
Efficient Analysis of Probabilistic Programs with an
Unbounded Counter

Tomáš Brázdil1?, Stefan Kiefer2??, and Antonı́n Kučera1?

1 Faculty of Informatics, Masaryk University, Czech Republic.
{brazdil,kucera}@fi.muni.cz

2 Department of Computer Science, University of Oxford, United Kingdom.
stefan.kiefer@cs.ox.ac.uk

Abstract. We show that a subclass of infinite-state probabilistic programs that
can be modeled by probabilistic one-counter automata (pOC) admits an efficient
quantitative analysis. In particular, we show that the expected termination time
can be approximated up to an arbitrarily small relative error with polynomially
many arithmetic operations, and the same holds for the probability of all runs that
satisfy a given ω-regular property. Further, our results establish a powerful link
between pOC and martingale theory, which leads to fundamental observations
about quantitative properties of runs in pOC. In particular, we provide a “diver-
gence gap theorem”, which bounds a positive non-termination probability in pOC
away from zero.

1 Introduction

In this paper we aim at designing efficient algorithms for analyzing basic properties
of probabilistic programs operating on unbounded data domains that can be abstracted
into a non-negative integer counter. Consider, e.g., the following recursive program
TreeEval which evaluates a given AND-OR tree, i.e., a tree whose root is an AND
node, all descendants of AND nodes are either leaves or OR nodes, and all descendants
of OR nodes are either leaves or AND nodes.

procedure AND(node)
if node is a leaf

then return node.value
else

for each successor s of node do
if OR(s) = 0 then return 0

end for
return 1

end if

procedure OR(node)
if node is a leaf

then return node.value
else

for each successor s of node do
if AND(s) = 1 then return 1

end for
return 0

end if

? Tomáš Brázdil and Antonı́n Kučera are supported by the research center Institute for Theoreti-
cal Computer Science (ITI, project No. 1M0545) and by the Czech Science Foundation, grant
No. P202/10/1469.

?? Stefan Kiefer is supported by a postdoctoral fellowship of the German Academic Exchange
Service (DAAD).

Note that the program TreeEval evaluates a subtree only when necessary. In general, we
cannot say anything about its expected termination time. If the input tree is infinite, the
program may not even terminate, i.e., it may fail to evaluate the root node. Now assume
that we do have some knowledge about the actual input domain of the program, which
might have been gathered empirically:

– an AND node has about a descendants on average;
– an OR node has about o descendants on average;
– the length of a branch is b on average;
– the probability that a leaf evaluates to 1 is z.

Further, let us assume that the actual number of descendants and the actual length of
a branch are geometrically distributed (which is a reasonably good approximation in
many cases). Hence, the probability that an AND node has exactly n descendants is
(1 − xa)n−1xa with xa = 1

a . Under these assumption, the behaviour of TreeEval is well-
defined in the probabilistic sense, and we may ask the following questions:

1) Does the program terminate with probability one? If not, what is the termination
probability?

2) If we restrict ourselves to terminating runs, what is the expected termination time?

These questions are not trivial, and at first glance it is not clear how to approach them.
Apart of the expected termination time, which is a fundamental characteristic of termi-
nating runs, we are also interested in the properties on non-terminating runs, specified
by linear-time logics or automata on infinite words. Here, we ask for the probability of
all runs satisfying a given linear-time property. Using the results of this paper, answers
to such questions can be computed efficiently for a large class of programs, including
the program TreeEval. More precisely, the first question about the probability of termi-
nation can be answered using the existing results [14]; the original contributions of this
paper are efficient algorithms for computing answers to the remaining questions.

The abstract class of probabilistic programs considered in this paper corresponds to
probabilistic one-counter automata (pOC). Informally, a pOC has finitely many control
states p, q, . . . that can store global data, and a single non-negative counter that can be in-
cremented, decremented, and tested for zero. The dynamics of a given pOC is described
by finite sets of positive and zero rules of the form p

x,c
−→>0 q and p

x,c
−→=0 q, respectively,

where p, q are control states, x is the probability of the rule, and c ∈ {−1, 0, 1} is the
counter change which must be non-negative in zero rules. A configuration p(i) is given
by the current control state p and the current counter value i. If i is positive/zero, then
positive/zero rules can be applied to p(i) in the natural way. Thus, every pOC determines
an infinite-state Markov chain where states are the configurations and transitions are de-
termined by the rules. As an example, consider a pOC model of the program TreeEval.
We use the counter to abstract the stack of activation records. Since the procedures
AND and OR alternate regularly in the stack, we keep just the current stack height in
the counter, and maintain the “type” of the current procedure in the finite control (when
we increase or decrease the counter, the “type” is swapped). The return values of the
two procedures are also stored in the finite control. Thus, we obtain the following pOC
model with 6 control states and 12 positive rules (zero rules are irrelevant and hence not
shown).

/* if we have a leaf, return 0 or 1 */

(and,init)
y z,−1
−−−−→ (or,return,1),

(and,init)
y(1−z),−1
−−−−−−−→ (or,return,0)

/* otherwise, call OR */

(and,init)
(1−y),1
−−−−−→ (or, init)

/* if OR returns 1, call another OR? */

(and,return,1)
(1−xa), 1
−−−−−−→ (or,init)

(and,return,1)
xa ,−1
−−−−→ (or,return,1)

/* if OR returns 0, return 0 immediately */

(and,return,0)
1,−1
−−−→ (or,return,0)

/* if we have a leaf, return 0 or 1 */

(or,init)
y z,−1
−−−−→ (and,return,1),

(or,init)
y(1−z),−1
−−−−−−−→ (and,return,0)

/* otherwise, call AND */

(or,init)
(1−y),1
−−−−−→ (and,init)

/* if AND returns 0, call another AND? */

(or,return,0)
(1−xo), 1
−−−−−−→ (and, init)

(or,return,0)
xo ,−1
−−−−→ (and,return,0)

/* if AND returns 1, return 1 immediately */

(or,return,1)
1,−1
−−−→ (and,return,1)

The initial configuration is (and,init)(1), and the pOC terminates either in
(or,return,0)(0) or (or,return,1)(0), which corresponds to evaluating the input tree to
0 and 1, respectively. We set xa := 1/a, xo := 1/o and y := 1/b in order to obtain the
average numbers a, o, b from the beginning.

As we already indicated, pOC can model recursive programs operating on un-
bounded data structures such as trees, queues, or lists, assuming that the structure can
be faithfully abstracted into a counter. Let us note that modeling general recursive pro-
grams requires more powerful formalisms such as probabilistic pushdown automata
(pPDA) [12] or recursive Markov chains (RMC) [17]. However, as it is mentioned
below, pPDA and RMC do not admit efficient quantitative analysis for fundamental
reasons. Hence, we must inevitably sacrifice a part of pPDA modeling power to gain
efficiency in algorithmic analysis, and pOC seem to be a good candidate.

The relevance of pOC is not limited just to recursive programs. As observed in
[14], pOC are equivalent, in a well-defined sense, to discrete-time Quasi-Birth-Death
processes (QBDs), a well-established stochastic model that has been deeply studied
since late 60s. Thus, the applicability of pOC extends to queuing theory, performance
evaluation, etc., where QBDs are considered as a fundamental formalism. Very recently,
games over (probabilistic) one-counter automata, also called “energy games”, were con-
sidered in several independent works [9, 10, 4, 3]. The study is motivated by optimizing
the use of resources (such as energy) in modern computational devices.

Previous work. In [12, 17], it has been shown that the vector of termination prob-
abilities in pPDA and RMC is the least solution of an effectively constructible system
of quadratic equations. The termination probabilities may take irrational values, but can
be effectively approximated up to an arbitrarily small absolute error ε > 0 in polyno-
mial space by employing the decision procedure for the existential fragment of Tarski
algebra (i.e., first order theory of the reals) [8]. Due to the results of [17], it is possi-
ble to approximate termination probabilities in pPDA and RMC “iteratively” by using
the decomposed Newton’s method. However, this approach may need exponentially
many iterations of the method before it starts to produce one bit of precision per iter-
ation [19]. Further, any non-trivial approximation of the non-termination probabilities
is at least as hard as the SquareRootSum problem [17], whose exact complexity is a
long-standing open question in exact numerical computations (the best known upper
bound for SquareRootSum is PSPACE). Computing termination probabilities in pPDA
and RMC up to a given relative error ε > 0, which is more relevant from the point of

view of this paper, is provably infeasible because the termination probabilities can be
doubly-exponentially small in the size of a given pPDA or RMC [17].

The expected termination time and the expected reward per transition in pPDA and
RMC has been studied in [13]. In particular, it has been shown that the tuple of ex-
pected termination times is the least solution of an effectively constructible system of
linear equations, where the (products of) termination probabilities are used as coeffi-
cients. Hence, the equational system can be represented only symbolically, and the cor-
responding approximation algorithm again employs the decision procedure for Tarski
algebra. There also other results for pPDA and RMC, which concern model-checking
problems for linear-time [15, 16] and branching-time [7] logics, long-run average prop-
erties [5], discounted properties of runs [2], etc.

Our contribution. In this paper, we build on the previously established results for
pPDA and RMC, and on the recent results of [14] where is shown that the decom-
posed Newton method of [19] can be used to compute termination probabilities in pOC
up to a given relative error ε > 0 in time which is polynomial in the size of pOC
and log(1/ε), assuming the unit-cost rational arithmetic RAM (i.e., Blum-Shub-Smale)
model of computation. Adopting the same model, we show the following:

1. The expected termination time in a pOC A is computable up to an arbitrarily small
relative error ε > 0 in time polynomial in |A | and log(1/ε). Actually, we can even
compute the expected termination time up to an arbitrarily small absolute error,
which is a better estimate because the expected termination time is always at least 1.

2. The probability of all runs in a pOC A satisfying an ω-regular property encoded by
a deterministic Rabin automaton R is computable up to an arbitrarily small relative
error ε > 0 in time polynomial in |A |, |R|, and log(1/ε).

The crucial step towards obtaining these results is the construction of a suitable martin-
gale for a given pOC, which allows to apply powerful results of martingale theory (such
as the optional stopping theorem or Azuma’s inequality, see, e.g., [20, 21]) to the quan-
titative analysis of pOC. In particular, we use this martingale to establish the crucial
divergence gap theorem in Section 4, which bounds a positive divergence probability in
pOC away from 0. The divergence gap theorem is indispensable in analysing properties
of non-terminating runs, and together with the constructed martingale provide generic
tools for designing efficient approximation algorithms for other interesting quantitative
properties of pOC.

Although our algorithms have polynomial worst-case complexity, the obtained
bounds look complicated and it is not immediately clear whether the algorithms are
practically usable. Therefore, we created a simple experimental implementation which
computes the expected termination time for pOC, and used this tool to analyse the pOC
model of the program TreeEval. The details are given in Section 5.

Due to space limits, we could not include most of the proofs into the main body of
the paper. These can be found in a full version of this paper [6].

2 Definitions

We use Z, N, N0, Q, and R to denote the set of all integers, positive integers, non-
negative integers, rational numbers, and real numbers, respectively. Let δ > 0, x ∈ Q,

and y ∈ R. We say that x approximates y up to a relative error δ, if either y , 0 and
|x − y|/|y| ≤ δ, or x = y = 0. Further, we say that x approximates y up to an abso-
lute error δ if |x − y| ≤ δ. We use standard notation for intervals, e.g., (0, 1] denotes
{x ∈ R | 0 < x ≤ 1}.

Given a finite set Q, we regard elements of RQ as vectors over Q. We use boldface
symbols like u, v for vectors. In particular we write 1 for the vector whose entries are
all 1. Similarly, elements of RQ×Q are regarded as square matrices.

Let V = (V, →), where V is a non-empty set of vertices and → ⊆ V × V a total
relation (i.e., for every v ∈ V there is some u ∈ V such that v→ u). The reflexive and
transitive closure of → is denoted by → ∗. A finite path inV of length k ≥ 0 is a finite
sequence of vertices v0, . . . , vk, where vi→ vi+1 for all 0 ≤ i < k. The length of a finite
path w is denoted by length(w). A run in V is an infinite sequence w of vertices such
that every finite prefix of w is a finite path inV. The individual vertices of w are denoted
by w(0),w(1), . . . The sets of all finite paths and all runs in V are denoted by FPathV
and RunV, respectively. The sets of all finite paths and all runs in V that start with a
given finite path w are denoted by FPathV(w) and RunV(w), respectively. Let U ⊆ V .
We say that U is strongly connected if v→ +u for all v, u ∈ U (here v→ +u if there is a
path of length greater than 1 from v to u). Further, we say that U is a strongly connected
component (SCC) if U , ∅ is a maximal strongly connected subset of V , and U is a
bottom SCC (BSCC) if for every u ∈ U and every u→ v we have that v ∈ U.

We assume familiarity with basic notions of probability theory, e.g., probability
space, random variable, or the expected value. As usual, a probability distribution over
a finite or countably infinite set X is a function f : X → [0, 1] such that

∑
x∈X f (x) = 1.

We call f positive if f (x) > 0 for every x ∈ X, and rational if f (x) ∈ Q for every x ∈ X.

Definition 1. A Markov chain is a triple M = (S , → ,Prob) where S is a finite or
countably infinite set of states, → ⊆ S × S is a total transition relation, and Prob
is a function that assigns to each state s ∈ S a positive probability distribution over the
outgoing transitions of s. As usual, we write s x

→ t when s→ t and x is the probability
of s→ t.

A Markov chain M can be also represented by its transition matrix M ∈ [0, 1]S×S ,
where Ms,t = 0 if s9 t, and Ms,t = x if s x

→ t.
To every s ∈ S we associate the probability space (RunM(s),F ,P) of runs starting

at s, where F is the σ-field generated by all basic cylinders, RunM(w), where w is a
finite path starting at s, and P : F → [0, 1] is the unique probability measure such
that P(RunM(w)) =

∏length(w)
i=1 xi where w(i−1) xi→w(i) for every 1 ≤ i ≤ length(w). If

length(w) = 0, we put P(RunM(w)) = 1.

Definition 2. A probabilistic one-counter automaton (pOC) is a tuple, A =

(Q, δ=0, δ>0, P=0, P>0), where

– Q is a finite set of states,
– δ>0 ⊆ Q × {−1, 0, 1} × Q and δ=0 ⊆ Q × {0, 1} × Q are the sets of positive and zero

rules such that each p ∈ Q has an outgoing positive rule and an outgoing zero rule;
– P>0 and P=0 are probability assignments, assigning to each p ∈ Q a positive ratio-

nal probability distribution over the outgoing rules in δ>0 and δ=0, resp., of p.

In the following, we often write p
x,c
−→=0 q to denote that (p, c, q) ∈ δ=0 and P=0(p, c, q) =

x, and similarly p
x,c
−→>0 q to denote that (p, c, q) ∈ δ>0 and P>0(p, c, q) = x. The size of

A , denoted by |A |, is the length of the string which represents A , where the probabili-
ties of rules are written in binary. A configuration of A is an element of Q×N0, written
as p(i). To A we associate an infinite-state Markov chain MA whose states are the
configurations of A , and for all p, q ∈ Q, i ∈ N, and c ∈ N0 we have that p(0) x

→ q(c)
iff p

x,c
−→=0 q, and p(i) x

→ q(c) iff p
x,c−i
−→>0 q. For all p, q ∈ Q, let

– RunA (p↓q) be the set of all runs in MA initiated in p(1) that visit q(0) and the
counter stays positive in all configurations preceding this visit;

– RunA (p↑) be the set of all runs in MA initiated in p(1) where the counter never
reaches zero.

We omit the “A ” in RunA (p↓q) and RunA (p↑) when it is clear from the context, and
we use [p↓q] and [p↑] to denote the probability of Run(p↓q) and Run(p↑), respectively.
Observe that [p↑] = 1 −

∑
q∈Q[p↓q] for every p ∈ Q.

At various places in this paper we rely on the following proposition proven in [14]
(recall that we adopt the unit-cost rational arithmetic RAM model of computation):

Proposition 3. Let A = (Q, δ=0, δ>0, P=0, P>0) be a pOC, and p, q ∈ Q.

– The problem whether [p↓q] > 0 is decidable in polynomial time.
– If [p↓q] > 0, then [p↓q] ≥ x|Q|

3

min, where xmin is the least (positive) probability used
in the rules of A .

– The probability [p↓q] can be approximated up to an arbitrarily small relative error
ε > 0 in a time polynomial in |A | and log(1/ε).

Due to Proposition 3, the set T>0 of all pairs (p, q) ∈ Q × Q satisfying [p↓q] > 0 is
computable in polynomial time.

3 Expected Termination Time

In this section we give an efficient algorithm which approximates the expected termi-
nation time in pOC up to an arbitrarily small relative (or even absolute) error ε > 0.

For the rest of this section, we fix a pOC A = (Q, δ=0, δ>0, P=0, P>0). For all
p, q ∈ Q, let Rp↓q : Run(p(1)) → N0 be a random variable which to a given run w
assigns either the least k such that w(k) = q(0), or 0 if there is no such k. If (p, q) ∈ T>0,
we use E(p↓q) to denote the conditional expectation E[Rp↓q | Run(p↓q)]. Note that
E(p↓q) can be finite even if [p↓q] < 1.

The first problem we have to deal with is that the expectation E(p↓q) can be infinite,
as illustrated by the following example.
Example 4. Consider a simple pOC with only one control state p and two positive rules
(p,−1, p) and (p, 1, p) that are both assigned the probability 1/2. Then [p↓p] = 1,
and due to results of [13], E(p↓p) is the least solution (in R+ ∪ {∞}) of the equation
x = 1/2 + 1/2(1 + 2x), which is∞.

We proceed as follows. First, we show that the problem whether E(p↓q) = ∞ is
decidable in polynomial time (Section 3.1). Then, we eliminate all infinite expectations,
and show how to approximate the finite values of the remaining E(p↓q) up to a given
absolute (and hence also relative) error ε > 0 efficiently (Section 3.2).

3.1 Finiteness of the expected termination time

In this subsection we exhibit conditions that, given (p, q) ∈ T>0, allow to decide in
polynomial time whether E(p↓q) is finite. To state these conditions, we need some
notions. Define sets Pre∗(q(0)) and Post∗(p(1)), where

– Pre∗(q(0)) consists of all r(k) that can reach q(0) along a run w in MA such that
the counter stays positive in all configurations preceding the visit to q(0);

– Post∗(p(1)) consists of all r(k) that can be reached from p(1) along a run w inMA

where the counter stays positive in all configurations preceding the visit to r(k).

Note that q(0) ∈ Pre∗(q(0)) and p(1) ∈ Post∗(p(1)). Further, define a finite-state
Markov chain X with Q as set of states, and transition matrix A ∈ [0, 1]Q×Q given
by Ap,q =

∑
(p,c,q)∈δ>0 P>0(p, c, q). Given a BSCC B of X, let α ∈ (0, 1]B be the in-

variant distribution of B, i.e., the unique (row) vector satisfying αA = α and α1 = 1
(see, e.g., [18, Theorem 5.1.2]). Further, we define the (column) vector s ∈ RB of ex-
pected counter changes by sp =

∑
(p,c,q)∈δ>0 P>0(p, c, q) · c and the trend t ∈ R of B by

t = αs. Intuitively, the trend is the average counter increase per step. Note that t is easily
computable in polynomial time. Now we can state the following theorem:

Theorem 5. Let (p, q) ∈ T>0. Let xmin denote the smallest nonzero probability in A.
Then we have:

(A) if q is not in a BSCC of X, then E(p↓q) ≤ 5|Q| / x|Q|+|Q|
3

min ;
(B) if q is in a BSCC B of X, then:

(a) if Pre∗(q(0))∩Post∗(p(1))∩B×N is a finite set, then E(p↓q) ≤ 20|Q|3/x4|Q|3

min ;
(b) if Pre∗(q(0)) ∩ Post∗(p(1)) ∩B × N is an infinite set, then:

(1) if B has trend t , 0, then E(p↓q) ≤ 85000|Q|6/(x5|Q|+|Q|3

min · t4);
(2) if B has trend t = 0, then E(p↓q) is infinite.

One can check in polynomial time which case of Theorem 5 applies. In particular, due
to [11], there are finite-state automata constructible in polynomial time recognizing
the sets Pre∗(q(0)) and Post∗(p(1)). Hence, we can efficiently compute a finite-state
automaton F recognizing the set Pre∗(q(0)) ∩ Post∗(p(1)) ∩B × N and check whether
the language accepted by F is finite. Thus we have the following corollary:

Corollary 6. Let (p, q) ∈ T>0. The problem whether E(p↓q) is finite is decidable in
polynomial time.

In the rest of this subsection we sketch a qualitative proof for Theorem 5; i.e., we
sketch why E(p↓q) is infinite only in case (B.b.2). First assume case (A), i.e., q is not
in a BSCC of X. Then for all s(`) ∈ Post∗(p(1)), where ` ≥ |Q|, we have that s(`) can
reach a configuration outside Pre∗(q(0)) in at most |Q| transitions. It follows that the
probability of performing a path from p(1) to q(0) of length i decays exponentially in i,
and hence E(p↓q) is finite.

Next assume case (B.a), i.e., B is a BSCC and C := Pre∗(q(0))∩Post∗(p(1))∩B×N
is a finite set. It is easy to show that the expected time for a run in Run(p↓q) to reach B
is finite. Once the run has reached B it basically moves within a Markov chain on C.

By assumption, C is finite (which implies, by a pumping argument, that |C| ≤ 3|Q|3).
Consequently, after the run has reached B, it reaches q(0) in finite expected time.

Case (B.b) requires new non-trivial techniques. For the sake of simplicity, from now
on we assume that Q = B (the general case requires only slight modifications of the ar-
guments presented below). We employ a generic observation which connects the study
of pOC to martingale theory. Recall that a stochastic process m(0),m(1), . . . is a martin-
gale if, for all i ∈ N, E(|m(i)|) < ∞, and E(m(i+1) | m(1), . . . ,m(i)) = m(i) almost surely. Let
us fix an initial configuration r(c) ∈ Q × N. Our aim is to construct a suitable martingale
over Run(r(c)). Let p(i) and c(i) be random variables which to every run w ∈ Run(r(c))
assign the control state and the counter value of the configuration w(i), respectively.
Note that if the vector s of expected counter changes is constant, i.e., s = 1 · t where t
is the trend of X, then we can define a martingale m(0),m(1), . . . simply by

m(i) =

c(i) − i · t if c(j) ≥ 1 for all 0 ≤ j < i;
m(i−1) otherwise.

Since s is generally not constant, we might try to “compensate” the difference among
the individual control states by a suitable vector v ∈ RQ. The next proposition shows
that this is indeed possible.

Proposition 7. There is a vector v ∈ RQ such that the stochastic process m(0),m(1), . . .
defined by

m(i) =

c(i) + vp(i) − i · t if c(j) ≥ 1 for all 0 ≤ j < i;
m(i−1) otherwise

is a martingale, where t is the trend of X.
Moreover, the vector v satisfies vmax − vmin ≤ 2|Q|/x|Q|min, where xmin is the smallest

positive transition probability in X, and vmax and vmin are the maximal and the minimal
components of v, respectively.

Due to Proposition 7, powerful results of martingale theory become applicable to pOC.
In this paper, we use the constructed martingale to establish statements (iii) and (iv) of
Theorem 5, by employing Azuma’s inequality and the optional stopping theorem (see
[20, 21]). We also use the martingale to prove the crucial divergence gap theorem in
Section 4. The range of possible applications of Proposition 7 is of course wider.

Assume now case (B.b.1), i.e., t , 0. For every i ∈ N, let Run(p↓q, i) be the set
of all w ∈ Run(p↓q) that visit q(0) in i transitions, and let [p↓q, i] be the probability
of Run(p↓q, i). We first show that there are 0 < a < 1 and h ∈ N such that for all
i ≥ h we have that [p↓q, i] ≤ ai. Consider the martingale m(0),m(1), . . . over Run(p(1))
as defined in Proposition 7. A relatively straightforward computation reveals that for
sufficiently large h ∈ N and all i ≥ h we have the following: If t < 0, then [p↓q, i] ≤
P

(
m(i) − m(0) ≥ (i/2) · (−t)

)
, and if t > 0, then [p↓q, i] ≤ P

(
m(0) − m(i) ≥ (i/2) · t

)
. In

each step, the martingale value changes by at most vmax − vmin + t + 1, where v is
from Proposition 7. Hence, by applying Azuma’s inequality (see [21]) we obtain the
following (for all t , 0 and i ≥ h):

[p↓q, i] ≤ exp
(
−

(i/2)2t2

2i(vmax − vmin + t + 1)2

)
= ai

Here a = exp
(
−t2 / 8(vmax − vmin + t + 1)2

)
. It follows that

E(p↓q) =

∞∑
i=1

i ·
[p↓q, i]
[p↓q]

≤
1

[p↓q]

h−1∑
i=1

i · [p↓q, i] +

∞∑
i=h

i · ai

 < ∞ .

Finally assume case (B.b.2), i.e., t = 0. We need to show that E(p↓q) = ∞. Let us
introduce some notation. For every k ∈ N0, let Q(k) be the set of all configurations where
the counter value equals k. Let p, q ∈ Q and `, k ∈ N0, where ` > k. An honest path from
p(`) to q(k) is a finite path w from p(`) to q(k) such that the counter stays above k in all
configurations of w except for the last one. We use hpath(p(`),Q(k)) to denote the set of
all honest paths from p(`) to some q(k) ∈ Q(k). For a given P ⊆ hpath(p(`),Q(k)), the
expected length of an honest path in P is defined as

∑
w∈P P(Run(w)) · length(w). Using

the martingale from Proposition 7 we show the following:

Proposition 8. If Pre∗(q(0)) is infinite, then almost all runs initiated in an arbitrary
configuration reach Q(0). Moreover, there is k1 ∈ N such that, for all ` ≥ k1, the
expected length of an honest path from r(`) to Q(0) is infinite.

Proof (Sketch). Assume that Pre∗(q(0)) is infinite. The fact that almost all runs initiated
in an arbitrary configuration reach Q(0) follows from results of [4].

Consider an initial configuration r(`) with ` + vr > vmax. We will show that the
expected length of an honest path from r(`) to Q(0) is infinite; i.e., we can take k1 :=
dvmax − vmin + 1e. Consider the martingale m(0),m(1), . . . defined in Proposition 7 over
Run(r(`)). Note that as t = 0, the term i · t vanishes from the definition of the martingale.

Now let us fix k ∈ N such that ` + vr < vmax + k and define a stopping time τ
(see e.g. [21]) which returns the first point in time in which either m(τ) ≥ vmax + k, or
m(τ) ≤ vmax. A routine application of optional stopping theorem gives us the following

P(m(τ) ≥ vmax + k) ≥
` + vr − vmax

k + M
. (1)

Denote by T the number of steps to hit Q(0). Note that m(τ) ≥ vmax + k implies c(τ) =

m(τ) − vp(τ) ≥ vmax + k − vp(τ) ≥ k, and thus also T ≥ k, as at least k steps are required to
decrease the counter value from k to 0. It follows that P(m(τ) ≥ vmax + k) ≤ P(T ≥ k).
By putting this inequality together with the inequality (1) we obtain

E[T] =
∑
k∈N

P(T ≥ k) ≥
∞∑

k=`+1

P(T ≥ k) ≥
∞∑

k=`+1

` + vr − vmax

k + M
= ∞ . ut

Further, we need the following observation about the structure ofMA , which holds
also for non-probabilistic one-counter automata:

Proposition 9. There is k2 ∈ N such that for every configuration r(`) ∈ Pre∗(q(0)),
where ` ≥ k2, we have that if r(`)→ r′(`′), then r′(`′) ∈ Pre∗(q(0)).

To show that E(p↓q) = ∞, it suffices to identify a subset W ⊆ R(p↓q) such that
P(W) > 0 and E[Rp↓q | W] = ∞. Now observe that if Pre∗(q(0)) ∩ Post∗(p(1)) is in-
finite, there is a configuration r(`) ∈ Pre∗(q(0)) reachable from p(1) along a finite path
u such that ` ≥ k1 + k2, where k1 and k2 are the constants of Propositions 8 and 9.

Due to Proposition 8, the expected length of an honest path from r(` − k2) to Q(0)
is infinite. However, then also the expected length of an honest path from r(`) to Q(k2)
is infinite. This means that there is a state s ∈ Q such that the expected length of an
honest path from r(`) to s(k2) in infinite. Further, it follows directly from Proposition 9
that s(k2) ∈ Pre∗(q(0)) because there is an honest path from r(`) to s(k2).

Now consider the set W of all runs w initiated in p(1) that start with the finite path u,
then follow an honest path from r(`) to s(k2), and then follow an honest path from s(k2)
to q(0). Obviously, P(W) > 0, and E[Rp↓q | W] = ∞ because the expected length of the
middle subpath is infinite. Hence, E(p↓q) = ∞ as needed.

3.2 Efficient approximation of finite expected termination time

Let us denote by T>0
<∞ the set of all pairs (p, q) ∈ T>0 satisfying E(p↓q) < ∞. Our aim

is to prove the following:

Theorem 10. For all (p, q) ∈ T>0
<∞, the value of E(p↓q) can be approximated up to an

arbitrarily small absolute error ε > 0 in time polynomial in |A | and log(1/ε).

Note that if y approximates E(p↓q) up to an absolute error 1 > ε > 0, then y approxi-
mates E(p↓q) also up to the relative error ε because E(p↓q) ≥ 1.

The proof of Theorem 10 is based on the fact that the vector of all E(p↓q), where
(p, q) ∈ T>0

<∞, is the unique solution of a system of linear equations whose coefficients
can be efficiently approximated (see below). Hence, it suffices to approximate the coeffi-
cients, solve the approximated equations, and then bound the error of the approximation
using standard arguments from numerical analysis.

Let us start by setting up the system of linear equations for E(p↓q). For all
p, q ∈ T>0, we fix a fresh variable V(p↓q), and construct the following system of linear
equations, L, where the termination probabilities are treated as constants:

V(p↓q) =
∑

(p,−1,q)∈δ>0

P>0(p,−1, q)
[p↓q]

+
∑

(p,0,t)∈δ>0

P>0(p, 0, t) · [t↓q]
[p↓q]

·

(
1 + V(t↓q)

)

+
∑

(p,1,t)∈δ>0

∑
r∈Q

P>0(p, 1, t) · [t↓r] · [r↓q]
[p↓q]

·

(
1 + V(t↓r) + V(r↓q)

)

It has been shown in [13] that the tuple of all E(p↓q), where (p, q) ∈ T>0, is the least
solution of L in R+ ∪ {∞} with respect to component-wise ordering (where∞ is treated
according to the standard conventions). Due to Corollary 6, we can further simplify the
system L by erasing the defining equations for all V(p↓q) such that E(p↓q) = ∞ (note
that if E(p↓q) < ∞, then the defining equation for V(p↓q) in L cannot contain any
variable V(r↓t) such that E(r↓t) = ∞).

Thus, we obtain the system L′. It is straightforward to show that the vector of
all finite E(p↓q) is the unique solution of the system L′ (see, e.g., Lemma 6.2.3 and
Lemma 6.2.4 in [1]). If we rewrite L′ into a standard matrix form, we obtain a system
V = H ·V + b, where H is a nonsingular nonnegative matrix, V is the vector of variables

in L′, and b is a vector. Further, we have that b = 1, i.e., the constant coefficients are
all 1. This follows from the following equality (see [12, 17]):

[p↓q] =
∑

(p,−1,q)∈δ>0

P>0(p,−1, q) +
∑

(p,0,t)∈δ>0

P>0(p, 0, t) · [t↓q]

+
∑

(p,1,t)∈δ>0

∑
r∈Q

P>0(p, 1, t) · [t↓r] · [r↓q]
(2)

Hence, L′ takes the form V = H · V + 1. Unfortunately, the entries of H can take
irrational values and cannot be computed precisely in general. However, they can be
approximated up to an arbitrarily small relative error using Proposition 3. Denote by
G an approximated version of H. We aim at bounding the error of the solution of the
“perturbed” system V = G · V + 1 in terms of the error of G. To measure these errors,
we use the l∞ norm of vectors and matrices, defined as follows: For a vector V we
have that ‖V‖ = maxi |Vi|, and for a matrix M we have ‖M‖ = maxi

∑
j |Mi j|. Hence,

‖M‖ = ‖M · 1‖ if M is nonnegative. We show the following:

Proposition 11. Let b ≥ max
{
E(p↓q) | (p, q) ∈ T>0

<∞

}
. Then for each ε, where

0 < ε < 1, let δ = ε /(12 · b2). If ‖G − H‖ ≤ δ, then the perturbed system V = G · V + 1
has a unique solution F, and in addition, we have that

|E(p↓q) − Fpq| ≤ ε for all (p, q) ∈ T>0
<∞.

Here Fpq is the component of F corresponding to the variable V(p↓q).

The proof of Proposition 11 is based on estimating the size of the condition number
κ = ‖1 − H‖ · ‖(1 − H)−1‖ and applying standard results of numerical analysis.

The value of b in Proposition 11 can be estimated as follows: By Theorem 5, we
have

E(p↓q) ≤ 85000 · |Q|6/
(
x6|Q|3

min · t
4
min

)
for all (p, q) ∈ T>0

<∞,

where tmin = min{|t| , 0 | t is the trend in a BSCC of X}. Although b appears large, it
is really the value of log(1/b) which matters, and it is still reasonable. Theorem 10 now
follows by combining Propositions 11 and 3, because the approximated matrix G can
be computed using a number of arithmetical operations which is polynomial in |A | and
log(1/ε).

4 Quantitative Model-Checking of ω-regular Properties

In this section, we show that for every ω-regular property encoded by a deterministic
Rabin automaton, the probability of all runs in a given pOC that satisfy the property
can be approximated up to an arbitrarily small relative error ε > 0 in polynomial time.
This is achieved by designing and analyzing a new quantitative model-checking algo-
rithm for pOC and ω-regular properties, which is not based on techniques developed
for pPDA and RMC in [12, 15, 16].

Recall that a deterministic Rabin automaton (DRA) over a finite alphabet Σ is a de-
terministic finite-state automaton R with total transition function and Rabin acceptance

condition (E1, F1), . . . , (Ek, Fk), where k ∈ N, and all Ei, Fi are subsets of control states
of R. For a given infinite word w over Σ, let inf(w) be the set of all control states visited
infinitely often along the unique run of R on w. The word w is accepted by R if there is
i ≤ k such that inf(w) ∩ Ei = ∅ and inf(w) ∩ Fi , ∅.

Let Σ be a finite alphabet, R a DRA over Σ, and A = (Q, δ=0, δ>0, P=0, P>0) a pOC.
A valuation is a function ν which to every configuration p(i) of A assigns a unique
letter of Σ. For simplicity, we assume that ν(p(i)) depends only on the control state p
(note that a “bounded” information about the current counter value can be encoded
and maintained in the finite control of A). Intuitively, the letters of Σ correspond to
collections of predicates that are valid in a given configuration of A . Thus, every run
w ∈ RunA (p(i)) determines a unique infinite word ν(w) over Σ which is either accepted
by R or not. The main result of this section is the following theorem:

Theorem 12. For every p ∈ Q, the probability of all w ∈ RunA (p(0)) such that ν(w) is
accepted by R can be approximated up to an arbitrarily small relative error ε > 0 in
time polynomial in |A |, |R|, and log(1/ε).

Our proof of Theorem 12 consists of three steps:

1. We show that the problem of our interest is equivalent to the problem of computing
the probability of all accepting runs in pOC with Rabin acceptance condition.

2. We introduce a finite-state Markov chainG (with possibly irrational transition prob-
abilities) such that the probability of all accepting runs inMA is equal to the prob-
ability of reaching a “good” BSCC in G.

3. We show how to compute the probability of reaching a “good” BSCC in G with
relative error at most ε in time polynomial in |A | and log(1/ε).

Let us note that Steps 1 and 2 are relatively simple, but Step 3 requires several insights.
In particular, we cannot solve Step 3 without bounding a positive non-termination prob-
ability in pOC (i.e., a positive probability of the form [p↑]) away from zero. This is
achieved in our “divergence gap theorem” (i.e., Theorem 18), which is based on apply-
ing Azuma’s inequality to the martingale constructed in Section 3.
Step 1. Let A = (Q, δ=0, δ>0, P=0, P>0) be a pOC. A Rabin acceptance condition for
A is finite sequence (E1,F1), . . . , (Ek,Fk), where Ei,Fi ⊆ Q for all 1 ≤ i ≤ k. For every
run w ∈ RunA , let Q-inf(w) be the set of all p ∈ Q visited infinitely often along w. We
use RunA (p(0), acc) to denote the set of all accepting runs w ∈ RunA (p(0)) such that
Q-inf(w) ∩ Ei = ∅ and Q-inf(w) ∩ Fi , ∅ for some i ≤ k. Sometimes we also write
RunA (p(0), rej) to denote the set RunA (p(0))r RunA (p(0), acc) of rejecting runs. Our
next proposition says that the problem of computing/approximating the probability of
all runs w in a given pOC that are accepted by a given DRA is efficiently reducible to
the problem of computing/approximating the probability of all accepting runs in a given
pOC with Rabin acceptance condition. The proof is simple (we just “synchronize” a
given pOC with a given DRA).

Proposition 13. Let Σ be a finite alphabet, A a pOC, ν a valuation, R a DRA over
Σ, and p(0) a configuration of A . Then there is a pOC A ′ with Rabin acceptance
condition and a configuration p′(0) of A ′ constructible in polynomial time such that
the probability of all w ∈ RunA (p(0)) where ν(w) is accepted by R is equal to the
probability of all accepting w ∈ RunA ′ (p′(0)).

For the rest of this section, we fix a pOC A = (Q, δ=0, δ>0, P=0, P>0) and a Rabin
acceptance condition (E1,F1), . . . , (Ek,Fk) for A . We show how to approximate the
probability of RunA (p(0), acc).

Step 2. Let G be a finite-state Markov chain, where Q × {0, 1} ∪ {acc, rej} is the set of
states (the elements of Q×{0, 1} are written as q(i), where i ∈ {0, 1}), and the transitions
of G are defined as follows:

– r(0) x
→ q(j) is a transition of G iff r(0) x

→ q(j) is a transition ofMA ;
– r(1) x

→ q(0) iff x = [r↓q] > 0;
– r(1) x

→ acc iff x = P(RunA (r(1), acc) ∩ RunA (r↑)) > 0;
– r(1) x

→ rej iff x = P(RunA (r(1), rej) ∩ RunA (r↑)) > 0;
– acc 1

→ acc, rej 1
→ rej;

– there are no other transitions.

Note that almost every w ∈ RunA (p(0)) has its “twin” w′ ∈ RunG(p(0)), which is
obtained from w as follows: each honest subpath in w of the form r(1), . . . , q(0) is
replaced with a single transition r(1)→ q(0) in w′; and if the counter is decreased to
zero only finitely many times along w, then the last transition of the form r(0)→ q(1)
in w is replaced either with r(0)→ acc or r(0)→ rej in w′, depending on whether w is
accepting or rejecting (the rest of w is then replaced with loops on acc or rej).

A BSCC B of G is good if either B = {acc}, or there is i ≤ k such that Ei ∩Q(B) = ∅

and Fi ∩ Q(B) , ∅, where Q(B) consists of all r ∈ Q such that either r(j) ∈ B for
some j ∈ {0, 1}, or there are t(1), q(0) ∈ B such that t(1)→ q(0) is a transition in G and
r(j) ∈ Pre∗(q(0)) ∩ Post∗(t(1)) for some j ∈ N0. For every p ∈ Q, let RunG(p(0), good)
be the set of all w ∈ RunG(p(0)) that visit a good BSCC of G. The next proposition is
obtained by a careful case analysis of accepting runs inMA .

Proposition 14. For every p ∈ Q we haveP(RunA (p(0), acc)) = P(RunG(p(0), good)).

Step 3. Due to Proposition 14, the problem of our interest reduces to the problem of ap-
proximating the probability of visiting a good BSCC in the finite-state Markov chain G.
Since the termination probabilities in A can be approximated efficiently (see Proposi-
tion 3), the only problem with G is approximating the probabilities x and y in transitions
of the form p(1) x

→ acc and p(1) y
→ rej. Recall that x and y are the probabilities of all

w ∈ RunA (p↑) that are accepting and rejecting, respectively. A crucial observation is
that almost all w ∈ RunA (p↑) still behave accordingly with the underlying finite-state
Markov chain X of A (see Section 3). More precisely, we have the following:

Proposition 15. Let p ∈ Q. For almost all w ∈ RunA (p↑) we have that w visits a BSCC
B of X after finitely many transitions, and then it visits all states of B infinitely often.

A BSCC B of X is consistent with the considered Rabin acceptance condition if there
is i ≤ k such that B∩Ei = ∅ and B∩Fi , ∅. If B is not consistent, it is inconsistent. An
immediate corollary to Proposition 15 is the following:

Corollary 16. Let RunA (p(1), cons) and RunA (p(1), inco) be the sets of all w ∈

RunA (p(1)) such that w visit a control state of some consistent and inconsistent BSCC
of X, respectively. Then

– P(RunA (p(1), acc) ∩ RunA (p↑)) = P(RunA (p(1), cons) ∩ RunA (p↑))
– P(RunA (p(1), rej) ∩ Run(p↑)) = P(RunA (p(1), inco) ∩ RunA (p↑))

Due to Corollary 16, we can reduce the problem of computing the probabilities of tran-
sitions of the form p(1) x

→ acc and p(1) y
→ rej to the problem of computing the diver-

gence probability in pOC. More precisely, we construct pOC’s Acons and Ainco which
are the same as A , except that for each control state q of an inconsistent (or consistent,
resp.) BSCC of X, all positive outgoing rules of q are replaced with q

1,−1
−→>0 q. Then

x = P(RunAcons (p↑)) and y = P(RunAinco (p↑)).
Due to [4], the problem whether a given divergence probability is positive (in a

given pOC) is decidable in polynomial time. This means that the underlying graph of G
is computable in polynomial time, and hence the sets G0 and G1 consisting of all states
s of G such that P(RunG(s, good)) is equal to 0 and 1, respectively, are constructible in
polynomial time. Let G be the set of all states of G that are not contained in G0 ∪ G1,
and let XG be the stochastic matrix of G. For every s ∈ G we fix a fresh variable Vs and
the equation

Vs =
∑
s′∈G

XG(s, s′) · Vs′ +
∑
s′∈G1

XG(s, s′)

Thus, we obtain a system of linear equations V = AV + b whose unique solution V∗
in R is the vector of probabilities of reaching a good BSCC from the states of G. This
system can also be written as (I−A)V = b. Since the elements of A and b correspond to
(sums of) transition probabilities in G, it suffices to compute the transition probabilities
of G with a sufficiently small relative error so that the approximate A and b produce
an approximate solution where the relative error of each component is bounded by
the ε. By combining standard results for finite-state Markov chains with techniques of
numerical analysis, we show the following:

Proposition 17. Let c = 2|Q|. For every s ∈ G, let Rs be the probability of visiting
a BSCC of G from s in at most c transitions, and let R = min{Rs | s ∈ G}. Then
R > 0 and if all transition probabilities in G are computed with relative error at most
εR3/8(c + 1)2, then the resulting system (I − A′)V = b′ has a unique solution U∗ such
that |V∗s − U∗s |/V∗s ≤ ε for every s ∈ G.

Note that the constant R of Proposition 17 can be bounded from below by x|Q|−1
t · xn,

where

– xt = min{XG(s, s′) | s, s′ ∈ G}, i.e., xt is the minimal probability that is either
explicitly used in A , or equal to some positive termination probability in A ;

– xn = min{XG(s, s′) | s ∈ G, s′ ∈ G1}, i.e., xn is the minimal probability that is either
a positive termination probability in A , or a positive non-termination probability
in the pOC’s Acons and Ainco constructed above.

Now we need to employ the promised divergence gap theorem, which bounds a positive
non-termination probability in pOC away from zero (for all p, q ∈ Q, we use [p, q] to
denote the probability of all runs w initiated in p(1) that visit a configuration q(k), where
k ≥ 1 and the counter stays positive in all configurations preceding this visit).

Theorem 18. Let A = (Q, δ=0, δ>0, P=0, P>0) be a pOC and X the underlying finite-
state Markov chain of A . Let p ∈ Q such that [p↑] > 0. Then there are two possibilities:

1. There is q ∈ Q such that [p, q] > 0 and [q↑] = 1. Hence, [p↑] ≥ [p, q].
2. There is a BSCC B of X and a state q of B such that [p, q] > 0, t > 0,

and vq = vmax (here t is the trend, v is the vector of Proposition 7, and vmax is
the maximal component of v; all of these are considered in B). Further, [p↑] ≥
[p, q]t3/12(2(vmax − vmin) + 4)3 .

Hence, denoting the relative precision εR3/8(c + 1)2 of Proposition 17 by δ, we obtain
that log(1/δ) is bounded by a polynomial in |A | and log(1/ε). Further, the transition
probabilities of G can be approximated up to the relative error δ in time polynomial
in |A | and log(1/ε) by approximating the termination probabilities of A (see Proposi-
tion 3). This proves Theorem 12.

5 Experimental results, future work

We have implemented a prototype tool in the form of a Maple worksheet3, which allows
to compute the termination probabilities of pOC and the conditional expected termina-
tion times. Our tool employs Newton’s method to approximate the termination proba-
bilities within a sufficient accuracy so that the expected termination time is computed
with absolute error (at most) one by solving the linear equation system from Section 3.2.

We applied our tool to the pOC model of the program TreeEval (see Section 1) for
various values of the parameters. The following table shows the results. We also show
the associated termination probabilities, rounded to three digits. We write [a↓0] etc. to
abbreviate [(and,init)↓(or,return,0)] etc., and [a↓] for [a↓0] + [a↓1].

[a↓] [a↓0] [a↓1] E[a↓0] E[a↓1]
z = 0.5, y = 0.4, xa = 0.2, xo = 0.2 0.800 0.500 0.300 11.000 7.667
z = 0.5, y = 0.4, xa = 0.2, xo = 0.4 0.967 0.667 0.300 104.750 38.917
z = 0.5, y = 0.4, xa = 0.2, xo = 0.6 1.000 0.720 0.280 20.368 5.489
z = 0.5, y = 0.4, xa = 0.2, xo = 0.8 1.000 0.732 0.268 10.778 2.758
z = 0.5, y = 0.5, xa = 0.1, xo = 0.1 0.861 0.556 0.306 11.400 5.509
z = 0.5, y = 0.5, xa = 0.2, xo = 0.1 0.931 0.556 0.375 23.133 20.644
z = 0.5, y = 0.5, xa = 0.3, xo = 0.1 1.000 0.546 0.454 83.199 111.801
z = 0.5, y = 0.5, xa = 0.4, xo = 0.1 1.000 0.507 0.493 12.959 21.555
z = 0.2, y = 0.4, xa = 0.2, xo = 0.2 0.810 0.696 0.115 7.827 6.266
z = 0.3, y = 0.4, xa = 0.2, xo = 0.2 0.811 0.636 0.175 8.928 6.783
z = 0.4, y = 0.4, xa = 0.2, xo = 0.2 0.808 0.571 0.236 10.005 7.258
z = 0.5, y = 0.4, xa = 0.2, xo = 0.2 0.800 0.500 0.300 11.000 7.667

We believe that other interesting quantities and numerical characteristics of pOC,
related to both finite paths and infinite runs, can also be efficiently approximated us-
ing the methods developed in this paper. An efficient implementation of the associated
algorithms would result in a verification tool capable of analyzing an interesting class
of infinite-state stochastic programs, which is beyond the scope of currently available
tools limited to finite-state systems only.

3 Available at http://www.comlab.ox.ac.uk/people/stefan.kiefer/pOC.mws.

References
1. T. Brázdil. Verification of Probabilistic Recursive Sequential Programs. PhD thesis, Masaryk

University, Faculty of Informatics, 2007.
2. T. Brázdil, V. Brožek, J. Holeček, and A. Kučera. Discounted properties of probabilistic

pushdown automata. In Proceedings of LPAR 2008, volume 5330 of LNCS, pages 230–242.
Springer, 2008.

3. T. Brázdil, V. Brožek, and K. Etessami. One-counter stochastic games. In Proceedings of
FST&TCS 2010, volume 8 of LIPIcs, pages 108–119. Schloss Dagstuhl, 2010.

4. T. Brázdil, V. Brožek, K. Etessami, A. Kučera, and D. Wojtczak. One-counter Markov deci-
sion processes. In Proceedings of SODA 2010, pages 863–874. SIAM, 2010.

5. T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the long-run behavior
of probabilistic sequential programs with recursion. In Proceedings of FOCS 2005, pages
521–530. IEEE, 2005.

6. T. Brázdil, S. Kiefer, and A. Kučera. Efficient analysis of probabilistic programs with an
unbounded counter. CoRR, abs/1102.2529, 2011.

7. T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal properties of
probabilistic pushdown automata. In Proceedings of STACS 2005, volume 3404 of LNCS,
pages 145–157. Springer, 2005.

8. J. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of
STOC’88, pages 460–467. ACM Press, 1988.

9. K. Chatterjee and L. Doyen. Energy parity games. In Proceedings of ICALP 2010, Part II,
volume 6199 of LNCS, pages 599–610. Springer, 2010.

10. K. Chatterjee, L. Doyen, T. Henzinger, and J.-F. Raskin. Generalized mean-payoff and en-
ergy games. In Proceedings of FST&TCS 2010, volume 8 of LIPIcs, pages 505–516. Schloss
Dagstuhl, 2010.

11. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-
ing pushdown systems. In Proceedings of CAV 2000, volume 1855 of LNCS, pages 232–247.
Springer, 2000.

12. J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown automata. In
Proceedings of LICS 2004, pages 12–21. IEEE, 2004.

13. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic pushdown au-
tomata: Expectations and variances. In Proceedings of LICS 2005, pages 117–126. IEEE,
2005.

14. K. Etessami, D. Wojtczak, and M. Yannakakis. Quasi-birth-death processes, tree-like QBDs,
probabilistic 1-counter automata, and pushdown systems. In Proceedings of 5th Int. Conf.
on Quantitative Evaluation of Systems (QEST’08). IEEE, 2008.

15. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic systems.
In Proceedings of TACAS 2005, volume 3440 of LNCS, pages 253–270. Springer, 2005.

16. K. Etessami and M. Yannakakis. Checking LTL properties of recursive Markov chains. In
Proceedings of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST’05), pages 155–
165. IEEE, 2005.

17. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and mono-
tone systems of non-linear equations. In Proceedings of STACS 2005, volume 3404 of LNCS,
pages 340–352. Springer, 2005.

18. J.G. Kemeny and J.L. Snell. Finite Markov Chains. D. Van Nostrand Company, 1960.
19. S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for

monotone systems of polynomial equations. In Proceedings of STOC 2007, pages 217–226.
ACM Press, 2007.

20. J.S. Rosenthal. A first look at rigorous probability theory. World Scientific Publishing, 2006.
21. D. Williams. Probability with Martingales. Cambridge University Press, 1991.

