
Ata Informatia manusript No.(will be inserted by the editor)
Anton��n Ku�era � Jan Strej�ekThe Stuttering Priniple Revisited
Reeived: date / Revised version: dateAbstrat It is known that LTL formulae without the `next' operator are in-variant under the so-alled stutter equivalene of words. In this paper we ex-tend this priniple to general LTL formulae with given nesting depths of both`next' and `until' operators. This allows us to prove the semantial stritnessof three natural hierarhies of LTL formulae, whih are parametrized eitherby the nesting depth of just one of the two operators, or by both of them.Further, we provide an e�etive haraterization of languages de�nable byLTL formulae with a bounded nesting depth of the `next' operator.Keywords Linear Temporal Logi (LTL), Stuttering1 IntrodutionLinear temporal logi (LTL) [12℄ is a popular formalism for speifying prop-erties of (onurrent) programs. The syntax of LTL is given by the followingabstrat syntax equation:' ::= tt j p j :' j '1 ^ '2 j X' j '1 U'2Here p ranges over a ountable set � = fo; p; q; : : :g of letters. We also useF' to abbreviate ttU', and G' to abbreviate :F:'.The �rst author is supported by the researh entre \Institute for Theoretial Com-puter Siene (ITI)", projet No. 1M0021620808. The seond author is supportedby grant No. 1ET-408050503 and by GA�CR, grant No. 201/03/1161.This paper is a revised and extended version of [6℄.Anton��n Ku�era � Jan Strej�ekFaulty of Informatis, Masaryk University in BrnoBotanik�a 68a, CZ-60200 Brno, Czeh RepubliTel.: ++420-549 494 476, Fax: ++420-549 491 820E-mail: fkuera,strejekg��.muni.z

2 We de�ne the semantis of LTL in terms of languages over in�nitewords (all of our results arry over to �nite words immediately). An al-phabet is a �nite set � � �. An !-word over � is an in�nite sequene1� = �(0)�(1)�(2) : : : of letters from �. The set of all !-words over � is de-noted �!. For every i � 0 we denote by �i the ith suÆx of �, i.e., the word�(i)�(i+ 1) : : : (we use this notation for �nite words as well). Moreover, forall i � 0 and j > 0, the symbol �(i; j) denotes the subword of � of length jstarting with �(i).Let ' be an LTL formula. The validity of ' for a given � 2 �! is de�nedindutively as follows:� j= tt� j= p i� p = �(0)� j= :' i� � 6j= '� j= '1 ^ '2 i� � j= '1 ^ � j= '2� j= X' i� �1 j= '� j= '1 U'2 i� 9i 2 N0 : �i j= '2 ^ 8 0 � j < i : �j j= '1Let us note that the results presented in this paper remain valid if thelogi LTL is built over atomi propositions rather than over letters.For every alphabet � and every LTL formula ' we de�ne the languageL�' = f� 2 �! j � j= 'g. If � is understood from the ontext, we writejust L'.It is well-known that languages de�nable by LTL formulae form a propersublass of !-regular languages (see, e.g., [15℄). More preisely, LTL languagesare exatly the languages de�nable in �rst-order logi with the signaturefsu; <g [�0, where su and < are binary prediates standing for suessorand less than, respetively, and �0 is a set of unary prediates orrespondingto the set of letters �. See [5,4℄ for more details regarding the relationshipbetween LTL and �rst-order logi.Sine LTL ontains just two modal onnetives, a natural question is howthey inuene the expressive power of LTL. First, let us (indutively) de�nethe nesting depth of the X and the U modality in a given LTL formula ',denoted X(') and U('), respetively.U(tt) = 0 X(tt) = 0U(p) = 0 X(p) = 0U(' ^) = maxfU('); U()g X(' ^) = maxfX('); X()gU(:') = U(') X(:') = X(')U(X') = U(') X(X') = X(') + 1U('U) = maxfU('); U()g+ 1 X('U) = maxfX('); X()gNow we introdue three natural hierarhies of LTL formulae. For all m;n 2N0 we de�neLTL(Um;Xn) = f' 2 LTL j U(') � m ^ X(') � ngLTL(Um;X) = S1i=0 LTL(Um;Xi)LTL(U;Xn) = S1i=0 LTL(Ui;Xn)1 We use o; p; q; : : : to range over �, u; v; : : : to range over ��, and �; �; : : : torange over �!.

3Hene, the LTL(Um;Xn) hierarhy takes into aount the nesting depths ofboth modalities, while the LTL(Um;X) and LTL(U;Xn) hierarhies `ount'just the nesting depth of U and X, respetively. The languages de�nable byformulae of LTL(Um;Xn) are alled LTL(Um;Xn) languages.Our work is motivated by basi questions about the presented hierarhies;in partiular, the following problems seem to be among the most natural ones:Question 1. Are those hierarhies semantially strit? That is, if we inreasem or n just by one, do we always obtain a stritly more expressive frag-ment of LTL?Question 2. If we take two lasses A;B in the above hierarhies whih aresyntatially inomparable (for example, we an onsider LTL(U4;X3)and LTL(U2;X5), or LTL(U3;X0) and LTL(U2;X)), are they also seman-tially inomparable? That is, are there formulae 'A 2 A and 'B 2 Bsuh that 'A is not expressible in B and 'B is not expressible in A?Question 3. In the ase of LTL(Um;Xn) hierarhy, what is the semantial in-tersetion of LTL(Um1 ;Xn1) and LTL(Um2 ;Xn2)? That is, what languagesare expressible in both fragments?We provide (positive) answers to Question 1 and Question 2. Here, the resultsabout the LTL(Um;Xn) hierarhy seem to be partiularly interesting. As forQuestion 3, one is tempted to expet the following answer: The semantialintersetion of LTL(Um1 ;Xn1) and LTL(Um2 ;Xn2) are exatly the languagesexpressible in LTL(Um;Xn), where m = minfm1;m2g and n = minfn1; n2g.Surprisingly, this answer turns out to be inorret. For all m � 1, n � 0 wegive an example of a language L whih is de�nable both in LTL(Um+1;Xn)and LTL(Um;Xn+1), but not in LTL(Um;Xn). This shows that the answerto Question 3 is not as easy as one might expet. In fat, Question 3 is leftopen as an interesting hallenge direting our future work.The results on Question 1 are losely related to the work of Etessami andWilke [3℄ (see also [17℄ for an overview of related results). They onsider anuntil hierarhy of LTL formulae whih is similar to our LTL(Um;X) hierarhy.The di�erene is that they treat the F operator `expliitly', i.e., their U -depthounts just the nesting of the U operator and ignores all ourrenes of X andF (in our approah, F' is just an abbreviation for ttU', and hene `our'U -depth of Fp is one and not zero). They prove the stritness of their untilhierarhy in the following way: First, they design an appropriate Ehrenfeuht-Fra��ss�e (EF) game for LTL (the game is played on a pair of words) whih ina sense haraterizes those pairs of words whih an be distinguished by LTLformulae where the temporal operators are nested only to a ertain depth.Then, for every k they onstrut a formula Fairk with until depth k andprove that this partiular formula annot be equivalently expressed by anyother formula with U -depth equal to k�1. Here the previous results aboutthe designed EF game are used. Sine the formula Fairk ontains just oneF operator and many nested X and U operators, this proof arries over toour LTL(Um;X) hierarhy. In fat, [3℄ presents a `stronger' result in the sensethat one additional nesting level of U annot be `ompensated' by arbitrarily-deep nesting of X and F. On the other hand, the proof does not allow toonlude that, e.g., LTL(U3;X0) ontains a formula whih is not expressiblein LTL(U2;X) (beause Fairk ontains the nested X modalities).

4 Our method for solving Questions 1 and 2 is di�erent. Instead of design-ing appropriate Ehrenfeuht-Fra��ss�e games whih ould (possibly) hara-terize the membership to LTL(Um;Xn), we formulate a general `stutteringtheorem' for LTL(Um;Xn) languages. Roughly speaking, the theorem saysthat under ertain `loal-periodiity' onditions (whih depend on m and n)one an remove a given subword u from a given word � without inueningthe (in)validity of LTL(Um;Xn) formulae (we say that u is (m;n)-redundantin �). This result an be seen as a generalization of the well-known formof stutter invariane admitted by LTL(U;X0) formulae (a detailed disus-sion is postponed to Setion 2). Thus, we obtain a simple (but surprisinglypowerful) tool allowing to prove that a ertain formula ' is not de�nable inLTL(Um;Xn). The theorem is applied as follows: we hoose a suitable alpha-bet �, onsider the language L', and �nd an appropriate � 2 L' and itssubword u suh that{ u is (m;n)-redundant in �;{ �0 6j= ' where �0 is obtained from � by deleting the subword u.If we manage to do that, we an onlude that ' is not expressible inLTL(Um;Xn).We use our stuttering theorem to answer Questions 1 and 2. Proofs areremarkably short though it took us some time to �nd appropriate formulaewhih witness the presented laims. It is worth noting that some of the knownresults about LTL (like, e.g., the formula `G2p' is not de�nable in LTL) admita one-line proof if our general stuttering theorem is applied. We also obtainan alternative haraterization of LTL languages whih are exatly the !-regular languages losed under the generalized stutter equivalene of words(see Setion 3). These results are still valid when interpreting LTL over �nitewords.The paper is organized as follows. In Setion 2 we formulate and provea general stuttering theorem for LTL(Um;Xn) languages together with somerelated results. Using this theorem, we answer Questions 1{3 in Setion 4. InSetion 3, we examine the question whether the onsidered forms of stutterinvariane fully haraterize the orresponding LTL fragments. Finally, inSetion 5 we draw our onlusions and identify diretions of future researh.2 A General Stuttering TheoremIn this setion we formulate and prove the promised general stuttering the-orem for LTL(Um;Xn) languages. General stuttering ombines and extendstwo independent priniples of letter stuttering (n-stuttering) and subwordstuttering, whih are appliable to the LTL(U;Xn) and LTL(Um;X0) frag-ments of LTL, respetively. We start by explaining these two priniples inSetion 2.1 and Setion 2.2. This material has been inluded for two reasons.First, the two simpli�ed priniples are interesting on their own. In Setion 3.1we present speial results about letter stuttering whih do not hold for gen-eral stuttering. Seondly, the remarks and proof skethes given in Setion 2.1and Setion 2.2 should help the reader in gaining some intuition about thefuntionality and underlying priniples of general stuttering.

52.1 Letter stuttering (n-stuttering)Letter stuttering is a simple generalization of the well-known priniple ofstutter invariane of LTL(U;X0) formulae [8℄ saying that LTL(U;X0) formu-lae annot distinguish between one and more adjaent ourrenes of thesame letter in a given word. Formally, a letter �(i) of an !-word � is alledredundant i� �(i) = �(i + 1) and there is j > i suh that �(i) 6= �(j). Theanonial form of � is the !-word obtained by deleting all redundant let-ters from �. Two !-words �; � are stutter equivalent i� they have the sameanonial form.Theorem 1 ([8℄) Every LTL(U;X0) language is losed under stutter equiv-alene.Intuitively, it is not very surprising that this priniple an be extended toLTL(U;Xn) formulae (where n 2 N0). The so-alled n-stuttering is based ona simple observation that LTL(U;Xn) formulae annot distinguish betweenn+1 and more adjaent ourrenes of the same letter in a given !-word.Formally, a letter �(i) is n-redundant i� �(i) = �(i+1) = � � � = �(i+ n+1)and there is some j > i suh that �(i) 6= �(j). The n-anonial form andn-stutter equivalene are de�ned in the same way as above.Theorem 2 (n-stuttering) Every LTL(U;Xn) language is losed under n-stutter equivalene.Proof The theorem an be proven diretly by indution on n. Sine it is aonsequene of Theorem 9, we do not give an expliit proof here2. utTheorem 2 an be used to show that a given property is not expressible inLTL(U;Xn) (or even in LTL) in the following way.Example 3 A standard example of an !-regular language whih is not de-�nable in LTL is `G2p' [18℄. The language onsists of all � 2 �! suh that�(i) = p for every even i 2 N0 . With the help of Theorem 2 we an easilyprove that G2p is not an LTL(U;Xn) language for any n 2 N0 (assumingj�j � 2) and hene it is not an LTL language. Suppose the onverse, i.e.,there are n 2 N0 and ' 2 LTL(U;Xn) suh that L' = G2p. Now onsiderthe !-words � = p2n+2qp! and � = p2n+1qp!, where q 2 � r fpg. Clearly �and � are n-stutter equivalent, and � 62 L' while � 2 L'. Hene, L' is notn-stutter losed whih ontradits Theorem 2.2.2 Subword stutteringSine letter stuttering takes into aount just the X-depth of LTL formulae,a natural question is whether there is another form of stutter-like invarianedetermined by the U-depth of a given LTL formula. We provide a (positive)answer to this question by formulating the priniple of subword stuttering,2 A diret proof of Theorem 2 is of ourse simpler than the proof of Theorem 9.It an be found in [7℄.

6whih is appliable to LTL(Um;X0) formulae (where m � 1). The term `sub-word stuttering' reets the fat that we do not neessarily delete/pump justindividual letters, but whole subwords. The essene of the idea is formulatedin the following laim:Claim 4 Let ' 2 LTL(Um;X0) where m � 1. For all v; u 2 �� and � 2 �!we have that vum+1� j= ' i� vum� j= '.In other words, LTL(Um;X0) annot distinguish between m and more adja-ent ourrenes of the same subword u in a given word. Note that there areno assumptions about the length of u.Claim 4 an be easily proven by indution on m. We just sketh theruial part of the argument (a full proof is in fat ontained in the proof ofTheorem 9). Let us suppose that ' = U %, where ; % 2 LTL(Um�1;X0).We want to show that vum+1� j= ' i� vum� j= '. We onentrate just on theindution step (i.e., m � 2) of the `=)' part (the other diretion is similar).By indution hypothesis, the following equivalenes hold for all 0 � ` < jvuj:(vu)` um � j= i� (vu)` um�1 � j= (1)(vu)` um � j= % i� (vu)` um�1 � j= % (2)Let vum+1� j= U %. Then there is j 2 N0 suh that (vum+1�)j j= % and(vum+1�)i j= for all 0 � i < j. If j < jvuj, we immediately obtain vum� j= U % by applying (1) and (2) above. If j � jvuj, we an imagine that theword vum� was obtained from vum+1� by deleting the �rst opy of u (fromnow on, we denote the kth opy of u in vum+1� by u[k℄). The situation anbe pitured as follows:PSfrag replaements v � %u[1℄ u[2℄ u[3℄ u[m+1℄Realize that the (in)validity of and % for any suÆx of u[2℄u[3℄ � � � u[m+1℄�is not inuened by deleting the u[1℄ subword (LTL is future-only in oursettings). That is, it suÆes to show that for eah suÆx v0 of v we have thatv0um+1� j= implies v0um� j= . However, this follows from (1) above.The priniple of subword stuttering, as formulated in Claim 4, is quitesimple and intuitively lear. Now we re�ne this priniple into a stronger form.Claim 5 Let ' 2 LTL(Um;X0) where m � 0. For all v; y 2 ��, u 2 �+,and � 2 �! suh that{ jyj = juj �m�m+ 1,{ y is a pre�x of u!we have that vuy� j= ' i� vy� j= '.The struture of vuy� an be illustrated as follows:

7PSfrag replaements v �yu[1℄ u[2℄u[3℄u[m�1℄ u[m℄ u[m+1℄m�1 lettersIn other words, the u subword has to be repeated `basially' m+ 1 times asin Claim 4, but now we an ignore the last m� 1 letters of u[1℄ � � �u[m+ 1℄.Note that there is no assumption about the length of u; if u is `short' and mis `large', it an happen that the last m�1 letters atually `subsume' severaltrailing opies of u.Claim 5 an also be proven by indution on m. Again, we onentrate juston the ruial step when ' = U % and ; % 2 LTL(Um�1;X0). We only showthe `=)' part (the other diretion is similar). So, let vuy� j= U %. Thenthere is j 2 N0 suh that (vuy�)j j= % and (vuy�)i j= for all 0 � i < j. Wedistinguish three possibilities (the �rst two of them are handled in the sameway as in Claim 4):(i) j < jvj. To prove that vy� j= U %, it suÆes to show that for everysuÆx v0 of v we have that{ v0uy� j= implies v0y� j= ,{ v0uy� j= % implies v0y� j= %.However, this follows diretly from indution hypothesis.(ii) j � jvuj. First, realize that the (in)validity of and % for any suÆx ofy� is not inuened by deleting the u subword. Hene, it suÆes to showthat v0uy� j= implies v0y� j= for eah suÆx v0 of v. This followsfrom the indution hypothesis in the same way as in (i).(iii) jvj � j < jvuj. This requires more are. A key observation is that theword vuy� an be seen as v0u0y0� = vuy�, where jv0j = j, ju0j = juj,and jy0j = jyj+ jvj � jv0j.PSfrag replaements %v �yv0 �y0u u0Due to the periodiity of y we have that vy� = v0y0�. Hene, it suÆesto show that y0� j= % and v00y0� j= for every nonempty suÆx v00 of v0.We know that u0y0� j= % and v00u0y0� j= ; so, if y0 is `suÆiently long',we an use indution hypothesis to �nish the proof. That is, we need toverify that jy0j � ju0j � (m�1)� (m�1)+ 1, but this follows immediatelyfrom the known (in)equalities jy0j = jyj + jvj � jv0j, ju0j = juj, andjvj > jv0j � juj.

82.3 General stutteringIn this setion we ombine the previously disussed priniples of letter stut-tering and subword stuttering into a single `general stuttering theorem' whihis appliable to LTL(Um;Xn) formulae.De�nition 6 Let � be an alphabet and m;n 2 N0 .{ A subword �(i; j) of a given � 2 �! is (m;n)-redundant if the word�(i+ j;m � j �m+ 1 + n) is a pre�x of �(i; j)! .{ The relation �m;n � �! � �! is de�ned as follows: � �m;n � i� �an be obtained from � by deleting some (possibly in�nitely many) non-overlapping (m;n)-redundant subwords. The (m;n)-stutter equivalene isthe least equivalene over �! subsuming the relation �m;n.{ A language L � �! is (m;n)-stutter losed if it is losed under(m;n)-stutter equivalene.The struture of an !-word � with an (m;n)-redundant subword �(i; j)an be illustrated as follows:PSfrag replaements v �0periodi patternu[1℄ = �(i; j) u[2℄u[3℄u[m�1℄ u[m℄ u[m+1℄m�1 lettersn lettersHene, the �(i; j) subword has to be repeated `basially' m+1 times but wean ignore the last (m � 1) � n letters (if (m � 1)� n is negative, we mustatually prolong the repetition `beyond' the m+ 1 opies of �(i; j)|see the�gure above). Note that there is no assumption about the size of m, n, and j.Our goal is to prove that the (in)validity of LTL(Um;Xn) formulae isnot inuened by deleting/pumping (m;n)-redundant subwords. First, letus realize that this result is a proper generalization of both Theorem 2 andClaim 5. If we ompare the `periodiity assumptions' of Theorem 2, Claim 5,and De�nition 6, we an observe that{ a letter �(i) is n-redundant i� it is onseutively repeated at least n+ 1times. That is, �(i) is n-redundant i� �(i+1; n+1) is a pre�x of �(i; 1)!.For every m 2 N0 we get that �(i) is n-redundant i� �(i; 1) is (m;n)-redundant as �(i+1; n+1) = �(i+1;m�1�m+1+n). In other words, thenotion of n-redundany oinides with (m;n)-redundany for subwords oflength 1.{ the ondition of Claim 5 mathes exatly the de�nition of (m; 0)-redundany.Before formulating and proving the general stuttering theorem, we need tostate two auxiliary lemmas.Lemma 7 Let � be an alphabet, m;n 2 N0 , and � 2 �!. If a subword�(i; j) is

9(i) (m;n)-redundant then it is also (m0; n0)-redundant for all 0 � m0 � mand 0 � n0 � n.(ii) (m;n+ 1)-redundant then �(i+ 1; j) is (m;n)-redundant.(iii) (m + 1; n)-redundant then �(i + k; j) is (m;n)-redundant for every ksatisfying 0 � k < j.Proof (i) follows immediately as j > 0 impliesm0 � j �m0 + 1 + n0 � m � j �m+ 1 + n(ii) is also simple|due to the (m;n+1)-redundany of �(i; j) we know thatthe subword is repeated at least on the nextm�j�m+2+n letters. Hene, thesubword �(i+1; j) is repeated at least on the next m �j�m+1+n letters andthus it is (m;n)-redundant. A proof of (iii) is similar; if �(i; j) is repeatedon the next (m+1) � j � m + n letters, then the subword �(i+k; j) (where0 � k < j) is repeated on the next (m+1) �j�m+n�k = m �j�m+n+j�kletters, i.e., �(i+k; j) is (m;n+ j�k�1)-redundant. The (m;n)-redundanyof �(i+k; j) follows from (i) and k < j. utLemma 8 For all m � 1, n � 0, and all �; � 2 �! suh that � �m;n �there exists a surjetive funtion g : N0 �! N0 suh that(i) for all `; x 2 N0 , where 0 � x < g(`), there exists 0 � `0 < ` suh thatg(`0) = x,(ii) for eah ` 2 N0 we have that �` �m�1;n �g(`).Proof Let m � 1, n � 0 and �; � 2 �! suh that � �m;n �. Let D =�(i0; j0); �(i1; j1); : : : be the (�nite or in�nite) sequene of non-overlapping(m;n)-redundant subwords whih were deleted from � to obtain � (we assumethat i0 < i1 < � � �). We say that a given ` 2 N0 is overed by a subword�(iq ; jq) ofD if iq � ` � iq+jq�1. For eah suh ` we further de�ne jump(`) =` + jq and pos(`) = ` � iq + 1. If ` is not overed by any subword of D, weput pos(`) = 0 and jump(`) = `. The set of all `'s that are overed by thesubwords of D is denoted ov (D). For eah ` 62 ov(D), the symbol length(`)denotes the total length of all subwords of D whih over some k � `.The funtion g is de�ned as follows:g(`) = � `� length(`) if ` 62 ov (D);g(jump(`)) otherwise.The struture of g an be illustrated as follows:PSfrag replaements� :� :
�(i0; j0) �(i1; j1) �(i2; j2) �(i3; j3)

10In partiular, note that unovered letters of � are projeted to the \same"letters in �, and overed letters are in fat mapped to unovered ones byperforming one or more jumps of possibly di�erent length. Also note that gis not monotoni in general.First we show that g is well-de�ned, i.e., for eah ` 2 ov(D) there isk 2 N suh that jumpk(`) 62 ov(D) (here jumpk denotes jump applied k-times). This is an immediate onsequene of the following observation:For eah ` 2 ov(D) there is k 2 N suh that pos(jumpk(`)) < pos(`).Proof of the observation: First, let us realize that pos(`) � pos(jump(`)) forevery ` 2 ov (D). Now assume that the observation does not hold. Thenthere is ` 2 ov(D) suh that pos(jumpk(`)) = pos(`) for every k 2 N. Let�(iq ; jq) be the subword of D overing `, and let Dq be the sequene obtainedfrom D by removing the �rst q elements. Sine pos(jumpk(`)) = pos(`) forevery k 2 N, all subwords of Dq are adjaent and the length of eah of themis at least pos(`). Hene, eah `0 � ` is overed by some subword of Dq, whihontradits the assumption that � is in�nite.Proof of (i): First we show that for every ` 2 N0 we have that g(`+1) �g(`) + 1. Let us assume that there is some `0 2 N0 suh that g(`0 + 1) >g(`0) + 1, and let k 2 N0 be the least number suh that ` = jumpk(`0) iseither unovered or satis�es g(jump(`) + 1) � g(jump(`)) + 1. Observe thatsuh a k must exist, and that ` satis�es g(`+1) > g(`)+1 (otherwise we get aontradition with the minimality of k). Now we distinguish two possibilities:{ pos(` + 1) � 1. Let `00 be the least unovered index greater or equal to`+1. It follows easily from the de�nition of g that g(`+1) = g(`00). Hene,g(`) is either equal to g(` + 1) � 1 (if ` 62 ov (D)), or greater or equalto g(` + 1) (if ` 2 ov(D)). Again, this ontradits the assumption thatg(`+ 1) > g(`) + 1.{ pos(`+1) � 2. Then `; `+1 are overed by the same subword of D.By applying the de�nition of g we obtain g(`) = g(jump(`)) andg(`+1) = g(jump(`+1)). Moreover, jump(`+1) = jump(`) + 1 beause`; `+1 are overed by the same subword of D. If pos(jump(`)+1) is equalto 0 or 1, we derive a ontradition using the arguments of previousases. If pos(jump(`)+1) � 2, we have that jump(`) 2 ov(D), heneg(jump(`)+1) � g(jump(`))+1 due to the assumption adopted above. Al-together, we derived a ontradition with g(`+1) > g(`)+1.Now we are ready to �nish the proof of (i). Let us assume that (i) does nothold, and let ` 2 N0 be the least number suh that (i) is violated for ` andsome 0 � x < g(`). Clearly ` > 0, beause g(0) = 0. Further, g(` � 1) �g(`)�1 due to the laim just proved. This means that either g(`�1) = x, or`� 1 also violates (i). In both ases we have a ontradition with our hoieof `.Proof of (ii): We show that �` �m�1;n �g(`) for eah ` 2 N0 . We proeedby indution on pos(`).Basis. pos(`) = 0. This means that ` 62 ov(D). Clearly �` �m;n �g(`) be-ause �g(`) is obtained from �` by deleting all those subwords �(iq ; jq)of D suh that iq > `. Hene, we also have �` �m�1;n �g(`) by applyingLemma 7 (i).

11Indution step. Let pos(`) > 0 and let k 2 N be the least number suh thatpos(jumpk(`)) < pos(`). To simplify our notation, we put `0 = jumpk(`).Clearly g(`) = g(`0) by de�nition of g. By indution hypothesis we havethat �`0 �m�1;n �g(`0). Hene, it suÆes to show that �(`; `0 � `) is asequene of (m�1; n)-redundant subwords. Let us assume that ` is overedby �(iq ; jq). Consider the sequene of subwords�(iq ; jq); : : : ; �(iq+k�1; jq+k�1)From the minimality of k we obtain that these subwords are adjaent andthe length of eah of them is at least pos(`). Hene, �(`; `0 � `) an beseen as a sequene of words�(iq+pos(`)�1; jq); : : : ; �(iq+k�1+pos(`)�1; jq+k�1)Moreover, eah of these words is (m�1; n)-redundant by Lemma 7 (iii).utTheorem 9 (general stuttering) Every LTL(Um;Xn) language is losedunder (m;n)-stutter equivalene.Proof Let m;n 2 N0 and ' 2 LTL(Um;Xn). It suÆes to prove that for all�; � 2 �! suh that � �m;n � we have that � j= ' () � j= '. Weproeed by a simultaneous indution on m and n (we write (m0; n0) < (m;n)i� m0 � m and n0 < n, or m0 < m and n0 � n).Basis. m = 0 and n = 0. Let �; � 2 �! be !-words suh that � �0;0 �.Let D denote the sequene of non-overlapping (0; 0)-redundant subwordsD = �(i0; j0); �(i1; j1); : : : whih were deleted from � to obtain � (weassume that i0 < i1 < : : :). Sine LTL(U0;X0) formulae are just `Booleanombinations' of letters and tt, it suÆes to show that �(0) = �(0). Ifi0 > 0 then it is learly the ase. Now let i0 = 0, and let k 2 N0 bethe least number suh that the subwords �(ik; jk) and �(ik+1; jk+1) arenot adjaent (i.e., ik+1 > ik + jk). Hene, �(0) = �(ik + jk) and (0; 0)-redundany of the subwords in D implies that�(0) = �(i0) = �(i1) = �(i2) = : : : = �(ik) = �(ik + jk) = �(0):Indution step. Let m;n 2 N0 , and let us assume that the theorem holdsfor all m0; n0 suh that (m0; n0) < (m;n). Let �; � 2 �! be !-words suhthat � �m;n �, and let D = �(i0; j0); �(i1; j1); : : : (i0 < i1 < : : :) bethe sequene of non-overlapping (m;n)-redundant subwords whih weredeleted from � to obtain �. We distinguish four possibilities:{ ' 2 LTL(Um0 ;Xn0) for some (m0; n0) < (m;n). Sine every �(i; j)from D is (m0; n0)-redundant by Lemma 7 (i), we just apply indutionhypothesis.{ ' = X . We need to prove that �1 j= () �1 j= . By indutionhypothesis, annot distinguish between (m;n�1)-stutter equivalent!-words. Hene, it suÆes to show that �1 �m;n�1 �1. If i0 > 0, then�1(i0�1; j0); �1(i1�1; j1); �1(i2�1; j2); : : : are (m;n)-redundant anddue to Lemma 7 (i) they are also (m;n� 1)-redundant. Moreover, �1an be obtained from �1 by deleting these subwords.

12 If i0 = 0, then let k 2 N0 be the least number suh that the subwords�(ik; jk) and �(ik+1; jk+1) are not adjaent. The !-word �1 an beobtained from �1 by deleting the subwords�1(i0; j0); : : : ; �1(ik; jk); �1(ik+1�1; jk+1); �1(ik+2�1; jk+2); : : :The subwords �1(i0; j0); �1(i1; j1); : : : ; �1(ik; jk) are (m;n�1)-redundant by Lemma 7 (ii), and the other subwords are (m;n�1)-redundant by applying Lemma 7 (i).{ ' = U %. By indution hypothesis, ; % annot distinguish be-tween (m�1; n)-stutter equivalent !-words. Let g be the funtion ofLemma 8 onstruted for the onsidered m;n; �; � (i.e., �` �m�1;n�g(`) for every ` 2 N0).Now we show that if � j= U % then also � j= U %. If � j= U %,there is � 0 suh that � j= % and for every d < we have that�d j= . By indution hypothesis we get �g() j= %. Further, for everyd0 < g() there is d < suh that g(d) = d0. By Lemma 8, for everyd0 < g() there is d < suh that �d �m�1;n �g(d) = �d0 and hene�d0 j= . Altogether, we obtain that � j= U %.Similarly, we also show that if � j= U % then � j= U %. If � j= U %,there is � 0 suh that � j= % and for every d < we have that�d j= . Let 0 be the least number satisfying g(0) = (there is suha 0 beause g is surjetive). Then �0 j= % by indution hypothesis.From the de�nition of g we get that for every d0 < 0 it holds thatg(d0) < g(0) = (otherwise we would obtain a ontradition with ourhoie of 0). Thus, �d0 j= and hene � j= U %.{ ' is a `Boolean ombination' of formulae of the previous ases. For-mally, this ase is handled by an `embedded' indution on the strutureof '. The basi step (when ' is not of the form : or ^%) is overedby the previous ases. The indution step (' = : or ' = ^% wherewe assume that our theorem holds for ; %) follows immediately. ut3 Stuttering as a SuÆient ConditionIn Setion 2 we have shown that formulae of ertain LTL fragments are in-variant under ertain forms of stutter equivalene of !-words. These results(Theorem 2, Claim 4, Claim 5, and Theorem 9) were formulated as \pumpinglemmas", i.e., neessary onditions whih must be satis�ed by languages ofthe respetive LTL fragments. In this setion we show that ertain forms ofstutter invariane together with some additional assumptions in fat hara-terize ertain LTL fragments.3.1 Letter stutteringIt has been proved by Peled and Wilke [9℄ that every LTL language losed un-der stuttering is de�nable in LTL(U;X0). This proof an be straightforwardlygeneralized to n-stuttering. Hene, every n-stutter losed LTL property is de-�nable in LTL(U;Xn). For the sake of ompleteness, we present this proof

13expliitly. (Later we formulate further observations whih refer to tehnialdetails of this proof.)Theorem 10 Let L � �!. The following onditions are equivalent:(a) L is de�nable in LTL(U;Xn).(b) L is an n-stutter losed LTL language.Proof The (a) =) (b) diretion follows from Theorem 2. We prove the otherdiretion. Let ' be an LTL formula suh that L' is n-stutter losed. Wetranslate ' into an equivalent formula �n(') 2 LTL(U;Xn).Let � be the set of letters ourring in ', and let � = Wp2� p. For allp 2 � and i > 0 we de�ne formulae �pi , �pi:p, �:�i , and �:�i� as follows:�p1 = p �pi+1 = p ^ X�pi�p0:p = :p �pi:p = p ^ X�pi�1:p�:�1 = :� �:�i+1 = :� ^ X�:�i�:�0� = � �:�i+1� = :� ^ X�:�i�Observe that X(�pi+1) = X(�pi:p) = X(�:�i+1) = X(�:�i�) = i.The translation �n(') is de�ned indutively on the struture of '.{ �n(p) = p{ �n(:) = :�n(){ �n(^ %) = �n() ^ �n(%){ �n(U %) = �n()U �n(%){ �n(X) = �() _ � () where�() = (G:� _ _p2� Gp) ^ �n()and � () = _1�i�n+1(�(;:�; i) _ _p2� �(; p; i)):The subformulae �(;:�; i) and �(; p; i) of � () are onstruted asfollows:�(; p; i) = ��pi:p ^ pU (�pi�1:p ^ �n()) if i � n�pn+1 ^ pU (�pn:p ^ �n()) if i = n+1�(;:�; i) = ��:�i� ^ :�U (�:�i�1� ^ �n()) if i � n�:�n+1 ^ :�U (�:�n� ^ �n()) if i = n+1One an readily on�rm that the X-depth of �n(') is n. We need to provethat if L�' is n-stutter losed, then ' is equivalent to �n('). Sine ' and�n(') annot distinguish between letters whih do not belong to �, we anassume that � � � [fog, where o 62 � represents all letters not ourringin '.As both L' and L�n(') are n-stutter losed (in the ase of L�n(') weapply Theorem 2), it atually suÆes to prove that ' and �n(') annot bedistinguished by any n-stutter free !-word � 2 �! (an !-word � is n-stutter

14free if � has no n-redundant letters). That is, for every n-stutter free � 2 �!we show that � j= ' i� � j= �n('). We proeed by indution on the strutureof '. All subases exept for ' = X are trivial. Here we distinguish twopossibilities:{ � = p! for some p 2 �. Then �1 = � and thus we get � j= X i��1 j= i� �1 j= �n() (by indution hypothesis) i� � j= �n(). Hene,this subase is `overed' by the formula �() saying that � is of the formp! and that �n() holds (the partiular ase when � = o! orresponds toG:�).{ � = piq� where p; q 2 �, p 6= q, 1 � i � n+ 1, and � 2 �!.Let us �rst onsider the ase when p = o. Then piq� j= X i� pi�1q� j= i� pi�1q� j= �n() (we use indution hypothesis). If i � n, then the lastondition is equivalent topiq� j= �:�i� ^ :�U (�:�i�1� ^ �n())If i = n+1, then the ondition is equivalent topn+1q� j= �:�n+1 ^ :�U (�:�n� ^ �n())In both ases, the resulting formula orresponds to �(;:�; i).The ase when p 2 � is handled similarly; we have that piq� j= X i�pi�1q� j= i� pi�1q� j= �n() (by indution hypothesis). If i � n thenthe last ondition is equivalent topiq� j= �pi:p ^ pU (�pi�1:p ^ �n())If i = n+1 then the ondition is equivalent topn+1q� j= �pn+1 ^ pU (�pn:p ^ �n())In both ases, the resulting formula orresponds to �(; p; i).To sum up, the ase when � = piq� is `overed' by the formula � (). utIn general, the size of �n(') is exponential in X('). However, the size of theiruit3 representing �n(') is only O((n + 1) � j'j2). To see this, realize thefollowing:(1) The total size of all iruits representing the formulae �pn:p; �pn+1 (forall p 2 �) and �:�n� ; �:�n+1 is O((n+1)�j'j). Moreover, all iruits rep-resenting the formulae �pi:p and �:�i� (for all 0 � i � n) are ontainedin the iruits representing �pn:p or �:�n�, respetively.(2) Assuming that the iruits of (1) and the iruit representing �n() areat our disposal, we only need to add a onstant number of new nodesto represent the formulae �(;:�; i) and �(; p; i) for given p 2 � and1 � i � n+1. This means that we need to add O((n+1) � j'j) new nodeswhen onstruting the iruit for �n(X).(3) Sine ' ontains O(j'j) subformulae of the form X , the iruit repre-senting ' has O((n+ 1) � j'j2) nodes in total.3 A iruit (or DAG) representing a given LTL formula ' is obtained from thesyntax tree of ' by identifying all nodes whih orrespond to the same subformula.

15Theorem 11 Let ' be an LTL formula and n 2 N0 . The problem whetherthere is a formula 2 LTL(U;Xn) equivalent to ' is PSPACE-omplete (as-suming unary enoding of n).Proof It suÆes to show that the problem whether a given LTL formula 'de�nes an n-stutter losed language is PSPACE-omplete. The proof for n = 0has been presented in [10℄.Similarly as in [10℄, the PSPACE-lower bound is obtained by reduingthe validity problem for LTL formulae, whih is known to be PSPACE-omplete [13℄. For every LTL formula % we de�ne a formula�(%) = p ^ Xp ^ XXp ^ : : : ^ nz }| {XX : : :X(p ^ Xq ^ XX:%):The language L�(%) = pn+1qL:% is n-stutter losed i� L:% is empty. That is,L�(%) is n-stutter losed i� % is valid.The mathing PSPACE-upper bound is obtained by applying a similarargument as in [2℄|due to the (proof of) Theorem 10 we have that L' isn-stutter losed i� ' is equivalent to �n('). First, we onstrut the iruitrepresenting �n(') (its size is O((n + 1) � j'j2) as shown above). Then wehek the validity of the formula ', �n(') (represented as a iruit), whihan be also done in polynomial spae [13℄. utFinally, let us note that the ondition (b) of Theorem 10 annot be weak-ened to \L is an n-stutter losed !-regular language", beause there are !-regular languages whih are n-stutter losed for all n 2 N0 , yet not de�nablein LTL. A onrete example of suh a language is L = f(p+q+)2ir! j i 2 Ngwhih is learly n-stutter losed for every n 2 N0 , but not (m;n)-stutterlosed for any m;n 2 N0 (and hene not de�nable in LTL).3.2 General stutteringIn Setion 3.1 we have shown that LTL(U;Xn) languages are exatly n-stutterlosed LTL languages. A natural question is whether LTL(Um;Xn) languagesare fully haraterized by the losure property indued by (m;n)-stuttering.In this setion we show that this is not the ase. Nevertheless, regular (m;n)-stutter losed languages are inevitably nonounting, and hene expressiblein LTL. This means that if L is !-regular and (m;n)-stutter losed, thenL 2 LTL(Um0 ;Xn0) for some m0; n0. In this setion we also show that there isno funtional relationship between (m0; n0) and (m;n).De�nition 12 A language L � �! is nonounting if there is k 2 N0 suhthat for all n � k and x; y; z; u 2 �� we have the following:{ xunyz! 2 L () xun+1yz! 2 L,{ x(yunz)! 2 L () x(yun+1z)! 2 L.Theorem 13 Let L � �!. The following onditions are equivalent:(a) L is de�nable in LTL,

16(b) L is !-regular and nonounting,() L is !-regular and (m;n)-stutter losed for some m;n 2 N0 .Proof The equivalene of (a) and (b) is a onsequene of several results;Kamp [5℄ proved that languages (of in�nite words) de�nable in LTL are ex-atly the languages expressible in �rst-order logi. Using the results presentedin [14℄ and [1℄, Perrin [11℄ showed that a language is de�nable in �rst-orderlogi i� it is !-regular and nonounting.The impliation (a) =) () is given by Theorem 9. The impliation() =) (b) follows from a straightforward observation that a language violat-ing nonounting property is not (m;n)-stutter losed for any m;n 2 N0 . utA natural question is whether the ondition () of Theorem 13 an beweakened to \L is (m;n)-stutter losed for some m;n 2 N0". The answer isgiven in our next theorem.Theorem 14 For all m � 2 and n � 1 there is an (m;n)-stutter losedlanguage L � fo; p; q; rg! whih is not de�nable in LTL.Proof Due to Lemma 7 (i), we just need to onsider the ase when m =2 and n = 1. We say that a word w 2 �� is square-free if it does notontain a subword of the form uu, where juj � 1. It is known that there arein�nitely many square-free words4 w0; w1; : : : over the alphabet fo; p; qg [16℄.Now observe that for eah of these wi there is no other word v 2 fo; p; qg� suhthat wir! �(2;1) vr! or vr! �(2;1) wir! . This means that L = fwir! j i 2N0g is (2; 1)-stutter losed. Obviously, L is not !-regular by using standardarguments (pumping lemma for !-regular languages). Thus, L is not de�nablein LTL. utDue to Theorem 13, we know that if L is !-regular and (m;n)-stutterlosed, then L is de�nable in LTL, i.e., there are m0; n0 2 N suh that L isde�nable in LTL(Um0 ;Xn0). However, it is not lear what is the relationshipbetween m;n and m0; n0. One might be tempted to think that m0; n0 anbe expressed (or at least bounded) by some simple funtions in m;n, forexample m0 = m and n0 = n. Our next theorem says that there is no suhrelationship.Theorem 15 Let m � 2 and n � 1. For all m0; n0 2 N0 there is an(m;n)-stutter losed LTL language L � fo; p; q; rg! whih is not de�nablein LTL(Um0 ;Xn0).Proof First, realize that for all m0; n0 2 N0 there are only �nitely manypairwise non-equivalent LTL(Um0 ;Xn0) formulae over the alphabet fo; p; q; rg.Hene, it suÆes to show that for all m � 2 and n � 1 there are in�nitelymany (m;n)-stutter losed LTL languages over the alphabet fo; p; q; rg. Dueto Lemma 7 (i), we just need to onsider the ase when m = 2 and n = 1.Let L be the language onstruted in the proof of Theorem 14. Now realizethat eah of the in�nitely many �nite subsets of L is a (2; 1)-stutter losedLTL language. ut4 The sequene w0; w1; � � � is de�ned indutively by w0 = o and wi+1 = f(wi),where f is a word homomorphism given by f(o) = opqop, f(p) = oqopqp, f(q) =oqpqoqp. The proof in [16℄ reveals that if w is square-free, then so is f(w).

17Finally, let us note that possible generalizations of Theorem 14 and The-orem 15 annot ross ertain limits|they do not hold for all m;n 2 N0and every alphabet �. For example, every (1; 0)-stutter losed language overthe alphabet fp; qg is de�nable in LTL(U2;X0). To see this, realize that thequotient of fp; qg! under (1; 0)-stutter equivalene has exatly eight equiv-alene lasses represented by words (pq)!, (qp)! , p!, q!, pq!, qp!, pqp!,and qpq!. Hene, there are exatly 28 = 256 languages over fp; qg whih are(1; 0)-stutter losed. Sine eah equivalene lass of the quotient is a languagede�nable in LTL(U2;X0), we an onlude that eah of these 256 languagesis de�nable in LTL(U2;X0).4 Answers to Questions 1, 2, and 3Now we are ready to provide answers to Questions 1, 2, and 3 whih werestated in Setion 1 (though Question 3 will be left open in fat). We startwith a simple observation.Lemma 16 For eah n � 1 there is a formula ' 2 LTL(U0;Xn) whihannot be expressed in LTL(U;Xn�1).Proof Let � = fp; qg and n � 1. Consider the formula' = nz }| {XX � � �X p:We show that L' is not losed under (n�1)-stutter equivalene (whih suÆesdue to Theorem 2). This is easy; realize that pn+1q! 2 L' and the �rstourrene of p in this word is (n�1)-redundant. Sine pnq! 62 L', we aredone. utA `dual' fat is proven below (this is already non-trivial).Lemma 17 For eah m � 1 there is a formula ' 2 LTL(Um;X0) whihannot be expressed in LTL(Um�1;X).Proof Let m � 1 and let � = fq; p1; : : : ; pmg. We de�ne a formula ' 2LTL(Um;X0) as follows:' = F(p1 ^ F(p2 ^ : : : ^ F(pm�1 ^ Fpm) : : :))Let us �x an arbitrary n 2 N0 , and de�ne a word � 2 �! by� = (qn+1 pm pm�1 : : : p1)m q!Clearly � j= ' and the subword �(0; n+1+m) is (m�1; n)-redundant. As theword � obtained from � by removing �(0; n+1+m) does not model ', thelanguage L' is not (m�1; n)-stutter losed. As this holds for every n 2 N0 ,the formula ' is not expressible in LTL(Um�1;X). utThe last tehnial lemma whih is needed to formulate answers to Questions 1and 2 follows.

18Lemma 18 For all m;n 2 N0 there is a formula ' 2 LTL(Um;Xn)whih is expressible neither in LTL(Um�1;Xn) (assuming m � 1), nor inLTL(Um;Xn�1) (assuming n � 1).Proof If m = 0 or n = 0, we an apply Lemma 16 or Lemma 17, respetively.Now let m;n � 1, and let � = fp1; : : : ; pk; qg where k = maxfm;n+1g. Wede�ne formulae and ' as follows: = �pm ^ Xnpm�n if m > npm ^ Xnpm+1 if m � n' = �F if m = 1F(p1 ^ F(p2 ^ F(p3 ^ : : : ^ F(pm�1 ^ F) : : :))) if m > 1where Xl abbreviates lz }| {XX : : :X. The formula ' belongs to LTL(Um;Xn). Letus onsider the !-word � de�ned by� =8<: (pm pm�1 : : : p1)mpm pm�1 : : : pm�n+1q! if m > n(pn+1 pn : : : p1)m+1q! if m = n(pn+1 pn : : : p1)m+1pn+1 pn : : : pm+2q! if m < nIt is easy to hek that � 2 L' and that the subword �(0; k) (where k =maxfm;n+1g) is (m;n�1)-redundant as well as (m�1; n)-redundant. As theword � obtained from � by removing �(0; k) does not satisfy ', the languageL' is neither (m;n�1)-stutter losed, nor (m�1; n)-stutter losed. utThe knowledge presented in the three lemmata above allows to onlude thefollowing:Corollary 19 (Answer to Question 1) The LTL(Um;Xn), LTL(Um;X),and LTL(U;Xn) hierarhies are strit.Corollary 20 (Answer to Question 2) Let A and B be lasses ofLTL(Um;Xn), LTL(Um;X), or LTL(U;Xn) hierarhy (not neessarily of thesame one) suh that A is syntatially not inluded in B. Then there is aformula ' 2 A whih annot be expressed in B.Although we annot provide a full answer to Question 3, we an at leastrejet the aforementioned `natural' hypotheses (see Setion 1).Lemma 21 (About Question 3) For all m;n 2 N0 there is a languagede�nable in LTL(Um+2;Xn) as well as in LTL(Um+1;Xn+1) whih is notde�nable in LTL(Um+1;Xn).Proof We start with the ase when m = n = 0. Let � � fp; qg, and let 1 = F(q ^ (qU:q)) and 2 = F(q ^ X:q). Note that 1 2 LTL(U2;X0)and 2 2 LTL(U1;X1). Moreover, 1 and 2 are equivalent as they de�nethe same language L = ��q(� r fqg)�!. This language is not de�nable inLTL(U1;X0) as it is not (1; 0)-stutter losed; for example, the !-word � =pqpq! 2 L ontains a (1; 0)-redundant subword �(0; 2) but �2 = pq! 62 L.

19The above example an be generalized to arbitrary m;n (using thedesigned formulae 1; 2). For given m;n we de�ne formulae '1 2LTL(Um+2;Xn) and '2 2 LTL(Um+1;Xn+1), both de�ning the same lan-guage L over � = fq; p; p1; : : : ; pm+1g, and we give an example of an !-word� 2 L with an (m+ 1; n)-redundant subword suh that � without this sub-word is not from L. We distinguish three ases.{ m = n > 0. For i 2 f1; 2g we de�ne'i = m-timesz }| {XF(p ^ XF(p ^ XF(p ^ : : : ^ XF(p^ i) : : :)))The !-word � = (pq)m+2q! 2 L, �(0; 2) is (m + 1; n)-redundant, and�2 = (pq)m+1q! 62 L.{ m > n. For i 2 f1; 2g we de�ne'i = n-timesz }| {XF(q ^ XF(q ^ : : : ^ XF(q ^'0i) : : :))where '0i = (m�n)-timesz }| {F(p1 ^ F(p2 ^ : : : ^ F(pm�n^ i) : : :))The !-word � = (qpm�npm�n�1 : : : p1)m+1q! 2 L, �(0;m � n + 1) is(m+ 1; n)-redundant, and �m�n+1 62 L.{ m < n. For i 2 f1; 2g we de�ne'i = m-timesz }| {F(p1 ^ F(p2 ^ : : : ^ F(pm^ nz }| {XX : : :X i) : : :))The !-word � = (qn�mpm+1pm : : : p1)m+2q! 2 L, �(0; n+1) is (m+1; n)-redundant, and �n+1 62 L. utIn fat, the previous lemma says that if we take two lasses LTL(Um1 ;Xn1)and LTL(Um2 ;Xn2) whih are syntatially inomparable and wherem1;m2 � 1, then their semantial intersetion (i.e., the intersetion ofthe orresponding lasses of languages) is stritly greater than the lassof languages de�nable in LTL(Um;Xn) where m = minfm1;m2g and n =minfn1; n2g. Another onsequene of Lemma 21 is that there is generally no\best" way how to minimize the nesting depths of X and U modalities in agiven LTL formula.5 ConlusionsThe main tehnial ontributions of this paper are the theorems about n-stuttering and general stuttering presented in Setion 2. With their help wewere able to onstrut (short) proofs of other results. In partiular, we gavean alternative haraterization of LTL(U;Xn) languages (whih are exatlyn-stutter losed languages), proved the stritness of the three hierarhies ofLTL formulae introdued in Setion 1, and we also showed several related

20fats about the relationship among the lasses in the three hierarhies. All ofthe presented results arry over to LTL interpreted over �nite words.Some problems are left open. For example, the exat haraterization ofthe semantial intersetion of LTL(Um1 ;Xn1) and LTL(Um2 ;Xn2) lasses (inthe ase when they are syntatially inomparable) surely deserves furtherattention. Another interesting question is whether Theorem 9 an serve as abasis for new state-spae redution methods in the model-heking area.Referenes1. Arnold, A.: A syntatial ongruene for rational !-languages. TheoretialComputer Siene 39, 333{335 (1985)2. Etessami, K.: A note on a question of Peled and Wilke on stutter-invariantLTL. Information Proessing Letters 75(6), 261{263 (2000)3. Etessami, K., Wilke, Th.: An until hierarhy and other appliations of anEhrenfeuht-Fra��ss�e game for temporal logi. Information and Computation160, 88{108 (2000)4. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fair-ness. In: Conferene Reord of the 7th ACM Symposium on Priniples ofProgramming Languages, pp. 163{173. ACM Press (1980)5. Kamp, J.A.W.: Tense logi and the theory of linear order. Ph.D. thesis, Uni-versity of California, Los Angeles (1968)6. Ku�era, A., Strej�ek, J.: The stuttering priniple revisited: On the expressive-ness of nested X and U operators in the logi LTL. In: J. Brad�eld (ed.)CSL '02: 11th Annual Conferene of the European Assoiation for ComputerSiene Logi, Leture Notes in Computer Siene, vol. 2471, pp. 276{291.Springer-Verlag (2002)7. Ku�era, A., Strej�ek, J.: An e�etive haraterization of properties de�nableby LTL formulae with a bounded nesting depth of the next-time operator.Teh. Rep. FIMU-RS-2004-4, Faulty of Informatis, Masaryk University Brno(2004)8. Lamport, L.: What good is temporal logi? In: R. E. A. Mason (ed.) Pro-eedings of the IFIP Congress on Information Proessing, pp. 657{667. North-Holland, Amsterdam (1983)9. Peled, D., Wilke, Th.: Stutter-invariant temporal properties are expressiblewithout the next-time operator. Information Proessing Letters 63(5), 243{246 (1997)10. Peled, D., Wilke, Th., Wolper, P.: An algorithmi approah for heking losureproperties of !-regular languages. Theoretial Computer Siene 195(2), 183{203 (1998)11. Perrin, D.: Reent results on automata and in�nite words. In: M.P. Chytil,V. Koubek (eds.) Proeedings of the 11th Symposium on Mathematial Foun-dations of Computer Siene, Leture Notes in Computer Siene, vol. 176, pp.134{148. Springer (1984)12. Pnueli, A.: The temporal logi of programs. In: Proeedings of the 18th IEEESymposium on the Foundations of Computer Siene, pp. 46{57. IEEE Com-puter Soiety Press (1977)13. Sistla, A., Clarke, E.: The omplexity of propositional linear temporal logis.Journal of the ACM 32, 733{749 (1985)14. Thomas, W.: Star-free regular sets of !-sequenes. Information and Control42(2), 148{156 (1979)15. Thomas, W.: Automata on in�nite objets. In: J. van Leeuwen (ed.) Handbookof Theoretial Computer Siene, vol. B, Formal models and semantis, pp.133{191. Elsevier (1990)16. Thue, A.: �Uber unendlihe Zeihenreihen. Kra. Vidensk. Selsk. Skrifter, I. Mat.Nat. Kl. 1906(7), 1{22 (1906)

2117. Wilke, Th.: Classifying disrete temporal properties. In: C. Meinel, S. Tison(eds.) STACS '99: Annual Symposium on Theoretial Aspets of ComputerSiene, Leture Notes in Computer Siene, vol. 1563, pp. 32{46. Springer-Verlag (1999)18. Wolper, P.: Temporal logi an be more expressive. Information and Control56, 72{99 (1983)

