximal finite |δ(i)| such that 1 ≤ i ≤ d and δ is a
label of some transition. We first establish the complexity of emptiness and membership
problem, and then present an algorithm to compute the minimal safe configurations.

4.1 The Emptiness and Membership Problems

We first establish the complexity of the emptiness problem for decreasing games by a
polynomial time reduction to generalized Büchi games. A generalized Büchi game is
a tuple B = (V, 7→, (V�,V^), B), where (V, 7→, (V�,V^)) is a 2-player game with finitely
many vertices, and B = {F1, . . . , Fm}, where m ≥ 1 and Fi ⊆ 7→ for all 1 ≤ i ≤ m.
We say that infinite path w satisfies the generalized Büchi condition defined by B iff
inf(w) ∩ Fi , ∅ for every 1 ≤ i ≤ m. A strategy σ ∈ ΣB is winning in v ∈ V if for
every π ∈ ΠB we have that the Playσ,π(v) satisfies the generalized Büchi condition. The



problem whether player � has a winning strategy in state s can be decided in polynomial
time, with an algorithm of complexity O(|V | · | 7→ | · m) (see [8]).

We claim that the following holds:

Lemma 13. If C is a decreasing game, then Safe(s) , ∅ if and only if the player � has
winning strategy in generalized Büchi game BC = (S , E, (S �, S^), {R1, . . . ,Rd}), where
for each 1 ≤ i ≤ d we have Ri = {(s, t) ∈ E | L(s, t)(i) = ω}.

Previous lemma immediately gives us that the emptiness of Safe(s) in decreasing games
is decidable in time O(|S | · |E| · d). We now argue that the emptiness of Safe(s) for
one-player games can also be achieved in polynomial time. Note that from Lemma 3
we have that Safe(s) , ∅ if and only if player � has a winning strategy in state s of
one-player Streett game SC. The problem of deciding the existence of winning strategy
in one-player Streett game is exactly the nonemptiness problem for Streett automata
that can be solved in time O((|S | · d + |E|) ·min{|S |, d}) [11].

Theorem 14. Given a consumption game C and a state s, the emptiness problems of
whether Safe(s) = ∅ and Cover(s) = ∅ can be decided in time O(|S | · |E| · d) if C is
decreasing, and in time O((|S | · d + |E|) ·min{|S |, d}) if C is a one-player game.

We now study the complexity of the membership problem for Safe(s). We prove two key
lemmas that bound the number of steps before all resources are reloaded. The key idea
is to make player � reload resources as soon as possible. Formally, we say that a play
Playσ,π(s, α) induced by a sequence of transitions s0

δ1→ · · ·
δk→ sk reloads i-th resource

in j-th step if δ j(i) = ω. We first present a lemma for decreasing games and then for
one-player games.

Lemma 15. Consider a decreasing consumption game C and a configuration (s, α)
such that α ∈ Safe(s). There is a safe strategy σ for player � in (s, α) such that every
Playσ,π(s, α) reloads all resources in the first d · |S | steps.

Now let us consider one-player games. As player ^ has only one trivial strategy, π, we
write only Playσ(s, α) instead of Playσ,π(s, α).

Lemma 16. Consider a one-player consumption game C and a configuration (s, α)
such that α ∈ Safe(s). There is a safe strategy σ for player � in (s, α) such that for the
Playσ(s, α) and every 1 ≤ i ≤ d we have that either the i-th resource is reloaded in the
first d · |S | steps, or it is never decreased from the (d · |S | + 1)-st step on.

As a consequence of Lemma 15, Lemma 16 and the hardness results presented in [3]
we obtain the following:

Theorem 17. The membership problem of whether α ∈ Safe(s) is NP-complete for
one-player consumption games and PSPACE-complete for decreasing consumption
games. The problem whether α is a minimal element of Safe(s) is DP-complete for
one-player consumption games and PSPACE-complete for decreasing consumption
games.



4.2 Minimal Safe Configurations and Multi-Distance Reachability
In the rest of the paper we present algorithms for computing the minimal safe con-
figurations in one-player and decreasing consumption games. Both algorithms use the
iterative algorithm for multi-distance reachability problem, which is described below,
as a subprocedure. Although their worst-case complexity is the same as the complexity
of generic algorithm from Section 3, we still deem them to be more suitable for practical
computation due to some of their properties that we state here in advance:
• The generic algorithm always constructs game of size (|S | · d · `)O(d). In contrast,

algorithms based on solving multi-distance reachability construct a game whose size
is linear in size of C for every fixed choice of parameter d.

• The multi-distance reachability algorithms iteratively construct sets of configurations
that are safe but may not be minimal before the algorithm stops. Although the time
complexity of this iterative computation is (|S | · d · `)O(d) at worst, it may be the case
that the computation terminates much earlier. Thus, these algorithms have a chance
to terminate earlier than in (|S | · d · `)O(d) steps (unlike the generic algorithm, where
the necessary construction of the “large” safety game always requires this number of
steps).

• Moreover, the algorithm for one-player games presented in Section 4.3 decomposes
the problem into many parallel subtasks that can be processed independently.

LetD denote a d-dimensional consumption game with transitions labeled by vectors
over Z≤0 (i.e. there is no ω in any label). Also denote D the set of states of gameD. We
say that vector α is a safe multi-distance (or just safe distance) from state s to state r if
there is a strategy σ for player � such that for any strategy π for player ^ the infinite
path Playσ,π(s, α) visits a configuration of the form (r, β). That is, α is a safe distance
from s to r if player � can enforce reaching r from s in such a way that the total decrease
in resource values is less than α.

We denote by SafeD(s, r) the set of all safe distances from s to r in D, and by
λD(s, r) the set of all minimal elements of SafeD(s, r). If SafeD(s, r) = ∅, then we set
λD(s, r) = {(∞, . . . ,∞)}, where the symbol ∞ is treated accordingly with the usual
conventions (for any c ∈ Z we have ∞ − c = ∞, c < ∞; we do not use the ω symbol to
avoid confusions).

We present a simple fixed-point iterative algorithm which computes the set of min-
imal safe distances from s to r. Apart from the standard set operations, the algorithm
uses the following operations on sets of vectors: for a given set M and a given vector α,
the operation min-set(M) returns the set of minimal elements of M, and M−α returns
the set {β − α | β ∈ M}. Further, given a sequence of sets of vectors M1, . . . ,Mm the
operation cwm(M1, . . . ,Mm) returns the set {α1 ∨ · · · ∨ αm | α1 ∈ M1, . . . , αm ∈ Mm},
where each α1∨· · ·∨αm denotes a component-wise maximum of the vectors α1, . . . , αm.

Technically, the algorithm iteratively solves the following optimality equations: for
any state q with outgoing transitions q δ1−→ q1, . . . , q

δm−→ qm we have that

λD(q, r) =

min-set (λD(q1, r) − δ1 ∪ · · · ∪ λD(qm, r) − δm) if q ∈ D�
min-set ( cwm(λD(q1, r) − δ1, . . . , λD(qm, r) − δm) ) if q ∈ D^

The algorithm iteratively computes the k-step approximations of λD(q, r), which
are denoted by λk

D
(q, r). Intuitively, each set λk

D
(q, r) consists of all minimal safe dis-



tances from q to r over all plays with at most k steps. The set λ0
D

(q, r) is initialized to
{(∞, . . . ,∞)} for q , r, and to {(1, . . . , 1)} for q = r. Each λk+1

D
(q, r) is computed from

λk
D

(q, r) using the above optimality equations until a fixed point is reached. In [3] we
show that this fixed point is the correct solution for the minimal multi-distance problem.

Since the algorithm is based on standard methods, we omit its presentation (which
can be found in [3]) and state only the final result. We call branching degree of D the
maximal number of transitions outgoing from any state ofD.

Theorem 18. There is an iterative procedure Min-dist(D, s, r) that correctly com-
putes the set of minimal safe distances from s to r in time O

(
|D| · a · b · N2

)
, where

b is the branching degree of D, a is the length of a longest acyclic path in D and
N = max0≤k≤a |λ

k
D

(q, r)|.
Moreover, the procedure requires at most a iterations to converge to the correct

solution and thus the resulting set λD(s, r) has size at most N. Finally, the number N
can be bounded from above by (a · `)d.

Note that the complexity of the procedure Min-dist(D, s, r) crucially depends on param-
eter N. The bound on N presented in the previous theorem follows from the obvious fact
that components of all vectors in λk

D
(s, r) are either all equal to ∞ or are all bounded

from above by k · `. However, for concrete instances the value of N can be substantially
smaller. For example, if the consumption game D models some real-world problem,
then it can be expected that the number of k-step minimal distances from states of D
to r is small, because changes in resources are not entirely independent in these mod-
els (e.g., action that consumes a large amount of some resource may consume a large
amount of some other resources as well). This observation forms the core of our claim
that algorithms based on multi-distance reachability may terminate much earlier than
the generic algorithm from Section 3.

4.3 Computing Safe(s) in One-Player Consumption Games

Now we present an algorithm for computing minimal elements of Safe(s) in one-player
consumption games. The algorithm computes the solution by solving several instances
of minimum multi-distance reachability problem. We assume that all states s with
Safe(s) = ∅ were removed from the game. This can be done in polynomial time us-
ing the algorithm for emptiness (see Theorem 14).

We denote by Π(d) the set of all permutations of the set {1, . . . , d}. We view each
element of Π(d) as a finite sequence π1 . . . πd, e.g., Π(2) = {12, 21}. We use the stan-
dard notation π for permutations: confusion with strategies of player ^ should not arise
since S^ = ∅ in one-player games.

We say that a play Playσ(s, α) matches a permutation π if for every 1 ≤ i < j ≤ d
the following holds: If the π j-th resource is reloaded along Playσ(s, α), then the πi-th
resource is also reloaded along this play and the first reload of πi-th resource occurs be-
fore or at the same time as the first reload of π j-th resource. A configuration (s, α)
matches π if there is a strategy σ that is safe in (s, α) and Playσ(s, α) matches π.
We denote by Safe(s, π) the set of all vectors α such that (s, α) matches π. Note that
Safe(s) =

⋃
π∈Π(d) Safe(s, π).



As indicated by the above equality, computation of safe configurations in C reduces
to the problem of computing, for every permutation π, safe configurations that match π.
The latter problem, in turn, easily reduces to the problem of computing safe multi-
distances in specific one-player consumption games C(π). Intuitively, each game C(π)
simulates the gameCwhere the resources are forced to be reloaded in the order specified
by π. So the states of each C(π) are pairs (s, k) where s corresponds to the current state
of the original game and k indicates that the first k resources, in the permutation π,
have already been reloaded. Now the crucial point is that if the first k resources have
been reloaded when some configuration c = (s, β) of the original game is visited, and
there is a safe strategy in c which does not decrease any of the resources with the index
greater than k, then we may safely conclude that the initial configuration is safe. So,
in such a case we put a transition from the state (s, k) of C(π) to a distinguished target
state r (whether or not to put in such a transition can be decided in polynomial time
due to Theorem 14). Other transitions of C(π) correspond to transitions of C except
that they have to update the information about already reloaded resources, cannot skip
any resource in the permutation (such transitions are removed), and the components
indexed by π1, . . . , πk are substituted with 0 in transitions incoming to states of the form
(q, k) (since already reloaded resources become unimportant as indicated by the above
observation).

A complete construction of C(π) is presented in [3] as a part of a formal proof of
the following theorem:

Theorem 19. For every permutation π there is a polynomial time constructible con-
sumption game C(π) of size O(|S | · d) and branching degree O(|S |) such that for every
vector α we have that α ∈ Safe(s, π) in C iff α is a safe distance from (s, 0) to r in C(π).

By the previous theorem, every minimal element of Safe(s) is an element of
λC(π)((s, 0), r) for at least one permutation π. Our algorithm examines all permuta-
tions π ∈ Π(d), and for every permutation it constructs game C(π) and computes
λC(π)((s, 0), r) using the procedure Min-dist from Theorem 18. The algorithm also stores
the set of all minimal vectors that appear in some λC(π)((s, 0), r). In this way, the algo-
rithm eventually finds all minimal elements of Safe(s). The pseudocode of the algorithm
is presented in [3].

From complexity bounds of Theorems 14 and 18 we obtain that the worst case run-
ning time of this algorithm is d! · (|S | · ` · d)O(d). In contrast with the generic algorithm
of Section 3, that constructs an exponentially large safety game, the algorithm of this
section computes d! “small” instances of the minimal multi-distance reachability prob-
lem. We can solve many of these instances in parallel. Moreover, as argued in previous
section, each call of Min-dist(C(π), (s, 0), r) may have much better running time than
the worst-case upper bound suggests.

4.4 Computing Safe(s) in Decreasing Consumption Games

We now turn our attention to computing minimal elements of Safe(s) in decreasing
games. The main idea is again to reduce this task to the computation of minimal multi-
distances in certain consumption game. We again assume that states with Safe(s) = ∅

were removed from the game.



The core of the reduction is the following observation: if C is decreasing, then α ∈
Safe(s) iff player � is able to ensure that the play satisfies these two conditions: all
resources are reloaded somewhere along the play; and the i-th resource is reloaded for
the first time before it is decreased by at least α(i), for every 1 ≤ i ≤ d. Now if we
augment the states of C with an information about which resources have been reloaded
at least once in previous steps, then the objective of player � is actually to reach a state
which tells us that all resources were reloaded at least once.

So the algorithm constructs a game Ĉ by augmenting states of Cwith an information
about which resources have been reloaded at least once, and by substituting updates
of already reloaded resources (i.e., the corresponding components of the labels) with
zeros. Note that the construction of Ĉ closely resembles the construction of games C(π)
from the previous section. However, in two-player case we cannot fix an order in which
resources are to be reloaded, because the optimal order depends on a strategy chosen
by player ^. Thus, we need to remember exactly which resources have been reloaded
in the past (we only need to remember the set of resources that have been reloaded, but
not the order in which they were reloaded).

The formal construction of Ĉ can be found in [3] along with a proof of the following
theorem.

Theorem 20. There is a consumption game Ĉ of size O(2d · |S |), branching degree O(S )
and with maximal acyclic path of length O(|S | · d), with the following properties: Ĉ is
constructible in time O(2d · (|S | + |E|)) and for every vector α we have α ∈ Safe(s) in C
iff α is a safe distance from (s, ∅) to r in Ĉ.

The previous theorem shows that we can find minimal elements of Safe(s) with a single
call of procedure Min-dist(Ĉ, (s, ∅), r). Straightforward complexity analysis reveals that
the worst-case running time of this algorithm is (|S | · d · `)O(d). However, the game Ĉ
constructed during the computation is still smaller than the safety game constructed by
the generic algorithm of Section 3. Moreover, the length of the longest acyclic path
in Ĉ is bounded by |S | · d, so the procedure Min-dist does not have to perform many
iterations, despite the exponential size of Ĉ. Finally, let us once again recall that the
procedure Min-dist(Ĉ, (s, ∅), r) may actually require much less than (|S | · d · `)O(d) steps.

5 Conclusions

As it is witnessed by the results presented in previous sections, consumption games rep-
resent a convenient trade-off between expressive power and computational tractability.
The presented theory obviously needs further development before it is implemented in
working software tools. Some of the issues are not yet fully understood, and there are
also other well-motivated problems about consumption games which were not consid-
ered in this paper. The list of important open problems includes the following:
• Improve the complexity of algorithms for Cover(s). This requires further insights

into the structure of these sets.
• Find efficient controller synthesis algorithms for objectives that combine safety with

other linear-time properties. That is, decide whether player � has a safe strategy such
that a play satisfies a given LTL property no matter what player ^ does.



• Find algorithms for more complicated optimization problems, where the individual
resources may have different priorities. For example, it may happen that fuel con-
sumption or the price of batteries with large capacity are much more important than
the time spent, and in that case we might want to optimize some weight function over
the tuple of all resources. It may happen (and we have concrete examples) that some
of these problems are actually solvable even more efficiently than the general ones
where all resources are treated equally w.r.t. their importance.

The above list is surely incomplete. The problem of optimal resource consumption is
rather generic and appears in many different contexts, which may generate other inter-
esting questions about consumption games.
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